
Large Text Searching Allowing ErrorsM�arcio Drumond Ara�ujo1 Gonzalo Navarro23 Nivio Ziviani131 Depto. de Ciência da Computa�c~ao, Universidade Federal de Minas Gerais, Brazil.2 Depto. de Ciencias de la Computaci�on, Universidad de Chile, Chile.3 This work has been supported by Brazilian CNPq Project 520916/94-8, Projectritos/cyted and Chilean Fondecyt grants 1960881 and 1950622.E-mail: drumond@dcc.ufmg.br, gnavarro@dcc.uchile.cl, nivio@dcc.ufmg.brAbstract. We present a full inverted index for exact and approximatestring matching in large texts. The index is composed of a table con-taining the vocabulary of words of the text and a list of positions in thetext corresponding to each word. The size of the table of words is usu-ally much less than 1% of the text size and hence can be kept in mainmemory, where most query processing takes place. The text, on theother hand, is not accessed at all. The algorithm permits a large num-ber of variations of the exact and approximate string search problem,such as phrases, string matching with sets of characters (range and ar-bitrary set of characters, complements, wild cards), approximate searchwith nonuniform costs and arbitrary regular expressions. The whole in-dex can be built in linear time, in a single sequential pass over the text,takes near 1=3 the space of the text, and retrieval times are near O(pn)for typical cases. Experimental results show that the algorithm workswell in practice: for a one-gigabyte text collection, all matchings of aphrase of 3 words allowing up to 1 error can be found in approximately 6seconds and allowing no errors can be found in under half a second. Thisindex has been implemented in a software package called Igrep, whichis publicly available. Experiments show that Igrep is much faster thanGlimpse in typical queries.1 IntroductionThe full text model in information retrieval (IR) is gaining popularity. Inthis model, documents are represented by their complete full texts. Theuser expresses his information needs by providing strings to be matchedand the information system retrieves those documents containing the userspeci�ed strings. When the text collection is large it demands special-ized index techniques for e�cient text retrieval. A simple and popularindexing technique is the inverted list. It is especially adequate when thepattern to be searched for is formed by simple words. This is a commontype of query, for instance when searching the World Wide Web, andtherefore inverted lists have been widely used in that context.

One weakness of commercially available large text searching systemsis the need for exact spelling due to the use of hashing or tree structuresin the index. However, in many situations the pattern and/or the textare not exact, due to optical character recognition, typing or misspellingerrors or because we are looking for approximate patterns. For example,a name we are looking for may be misspelled in the text or we may notremember its exact spelling. The approximate text searching problem isto �nd all substrings in a text database that are at a given \distance" k orless from a pattern p. The distance between two strings is the minimumnumber of insertions, deletions or substitutions of single characters in thestrings that are needed to make them equal. The case k = 0 correspondsto the classical exact matching problem.The classical solution for approximate searching is O(mn) time, wherem is the size of the pattern and n is the size of the text [Sel80]. Sincethe beginning of the eighties there is a long list of papers on the subject,where [BYG92, WM92, CL92, ST95, BYP92, WMM96, BYN96a, Nav97]is a partial list of the most recent ones.From the practical point of view an important new paradigm calledbit-parallelism was developed by Baeza-Yates and Gonnet [BYG92]. Intheir algorithm the state of the search is represented as a number and onlybitwise logical operations shifts and additions are used. Wu and Manber[WM92] extended this numeric scheme to deal with the more generalapproximate string matching problem under some editing distance. Theypresent a O(kn) algorithm (where k is the number of errors) that supportsa large number of variations of the problem. Recently, this algorithm hasbeen improved to O(n) for small patterns (e.g. up to 9 letters on a 32-bitarchitecture) [BYN96a].On the other hand, the problem of �nding good indexing schemesthat allow approximate searching was considered in [WM92, BY92] theunresolved problem in this area. There are many di�erent linear timeapproximate string matching algorithms, but only recently there is somework done for the case when the text is large and an index must be builtto speed up the search.We can distinguish two di�erent indexing models. The �rst is capableof retrieving any substring of the text whose edit distance to the patternis su�ciently small. The second retrieves only complete words, whoseedit distance to the pattern is small enough. For instance, only the �rstmodel will �nd "shallow" with one error in the text "...sha llow...",although it will also �nd that pattern in the text "...hash allows...",what we probably don't want. Although the �rst model is more general,

