
Indexing Compressed TextEdleno S. de Moura1 Gonzalo Navarro23 Nivio Ziviani131 Depto. de Ciência da Computa�c~ao, Universidade Federal de Minas Gerais, Brazil.2 Depto. de Ciencias de la Computaci�on, Universidad de Chile, Chile.3 This work has been partially supported by Brazilian CNPq Project 520916/94-8,ritos/cyted Project, and Chilean Fondecyt grant 1-950622.Abstract. We present a technique to build an index based on su�xarrays for compressed texts. We also propose a compression scheme fortextual databases based on words that generates a compression codethat preserves the lexicographical ordering of the text words. As a con-sequence it permits the sorting of the compressed strings to generate thesu�x array without decompressing. As the compressed text is under30% of the size of the original text we are able to build the su�x arraytwice as fast on the compressed text. The compressed text plus indexis 55-60% of the size of the original text plus index and search timesare reduced to approximately half the time. We also present analyti-cal and experimental results for di�erent variations of the word-orientedcompression paradigm.1 IntroductionThe amount of textual information available worldwide is experimenting an im-pressive growth in the last years. The widespread use of digital libraries, o�ceautomation systems and document databases are some examples of the kind ofrequirements that are becoming commonplace. Phenomena like the World WideWeb and indexing mechanisms over the Internet de�nitely feed this explosion oftextual information electronically available. Therefore, compression appears al-ways as an attractive choice, if not mandatory. However, the combination of textcompression and the retrieval requirements of textual databases does not alwayssucceed. Because of this, many textual databases schemes do not compress thetext, while compression is left to data that is not to be queried.Approaches to combine text compression and indexing techniques using in-verted lists have recently received some attention [MB95, WBN92, ZM95]. How-ever, work on combining compression techniques and su�x arrays has not beenpursued. Su�x arrays [MM90] or Pat arrays [Gon87, GBYS92] are indexingstructures that achieve space and time complexity similar to inverted lists. Theirmain drawback is their costly construction and maintenance procedure. How-ever, su�x arrays are superior to inverted lists for searching long phrases orcomplex queries like regular expression searching, longest repetitions and mostfrequent searching [GBYS92, MM90].In this work we describe an e�cient compression scheme to be used in con-junction with su�x arrays. We make three main contributions. First, we study



analytically and experimentally di�erent variations of the word-oriented com-pression paradigm [BSTW86]. Second, we de�ne an encoding method that pre-serves the lexicographical ordering of the text words. This idea already existedfrom a long time ago [Knu73], but to the best of our knowledge, it had not beenapplied in practice. Third, based on our encoding method, we describe a mecha-nism to build su�x arrays for either compressed or uncompressed texts which isnearly twice as fast when compared with the standard su�x array construction.For compressed texts querying times are reduced to approximately half the time.It is typical that the compressed text takes less than 30% of its original size, andthe whole index (text and su�x array) is reduced to 60%, which is less than thespace of the uncompressed text with no index.Another type of text compression scheme is proposed in [Man93]. The mainpurpose of [Man93] is to speed up sequential searching by compressing the searchkey rather than decompressing the text being searched. As a consequence itrequires no modi�cation in the algorithm and any known linear searching al-gorithm can be used. For typical text �les the compressed text in [Man93] isabout 70% of its original size, while in our scheme is below 30% of its originalsize. The works by [FT95, ABF96] also permit sequential search directly in theLempel-Ziv compressed text [ZL77, ZL78]. However, we deal with the problemof implementing random access into a compressed text while their main purposeis to search sequentially the compressed �le.For the experimental results we used literary texts from the 2 gigabytes treccollection [Har95]. We have chosen the following texts: ap Newswire (1989),doe - Short abstracts from doe publications, fr - Federal Register (1989), wsj- Wall Street Journal (1987, 1988, 1989) and ziff - articles from ComputerSelected disks (Zi�-Davis Publishing). Table 1 presents some statistics aboutthe �ve text �les. We considered a word as a contiguous string of characters inthe set fA: : :Z, a: : :z, 0: : :9g separated by other characters not in the set fA: : :Z,a: : :z, 0: : :9g.Files Text Vocabulary Vocab./TextSize (bytes) #Words Size (bytes) #Words Size #Wordsap 237,766,005 38,977,670 1,564,050 209,272 0.65% 0.53%doe 181,871,525 28,505,125 1,949,140 235,133 1.07% 0.82%fr 219,987,476 34,455,982 1,284,092 181,965 0.58% 0.52%wsj 262,757,554 42,710,250 1,549,131 208,005 0.59% 0.48%ziff 242,660,178 39,675,248 1,826,349 255,107 0.75% 0.64%Table 1. Text �les from the trec collectionThis paper is organized as follows. In Section 2 we study di�erent alternativesto word-based compression. In Section 3 we show how to encode while preservinglexicographical order. In Section 4 we present the indexing technique. Finally,in Section 5 we present some conclusions and future work directions.



