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Abstract. We present a technique to build an index based on suffix
arrays for compressed texts. We also propose a compression scheme for
textual databases based on words that generates a compression code
that preserves the lexicographical ordering of the text words. As a con-
sequence it permits the sorting of the compressed strings to generate the
suffix array without decompressing. As the compressed text is under
30% of the size of the original text we are able to build the suffix array
twice as fast on the compressed text. The compressed text plus index
is 55-60% of the size of the original text plus index and search times
are reduced to approximately half the time. We also present analyti-
cal and experimental results for different variations of the word-oriented
compression paradigm.

1 Introduction

The amount of textual information available worldwide is experimenting an im-
pressive growth in the last years. The widespread use of digital libraries, office
automation systems and document databases are some examples of the kind of
requirements that are becoming commonplace. Phenomena like the World Wide
Web and indexing mechanisms over the Internet definitely feed this explosion of
textual information electronically available. Therefore, compression appears al-
ways as an attractive choice, if not mandatory. However, the combination of text
compression and the retrieval requirements of textual databases does not always
succeed. Because of this, many textual databases schemes do not compress the
text, while compression is left to data that is not to be queried.

Approaches to combine text compression and indexing techniques using in-
verted lists have recently received some attention [MB95, WBN92, ZM95]. How-
ever, work on combining compression techniques and suffix arrays has not been
pursued. Suffix arrays [MM90] or Pat arrays [Gon87, GBYS92] are indexing
structures that achieve space and time complexity similar to inverted lists. Their
main drawback is their costly construction and maintenance procedure. How-
ever, suffix arrays are superior to inverted lists for searching long phrases or
complex queries like regular expression searching, longest repetitions and most
frequent searching [GBYS92, MM90].

In this work we describe an efficient compression scheme to be used in con-
junction with suffix arrays. We make three main contributions. First, we study



analytically and experimentally different variations of the word-oriented com-
pression paradigm [BSTW&G6]. Second, we define an encoding method that pre-
serves the lexicographical ordering of the text words. This idea already existed
from a long time ago [Knu73], but to the best of our knowledge, it had not been
applied in practice. Third, based on our encoding method, we describe a mecha-
nism to build suffix arrays for either compressed or uncompressed texts which is
nearly twice as fast when compared with the standard suffix array construction.
For compressed texts querying times are reduced to approximately half the time.
It is typical that the compressed text takes less than 30% of its original size, and
the whole index (text and suffix array) is reduced to 60%, which is less than the
space of the uncompressed text with no index.

Another type of text compression scheme is proposed in [Man93]. The main
purpose of [Man93] is to speed up sequential searching by compressing the search
key rather than decompressing the text being searched. As a consequence it
requires no modification in the algorithm and any known linear searching al-
gorithm can be used. For typical text files the compressed text in [Man93] is
about 70% of its original size, while in our scheme is below 30% of its original
size. The works by [FT95, ABF96] also permit sequential search directly in the
Lempel-Ziv compressed text [ZL77, ZL78]. However, we deal with the problem
of implementing random access into a compressed text while their main purpose
is to search sequentially the compressed file.

For the experimental results we used literary texts from the 2 gigabytes TREC
collection [Har95]. We have chosen the following texts: AP Newswire (1989),
DOE - Short abstracts from DOE publications, FR - Federal Register (1989), wsJ
- Wall Street Journal (1987, 1988, 1989) and ZIFF - articles from Computer
Selected disks (Ziff-Davis Publishing). Table 1 presents some statistics about
the five text files. We considered a word as a contiguous string of characters in
the set {A.. Z a.. .z 0...9} separated by other characters not in the set {A.. .Z,
a...z,0..9}.

Text Vocabulary Vocab./Text

Size (bytes) #Words Size (bytes) | #Words Size #Words
AP | 237,766,005 | 38,977,670 | 1,564,050 | 209,272 | 0.65% | 0.53%
DOE | 181,871,525 | 28,505,125 | 1,949,140 | 235,133 | 1.07% | 0.82%
FR | 219,987,476 | 34,455,982 | 1,284,092 | 181,965 | 0.58% | 0.52%
WsJ | 262,757,554 | 42,710,250 | 1,549,131 | 208,005 | 0.59% | 0.48%
ZIFF | 242,660,178 | 39,675,248 | 1,826,349 | 255,107 | 0.75% | 0.64%

Files

Table 1. Text files from the TREC collection

This paper is organized as follows. In Section 2 we study different alternatives
to word-based compression. In Section 3 we show how to encode while preserving
lexicographical order. In Section 4 we present the indexing technique. Finally,
in Section 5 we present some conclusions and future work directions.