the second one may be better suited for IR purposes on natural languagetext. Moreover, most indices for the �rst model are still in a preliminarystage: indices are too large and no disk storage strategies have been de-vised yet. The implementations are in general very primitive prototypes.Examples of these indices are [Ukk93, Cob95, BYNST96, ST96, LST96,Mye94].This work focuses on word-retrieving indices. One successful attemptto solve this problem was presented by Manber and Wu [MW93] in asystem called Glimpse. They propose a two-level information retrievalstructure that combines a partial inverted �le with sequential searching.They divide the text into nearly 256 blocks of the same size and buildan index of all di�erent words plus a list of the blocks where each wordappears. Approximate queries are handled by �rst using an on-line algo-rithm (Agrep [WM92]) on the vocabulary to �nd all words in the indexthat match approximately with the pattern, and then the correspondingblocks are searched, using Agrep again, to �nd the particular matches.In the worst case, it may be necessary to search all the blocks, whichmakes Glimpse adequate for use with intermediate large text collections(say up to 200 megabytes). Baeza-Yates and Navarro [BYN97] study analternative scheme where the text is not searched for the approximatepattern but with a multipattern search of all the words in the vocabularythat matched the pattern. They also prove that it is possible to have anindex which is sublinear in space and time simultaneously and study thepractical e�ect of the block size.In this paper we present an e�cient word-retrieving indexing schemefor large text searching, which is fast at indexing and querying time andhas the capability of searching exactly or allowing errors in the patternand/or in the text. The index can be built in O(n) time and takes O(n)space. Querying performance is near O(pn) time. The implementationof the algorithm has been tested successfully for �les with more than 1gigabyte of text. It supports a large number of variations of the approx-imate string search problem. In addition to single words and phrases,the system supports string matching with sets of characters (range andarbitrary set of characters, complements, wild cards), nonuniform costsand arbitrary regular expressions.The algorithms presented in this paper are being used in a softwarepackage called Igrep. Igrep is an approximate matching tool for very largetext collections. The software package is a prototype in its version 1.0,which is available from ftp://dcc.ufmg.br/pub/research/�nivio/-igrep.

2 Structure of the IndexWe present an index based on the traditional inverted list model. Weview a text �le as a sequence of words, separated by the usual delimiters(e.g. space, end-of-line, period, comma). We scan the whole text, wordby word, build a table containing all di�erent words (the vocabulary) ofthe text and store every occurrence of each word on a list. The list ofoccurrences of each word are kept in order by position in the text. Figure 1illustrates the structure of the index for an example of a text databasewith six words. Each entry of the table of words contains a word and apointer to the end of its list of occurrences. A brief description of theindex construction can be found in Section 3.List of occurrences:(Disk) [1] [2] [3] [4] [5] [6]19 8 16 3 211Table of words:(Main memory)Text:(Disk) a text example of a text19 211 3 8 16
a of textexample [3] [4] [6][2]

Fig. 1. Structure of the indexTo answer a query the searching procedure needs only the table ofwords and the list of occurrences, making the text itself not necessary atall. The size of the vocabulary of any large literary text is very small ifcompared to the size of the text, and so the table of words can be kept inmain memory all the time (more about the size of the vocabulary can befound in Sections 3.2 and 5). For a single word pattern we just perform asearch in the table of words for the list of occurrences that contains all thematches of the pattern. When the pattern is more than one word long(phrase pattern) we �rst search the table for each word of the patternand retrieve the corresponding lists of occurrences. Next, we obtain theintersection of the lists looking for pointers that have the same relativepositions they share in the pattern, thus obtaining the �nal answer.To illustrate the searching procedure we present two examples. Exactsearching for the pattern text in Figure 1 involves binary searching thetable of words for the list interval h5; 6i. To search for the pattern text

