Distributed Generation of Suffix Arrays:
a Quicksort-Based Approach

13 24

Joao Paulo Kitajima Gonzalo Navarro
Berthier A. Ribeiro-Neto!? Nivio Ziviani'®

! Dept. of Computer Science, Federal University of Minas Gerais, Brazil.
2 Dept. of Computer Science, University of Chile, Chile.
® This author has been partially supported by CNPqQ Project 300815/94-8.
* This author has been partially supported by Fondef grant 96-1064 (Chile).
® This author has been partially supported by CNPqQ Project 300188/95-1.
® This author has been partially supported by CNPqQ Project 520916/94-8 and
Project Ritos/CYTED.

Abstract. An algorithm for the distributed computation of suffix ar-
rays for large texts is presented. The parallelism model is that of a
set of sequential tasks which execute in parallel and exchange messages
between each other. The underlying architecture is that of a high-
bandwidth network of processors. In such a network, a remote mem-
ory access has a transfer time similar to the transfer time of magnetic
disks (with no seek cost) which allows to use the aggregate memory
distributed over the various processors as a giant cache for disks. Our
algorithm takes advantage of this architectural feature to implement a
quicksort-based distributed sorting procedure for building the suffix ar-
ray. We show that such algorithm has computation complexity given by
O(rlog(n/r)+mn/r logrlogn) in the worst case and O(n/r logn) on av-
erage and communication complexity given by O(n/r log® r} in the worst
case and O(n/r logr) on average, where n is the text size and r is the
number of processors. This is considerably faster than the best known
sequential algorithm for building suffix arrays which has time complex-
ity given by O(n?/m) where m is the size of the main memory. In the
worst case this algorithm is the best among the parallel algorithms we
are aware of. Furthermore, our algorithm scales up nicer in the worst
case than the others.

1 Introduction

We present a new algorithm for distributed parallel generation of large suffix
arrays in the context of a high bandwidth network of processors. The motivation
is three-fold. First, the high cost of the best known sequential algorithm for
suffix array generation leads naturally to the exploration of parallel algorithms
for solving the problem. Second, the use of a set of processors (for example,
connected by a fast switch like ATM) as a parallel machine is an attractive
alternative nowadays [1]. Third, the final index can be left distributed to reduce
the query time overhead. The distributed algorithm we propose is based on a

parallel quicksort [7, 13]. We show that, among previous work, our algorithm is
the fastest and the one that scales best, in the worst case.

The problem of generating suffix arrays is equivalent to sorting a set of
unbounded-length and overlapping strings. Because of those unique features
and because our parallelism model is not a classical one, the problem cannot
be solved directly with a classical parallel sorting algorithm (we review related
work in Section 3).

The proposed algorithm is based on the recursive parallel quicksort approach,
where a suitable pivot is found for the whole distributed set of suffixes and
the partition phase redistributes the pointers of the suffix array so that each
processor has only suffixes smaller or larger than the pivot. A generalization
of the parallel quicksort was presented in [12], whose central idea is as follows.
Consider the global sorted suffix array which results of the sorting task. If we
break this array in n/r similarly-sized portions, we can think that each processor
holds exactly one such slice at the end. Thus, the idea is to quickly deliver to
each processor the index pointers corresponding to its slice. In summary, the
generalized parallel quicksort presented in [12] works with r-percentiles obtained
in one step, instead of the binary recursive approach based on one pivot used
here. It 1s also worth to mention a previous parallel mergesort based algorithm
presented in [9], which is slower than the algorithm presented here on both
average and worst cases.

1.1 Suffix Arrays

To reduce the cost of searching in textual databases, specialized indexing struc-
tures are adopted. The most popular of these are inverted lists. Inverted lists
are useful because their search strategy is based on the vocabulary (the set of
distinct words in the text) which is usually much smaller than the text and thus,
fits in main memory. For each word, the list of all its occurrences (positions) in
the text is stored. Those lists are large and take space which is 30% to 100% of
the text size.

Suffiz arrays [10] or PAT arrays [4, 5] are more sophisticated indexing struc-
tures with similar space overhead. Their main drawback is their costly construc-
tion and maintenance procedures. However, suffix arrays are superior to inverted
lists for searching phrases or complex queries such as regular expressions [5, 10].
In this model, the entire text is viewed as one very long string. In this string,
each position k is associated to a semi-infinite string or suffiz, which initiates
at position k in the text and extends to the right as far as needed to make it
unique. Retrieving the “occurrences” of the user-provided patterns is equivalent
to finding the positions of the suffixes that start with the given pattern.

A suffiz array is a linear structure composed of pointers (here called index
pointers) to every suffix in the text (since the user normally bases his queries
upon words and phrases, it is customary to index only word beginnings). These
index pointers are sorted according to a lezicographical ordering of their respec-
tive suffixes and each index pointer can be viewed simply as the offset (counted
from the beginning of the text) of its corresponding suffix in the text.