2 Compression Method

In this section we describe and justify the compression method used, which is
composed of a semi-static model and Huffman encoding. We also support our
arguments with analytical and experimental data.

2.1 Semi-Static Models and Text Compression

Assumptions that are normally made when designing a general compression
scheme are not valid for textual databases. For example, the need of direct
access to parts of the text immediately rules out adaptive models, which are
pervasive in modern compression schemes [ZM95].

Adaptive models start with no information about the text and progressively
learn about its statistical distribution as the compression process goes on. They
are one-pass and store no additional information apart from the compressed
data. In the long term, they converge to the true statistical distribution of the
text. On the other hand, they cannot start decompressing a file except from the
beginning, since they need to learn the same statistical data while decompressing.

It could be argued that a large text could be divided into smaller parts
that are compressed by an adaptive algorithm, thus allowing direct access to
each part. However, as [ZM95] points out, adaptive methods need to process
some data before learning the distribution and making compression effective. To
obtain a reasonable compression ratio, this amount of data must be at least 10
megabytes in practice, which is prohibitively large for direct access.

If adaptive methods are ruled out, we can still avoid storing additional infor-
mation on the compressed data by using a static model. In that case, an average
distribution is assumed for the database. However, these models are not flexible
and tend to achieve poor compression ratios when the data deviates from their
statistical assumptions. It is very difficult to find a static model that presents a
good compression rate for the wide range of text distributions.

We are left with semi-static models. These do not assume any distribution on
the data, but learn it in a first pass. In a second pass, they compress the data by
using a fixed code derived from the distribution learned. The disadvantages are
that they must make two passes and that the encoding data must be stored to
decompress. However, they have an advantage which is crucial for our purposes:
since the same code is used at every point in the data, direct access 1s possible.

The disadvantages exposed against adaptive models are not very important
in our paradigm. The need for two passes on compression at indexing time is
compensated by faster decompression at query time, which tends to be much
more frequent than indexing. The need to store the distribution of the text is
not a new requirement, since an index for the text has to be kept anyway. The
decompression information poses a negligible overhead over normal index space.

Another central requirement on a compressed database is decompression effi-
ciency. Decompression is faster on semi-static methods than on adaptive meth-
ods because the last ones need to update the statistical information as they
decompress.



2.2 Compressing Words

The most used encoding methods are arithmetic coding [WNC87], Ziv-Lempel
coding family [ZL77, ZL78] and Huffman coding [Huf52]. Arithmetic coding can
achieve better compression ratios than Huffman coding because of its ability to
use fractional parts of bits. However, as in the arithmetic coding the data is
encoded as rational numbers there is no way of knowing exactly where a given
word starts in the compressed data. This is inherent to the coding method,
which means that any compression method that uses arithmetic coding presents
this kind of difficulty, independently of the kind of model being used (static,
semi-static or dynamic). A similar problem occurs with Ziv-Lempel codings,
as they can be used only with adaptive modeling, which make both arithmetic
and Ziv-Lempel codings unfeasible to use with indexing. On the other hand,
the unability to use fractional parts of bits prevents Huffman coding to reach
the optimal compression ratio. However, it has been shown that when using
a word-based model on natural language text, the compression inefficiency of
Huffman is no more than 9% over arithmetic coding [ZM95]. We show later on
analytical and experimental evidence supporting this.

A successful idea to merge compression and textual databases is to take
words instead of characters as symbols [BSTW86, Mof89, BMN+93]. This is
because words are the atoms on which most information retrieval systems are
built. Moreover, much better compression ratios are achieved by taking words as
symbols than taking characters. The reason behind this fact is that words carry
a lot of meaning in natural language, their distribution having much more to do
with the semantic structure of the text than their individual letters. Of course,
similar results can be achieved by using a frequency model of higher order on
characters (i.e. where the distribution is a function of the previous characters
read), but words have the further advantage that their number is not as large
as the number of character sequences of length, say, five.