samplewith editing distance k = 2 in Figure 1 we search with k � 2 errorsthe �rst word text of the pattern and obtain one list interval h5; 6i fork = 0. Next, we search with k � 2 errors the second word sample of thepattern and obtain the word example corresponding to the list intervalh3; 3i for k = 2. Now we end up with the two lists f8g and f3; 21gcorresponding to the list intervals h3; 3i and h5; 6i. The �nal answer isthe list f3g, result of the intersection of the two lists, given that text andsample are at the proper distance in the pattern. In general we considerall lists related to each word of the query such that the total sum is � k.In the pattern text sample we had one list related to the �rst word textwith k = 0 and one list related to the word sample with k = 2.3 Index ConstructionThe procedure to build the index works as follows. We scan the text,word by word, �nd each word in a hash table and insert its text positionat the end of the corresponding occurrence list. If a word is not presentin the hash table, it is inserted and the corresponding occurrence list isinitialized. The index is stored on disk in the format shown in Figure 1.However, the resulting index most probably will not �t in main mem-ory. When the main memory is exhausted, we store the partial index asif it were the complete �nal index. This partial index is called a dump.We then continue the process starting from scratch with a new dump.Once we complete this process, we merge the dumps. Merging twodumps involves concatenating the lists of occurrences of each word, whichtakes linear time. Partial dumps are merged until the complete index isobtained. We can merge r dumps in a single process, in a fashion verysimilar to r-way list merging, at O(n log2 r) time (e.g. using a heap).We tested di�erent values of r and, although larger values produce bettertimes in a reasonable range, the overall di�erences are too small to takeinto account. We perform an in place merging as described in [MB95].3.1 Time to Build the IndexThe cost to search a word in the hash table is O(1) on average. As thetext addresses always increase as the scanning goes on, the insertions inthe list of occurrences happen always at the end of the lists, at O(1) cost.Thus, the total CPU cost to build the dumps is O(n) on average.By keeping the words of the vocabulary in a trie instead of a hashtable, the time cost can be made O(n) in the worst case. This is because,for each one of the O(n) characters of the text, we work O(1) in the trie.

We analyze now merging times. LetM be the amount of main memoryavailable. Given that we can merge groups of r dumps in a single process,we can divide the n=M dumps in groups of r, merge each group and obtainn=(Mr) groups of larger dumps. This process is repeated until we haveonly one �nal index, as shown in Figure 2.
Original dumps

After a 3-way merge

Final indexFig. 2. The process of merging three dumps each timeSince the time to merge r groups of size M each is O(Mr log2 r), thetotal amount of work in the �rst level is O(n log2 r), which is the same foreach iteration. Since there are logr(n=M) iterations, the total amount oftime is O(n log2(n=M)), which is independent of r. The value of r a�ectsdisk times, although the e�ect is barely noticeable.Therefore the algorithm is O(n logn) on average. However, it can bemade O(n) in the worst case. If instead of dumping and merging wekeep a separate �le for each word in the vocabulary, for each word in thetext we must add an occurrence to the end of its �le, at O(n) total cost.However, except for huge texts, dumping and merging is more practicalbecause it avoids random accesses to disk. The algorithm could decidewhich strategy to employ based on the text size, this way keeping O(n)all the time as well as choosing the fastest strategy for each case.3.2 Space for the IndexIt is empirically known that the vocabulary of a text with n wordsgrows sublinearly. Moreover, the following relation holds very accurately[Hea78] V = Kn� = O(n�) (1)where V is the size of the vocabulary and 0 < � < 1 is a constant depen-dent on the particular text. We show later an experimental veri�cationof this fact.Hence, the larger part of the index is the list of occurrences, whichis O(n). Stop words represent approximately 30-40% of the text (seeSection 5.2 for the de�nition of stop words). For each non-stop word,we store a pointer (4 bytes is enough in most cases), while the length ofnon-stop words is approximately 6-7 characters. This fact (that we laterverify experimentally) yields 0:35n, i.e. a 35% overhead over the text.