To find the user patterns, binary search is performed on the array at O(logn)
cost (where n is the text size). The construction of a suffix array is simply
an indirect sort of the index pointers. The difficult part is to do this sorting
efficiently when large texts are involved (i.e., gigabytes of text). Large texts do
not fit in main memory and an external sort procedure has to be used. The
best known sequential procedure for generating large suffix arrays takes time
O(n?/m logm) where n is the text size and m is the size of the main memory [5].

1.2 Distributed Parallel Computers

Parallel machines with distributed memory (multicomputers or message pass-
ing parallel computers) are a good cost-performance tradeoff. The emergent
fast switching technology has allowed the dissemination of high-speed networks
of processors at relatively low cost. The underlying high-speed network could
be, for instance, an ATM network running at a guaranteed rate of hundreds of
megabits per second. In an ATM network, all processors are connected to a cen-
tral ATM switch which runs internally at a rate much higher than the external
rate. Any pair of processing nodes can communicate simultaneously at the guar-
anteed rate without contention and broadcasting can be done efficiently. Other
possible implementations are the IBM SP based on the High Performance Switch
(HPS), or a Myrinet switch cluster. Our idea is to use the aggregate distributed
memory of the parallel machine to hold the text. Accessing remote memories
takes time similar to that of transferring data from a local disk, although with
no seek costs [9].

2 Preliminaries

Our parallelism model is that of a parallel machine with distributed memory.
Assume that we have a number r of processors, each one storing b text positions,
composing a total distributed text of size n = rb. Our final suffix array will also
be distributed, and a query solved with only O(logn) remote accesses. We
assume that the parallelism is coarse-grained, with a few processors, each one
with a large main memory. Typical values are » in the tenths or hundreds and
b in the millions.

The fact that sorting is indirect poses the following problem when working
with distributed memory. A processor which receives a suffix array cell (sent by
another processor) is not able to directly compare this cell because it has no local
access to the suffix pointed to by the cell (such suffix is stored in the original
processor). Performing a communication to get (part of) this suffix from the
original processor each time a comparison is to be done is expensive. To deal
with this problem we use a technique called pruned suffizes. Each time a suffix
array cell is sent to a processor, the first £ characters of the corresponding suffix
(which we call a pruned suffiz) are also sent together. This allows the remote
processor to perform comparisons locally if they can be decided looking at the
first £ characters only. Otherwise, the remote processor requests more characters

to the processor owning the text suffix cell”. We try to select ¢ large enough to
ensure that most comparisons can be decided without extra communication and
small enough to avoid very expensive exchanges and high memory requirements.

We define now what we understand by a “worst-on-average-text” (WAT) case
analysis. If we consider a pathological text such as "a a a a a a ...", the
classical suffix array building algorithm will not be able to handle it well. This
is because each comparison among two positions in the text will need to reach the
end of the text to be decided, thus costing O(n). Since we find such worst-case
texts unrealistic, our analysis deal with average random or natural language
text. In such text the comparisons among random positions take O(1) time
(because the probability of having to look at more than i characters is 1/ for
some ¢ > 1). Also, the number of index points (e.g., words) at each processor
(and hence the size of its suffix array) is roughly the same. A waT-case analysis
is therefore a worst-case analysis on average text. We perform waT-case and
average-case analysis.

3 Related Work

For the PRAM model, there are several studies on parallel sorting. For instance,
J4ja et al. [8] describe two optimal-work parallel algorithms for sorting a list of
strings over an arbitrary alphabet. Apostolico et al. [2] build the suffix tree of a
text of n characters using n processors in O(logn) time, in the CRCW PRAM
model. Retrieval of strings in both cases 1s performed directly. In a suffix array,
strings are pointed to and the pointers are the ones which are sorted. If a
distributed memory 1s used, such indirection makes the sorting problem more
complex and requires a more careful algorithm design.

The parallelism model we adopt is that of parallel machines with distributed
memory. In such context, different approaches for sorting can be employed. For
instance, Quinn [13] presents a quicksort for a hypercube architecture. That
algorithm does not take into account the variable size and overlapping in the
elements to be sorted, as in our problem. Furthermore, the behavior of the com-
munication network in Quinn’s work is different (processors are not equidistant)
from the one we adopt here.

4 The Quicksort-Based Distributed Algorithm

Our algorithm also utilizes the aggregate memory as a giant cache for disks.
Unlike mergesort, the hardest work occurs at the point of higher parallelism. It
also improves over the generalized quicksort, because the partitioning is binary
and therefore bad biased cases are handled better.