Since the text is not only composed of words but also of separators, a model
must also be chosen for them. An obvious possibility is to consider the different
inter-word separators as symbols too, and make a unique alphabet for words and
separators. However, this idea is not using a fundamental alternation property:
words and separators always follow one another. In [Mof89, BMN+93] two
different alphabets are used: one for words and one for separators. Once it is
known that the text starts with word or separator, there is no confusion on which
alphabet to use. We call this model separate alphabets.

A semi-static model and Huffman coding [Huf52] form a good compression
method for texts [ZM95, BMN+93]. Moreover, we show later that this com-
bination allows very interesting variations. Figure 1 presents an example of
compression using Huffman coding on words for separate alphabets. The set
of symbols for the alphabet of words is {a, each, is, rose}, whose frequen-
cies are 2, 1, 1 and 3, respectively, and the set of separators is {“U”, “U”},
whose frequencies are 1 and 5, respectively (U represents a space). to more fre-
quent symbols. Given n symbols and their zero-order frequencies in the text,
the algorithm builds the optimal trie in O(nlogn) time.



Trie of separators: 00) 1

Original text: each rose, a rose is a rose
Compressed text: 0001 1001111001101 11

Fig.1. Compression using Huffman coding for separate alphabets

2.3 Compression Based on Spaceless Words

We study now a different alternative to use the structure of words and separators.
The main idea is to consider the separator that follows a word as part of the
same word. In the example above, rosell and rose, U are different words. In
this scheme, the separators do not exist anymore independently. Although it
may seem that we are saving the bits to encode separators, this is not the
case. Making words different because of being followed by different separators
completely changes their statistical distribution, loosing a lot of matching with
the semantics of the text. Moreover, the number of different “symbols” increase
drastically, what forces to use more bits to differentiate them. Figure 2 shows
this phenomenon for the wsJ text file.
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Fig.2. Alphabet size for separators, words and sequences for the wsJ file

We propose a new variation for the separate alphabets model, which we call
spaceless words. An important fact that is not used in the method of separate
alphabets is that a word is followed by a single space in most cases, as shown in
Table 2. We then take this as a default. That is, if a word is followed by a space,
we just encode the word. If not, we encode the word and then the separator.
At decoding time, we decode a word and assume that a space follows, except if
the next symbol corresponds to a separator. Of course the alternation property



does not hold anymore, so we have a single alphabet for words and separators
(single space excluded).

Files Words (n) Single spaces (s) s/n
AP | 38,977,670 30,020,803 0.77
DOE | 28,505,125 22,001,366 0.77
FR | 34,455,982 25,506,763 0.74
wsl | 42,710,250 33,909,610 0.79
ZIFF | 39,675,248 27,225,864 0.69

Table 2. Number of single-space separators for the TREC collection

Figure 3 presents the original and compressed texts for the same example
presented previously using Huffman coding for spaceless words.

each

Original text: each rose, a rose is a rose
Compressed text: 0000 1 0001 01 1 001 01 1

Fig.3. Compression using Huffman coding for spaceless words

We show later experiments supporting the thesis that the new variation we
are proposing achieves slight better compression ratios.

2.4 Analytical and Experimental Results

We first analyze the zero-order entropy of natural language text when words are
symbols, using Zipf’s law [Zip49]. We then present experimental results showing
that Huffman coding is very close to the entropy limit, thus supporting the
thesis that it is a good choice for our purposes. We also compare the separate
alphabets, spaceless words and character-based models. We use N to denote the
number of characters in the text and n for the size of the vocabulary (number
of different words).

Zipt’s law states that, if we order the words of a natural language text in
descending order of probability then the probability of the first word 1s ¢ times
the probability of the i-th word, for every ¢. This means that the probability of
the i-th word is p; = 1/(iH,,), where H, = Z;zl 1/j =Inn++v+0(1/n) and
v ~ 0.57 is the Euler’s constant.