2 Compression MethodIn this section we describe and justify the compression method used, which iscomposed of a semi-static model and Hu�man encoding. We also support ourarguments with analytical and experimental data.2.1 Semi-Static Models and Text CompressionAssumptions that are normally made when designing a general compressionscheme are not valid for textual databases. For example, the need of directaccess to parts of the text immediately rules out adaptive models, which arepervasive in modern compression schemes [ZM95].Adaptive models start with no information about the text and progressivelylearn about its statistical distribution as the compression process goes on. Theyare one-pass and store no additional information apart from the compresseddata. In the long term, they converge to the true statistical distribution of thetext. On the other hand, they cannot start decompressing a �le except from thebeginning, since they need to learn the same statistical data while decompressing.It could be argued that a large text could be divided into smaller partsthat are compressed by an adaptive algorithm, thus allowing direct access toeach part. However, as [ZM95] points out, adaptive methods need to processsome data before learning the distribution and making compression e�ective. Toobtain a reasonable compression ratio, this amount of data must be at least 10megabytes in practice, which is prohibitively large for direct access.If adaptive methods are ruled out, we can still avoid storing additional infor-mation on the compressed data by using a static model. In that case, an averagedistribution is assumed for the database. However, these models are not exibleand tend to achieve poor compression ratios when the data deviates from theirstatistical assumptions. It is very di�cult to �nd a static model that presents agood compression rate for the wide range of text distributions.We are left with semi-staticmodels. These do not assume any distribution onthe data, but learn it in a �rst pass. In a second pass, they compress the data byusing a �xed code derived from the distribution learned. The disadvantages arethat they must make two passes and that the encoding data must be stored todecompress. However, they have an advantage which is crucial for our purposes:since the same code is used at every point in the data, direct access is possible.The disadvantages exposed against adaptive models are not very importantin our paradigm. The need for two passes on compression at indexing time iscompensated by faster decompression at query time, which tends to be muchmore frequent than indexing. The need to store the distribution of the text isnot a new requirement, since an index for the text has to be kept anyway. Thedecompression information poses a negligible overhead over normal index space.Another central requirement on a compressed database is decompression e�-ciency. Decompression is faster on semi-static methods than on adaptive meth-ods because the last ones need to update the statistical information as theydecompress.