Our algorithm starts by determining the beginning of each suffix in the text
(i.e., the beginning of each word) and by generating the corresponding index

TAs we will see, in some cases this is not necessary and one might assume that the
suffixes are equal if the comparison cannot be locally decided.

pointers. Once this is done, the pointers are sorted lexicographically by the
suffixes they point to (i.e. the local suffix arrays are built). This task is done in
parallel for each of the r blocks of text. Since computation of the whole suffix
array requires moving index pointers among processors without losing sight of
the suffixes they point to, index pointers are computed relative to the whole
text.

The processors then engage in a recursive process which has three parts: (1)
find a suitable pivot for the whole distributed set of suffixes; (2) partition the
array: redistribute the pointers so that each processor has only suffixes smaller
or larger than the pivot (keep local arrays sorted), and (3) continue the process
separately inside each group of processors.

This recursion ends when a partition is completely inside a local processor.
Since all the time the suffixes at each processor are sorted up to pruning, the
process is completed with (4): a final sorting of equal pruned suffixes inside each
processor.

We now describe the algorithm more in detail. Let E(7) be the set of index
pointers stored in the processor i. Further, let p be a reference to an index
pointer and let S(p) be the pruned suffix pointed to by p.

4.1 Finding a Pivot

The goal of this stage 1s to find a suffix which is reasonably close to the median
of the whole set, at a low cost. To achieve this, all processors

(a) take the middle element m(7) of their local suffix array;

(b) broadcast that (pruned) median m(i);

(¢) knowing all the other medians, do m = median{m(1),...,m(r)};
(d) binary search the median of medians m in their suffix array,
therefore partitioning their index pointers in two sets L(¢) and R():

L) ={p € E() | S(p) <m}; R()={pe E@)|S(p) >m} (1)
(e) broadcast the sizes |L(¢)| and |R(¢)| of the computed partitions.

Observe that in part (e) a pruned suffix which is found to be equal to the
(pruned) pivot m is put at the left partition. This works well and avoids at all
requesting full suffixes to other processors. However, as the algorithm progresses,
this pivoting process can worsen the randomness of the partition. Such effect
tends to get worse at the final stages of the sorting process.

We proved in [12] that this median of medians is very close to the exact
median, and we show in Section 6 that this is the case in practice, even using
pruned suffixes. Notice that it is possible to find the exact pruned median
by using the O(rlogh) process described in [12]. However this would add a
complication to the algorithm and does not change the complexities, as we see
later.

4.2 Redistributing Pointers

The processors engage in a redistribution process in which they exchange index
pointers until each processor contains all of its index pointers in either L or R,
where

L=JLi; RrR={JRG) (2)

We say that the processor becomes homogeneous when this happens. There
can be left at most one processor whose index pointers lie in both L and R (we ex-
plain later how this is accomplished). This processor is called non-homogeneous.

The process of redistributing index pointers is carried out in a number of
steps which are completely planned inside each processor (simulating comple-
tion times for exchanges) and later followed independently. To accomplish such
effect, the processors are paired in a fixed fashion (for instance, pair the proces-
sor (2¢) with the processor (2 + 1) for all 7). Each pair manages to exchange a
minimum number of index pointers such that one of them is left homogeneous.
The homogeneous processor in each pair is left outside of the redistribution
process. The remaining half processors engage in a new redistribution process
in which the processor (4¢) or (47 + 1) is paired with the processor (4i + 2)
or (4¢ + 3) (depending on which one is still non-homogeneous). Notice that,
since all processors have the information needed to predict the redistribution
process, they know which processor to pair with at each iteration, and no syn-
chronization messages have to be exchanged. This ends when there is only one
non-homogeneous processor.

Let us focus in the task of making one of the processors in a pair homo-
geneous. Consider the pair composed of processors P, and P,. By comparing
its suffixes with the computed median m, the processor P, separates its index
pointers according to the internal partition (L4, Rs). Analogously, the processor
Py separates its index pointers according to the internal partition (Lj, Rp). Let
|Lal, |Ral, |Ls|, and |Rp| be the number of index pointers in each of these par-
titions. Without loss of generality, let min(|Lq|, |Ral, | L], [R35]) = |La]- Then,
processor P, can make himself homogeneous by sending all the index pointers in
its partition L, to processor Pj while retrieving (from processor Py) |L4| index
pointers of partition R. After this exchange, processor P, is left with all its
index pointers belonging to R (and thus, homogeneous) while processor Py is
left with a partition (Ly |J La, B}), where R} C Ry and |R}| = |Ry| — |L4|. The
other cases are analogous. See Figure 1.

Notice that instead of pairing the processors in an arbitrary fashion, we
should try to pair processors P, and P, such that |L,| is as close as possible to
| R3], therefore minimizing the amount to transfer and the number of redistrib-
ution steps on average (since it is more probable that both processors are left
homogeneous or close to). An easy way to do this is to sort the processors by
their |L,| value and then pair the first and last processors, the second and the
next-to-last, and so on. This needs not exchange of synchronization messages,
because all processors have the necessary information to plan the same exchange
sequence.

b b Lo b

Fig. 1. Nllustration of the exchange process. Processor P, is made homogeneous since
it owns the smaller partition. This partition is exchanged for a similarly sized portion

of Py.