We analyze the binary entropy of such distribution for a vocabulary of n
words, as follows.
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(the bound is tight, since an upper bound is In(n)?/2), we have that the entropy
is at least

1 1
Elogzn—l—log2 Inn — 217? + 0 <logn)
A first observation is that the entropy 1s approximately half of the length of
a naive word encoding (which is of course log, n). This shows that using com-
pression on words instead of simply taking words as symbols allows to save 50%
more space. As explained, the good point is that we can achieve the compression
of a near 6th order source with much less storage requirements.
A second observation comes from applying the formula to real cases. For
a vocabulary of size n = 2!% (a typical value in our texts), the formula pre-
dicts that each word will take near 13 bits on average on the best compression
scheme that takes words separately. Dividing 13 by the average word length
(6 characters, or 48 bits) we get 27% of the original size. With an alphabet of
n = 217 (also typical) we get 24%. Table 3 shows that Huffman coding on words
is approximately 2% worse than the entropy. This shows that the method is
efficient and has very small compression overhead. The table also shows that
spaceless words is marginally better than separate alphabets, and that both are
much better than character-based compression.

Separate Spaceless Character Commercial
Files Alphabets Words Based Programs
Huff Entrp Huff Entrp Huff Entrp Gzip Compress

AP 27.7% 26.1% 27.3% | 26.2% 57.8% 57.5% 38.6% 43.8%
DOE 26.7% 24.4% 26.4% | 24.6% 57.2% 57.0% 34.8% 41.0%
FR 27.0% 25.1% 26.9% | 25.3% 59.4% 59.1% 27.8% 38.6%
WSJ 28.3% 25.9% 271% | 26.0% 58.5% 58.0% 37.5% 43.0%
ZIFF 28.9% 27.2% 28.9% | 27.5% | 61.3% | 60.9% 34.1% 41.6%

Table 3. Compression ratio and entropy for different models.



3 Huffman Coding that Preserves Lexicographical Order

As we will see later on, when building an index based on a suffix array, a large
number of pairs of strings from the text have to be compared. If the text is
already compressed, the need to decompress for each comparison significantly
slows down the indexing process. An obvious solution is to build the index
before compressing, later remapping the pointers to the compressed text. In this
section we present a better solution that works directly on the compressed file,
performing the comparisons without decompressing the text at all. This leads
to a speedup over the normal process because less comparison operations are
made as the codes are shorter than the strings. Moreover, buffering is improved
since more compressed text fits into the same buffer space.

The idea is to redefine the conditions for Huffman coding. In the original
Huffman algorithm the expected length of an encoded word is minimized, and the
algorithm builds a trie that minimizes that length. We redefine this constraint
by forcing the obtained code to keep the lexicographical ordering over the words
(symbols). This is equivalent to requiring that a left-to-right pass over the leaves
of the Huffman trie obtains the words of the vocabulary in lexicographical order.
The problem now is to obtain the minimum expected-length code that preserves
that order among words.

If that property holds, we do not need to decompress the different text po-
sitions to compare, since the result is the same if the compressed codes are
compared. Moreover, we do not need to compare the codes bit by bit. Instead,
we compare complete computer words, which makes the process much faster
on most architectures. A couple of points on comparing complete computer
words deserve careful explanation. A first point is that, by comparing complete
words, we compare trailing bits that are outside our interest. However, since in
a Huffman coding no code is a prefix of another, we can guarantee that if the
first word of two strings differ, their codes will differ before they end, i.e. before
the trailing bits have a chance to influence the comparison. If the first words
of each string are equal, their codes are equal too and hence the comparison
proceeds correctly with the code bits of the second words, and so on. This is
true because, as we show later, only words (not separators) are represented in
the text that is indexed. Further, since we index only word beginnings, all codes
also represent beginnings of complete words.

A second point regards efficiency. Take the normal case of a 32-bit archi-
tecture. The codes of the strings do not necessarily begin in a computer word
boundary. This means that to obtain each 32-bit group of a compressed word,
we must perform some shift and or bit operations. More specifically, we need 5
operations the first time and 3 at each subsequent 32-bit group. This slows down
the comparison process if the original strings differ in their first characters. On
the other hand, since we typically pack a word in 12-13 bits, we are comparing
17-18 uncompressed characters in the first computer word, at a cost of b oper-
ations. This is normally enough to distinguish two different strings of the text.
Hence, the comparison is normally very fast. Further, if the strings are equal in
their first 5 characters, comparing compressed words is faster (and can be much



faster if the strings share a long prefix). Observe that sharing long prefixes is a
phenomenon that becomes more common as the sorting process progresses.