2.2 Compressing WordsThe most used encoding methods are arithmetic coding [WNC87], Ziv-Lempelcoding family [ZL77, ZL78] and Hu�man coding [Huf52]. Arithmetic coding canachieve better compression ratios than Hu�man coding because of its ability touse fractional parts of bits. However, as in the arithmetic coding the data isencoded as rational numbers there is no way of knowing exactly where a givenword starts in the compressed data. This is inherent to the coding method,which means that any compression method that uses arithmetic coding presentsthis kind of di�culty, independently of the kind of model being used (static,semi-static or dynamic). A similar problem occurs with Ziv-Lempel codings,as they can be used only with adaptive modeling, which make both arithmeticand Ziv-Lempel codings unfeasible to use with indexing. On the other hand,the unability to use fractional parts of bits prevents Hu�man coding to reachthe optimal compression ratio. However, it has been shown that when usinga word-based model on natural language text, the compression ine�ciency ofHu�man is no more than 9% over arithmetic coding [ZM95]. We show later onanalytical and experimental evidence supporting this.A successful idea to merge compression and textual databases is to takewords instead of characters as symbols [BSTW86, Mof89, BMN+93]. This isbecause words are the atoms on which most information retrieval systems arebuilt. Moreover, much better compression ratios are achieved by taking words assymbols than taking characters. The reason behind this fact is that words carrya lot of meaning in natural language, their distribution having much more to dowith the semantic structure of the text than their individual letters. Of course,similar results can be achieved by using a frequency model of higher order oncharacters (i.e. where the distribution is a function of the previous charactersread), but words have the further advantage that their number is not as largeas the number of character sequences of length, say, �ve.Since the text is not only composed of words but also of separators, a modelmust also be chosen for them. An obvious possibility is to consider the di�erentinter-word separators as symbols too, and make a unique alphabet for words andseparators. However, this idea is not using a fundamental alternation property:words and separators always follow one another. In [Mof89, BMN+93] twodi�erent alphabets are used: one for words and one for separators. Once it isknown that the text starts with word or separator, there is no confusion on whichalphabet to use. We call this model separate alphabets.A semi-static model and Hu�man coding [Huf52] form a good compressionmethod for texts [ZM95, BMN+93]. Moreover, we show later that this com-bination allows very interesting variations. Figure 1 presents an example ofcompression using Hu�man coding on words for separate alphabets. The setof symbols for the alphabet of words is fa, each, is, roseg, whose frequen-cies are 2, 1, 1 and 3, respectively, and the set of separators is f\,t", \t"g,whose frequencies are 1 and 5, respectively (t represents a space). to more fre-quent symbols. Given n symbols and their zero-order frequencies in the text,the algorithm builds the optimal trie in O(n logn) time.



f"" bb0 1f"" bb0 1f"" bb0 1 roseaiseach f"" bb0 1,t tTrie of separators:Trie of words:Original text: each rose, a rose is a rose000 1 1 0 01 1 1 1 001 1 01 1 1Compressed text:Fig. 1. Compression using Hu�man coding for separate alphabets2.3 Compression Based on Spaceless WordsWe study now a di�erent alternative to use the structure of words and separators.The main idea is to consider the separator that follows a word as part of thesame word. In the example above, roset and rose,t are di�erent words. Inthis scheme, the separators do not exist anymore independently. Although itmay seem that we are saving the bits to encode separators, this is not thecase. Making words di�erent because of being followed by di�erent separatorscompletely changes their statistical distribution, loosing a lot of matching withthe semantics of the text. Moreover, the number of di�erent \symbols" increasedrastically, what forces to use more bits to di�erentiate them. Figure 2 showsthis phenomenon for the wsj text �le.
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does not hold anymore, so we have a single alphabet for words and separators(single space excluded).Files Words (n) Single spaces (s) s=nap 38,977,670 30,020,803 0.77doe 28,505,125 22,001,366 0.77fr 34,455,982 25,506,763 0.74wsj 42,710,250 33,909,610 0.79ziff 39,675,248 27,225,864 0.69Table 2. Number of single-space separators for the trec collectionFigure 3 presents the original and compressed texts for the same examplepresented previously using Hu�man coding for spaceless words.f"" bb0 1f"" bb0 1f"" bb0 1f"" bb0 1 roseais,teachTrie of words + separators:Original text: each rose, a rose is a rose0000 1 0001 01 1 001 01 1Compressed text:Fig. 3. Compression using Hu�man coding for spaceless wordsWe show later experiments supporting the thesis that the new variation weare proposing achieves slight better compression ratios.2.4 Analytical and Experimental ResultsWe �rst analyze the zero-order entropy of natural language text when words aresymbols, using Zipf's law [Zip49]. We then present experimental results showingthat Hu�man coding is very close to the entropy limit, thus supporting thethesis that it is a good choice for our purposes. We also compare the separatealphabets, spaceless words and character-based models. We use N to denote thenumber of characters in the text and n for the size of the vocabulary (numberof di�erent words).Zipf's law states that, if we order the words of a natural language text indescending order of probability then the probability of the �rst word is i timesthe probability of the i-th word, for every i. This means that the probability ofthe i-th word is pi = 1=(iHn), where Hn =Pnj=1 1=j = lnn+  + O(1=n) and � 0:57 is the Euler's constant.