Once a processor receives a portion of another suffix array, it merges the
new portion with the one it already had. This ensures that the suffixes are
lexicographically sorted inside each processor all the time. This is of course
true only up to pruning, since equal pruned suffixes are stored in any order.
However, those pruned suffixes coming from the same processor are known to
be originally in the correct order, and therefore this merging process does not
modify the ordering between equal suffixes of the same processor.

4.3 Recursive Step

This redistribution of index pointers splits the processors in two groups: those
whose index pointers belong to L and those whose index pointers belong to R.
The two groups of processors proceed independently and apply the algorithm
recursively.

The non-homogeneous processor could potentially slow down the process,
since it has to act in two (parallel) groups. Although it does not affect the
total complexity (since a processor belongs at most to two groups), it can affect
the constants. To alleviate the problem, we can mark it so that in the next
redistribution process it is made homogeneous in the first exchange iteration. It
may take longer, but the processor is free for the rest of the iterations.

The recursion ends whenever an L or R set of index pointers lies entirely in
the local array of a processor. In this case, all that remains to be done 1s to sort
L or R locally.

4.4 Final Local Sorting

Throughout the process, the suffixes at each processor are sorted up to prun-
ing. Moreover, we guarantee that equal pruned suffixes coming from the same
processor are correctly sorted already. We must, therefore, correctly sort all
equal pruned suffixes coming from different processors. To decide those compar-
isons, more characters of the suffixes must be requested to the remote processors
owning the suffixes. The number of such remote accesses depends on the text
and on the size of the pruned suffixes. Refer to Section 6 for further details.

Therefore, this step proceeds as follows, for each processor: the suffix ar-
ray 1s sequentially traversed. FEach time a sequence of equal pruned suffixes
is found, they are put in r queues, one per originating processor. Inside each
queue, the original order of the suffixes is respected. Then, the first heads of all
queues are collected and arranged into a heap data structure (each comparison
involves requesting remotely more suffix characters). Once the head of the heap
is removed, it is replaced by the next element of the appropriate queue, until
we sort all elements. With this ad-hoc heapsort we make only the necessary
comparisons.

5 Analysis

5.1 WAT Case

We consider the cost T'(r) of our distributed algorithm described in Section 4.
Since the size of the problem is reduced at each recursion step, the number of
processors in the newly generated L and R groups decreases. We consider the
cost of a recursive step with r processors initially. The final cost of the recursion
is that of solving the subproblems it generates. Note also that there 1s an initial
part outside the recursion, namely the initial local sorting.

The initial cost of sorting locally the suffix arrays is O(blogb) I, since it is
done in parallel at each processor.

Apart from this, the cost T'(r) of our algorithm for r processors is as follows:

1. Costs for finding the pivot (costs are parallel for all processors 4):
(a) selecting the middle element m(%) is O(1) I;

(b) broadcasting the median m(%) is O(r) C;

(¢) computation of the median m is O(r) I,

(d) searching m in the local suffix to determine L(é) and R(7) is O(logb) I,

(e) broadcasting the sizes |L(7)| and |R(4)| is O(r) C.

2. Cost of redistributing index pointers in subproblems L and R is as follows.
There are at most log r steps because at least half of the processors 1s made
homogeneous at each redistribution step. Since at most b index pointers
are exchanged in each step (because min(|L4|, | Ral, |Lsl, | Re|) < 8/2), the
total cost is O(blogr)(I + C) (we also count the factor I because of
the merging between the old and new pointers).

3. Cost for the recursive calls (processing of groups L and R) depends on the
worst-case partition. Let r; be the number of processors in group L and
rgr be the number of processors in R.

We show that r/4 < rp < 3r/4 in the worst case: observe that the esti-
mated median m is larger than 7/2 local medians, each one in turn larger
than /2 elements of the corresponding processor. Hence, m is larger than
n/4 elements which implies that ry, is larger than r/4. The proof for the
upper bound is analogous.

Hence, there are at most log, 37 levels in the recursion in the worst case.
The number of processors in the larger partition is at most 3/4r (the
smaller partition works in parallel and does not affect completion times).

Therefore, T(3/4r) must be added to T'(r).

4. Cost of sorting the index pointers locally. In the worst case the suffixes are
all equal and the same number originated at each processor. In this case
the heapsort is O(blogr)(I + C). Note that this r is the original one,
independent of the recursion (we call it rg). Notice also that this worst
case analysis does not improve significantly if instead of a long run of equal
pruned suffixes there are many short runs (except when the runs are so
short that logr becomes very pessimistic).