We still do not specify how to build a minimum expected length encoding
that preserves lexicographical ordering. The algorithm to build this code is in
fact known, although it comes from a different area. Imagine we have n keys
k1, ks, ..., k,, whose access probabilities are py, pa, ..., pn, respectively, and we
want to build a minimum average cost binary search tree having the keys at the
leaves. It is not difficult to see that the resulting tree has to minimize

n

Z(depth of leaf ¢) x p;

i=1

since the depth of a key is the cost to search it. Moreover, the tree cannot alter
the order of the keys, since it is a binary search tree. This is also the optimal
trie we want, since we minimize the same expression (the depth is the length of
the code for each leaf).

The solution to this problem is presented by Hu and Tucker [HT71] and
also considered in [Knu73], where the tree is built with an O(nlogn) algorithm.
Therefore, the complexity is the same as for obtaining a Huffman code.

A natural question is how far is the resulting code from the optimal classical
Huffman code. In [Knu73] it is shown that the difference between the average
length of a code under both methods cannot be larger than 2 bits. That means
an increment of only 4-5% in the compression ratios (with respect to the original
text), which is more than reasonable compared to the indexing speed achieved.

Table 4 shows experimental results comparing the compression ratios of both
Huffman and Hu-Tucker codings using separate alphabets and spaceless words
models. Note that Hu-Tucker coding using the spaceless words model presents
better compression ratios than for the separate alphabets model, results that are
only 0.5% worse than the Huffman coding.

Fil Separate Alphabets Spaceless Words
nes Huffman | Hu-Tucker | Huffman | Hu-Tucker
AP 27.71% 29.47% 27.31% 27.75%

DOE 26.70% 28.17% 26.40% 26.53%
FR 27.01% 28.43% 26.87% 27.06%

WSJ 28.28% 29.30% 27.13% 27.40%

ZIFF 28.86% 30.32% 28.93% 29.29%

Table 4. Compression ratio for the different codings and models

Table 5 shows the time necessary to compress the texts from the TREC collec-
tion for Huffman and Hu-Tucker codings using separate alphabets and spaceless
words models, and two known commercial software, Gzip and Compress. Com-
pression times for Hu-Tucker and Huffman algorithms are approximately the



same (Hu-Tucker is more complex but we use canonical Huffman trees*, which
allow faster decompression but have slightly more costly construction). As we
show later, the gains in indezing times are much more important. These gains
are due to our ability to index compressed text directly if Hu-Tucker compression
is used, because it preserves the lexicographical ordering of the codes.

Fil Separate Alphabets Spaceless Words Commercial Programs
nes Huffman | Hu-Tucker | Huffman | Hu-Tucker Gzip Compress
AP 25.53 23.46 24.00 24.01 28.00 9.66

DOE 18.85 17.28 18.11 18.31 19.30 7.00
FR 21.56 19.75 21.08 21.11 20.98 8.25

WSJ 28.76 25.01 27.85 26.83 29.16 10.48

ZIFF 26.86 23.83 27.28 25.80 26.00 9.93

Table 5. Compression time for different algorithms (in elapsed minutes)

4 Index Construction and Querying

An interesting approach for full-text databases regards the text as a long string
[Knu73, MM90, GBYS92]. Each position in the text is called a suffiz. A suffix is
defined by a starting text position and extends to the end of the text. Depending
on the character sequences that are to be searched, the user must define the index
points, i.e. which positions of the text will be indexed. In text databases it is
customary to index only word beginnings, and to filter the text to be indexed.
The filter may map characters (e.g. converting all to lower-case), eliminate stop-
words (e.g. a, the, etc.), disregard blanks, replace synonyms, perform stemming,
among others [FBY92]. In the following we assume that the filtering process
makes the text case-insensitive and disregards blanks. Of course filtering is used
only for indexing purposes, while the original text 1s unchanged.

A suffiz array 1s an array of pointers to suffixes, which is lexicographically
sorted by the referenced suffixes. That is, 1t provides sorted accesses to all
suffixes of interest in the text. With a suffix array it is possible to obtain all
the occurrences of a string in a text in logarithmic time using binary search.
The binary search is indirect since it is necessary to access both the index and
the text to compare a search key with a suffix. Figure 4 illustrates the suffix of
a text example with seven index points. Each index point corresponds to the
address of a suffix. Building a suffix array is similar to sorting variable length
records, at a cost of O(nlogn) accesses on average. The extra space used by a
suffix array is only one pointer per index point.