We analyze the binary entropy of such distribution for a vocabulary of nwords, as follows. nXi=1 pi log2 1pi = 1ln2 nXi=1 lnHn + ln iiHn= 1Hn ln 2  lnHn nXi=1 1i + nXi=1 ln ii ! = log2Hn + 1Hn ln 2 nXi=1 ln iiand by observing thatnXi=1 ln ii � Z n+12 lnxx dx = ln(n)2 � ln(2)22 +O(1=n)(the bound is tight, since an upper bound is ln(n)2=2), we have that the entropyis at least 12 log2 n+ log2 lnn� 2 ln2 + O� 1logn�A �rst observation is that the entropy is approximately half of the length ofa naive word encoding (which is of course log2 n). This shows that using com-pression on words instead of simply taking words as symbols allows to save 50%more space. As explained, the good point is that we can achieve the compressionof a near 6th order source with much less storage requirements.A second observation comes from applying the formula to real cases. Fora vocabulary of size n = 218 (a typical value in our texts), the formula pre-dicts that each word will take near 13 bits on average on the best compressionscheme that takes words separately. Dividing 13 by the average word length(6 characters, or 48 bits) we get 27% of the original size. With an alphabet ofn = 217 (also typical) we get 24%. Table 3 shows that Hu�man coding on wordsis approximately 2% worse than the entropy. This shows that the method ise�cient and has very small compression overhead. The table also shows thatspaceless words is marginally better than separate alphabets, and that both aremuch better than character-based compression.Separate Spaceless Character CommercialFiles Alphabets Words Based ProgramsHu� Entrp Hu� Entrp Hu� Entrp Gzip Compressap 27.7% 26.1% 27.3% 26.2% 57.8% 57.5% 38.6% 43.8%doe 26.7% 24.4% 26.4% 24.6% 57.2% 57.0% 34.8% 41.0%fr 27.0% 25.1% 26.9% 25.3% 59.4% 59.1% 27.8% 38.6%wsj 28.3% 25.9% 27.1% 26.0% 58.5% 58.0% 37.5% 43.0%ziff 28.9% 27.2% 28.9% 27.5% 61.3% 60.9% 34.1% 41.6%Table 3. Compression ratio and entropy for di�erent models.



3 Hu�man Coding that Preserves Lexicographical OrderAs we will see later on, when building an index based on a su�x array, a largenumber of pairs of strings from the text have to be compared. If the text isalready compressed, the need to decompress for each comparison signi�cantlyslows down the indexing process. An obvious solution is to build the indexbefore compressing, later remapping the pointers to the compressed text. In thissection we present a better solution that works directly on the compressed �le,performing the comparisons without decompressing the text at all. This leadsto a speedup over the normal process because less comparison operations aremade as the codes are shorter than the strings. Moreover, bu�ering is improvedsince more compressed text �ts into the same bu�er space.The idea is to rede�ne the conditions for Hu�man coding. In the originalHu�man algorithm the expected length of an encoded word is minimized, and thealgorithm builds a trie that minimizes that length. We rede�ne this constraintby forcing the obtained code to keep the lexicographical ordering over the words(symbols). This is equivalent to requiring that a left-to-right pass over the leavesof the Hu�man trie obtains the words of the vocabulary in lexicographical order.The problem now is to obtain the minimumexpected-length code that preservesthat order among words.If that property holds, we do not need to decompress the di�erent text po-sitions to compare, since the result is the same if the compressed codes arecompared. Moreover, we do not need to compare the codes bit by bit. Instead,we compare complete computer words, which makes the process much fasteron most architectures. A couple of points on comparing complete computerwords deserve careful explanation. A �rst point is that, by comparing completewords, we compare trailing bits that are outside our interest. However, since ina Hu�man coding no code is a pre�x of another, we can guarantee that if the�rst word of two strings di�er, their codes will di�er before they end, i.e. beforethe trailing bits have a chance to inuence the comparison. If the �rst wordsof each string are equal, their codes are equal too and hence the comparisonproceeds correctly with the code bits of the second words, and so on. This istrue because, as we show later, only words (not separators) are represented inthe text that is indexed. Further, since we index only word beginnings, all codesalso represent beginnings of complete words.A second point regards e�ciency. Take the normal case of a 32-bit archi-tecture. The codes of the strings do not necessarily begin in a computer wordboundary. This means that to obtain each 32-bit group of a compressed word,we must perform some shift and or bit operations. More speci�cally, we need 5operations the �rst time and 3 at each subsequent 32-bit group. This slows downthe comparison process if the original strings di�er in their �rst characters. Onthe other hand, since we typically pack a word in 12-13 bits, we are comparing17-18 uncompressed characters in the �rst computer word, at a cost of 5 oper-ations. This is normally enough to distinguish two di�erent strings of the text.Hence, the comparison is normally very fast. Further, if the strings are equal intheir �rst 5 characters, comparing compressed words is faster (and can be much