The complexity of the total execution time is given by the recurrence

T(1) = O(blogh) I+0(blog ro)(I4+ C) = O(blogn) I4+O0(blogrg) C
T(r)=0(r+blogr) I+O0(r+blogr) C+T(3/4r)

which gives

T(r) = O(r + blogrlogn) T4+ O(r + blog”r) C

where we can assume 1 < b to obtain T(r) = O(blogrlogn) I+ O(blog®r) C.
The communication complexity is better than all previous work.

This part of the complexity is the most important in practice (as the remote
accesses cost much more than CPU operations). Hence, we concentrate in com-
munication costs. The exact constants for the main part of the cost are given
by blog, rlog, s 7.

If we replace the estimated median algorithm by the one given in [12] that
obtains the exact median, we have a cost of O(rlogb) instead of O(r + logb)
in Step (1). As a compensation, the partition is exact and therefore there are
exactly r/2 processors on each side. Redoing the analysis for this case we get

T(r) = O(rlogh + blogrlogn) I+ O(rlogb 4 blog” r) C

which is the same as before when we consider r < b. However, the constants
of the main part of the cost improve, namely the communication cost becomes
blogs r.
We consider scalability now. If we double n and r, the new cost T(2n, 2r)
becomes
T(2n,2r)=T(n,r)x

C) =1+0(1)

. 7~+b(l+log4/3r+log2n)I r/In(2) + b(2log, r + 1)
r+blog, s7log, n r+blog,rlogysr

which as long as r < b 1s

T(2n,2r) = T(n,r) <1+0 (10;) (I+C))

(the ideal scalability condition is T'(2n, 2r) = T'(n, r)). While our algorithm does
not scale ideally, it does scale much better than previous algorithms (whose scal-
ing factor is 2 in the WAT case). Further, as the number of processors increase,
the additional computational time (given by the fraction 1/logr) drops consid-
erably. For instance, if the number of processors doubles from 256 to 512 the
execution time goes up by a factor of 25% (instead of also doubling).

5.2 Average Case

We show in this section that the algorithm works almost optimally in the average
case. The most involved part of the proof is to show that, for large n, the
estimated median is almost the exact median. We have proved it in [12] (i.e.
the local median is off the global median by a factor of O(n_l/z)). The proof
is obtained by considering only one processor, as a process where the global
median is estimated by sampling b elements out of n. When the median of r so
computed medians is used, the estimation is even better. Therefore, the distance
between the real median and the middle of the local array is O(\/b/_r)

Once we prove that, we have that each redistribution session exchanges al-
most all the data in a single step (since |L,| = |L;| &= |Rq| &= |Rs]), being
the remaining steps so small (in terms of communication amounts) that can be
ignored. The first iteration exchanges O(b) elements, and the rest exchange por-
tions of the array of size O(1/b/r). Therefore, the cost of the O(logr) exchanges
is O(b+ /b/rlog, r) = O(b). Tt is also possible to perform the merges between
old and new arrays at the same cost.

Moreover, since the partition is almost perfect, |L| = |R|, and the next
subproblems are almost half the size of the original one, the logarithm previously
in base 4/3 is now base 2 and the network is used all the time. To see this,
observe that instead of adding 7'(3/4 r) to T'(r), we add T((b/2 4 /b/r) r/b) =
T(r/2+\/r/b) = T(r/2 + o(1)), which makes the final cost blogs /(14001 7 =
blogyr (14 o(1)). Therefore, the average time cost of our algorithm is

T(r)=0(r+blogn) I + O(r+blogr) C=0(blogn) I + O(blogr) C

(the simplification being valid for r < b). The scalability factor for communica-
tion becomes 14 (r +b)/(r + blog, r), i.e. of the same order but about a half
of that of the WAT case, while for CPU costs it is 1 + O(1/logn). Despite this
improvement, the algorithm [12] has better average complexity.

The non-homogeneous processor does not add too much to the cost, since it
has a2 b/2 elements in each partition, and hence exchanges = b/4 on each group.
This takes the same as exchanging b/2, which is the normal case in the other
processors.

The final sorting can be cheaper on average than O(blogr). However, this
analysis 18 much more difficult and highly dependent on the nature of the text
and the length of the pruned suffixes. We can make it cheaper by using longer
pruned suffixes (and pay more communication cost) or vice versa. Moreover, the
big-O analysis does not change because there are already other O(blogr) costs
involved. We leave this point for the experiments that follow.

6 Experimental Results

Although we have not implemented yet the parallel algorithm here presented,
we performed a preliminary analysis of its behavior taking into account some
real texts (Wall Street Journal extracts from the TIPSTER collection [6]). We
study the critical aspects of the behavior of the algorithm.