4 QueryingIn our system there are basically two types of patterns: one word patternsand phrase patterns. In each case we can look for exact and approximateoccurrences of the pattern in the text. Each of these four combinationsinvolves quite di�erent algorithms and tasks to be performed. Next, wedescribe the most representative combinations derived from the two basictypes of patterns.4.1 One Word PatternsThe most important characteristic of one word patterns is that only thevocabulary is consulted and the list or lists of occurrences are immedi-ately retrieved. For example, simply searching a word retrieves its listof occurrences, searching for a word allowing errors or for a regular ex-pression may retrieve more than one list as more than one word of thevocabulary may match the query.Searching on the vocabulary can be binary or sequential. Exactsearching a word involves a binary search on the vocabulary. Search-ing a regular expression or approximate searching of a word involves asequential search on the vocabulary. For simple patterns allowing k errorswe use the algorithm [BYN96a], which is O(n) for small patterns, and ex-tremely fast in practice. The algorithm is based on an automaton whosebehavior is simulated in O(1) per inspected character for short patterns.In a 32-bit architecture, words of length up to 9 can be searched in O(n)with any number of errors, and up to length 11 with one error. This isgood for our purposes, because most words are not longer than 9 lettersin practice. Our experiments show that approximate searching on thevocabulary always takes less than a second with this algorithm.In [BYN96a] a number of techniques are developed to cope with longerpatterns. However, we take a di�erent approach here. Since the few wordslonger than 9 letters will have a few more characters, we truncate them tothe �rst 9 characters and use the algorithm as a �lter. Each occurrencereported by the �lter is checked with dynamic programming to verify ifit involves a real match of the complete word.As it is shown in [BYN96a], the number of veri�cations is extremelylow if the error ratio is reasonably small. It is also shown that there isan abrupt division in the domain of error ratios. There is a point suchthat any query allowing more than that error ratio will retrieve a hugeamount of information. Since this is of no use in terms of informationretrieval (because of lack of precision) we focus only in the case of lower

error ratios. It is possible to estimate beforehand the size of the result(to give the user early feedback on the precision of his query) at very lowcost.This automaton can have not only single letters in the pattern, butany set of characters at each position. This allows our system to supportvery e�ciently the following extended queries (exactly or allowing errors):{ range of characters (e.g. t[a-z]xt, where [a-z] means any letterbetween a and z);{ arbitrary sets of characters (e.g. t[aei]xtmeaning the words taxt,text and tixt);{ complements (e.g. t[�ab]xt, where �ab means any single char-acter except a or b; t[�a-d]xt, where �a-d means any singlecharacter except a, b, c or d);{ arbitrary characters (e.g. t�xt means any character as the secondcharacter of the word);{ case insensitive patterns (e.g. Text and text are considered as thesame words).For more complicated patterns, allowing k errors or not, we use thealgorithm [WM92], which is O(kn) (and O(n) with no errors). Processingthe vocabulary with this algorithm takes typically 1-4 seconds. In addi-tion to single strings of arbitrary size and classes of characters describedabove the system supports patterns combining exact matching of some oftheir parts and approximate matching of other parts, unbounded numberof wild cards, arbitrary regular expressions, and combinations, as follows:{ unions (e.g. t(e|ai)xt means the words text and taixt; the ex-pression t(e|ai)*xt means the words beginning with t followed bye or ai zero or more times followed by xt). In this case the word isseen as a regular expression;{ arbitrary number of repetitions (e.g. t(ab)*xt means that ab willbe considered zero or more times). In this case the word is seen asa regular expression;{ arbitrary number of characters in the middle of the pattern (e.g.t#xt, where # means any character considered zero or more times).Note that # is equivalent to �� (e.g. t#xt and t�*xt obtain the samematchings but the latter is considered as a regular expression). Inthis case the word is not considered as a regular expression fore�ciency because the treatment of a regular expression generallydemands more bitwise operations than the # case;