faster if the strings share a long pre�x). Observe that sharing long pre�xes is aphenomenon that becomes more common as the sorting process progresses.We still do not specify how to build a minimum expected length encodingthat preserves lexicographical ordering. The algorithm to build this code is infact known, although it comes from a di�erent area. Imagine we have n keysk1; k2; : : : ; kn, whose access probabilities are p1; p2; : : : ; pn, respectively, and wewant to build a minimum average cost binary search tree having the keys at theleaves. It is not di�cult to see that the resulting tree has to minimizenXi=1(depth of leaf i) � pisince the depth of a key is the cost to search it. Moreover, the tree cannot alterthe order of the keys, since it is a binary search tree. This is also the optimaltrie we want, since we minimize the same expression (the depth is the length ofthe code for each leaf).The solution to this problem is presented by Hu and Tucker [HT71] andalso considered in [Knu73], where the tree is built with an O(n logn) algorithm.Therefore, the complexity is the same as for obtaining a Hu�man code.A natural question is how far is the resulting code from the optimal classicalHu�man code. In [Knu73] it is shown that the di�erence between the averagelength of a code under both methods cannot be larger than 2 bits. That meansan increment of only 4-5% in the compression ratios (with respect to the originaltext), which is more than reasonable compared to the indexing speed achieved.Table 4 shows experimental results comparing the compression ratios of bothHu�man and Hu-Tucker codings using separate alphabets and spaceless wordsmodels. Note that Hu-Tucker coding using the spaceless words model presentsbetter compression ratios than for the separate alphabets model, results that areonly 0.5% worse than the Hu�man coding.Files Separate Alphabets Spaceless WordsHu�man Hu-Tucker Hu�man Hu-Tuckerap 27.71% 29.47% 27.31% 27.75%doe 26.70% 28.17% 26.40% 26.53%fr 27.01% 28.43% 26.87% 27.06%wsj 28.28% 29.30% 27.13% 27.40%ziff 28.86% 30.32% 28.93% 29.29%Table 4. Compression ratio for the di�erent codings and modelsTable 5 shows the time necessary to compress the texts from the trec collec-tion for Hu�man and Hu-Tucker codings using separate alphabets and spacelesswords models, and two known commercial software, Gzip and Compress. Com-pression times for Hu-Tucker and Hu�man algorithms are approximately the



same (Hu-Tucker is more complex but we use canonical Hu�man trees4, whichallow faster decompression but have slightly more costly construction). As weshow later, the gains in indexing times are much more important. These gainsare due to our ability to index compressed text directly if Hu-Tucker compressionis used, because it preserves the lexicographical ordering of the codes.Files Separate Alphabets Spaceless Words Commercial ProgramsHu�man Hu-Tucker Hu�man Hu-Tucker Gzip Compressap 25.53 23.46 24.00 24.01 28.00 9.66doe 18.85 17.28 18.11 18.31 19.30 7.00fr 21.56 19.75 21.08 21.11 20.98 8.25wsj 28.76 25.01 27.85 26.83 29.16 10.48ziff 26.86 23.83 27.28 25.80 26.00 9.93Table 5. Compression time for di�erent algorithms (in elapsed minutes)4 Index Construction and QueryingAn interesting approach for full-text databases regards the text as a long string[Knu73, MM90, GBYS92]. Each position in the text is called a su�x. A su�x isde�ned by a starting text position and extends to the end of the text. Dependingon the character sequences that are to be searched, the user must de�ne the indexpoints, i.e. which positions of the text will be indexed. In text databases it iscustomary to index only word beginnings, and to �lter the text to be indexed.The �lter may map characters (e.g. converting all to lower-case), eliminate stop-words (e.g. a, the, etc.), disregard blanks, replace synonyms, perform stemming,among others [FBY92]. In the following we assume that the �ltering processmakes the text case-insensitive and disregards blanks. Of course �ltering is usedonly for indexing purposes, while the original text is unchanged.A su�x array is an array of pointers to su�xes, which is lexicographicallysorted by the referenced su�xes. That is, it provides sorted accesses to allsu�xes of interest in the text. With a su�x array it is possible to obtain allthe occurrences of a string in a text in logarithmic time using binary search.The binary search is indirect since it is necessary to access both the index andthe text to compare a search key with a su�x. Figure 4 illustrates the su�x ofa text example with seven index points. Each index point corresponds to theaddress of a su�x. Building a su�x array is similar to sorting variable lengthrecords, at a cost of O(n logn) accesses on average. The extra space used by asu�x array is only one pointer per index point.4These are Hu�man trees where the right subtree of every node is not taller thanthe left subtree. Since the Hu�man code is symmetric with respect to left and righttrees, exchanging the children to achieve this property is possible. This is not the casein Hu-Tucker coding.