6.1 Pruned Suffixes

One phenomenon of interest is the effect of pruned suffixes in the algorithm.
Suffixes are pruned at £ characters in order to reduce interprocessor communica-
tion of processes asking remote suffixes for local comparison. Pruning influences
the whole algorithm because, after the first step of recursion, pointers may point
to remote suffixes. We evaluate here the implications of pruning on interprocess
communication.

We begin by considering the last local sorting. We implemented an external
merge of r queues using a heap. We obtain the fraction of comparisons that
generated remote accesses for more characters of the suffixes (these correspond
indeed to a tie between pruned suffixes). In Table 1 we present average and
standard deviation (stdev) for different block sizes and ¢ values, considering an
input file of 10 megabytes.

In turn, each tie implies two to four remote accesses (depending on just one
or both are remote pruned suffixes). This is because there is a request and an
answer for each suffix retrieved. However, suffixes already brought from a remote
processor can be buffered locally in order to solve eventual posterior ties, with
no need to ask them again remotely.

We also counted the number of messages really exchanged among processors,
if this local buffering is used. Let ties be the total number of ties occurring on a
given processor. In the same table we present, in the sixth column, the fraction
of the messages exchanged when compared with the worst case (that is, 4*tées).
This gives a measure of the effectiveness of the local buffering scheme.

We present also the maximum number of messages sent in each case (i.e.,
the number of messages of the most communicant processor) normalized in per-
centage to the number of total suffixes on the corresponding processor. Since
all processors work in parallel, this is related to the global completion time for
Step 4 of the algorithm.

Finally, we estimate the time in seconds to transfer this maximum number
using the model of [11] for smaller messages (see Section 6.3: « = 47 and
7 = 0.0254) and considering a message of 8 bytes to request (suffix pointer
plus processor address) and 54 to answer (processor address plus 50 bytes of the
suffix).

The results show that a pruned suffix of 30 characters is already a good trade-
off (< 5% remote requests in almost all cases). We observe that the variation
between the percentage of ties among processors is rather high. As a matter of
fact, the larger the pruned suffix, the larger the variation of the percentage of

T P 4 % ties stdev messages / stdev max mess. / estimated
‘ ‘ ‘ ‘ ‘ 4% ties ‘ # suffix time (s) ‘
10 Mb 8 10 27.84% 9.25% 20.53% 5.31% 2.50% 8.28
10 Mb 8 20 7.51% 29.20% 28.00% 15.93% 0.88% 2.90
10 Mb 8 30 4.10% 35.23% 26.50% 15.89% 0.44% 1.46
10 Mb 8 40 2.54% 37.14% 28.61% 15.10% 0.29% 0.94
10 Mb 16 10 24.74% 19.78% 13.13% 16.30% 2.97% 4.91
10 Mb 16 20 6.55% 51.49% 20.76% 46.92% 1.29% 2.12
10 Mb 16 30 3.67% 62.17% 20.23% 51.16% 0.66% 1.09
10 Mb 16 40 2.22% 76.54% 22.47% 43.79% 0.49% 0.80

Table 1. Amount of exchanged messages due to pruning (stdev is a percentage
over the average). T is the text size and P the number of processors.

ties. For example, for £ equal to 10 and 8 processors, we obtained a standard de-
viation of 9.25% over the average. For £ equal to 40, this percentage increases to
37.14%. This means that larger pruned suffixes imply few ties (and few remote
accesses), but more text is stocked locally and text characteristics (distribution
of words and phrase composition) start to influence the occurrence of identical
suffixes. For example, “Wall Street Journal” (19 characters) occur frequently in
the text database we use. The processor containing suffixes starting with "w"
may ask more remote suffixes than other processors.

Another interesting point is compression. To reduce communication overhead
when exchanging suffix arrays, we use a compression scheme based on similarity
of pruned suffixes. Since the processor that sends a slice will send all the pruned
suffixes in ascending order, most suffixes will share a common prefix with their
neighbors. This can be used to reduce the amount of communication. This
technique has been previously applied to compress suffix array indices [3], and
works as follows: the first pruned suffix is sent complete. The next ones are
coded in two parts: the length of the prefix shared with the previous pruned
suffix; and the remaining characters. For example, to send "core'", "court"
and "custom", we sent "core", (2,"urt") and (1,"ustom").