{ combining exact matching of some of their parts and approximatematching of other parts (e.g. <te>xt, with k = 1, meaning exactoccurrence of te followed by any occurrence of xt with 1 error);{ matching with nonuniform costs (e.g. the cost of insertions can bede�ned to be twice the cost of deletions).4.2 Phrase PatternsFor patterns containing more than one word we search each word sepa-rately on the vocabulary and then intersect the lists of occurrences. Eachword of the phrase can be a simple word or a complex regular expression,and can allow errors as in Section 4.1. Exact searching a phrase involvessearching each word on the vocabulary and intersecting the lists of occur-rences. The �nal answer contains the intersection of the lists representedby that positions in the text with the same relative positions presentedby the words in the pattern.It is also possible to search a phrase allowing k errors in the wholephrase. This involves sequential searching of each word on the vocabularywith k errors and intersecting the lists of occurrences, taking care of thetotal number of errors. We keep a list of matches for each word and eachnumber of errors and intersect each combination that has less than orequal to k total number of errors. For each word of the pattern a di�erentalgorithm is chosen, according to the many possibilities described in theprevious section.The intersection of many lists is carried out as follows: the shortestlist is selected as a �rst version of the result. Then, it is intersected witheach other list by binary searching the elements of the shorter lists insidethe other (taking care of the positions of the words in the text). Thisworks well because, as shown in the Appendix, it is very probable thatone of the lists is very short.4.3 Time to Answer a QueryIn the Appendix we analyze each type of query. We use � as a shorthandfor 1 � �, and observe that 0 < � < 1. In natural language text �is between 0.4 and 0.6, hence � � � (see Section 5). The results areapproximate (since the text models are only approximations) and validfor queries that have a reasonable degree of precision (i.e. queries usefulto the user). As explained in the Appendix,
 is related to the numberof allowed errors and is typically in the range 0.1 to 0.2.{ Simple words: O(logn).

{ Phrases of simple words: o(n�) for two words, O(logn) for longerphrases.{ Extended patterns, regular expressions and approximate words:O(n� + n�+
 log n).{ Phrases of the above patterns: O(n� + n�+
 log n).{ Approximate phrase matching: O(n� + n�+
 logn).Therefore, except for some types of exact searches, retrieval timesare in the range O(n0:4::0:8) depending on the vocabulary size and thecomplexity of the search. In reasonable cases it is O(n0:6), which is nearO(pn). We also point out that the disk accesses to the index are sequen-tial (except for bu�ering limitations).5 Experimental ResultsFor the experimental results we used literary texts from the 2 giga-bytes trec collection [Har95]. We have chosen the following texts: apNewswire (1989), doe - Short abstracts from doe publications, fr - Fed-eral Register (1989), wsj - Wall Street Journal (1987, 1988, 1989) andziff - articles from Computer Selected disks (Zi�-Davis Publishing). Wealso derived two other larger �les by putting together ap plus ziff texts(called az text �le) and ap plus doe plus fr plus wsj plus ziff texts(called adfwz text �le). Our objective here is to obtain two large �lescontaining 458.2 megabytes and 1.09 gigabytes, respectively. Table 1presents some statistics about the seven text �les. For the wsj �le thevocabulary size (in bytes) is 0.58% of the text size and the number ofwords of the vocabulary is 0.49% of the total number of words. For ourexperiments we considered a word as a contiguous string of characters inthe set fA..Z, a..zg separated by other characters not in the set fA..Z,a..zg.The performance evaluation of the algorithms presented in the previ-ous sections was obtained by means of 500 trials to query di�erent text�les and 20 repetitions to build indices. This gives a con�dence intervalof 95% for our measures.The experiments show that our index is very e�cient even for verylarge text �les. All tests were run on a sun SparcStation 4 with 128megabytes of RAM running Solaris 2.5.1.