Su�x array: 22 11 1 20 26 15 5[1] [2] [3] [4] [5] [6] [7]Text example: each rose, a rose is a rose1 5 11 15 20 22 266 6 66 6 66Fig. 4. A su�x array4.1 Building Su�x Arrays on Compressed TextsThe construction of a su�x array is simply an indirect sort of the index pointersto every su�x of interest in the text. The di�cult part is to do the sortinge�ciently when large texts are involved. Large texts do not �t in main memoryand an external sort procedure has to be used.Our indexing algorithm is based on the algorithm proposed in [GBYS92] forgenerating large su�x arrays. The algorithm divides the text in blocks smallenough to be individually indexed in main memory. It works with each blockseparately in three distinct phases. In the �rst phase it generates the su�xarray for the current block located in main memory using internal sorting. Inthe second phase it reads sequentially from disk all the blocks of text previouslyprocessed and generates counters indicating the number of su�xes that �t be-tween each pair of su�xes in the current block (this can be done by performinga binary search in the current block in main memory using the su�x array justgenerated for the current block). Finally, the su�x array already obtained up tothat moment is read sequentially from disk and merged with the current su�xarray in main memory guided by the counters obtained in the second phase.These steps are repeated until no more blocks of text are left to index.In our algorithm we scan the text and obtain the Hu-Tucker encoding ofthe text soon after �ltering the text (in our experiments the �ltering processconsiders any text separator as a unique symbol and upper case letters areconverted to lowercase letters). The process of building the su�x array for theoriginal text is carried out on this �ltered Hu-Tucker compressed text. Before, anunsorted array pointing to every position that starts a word in the original textis obtained simultaneously with the �ltering phase. Then this array is indirectlysorted by comparing the corresponding Hu-Tucker codes.This sorting can be done with no additional memory requirements or diskspace. To accomplish this we adjust the memory utilization during the threephases of the algorithmproposed in [GBYS92]. In the �rst phase of the algorithmwe use the space allocated for the counters (which is not necessary in this phase)to accomodate the unsorted su�x array for the original text together with the�ltered su�x array. Both arrays are simultaneously sorted in this phase, guidedby the �ltered Hu-Tucker compressed text. In the second phase of the algorithmthe su�x array for the original text is stored in disk to open space for the



counters. In the third phase (merging phase) the su�x array is read from diskinto the space used for the �ltered array. At the end the merging output isa su�x array ordered by the Hu-Tucker �ltered text, but with pointers to theoriginal text.Notice that the original text may be uncompressed or even compressedwith another mechanism (e.g. Hu�man, which gives better compression ra-tios). When compressed text is used it must allow to retrieve the original text,separators included, since that original text would be otherwise lost. As we seelater, keeping the original text compressed improves also query times.Our scheme works for any kind of text and the �ltered Hu-Tucker compressedtext is used to obtain indexing e�ciency, independently of the original text tobe indexed being compressed or not. If the text was compressed with Hu�man,for instance, the words must be decompressed to �lter and re-compress with Hu-Tucker, but the �nal su�x array must point to bits of the Hu�man-compressedtext. Figure 5 shows the su�x array for a compressed text using Hu�man codingand spaceless words model (recall Figure 2).Su�x array: 16 10 1 13 18 12 5[1] [2] [3] [4] [5] [6] [7]Text example: each rose, a rose is a roseCompressed text: 0000 1 0001 01 1 001 01 11 5 10 12 13 16 186 6 6 6 6 6 6Fig. 5. Su�x array on compressed textSearching is performed in the usual way: binary searching the pattern in theoriginal text. If the original text is compressed we have to decompress O(logN )text positions to drive the binary search. This overhead is minimal compared toreduced seek times, as we see in the next section.4.2 Analytical and