Compression rates (i.e. compressed size divided by uncompressed size) aver-
ages and standard deviation are presented in Table 2. With an ¢ of 30 characters,
a 25% of reduction is achieved. As expected for lower £, compression may reduce
the size of the pruned suffixes to almost the half of the size. However, as pre-
sented in Table 1, a small £ implies more communication during the local sort
of pointers. We also verify that compression rates are also sensible to the text
size. The larger this size, the better the compression, due to the higher degree of
similarity between contiguous suffixes in the sorted array. Note that we measure
compression rates in the first exchange. This should improve in further steps
of the recursion, since the suffixes become more and more sorted and therefore
longer prefixes are shared among contiguous suffixes.

text size | # proc. | £ mean stdev
compression rate | compression rate
10 Mb 8 10 56.06% 4.26%
10 Mb 8 20 65.99% 4.41%
10 Mb 8 30 73.46% 3.93%
10 Mb 8 40 78.19% 3.40%
10 Mb 16 10 59.17% 6.90%
10 Mb 16 20 69.05% 6.54%
10 Mb 16 30 75.90% 5.85%
10 Mb 16 40 80.23% 5.11%

Table 2. Percentage of compression (average and percentage of stdev over the
average).

6.2 Estimated Medians

We have generated the suffix arrays and the corresponding file of sorted suffixes
for two extracts of the Wall Street Journal [6]. These two extracts have 32
and 100 megabytes. We partitioned these files in 8 and 16 blocks, and used
£ = 30. Then, we obtained the medians of the blocks (m(é)) and computed m,
the median of the medians. Next we compared:

— m with the real median of the whole extract (called Dy);

— m with each local m(¢) (called Dy(7)).

We present the distance (in percentage) from the real median. If it is the
exact median, the percentage is 0%. If it corresponds to the first or last element
of the local suffix array, the deviation is of 100%. The results for the maximum
deviations are presented in Table 3.

| [T00MDb-8P | 100Mb-16P | 32Mb-4P | 32Mb-8P | 32Mb-16P |

Dy 0.42% 0.35% 0.11% 0.16% 0.06%
max (D2(1)) | 1.49% 0.98% 0.29% 0.75% 151%

Table 3. Deviation among real and estimated medians. Text sizes of 32 and
100 megabytes and number of processors of 4, 8, and 16.

According to the numbers presented in Table 3, the text presents a charac-
teristic of auto-similarity, that is, the text blocks on each processor have similar
medians, which are in turn similar to the exact global median. Approximate
medians (those considering the median of medians, that is, m) are taken on
pruned suffixes. Therefore, even using pruned suffixes with a reasonable £, we
obtain good approximations (< 2%).

We did not go on with the partitioning process, but we also estimated what
would happen in the last steps of the recursion process. In these last levels, the
compared suffixes are much more similar and the median approximation is based
on few samples (but on a smaller text space). For this approximation, we took
the global sorted suffix file called G'S. We divided G'S in 8 and 16 blocks (GS;,
where 1 < i < 8 or 1 < ¢ < 16) and took the two first blocks GS; and G5,
(for example, comprising suffixes starting with "4" until "C"). Next we took
each suffix of these two initial blocks and chose randomly a processor to hold it
(keeping the lexicographical order - since GS has sorted suffixes). Finally, we
took the median on each processor and compared with the real median (the last
suffix of G'S7 or the first of GSy). Results are presented in the Table 4 for a 100
megabytes file.

file size 100 Mb | 100 Mb
block size fraction 1/8 1/16

distance block 1 0.06% 0.10%
distance block 2 0.07% 0.10%

Table 4. Deviation among real and estimated medians in part of the last step
of the recursion. Simulation is used.

The estimated medians on pruned suffixes are very close to the real median.
This shows that the estimation i1s even better in the last steps of the recursion,
even considering the effects of pruning. It is important to remark that in both
cases (Tables 3 and 4) the approximations are very good for ¢ = 30 and different
number of processors. This is expected considering that the number of samples
is proportionally the same when compared to the size of the text being sam-
pled: e.g., for 16 processors, we sample 16 medians for the whole text. With 2
processors in the last step, we sample 2 medians, but from a text 8 times smaller.

6.3 Partition Exchange

We know that if the partitions are exact (i.e., m is always identical to the real
median of the (sub)set), the partition (L or R) exchanges are performed in one
step and without interference among pairs (using a no contention switch). In
general, communication in parallel machines can be modeled by a linear equa-
tion [11]:

teom = @+ TS

where t.,, 18 the total communication time, « is the time spent to startup the
line and other eventual overheads (e.g., packing), 7 is the time to send a byte
through the communication link, and s, is the partition size in bytes. If the
partitions are exactly equal in size, all the partition exchanges are done in one
turn. For the examples of Section 6.2 (texts of 32 and 100 megabytes; 4, 8, and

16 processors; and £ = 30), we present in Table 5 the estimated time of the first
partition exchange of the recursion. We use the parameters of a typical IBM SP
parallel machine: o = 390us, 7 = 0.115us/byte [11]5. Tt is important to remark
that one partition is composed of integers and the pruned suffixes. For Table 5,
we estimated the communication time without using a compression scheme.

100Mb | 100Mb | 32Mb | 32Mb | 32Mb
8P 16P 4P 8P 16P

|estimated time| 5.06 | 2.54 | 3.68 | 1.85 | 0.93 |

Table 5. Estimated communication time in seconds of partitions for the first
iteration of the recursion. Non-homogeneous processors are not considered.