*These are Huffman trees where the right subtree of every node is not taller than
the left subtree. Since the Huffman code is symmetric with respect to left and right
trees, exchanging the children to achieve this property is possible. This is not the case
in Hu-Tucker coding.



Suffix array: 22 1t [ 1t [20]2 [15] 5 |

Text example: each rose, a rose is a rose
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Fig.4. A suffix array

4.1 Building Suffix Arrays on Compressed Texts

The construction of a suffix array is simply an indirect sort of the index pointers
to every suffix of interest in the text. The difficult part is to do the sorting
efficiently when large texts are involved. Large texts do not fit in main memory
and an external sort procedure has to be used.

Our indexing algorithm is based on the algorithm proposed in [GBYS92] for
generating large suffix arrays. The algorithm divides the text in blocks small
enough to be individually indexed in main memory. It works with each block
separately in three distinct phases. In the first phase it generates the suffix
array for the current block located in main memory using internal sorting. In
the second phase 1t reads sequentially from disk all the blocks of text previously
processed and generates counters indicating the number of suffixes that fit be-
tween each pair of suffixes in the current block (this can be done by performing
a binary search in the current block in main memory using the suffix array just
generated for the current block). Finally, the suffix array already obtained up to
that moment is read sequentially from disk and merged with the current suffix
array in main memory guided by the counters obtained in the second phase.
These steps are repeated until no more blocks of text are left to index.

In our algorithm we scan the text and obtain the Hu-Tucker encoding of
the text soon after filtering the text (in our experiments the filtering process
considers any text separator as a unique symbol and upper case letters are
converted to lowercase letters). The process of building the suffix array for the
original text is carried out on this filtered Hu-Tucker compressed text. Before, an
unsorted array pointing to every position that starts a word in the original text
is obtained simultaneously with the filtering phase. Then this array is indirectly
sorted by comparing the corresponding Hu-Tucker codes.

This sorting can be done with no additional memory requirements or disk
space. To accomplish this we adjust the memory utilization during the three
phases of the algorithm proposed in [GBYS92]. In the first phase of the algorithm
we use the space allocated for the counters (which is not necessary in this phase)
to accomodate the unsorted suffix array for the original text together with the
filtered suffix array. Both arrays are simultaneously sorted in this phase, guided
by the filtered Hu-Tucker compressed text. In the second phase of the algorithm
the suffix array for the original text is stored in disk to open space for the



counters. In the third phase (merging phase) the suffix array is read from disk
into the space used for the filtered array. At the end the merging output is
a suffix array ordered by the Hu-Tucker filtered text, but with pointers to the
original text.

Notice that the original text may be uncompressed or even compressed
with another mechanism (e.g. Huffman, which gives better compression ra-
tios). When compressed text is used it must allow to retrieve the original text,
separators included, since that original text would be otherwise lost. As we see
later, keeping the original text compressed improves also query times.

Our scheme works for any kind of text and the filtered Hu-Tucker compressed
text is used to obtain indexing efficiency, independently of the original text to
be indexed being compressed or not. If the text was compressed with Huffman,
for instance, the words must be decompressed to filter and re-compress with Hu-
Tucker, but the final suffix array must point to bits of the Huffman-compressed
text. Figure 5 shows the suffix array for a compressed text using Huffman coding
and spaceless words model (recall Figure 2).

& B [ B[]
Suffix array: 16 1o ] 1 []1s]12]s5 |

Text example: each rose, a rose is a rose

Compressed text: 0000 1 0001 01 1 001 01 1

(I N A N

1 5 10 12 13 16 18

Fig.5. Suffix array on compressed text

Searching is performed in the usual way: binary searching the pattern in the
original text. If the original text is compressed we have to decompress O(log N)
text positions to drive the binary search. This overhead is minimal compared to
reduced seek times, as we see in the next section.