Experimental ResultsWe analyze now the performance of this indexing scheme. Filtering and compres-sion takes O(N ) time, which is negligible compared to su�x array construction.The Hu-Tucker algorithm is O(n logn). As shown in [Hea78], n = O(N�) for0 < � < 1. For example, for the doe collection we have n = 9:43 N0:53, while forziff we have n = 10:77 N0:51. Therefore, Hu-Tucker time is O(N� logN ) time,which is dominated by the traversal time. The space requirement is O(N�).We build the su�x array with the algorithm presented in [GBYS92]. GivenM bytes of main memory, the algorithm performs O((N=M )2) sequential diskreadings and takes O(N2 logM=M ) total cpu time. In the merge phases of thealgorithm,main memory is divided in three parts and contains: (a) a text block,



(b) its su�x array taking one computer word per index point of the text, (c) anarray of counters taking also one computer word per index point. We assume a32-bit architecture, i.e. pointers and counters of 4 bytes.Each word contains approximately 6 letters on average. Therefore, in theuncompressed scheme, 6+ 4+4 = 14 bytes are needed to hold each index point.In the compressed scheme, the text is reduced to a 30% at least, therefore weneed 1:8+4+4 = 9:8 bytes, i.e. 0.7 times the space of the uncompressed version.This e�ectively multiplies the size of the bu�er by 1.43, thus dividing by thatproportion the cpu time to index. However, the disk costs dominate in practice,what makes the improvement to be near 1:432 � 2. That is, indexing is twiceas fast on the compressed text.Table 6 presents indexing times for the �ve texts of the trec collection,under the �ltering conditions presented above. We show separately the times to�lter/compress and to to obtain the �nal index. We also show the times takenby the standard method (working on uncompressed text). Notice that the timesare marginally larger than the 50% predicted because of the cost of �ltering andcompression (which are nearly 20% of the total time).Files Compressed Filter Method Standard Compressed /Flt.&Compr. Sorting Total Method Standardap 24 93 117 193 60.62%doe 18 54 72 110 65.45%fr 20 72 92 171 53.80%wsj 26 98 124 223 55.60%ziff 24 93 117 201 58.21%Table 6. Indexing time (in elapsed minutes)Table 7 presents the space relationship between (i) the compressed text plusindex and the original text and (ii) the compressed text plus index and theoriginal text plus index.File Of the Original Of the OriginalText Text + Indexap 93.32% 56.36%doe 89.22% 54.84%fr 89.71% 55.16%wsj 92.42% 56.00%ziff 94.69% 57.25%Table 7. Percentual of the compressed text plus index, using spaceless words Hu�manThe central part of the querying cost is the disk seek time to access eachposition in the text. Although a binary search is performed over the su�x array,



the text has to be accessed to retrieve the strings to compare. This involves a seekto a random text position, a phenomenon that becomes even more problematicwhen the database is stored on optical disk. A random seek is known to traverse1=3 of the text �le, i.e. a constant fraction [BNB+95]. Since our compressed texttakes 25-30% of the original one, the seek times (and hence querying times) arereduced in the same fraction, i.e. querying could be 3-4 times faster. However,as we see later, many factors reduce this improvement to being only twice asfast in practice.Table 8 shows the query times for the compressed and uncompressed versions.Queries were words and phrases randomly selected from the text and �lteredas previously explained. The su�x array and the text were kept in separatedisks. We averaged 1,000 samples to obtain each data point (this process hasan intrinsically large standard deviation, near 20%). The standard deviation ofour estimator is below 0.6%, and therefore the results are within 2% of the realvalues with a con�dence level of 99%. As is typical of su�x arrays, retrievaltimes are almost independent of the number of words in the query.File 1 word 2 words 3 words 4 wordsap 0.484 (55.52%) 0.468 (54.73%) 0.454 (54.98%) 0.450 (54.25%)doe 0.324 (48.32%) 0.320 (47.35%) 0.300 (46.72%) 0.302 (47.80%)fr 0.419 (54.46%) 0.416 (55.95%) 0.355 (50.30%) 0.361 (52.90%)wsj 0.549 (60.28%) 0.537 (58.57%) 0.517 (57.85%) 0.513 (56.34%)ziff 0.526 (64.06%) 0.496 (63.18%) 0.484 (62.77%) 0.468 (62.25%)Table 8. Plain search times (in seconds), and fraction of the time of the uncompressedversionAs it can be seen, the time reduction is of 55-60%, smaller than expected.This is because although seeking in the text costs nearly 1=3 of the uncompressedversion, the su�x array is not compressed and therefore accessing it costs thesame in both cases. Additional search structures over the su�x array [BZ95,BYBZ96] improve the time reduction by a factor of more than 5 times, byperforming the �rst steps of the binary search in main memory (where somepruned su�xes are stored), and reading into memory only one block of thesu�x array. The binary search ends in this block. Therefore, the disk accessesare: one to read the su�x array block plus the random accesses to the textperformed to search in that block.To give an idea of the improvement obtained by using additional structures,we separate the times to access the text, which is shown in Table 9. Althoughthe total query time is still worse than using additional structures (since we stillperform all the text accesses), this should be a good approximation to the re-duction between the compressed and the uncompressed version using additionalstructures. As seen, the times are reduced to nearly 60% than the plain version,but the times of the compressed version over the uncompressed one improve onlyto 40-50% instead of the expected 25-30%. This is due to many factors, suchas the disk latency and transfer times (which do not improve by compressing



the �le) or disk fragmentation, which prevents the contiguous text allocation ondisk that would take full advantage of the reduced sizes.File 1 word 2 words 3 words 4 wordsap 0.287 (45.57%) 0.274 (44.25%) 0.261 (43.63%) 0.255 (42.97%)doe 0.173 (35.56%) 0.169 (34.94%) 0.156 (33.54%) 0.157 (34.56%)fr 0.240 (42.72%) 0.244 (44.85%) 0.195 (38.47%) 0.195 (40.18%)wsj 0.325 (48.66%) 0.313 (46.75%) 0.296 (45.15%) 0.291 (44.19%)ziff 0.334 (56.10%) 0.309 (53.83%) 0.299 (53.48%) 0.284 (52.21%)Table 9. Search times considering only text accesses (in seconds), and fraction of thetime of the uncompressed version5 Conclusions and Future WorkWe presented a technique to index compressed text, oriented to su�x arrays.Our main contributions are: a new technique to treat blanks which is slightlysuperior to the standard one, the idea of a compression code that preserves thelexicographical ordering of the words (which allows to sort the strings with-out decompressing), and a su�x array index built directly on the compressedtext. We also presented a new way of building a su�x array for plain uncom-pressed text that takes approximately half the time of the best known algorithm[GBYS92]. Finally, we have shown that query times are also reduced by halfon compressed text. We explained the methods and studied their performance,both analytically and experimentally.The main results are that we can handle the compressed text throughoutthe whole process with improved time and space performance. The text can becompressed to 25-30% of its original size, and the whole scheme (index plus text)takes 55-60% of the uncompressed version, and still less than the original textwith no index. Moreover, indexing and querying are nearly twice as fast than inthe uncompressed version of the index.This scheme can be readily adapted to meet other requirements. For example,it is not di�cult to mix it with the approach of [ANZ97] to allow searching forregular expressions, approximate patterns, etc. This is because that approachis mainly based on processing the vocabulary, which is stored in our index. Weare currently working on this, as well as on a more complete system capableof compressing and indexing whole collections of documents. Another line ofwork we are pursuing is to handle modi�cations to a text database (insertions,deletions, updates). Finally, we can add search structures such as [BZ95] ontop of the su�x array to improve the performance signi�cantly (reductions by afactor of more than 5 times are reported).We have not attempted to compress the su�x array itself. This is becausethe pointers stored in the array are known to be truly random, in the sense thatthey represent a random permutation of the index points of the text. Therefore,
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