Using the measures of Section 6.2, we can estimate the communication time
loss due to unequal partitions. However, due to the regularity of the partitions,
the remaining bytes to make processors homogeneous are not representative.
For example, we take the 32 megabytes text and make a simulation of parti-
tion exchange, considering different sizes of partitions (we consider, for each,
communication turn, the largest message exchanged and 8 processors):

1. for the above case, the first communication is of 469,011 % 34 bytes. This
will consume around 1.83 seconds (1,834.22 milliseconds). Half of the
processors are made homogeneous;

2. next, we check the number of bytes to be exchanged to make more one
fourth processors homogeneous. We have then to communicate 112 x 34
bytes, corresponding to 0.83 milliseconds, i.e., 0.05% of the previous time;

3. finally, 12 % 34 bytes are sent to make one processor homogeneous and
other non-homogeneous with 10034 more bytes than the other processors.
This last exchange consumes 0.44 milliseconds, i.e, 0.02% of the partition
exchange original time.

7 Conclusions and Future Work

We have discussed a quicksort-based distributed algorithm for the generation of
suffix arrays for large texts. The algorithm 1s executed on processors connected
through a high-bandwidth network. We have shown how to deal with the par-
ticular aspects of suffix arrays, namely the unbounded size and overlapping of
the elements. We analyzed the average and worst case complexity of our algo-
rithm considering a text of size n and the presence of 7 processors. Such analysis

8The IBM SP has different linear communication models for different sizes of mes-
sages. The a and 7 of Section 6.1 correspond to small messages (< 4 kilobytes). The
parameters used here correspond to larger messages (> 32 kilobytes).

proves that the algorithm has the best communication complexity and scaling
factor in the WAT case. A comparative table follows.

Algorithm Complexity Scaling Factor (1 + ...)
WAT Average WAT Average
Mergesort n(I +C)|n(I+C) I +C I +C
[9

Generalized blogn I blogn I 1/logn 1 1/logn I
Quicksort [12] +nC +bC + C

Quicksort blogrlogn I blogn I 1/logr (I + C) | 1/logn I+
(present work) || + blog®r C + blogr C 1/logr C

We are currently working on the implementation of the quicksort based algo-

rithm in order to have real experimental times instead of simulations. We also
plan to repeat the experiments with larger texts for the final version.

References

1.

10.

. D. Harman.

T. Anderson, D. Culler, and D. Patterson. A case for NOW (Network of Worksta-
tions). IEEE Micro, 15(1):54-64, February 1995.

A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and U. Vishkin. Parallel
construction of a suffix tree with applications. Algorithmica, 3:347-365, 1988.

. E. Barbosa and N. Ziviani. From partial to full inverted lists for text searching.

In R. Baeza-Yates and U. Manber, editors, Proc. of the Second South American
Workshop on String Processing (WSP’95), pages 1-10, April 1995.

G. Gonnet. PAT 3.1: An Efficient Text Searching System — User’s Manual. Centre
of the New Oxford English Dictionary, University of Waterloo, Canada, 1987.

. G. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT trees

and PAT arrays. In Information Retrieval — Data Structures & Algorithms, pages
66—82. Prentice-Hall, 1992.

Overview of the third text retrieval conference. In Proceedings of
the Third Text Retrieval Conference - TRFEC-3, pages 1-19. National Institute
of Standards and Technology. NIST Special Publication 500-225, Gaithersburg,
Maryland, 1995.

J. J4ja. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

. J.J44, K. W. Ryu, and U. Vishkin. Sorting strings and constructing digital search

trees in parallel. Theoretical Computer Science, 154(2):225-245, 1996.

J. P. Kitajima, B. Ribeiro, and N. Ziviani. Network and memory analysis in
distributed parallel generation of PAT arrays. In 14th Brazilian Symposium on
Computer Architecture, pages 192-202, Recife, August 1996.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22, 1993.

11. J. Miguel, A. Arruabarrena, R. Beivide, and J. A. Gregorio. Assessing the perfor-
mance of the new IBM SP2 communication subsystem. IEFE Parallel & Distrib-
uted Technology, 4(4):12-22, Winter 1996.

12. G. Navarro, J. P. Kitajima, B. Ribeiro, and N. Ziviani. Distributed generation of
suffix arrays. In A. Apostolico and J. Hein, editors, Proc. of the Eighth Symposium
on Combinatorial Pattern Matching (CPM97), Springer-Verlag Lecture Notes in
Computer Science v. 1264, pages 102-115, Arhus, Denmark, June 1997.

13. M. J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, second
edition, 1994.

This article was processed using the ¥ TEX 2¢ macro package with CUP_CS class