4.2 Analytical and Experimental Results

We analyze now the performance of this indexing scheme. Filtering and compres-
sion takes O(N) time, which is negligible compared to suffix array construction.
The Hu-Tucker algorithm is O(nlogn). As shown in [Hea78], n = O(N?) for
0 < B < 1. For example, for the DOE collection we have n = 9.43 N%%3 while for
ZIFF we have n = 10.77 N35!, Therefore, Hu-Tucker time is O(N” log N) time,
which is dominated by the traversal time. The space requirement is O(N?).
We build the suffix array with the algorithm presented in [GBYS92]. Given
M bytes of main memory, the algorithm performs O((N/M)?) sequential disk
readings and takes O(N?log M /M) total CPU time. In the merge phases of the
algorithm, main memory is divided in three parts and contains: (a) a text block,



(b) its suffix array taking one computer word per index point of the text, (¢) an
array of counters taking also one computer word per index point. We assume a
32-bit architecture, i.e. pointers and counters of 4 bytes.

Each word contains approximately 6 letters on average. Therefore, in the
uncompressed scheme, 6 +4 4+ 4 = 14 bytes are needed to hold each index point.
In the compressed scheme, the text is reduced to a 30% at least, therefore we
need 1.844+4+4 = 9.8 bytes, i.e. 0.7 times the space of the uncompressed version.
This effectively multiplies the size of the buffer by 1.43, thus dividing by that
proportion the cPU time to index. However, the disk costs dominate in practice,
what makes the improvement to be near 1.43% ~ 2. That is, indexing is twice
as fast on the compressed text.

Table 6 presents indexing times for the five texts of the TREC collection,
under the filtering conditions presented above. We show separately the times to
filter/compress and to to obtain the final index. We also show the times taken
by the standard method (working on uncompressed text). Notice that the times
are marginally larger than the 50% predicted because of the cost of filtering and
compression (which are nearly 20% of the total time).

Files Compressed Filter Method Standard | Compressed /
Flt.& Compr. | Sorting | Total Method Standard
AP 24 93 117 193 60.62%
DOE 18 54 72 110 65.45%
FR 20 72 92 171 53.80%
WSJ 26 98 124 223 55.60%
ZIFF 24 93 117 201 58.21%

Table 6. Indexing time (in elapsed minutes)

Table 7 presents the space relationship between (i) the compressed text plus
index and the original text and (ii) the compressed text plus index and the
original text plus index.

File | Of the Original | Of the Original
Text Text + Index

AP 93.32% 56.36%

DOE 89.22% 54.84%

FR 89.71% 55.16%

WsJ 92.42% 56.00%

ZIFF 94.69% 57.25%

Table 7. Percentual of the compressed text plus index, using spaceless words Huffman

The central part of the querying cost is the disk seek time to access each
position in the text. Although a binary search is performed over the suffix array,



the text has to be accessed to retrieve the strings to compare. This involves a seek
to a random text position, a phenomenon that becomes even more problematic
when the database is stored on optical disk. A random seek is known to traverse
1/3 of the text file, i.e. a constant fraction [BNB495]. Since our compressed text
takes 25-30% of the original one, the seek times (and hence querying times) are
reduced in the same fraction, 1.e. querying could be 3-4 times faster. However,
as we see later, many factors reduce this improvement to being only twice as
fast in practice.

Table 8 shows the query times for the compressed and uncompressed versions.
Queries were words and phrases randomly selected from the text and filtered
as previously explained. The suffix array and the text were kept in separate
disks. We averaged 1,000 samples to obtain each data point (this process has
an intrinsically large standard deviation, near 20%). The standard deviation of
our estimator is below 0.6%), and therefore the results are within 2% of the real
values with a confidence level of 99%. As is typical of suffix arrays, retrieval
times are almost independent of the number of words in the query.

File 1 word 2 words 3 words 4 words

AP | 0.484 (55.52%) | 0.468 (54.73%) | 0.454 (54.98%) | 0.450 (54.25%)
DOE | 0.324 (48.32%) | 0.320 (47.35%) | 0.300 (46.72%) | 0.302 (47.80%)
FR | 0.419 (54.46%) | 0.416 (55.95%) | 0.355 (50.30%) | 0.361 (52.90%)
WsJ | 0.549 (60.28%) | 0.537 (58.57%) | 0.517 (57.85%) | 0.513 (56.34%)
ZIFF | 0.526 (64.06%) | 0.496 (63.18%) | 0.484 (62.77%) | 0.468 (62.25%)

Table 8. Plain search times (in seconds), and fraction of the time of the uncompressed
version

As it can be seen, the time reduction is of 55-60%, smaller than expected.
This is because although seeking in the text costs nearly 1/3 of the uncompressed
version, the suffix array is not compressed and therefore accessing it costs the
same in both cases. Additional search structures over the suffix array [BZ95,
BYBZ96] improve the time reduction by a factor of more than 5 times, by
performing the first steps of the binary search in main memory (where some
pruned suffixes are stored), and reading into memory only one block of the
suffix array. The binary search ends in this block. Therefore, the disk accesses
are: one to read the suffix array block plus the random accesses to the text
performed to search in that block.