Files Text Vocabulary Vocab./TextSize (bytes) Words Size (bytes) Words Size Wordsap 237,766,005 37,740,089 1,530,192 201,115 0.64% 0.53%doe 180,515,212 27,124,239 1,795,783 211,196 0.99% 0.78%fr 219,987,476 32,000,223 1,043,869 132,129 0.47% 0.41%wsj 262,757,554 40,741,508 1,511,951 198,818 0.58% 0.49%ziff 242,660,178 38,047,824 1,639,677 216,482 0.68% 0.57%az 480,426,183 75,787,913 2,574,518 336,716 0.54% 0.44%adfwz 1,143,686,425 175,653,883 4,629,371 573,661 0.40% 0.32%Table 1. Text �les from the trec collection5.1 Time to Build the IndexTable 2 presents the times to build the index for three di�erent �lescontaining 250.6, 458.2 and 1090.7 megabytes of text, respectively. Thethird column shows the time devoted to merging times. In this case thetimes were obtained for a 2-way merge (i.e. r = 2).As can be seen, the indexing times are almost linear with the size ofthe text. In our machine, indexing performance is near 4 megabytes perminute.File Size (megabytes) Total time (min) Merge time (min) Mb/minwsj 250.6 58.5 13.8 4.28az 458.2 122.7 33.9 3.73adfwz 1090.7 248.9 79.8 4.38Table 2. Experimental results to build the index5.2 Space for the IndexTable 3 presents the worst case and average case (n=V) for the sizes of thelists of occurrences for the texts ap, doe, fr, wsj, ziff, az and adfwz.Note that in all seven texts the largest size for the list of occurrencescorresponds to the word the.The majority of the most common words in natural languages arefunction words (also called stop words) whose purpose is mainly syntacti-cal and do not carry enough content to occur alone in the query. An inter-esting study of English texts by Miller, Newman and Friedman [MNF58]classi�es the words into function words (articles, prepositions, pronouns,numbers, conjunctions and auxiliary verbs) and content words (nouns,verbs, adjectives and most adverbs).

Files Words Words Most freq. word nV Index size IndexTextText(n) Voc.(V) Word Occ. (bytes)ap 37,740,089 201,115 the 2,077,987 188 152,490,548 0.64doe 27,124,239 211,196 the 1,722,275 128 110,292,739 0.61fr 32,000,223 132,129 the 2,066,443 242 129,044,761 0.59wsj 40,741,508 198,818 the 2,020,113 205 165,989,934 0.63ziff 38,047,824 216,482 the 1,556,762 176 153,830,973 0.63az 75,787,913 336,716 the 3,634,749 225 305,726,170 0.64adfwz 175,653,883 573,661 the 9,443,580 306 707,244,903 0.62Table 3. Size of the lists of occurrences, including stopwordsTable 4 presents the in
uence of a set of 361 function words obtainedfrom [MNF58] in the �ve �les. For the wsj �le, the 361 words, whichare less than 0.18% of the vocabulary of 198,818 words, account for 44%of all 40,741,508 word occurrences (our software is case sensitive so weconsidered each stop word twice, starting with lower case and upper caseletters). By eliminating function words the worst and average lengths ofthe lists of occurrences are much closer to what actually happens in prac-tice, as we always try to use content words when retrieving informationfrom text databases. Moreover, our index takes approximately 35% ofthe space of the text when the stop words are not indexed, which is theoption in general for information retrieval systems.Files Words Words Most freq. word nV Index size IndexTextText(n) Voc.(V) Word Occ. (bytes)ap 20,678,146 200,392 said 504,998 103 84,239,271 0.35doe 15,515,153 210,523 energy 61,748 73.7 63,853,146 0.35fr 17,526,092 131,457 Section 104,490 133 71,145,018 0.32wsj 22,833,202 198,079 said 303,618 106 92,841,139 0.35ziff 21,197,303 215,753 software 110,723 98.2 86,425,334 0.36az 41,875,449 335,974 said 576,987 125 170,072,682 0.35adfwz 97,749,896 572,903 said 885,374 171 395,625,209 0.35Table 4. Size of the lists of occurrences, excluding stopwords5.3 Time to Answer a QueryThe experiments to measure query times considered exact and approxi-mate queries (k = 0; 1; 2; 3), phrase patterns containing 1, 2, 3, 4, and 5words and the texts wsj, az and adfwz. The patterns were randomlychosen from the texts, but avoiding patterns containing function words.