To give an idea of the improvement obtained by using additional structures,
we separate the times to access the text, which is shown in Table 9. Although
the total query time is still worse than using additional structures (since we still
perform all the text accesses), this should be a good approximation to the re-
duction between the compressed and the uncompressed version using additional
structures. As seen, the times are reduced to nearly 60% than the plain version,
but the times of the compressed version over the uncompressed one improve only
to 40-50% instead of the expected 25-30%. This is due to many factors, such
as the disk latency and transfer times (which do not improve by compressing



the file) or disk fragmentation, which prevents the contiguous text allocation on
disk that would take full advantage of the reduced sizes.

File 1 word 2 words 3 words 4 words

AP | 0.287 (45.57%) | 0.274 (44.25%) | 0.261 (43.63%) | 0.255 (42.97%)
DOE | 0.173 (35.56%) | 0.169 (34.94%) | 0.156 (33.54%) | 0.157 (34.56%)
FR | 0.240 (42.72%) | 0.244 (44.85%) | 0.195 (38.47%) | 0.195 (40.18%)
wsJ | 0.325 (48.66%) | 0.313 (46.75%) | 0.296 (45.15%) | 0.291 (44.19%)
ZIFF | 0.334 (56.10%) | 0.309 (53.83%) | 0.299 (53.48%) | 0.284 (52.21%)

Table 9. Search times considering only text accesses (in seconds), and fraction of the
time of the uncompressed version

5 Conclusions and Future Work

We presented a technique to index compressed text, oriented to suffix arrays.
Our main contributions are: a new technique to treat blanks which is slightly
superior to the standard one, the idea of a compression code that preserves the
lexicographical ordering of the words (which allows to sort the strings with-
out decompressing), and a suffix array index built directly on the compressed
text. We also presented a new way of building a suffix array for plain uncom-
pressed text that takes approximately half the time of the best known algorithm
[GBYS92]. Finally, we have shown that query times are also reduced by half
on compressed text. We explained the methods and studied their performance,
both analytically and experimentally.

The main results are that we can handle the compressed text throughout
the whole process with improved time and space performance. The text can be
compressed to 25-30% of its original size, and the whole scheme (index plus text)
takes 55-60% of the uncompressed version, and still less than the original text
with no index. Moreover, indexing and querying are nearly twice as fast than in
the uncompressed version of the index.

This scheme can be readily adapted to meet other requirements. For example,
it is not difficult to mix it with the approach of [ANZ97] to allow searching for
regular expressions, approximate patterns, etc. This is because that approach
i1s mainly based on processing the vocabulary, which is stored in our index. We
are currently working on this, as well as on a more complete system capable
of compressing and indexing whole collections of documents. Another line of
work we are pursuing is to handle modifications to a text database (insertions,
deletions, updates). Finally, we can add search structures such as [BZ95] on
top of the suffix array to improve the performance significantly (reductions by a
factor of more than 5 times are reported).

We have not attempted to compress the suffix array itself. This is because
the pointers stored in the array are known to be truly random, in the sense that
they represent a random permutation of the index points of the text. Therefore,



the suffix array cannot be significantly compressed (e.g. if we use Gzip over the
suffix array of AP or wsJ collections we get 95-96% of the original size).

Although there is already some work done on building an inverted list index
on compressed text [MB95, ZM95], we believe that some of the ideas presented
here can be applied there, for example the spaceless words model. The time
improvements, on the other hand, are specific of suffix arrays and are not likely
to be obtained on inverted lists. When we have added the mentioned search
structures [BZ95] on top of our scheme, we plan to compare it against this
compressed inverted lists scheme. Suffix arrays should be superior in searching
phrases and complex queries, though the influence of compression in this known
result has not been yet assessed.
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