We tested our software against Glimpse version 3.0 [MW93] for thewsj �le, using the same set of queries used for our software package Igrep.For this experiment we used the option -b, when Glimpse builds an index16.9% of the size of the text (index size of 42.4 megabytes), allowingfaster search. This option forces Glimpse to store an exact pointer toeach occurrence of each word (i.e. a full inverted index), except for somevery common words belonging to a stop list it always uses in this case.Results are shown in Table 5.1 word 2 words 3 words 4 words 5 wordsk t r t r t r t r t r0 0.08 0.3% 0.23 0.9% 0.24 1% 0.28 1% 0.34 1%1 0.58 0.4% 1.99 1.5% 2.15 1.6% 2.59 1.9% 3.16 *2 0.85 0.5% 8.27 5.1% 4.26 2.6% 4.65 2.9% 5.06 *3 1.30 0.7% 34.1 17.9% 14.6 7.5% 11.2 * 8.97 *� Glimpse does not accept queries allowing errors with more than 32 charactersTable 5. Igrep searching times in seconds (t) and ratio Igrep/Glimpse (r) for the wsjtextTables 6 and 7 show the results using Igrep for the larger �les az(458.2 megabytes) and adfwz (1090.7 megabytes), respectively. We didnot run Glimpse for these two �les because its query times are too longon very large texts. Our approach, instead, works well with texts of 1gigabyte and more. Igrepk 1 word 2 words 3 words 4 words 5 words0 0.087 � 0.004 0.32 � 0.03 0.33 � 0.02 0.35 � 0.02 0.40 � 0.021 0.95 � 0.01 3.3 � 0.3 3.8 � 0.1 4.3 � 0.1 5.2 � 0.12 1.4 � 0.1 13 � 3 7.0 � 1.0 7.2 � 0.5 8.2 � 0.43 2.2 � 0.1 70 � 21 7.1 � 0.6 12 � 2 14 � 2Table 6. Searching times (in seconds) for the az �le text using IgrepThe only case in which our index does not work well is for phrases oftwo words searched with 3 errors or more. This agrees with the analysis,in the sense that two words are not enough to guarantee that one of themhas a su�ciently small list of occurrences. Three errors imply searchingboth words with three errors, and later intersecting the appropriate lists.A word searched with three errors generates a huge list of matches in thevocabulary.

Igrepk 1 word 2 words 3 words 4 words 5 words0 0.095 � 0.006 0.46 � 0.05 0.41 � 0.03 0.44 � 0.03 0.48 � 0.031 1.6 � 0.1 6.2 � 0.6 6.1 � 0.3 7.1 � 0.2 8.4 � 0.22 2.3 � 0.1 38 � 10 18 � 3 15 � 2 15 � 13 3.5 � 0.1 108 � 30 52 � 12 34 � 8 37 � 11Table 7. Searching times (in seconds) for the 1 gigabyte adfwz text �le using IgrepA possible solution is to forbid more than 2 errors in a single wordof a phrase. Another one involves using the text at query time: insteadof generating all the matches of a word with 3 errors, generate those ofthe other one with zero errors and check directly in the text whether thewhole phrase appears with 3 errors. Thus, the huge list of matches isnever generated.The following test was for more complicated patterns, as follows:1. <exe>cutive: meaning exact occurrence of exe followed by anyoccurrence of cutive with k errors.2. prob#atic sign#ance: where # means any character consideredzero or more times (one possible answer is problematic signifi-cance).3. <[LMN]ACM># received: meaning a word starting by L, M, or Nfollowed by ACM followed by any character considered zero or moretimes followed by the word received (one possible answer is LACMreceived). For this example, the search is case insensitive for bothIgrep and Glimpse.4. earl# retir[aeiou]#<ent> program: the #, [] and <> meaningas before (one possible answer is early retirement program).5. acc[aeiou]*unt compri[ms](es|ent): pattern is a regular ex-pression (one possible answer is account comprises).Table 8 presents searching times and ratio against Glimpse using thewsj �le for k = 0; 1; 2; 3, for the �ve patterns above.Table 9 presents experimental results for the values of K and � fromEq.(1) and � from Eq.(2). From the values obtained for � we can concludethat retrieval times are near O(pn) for typical texts.6 Conclusions and Future ExtensionsWe have presented an indexing scheme capable of retrieving words andphrases, exact and approximate search, using classes of characters and

Pattern k = 0 k = 1 k = 2 k = 3t R t R t R t R1 0.031 0.004% 3.18 0.028 6.92 0.047 11.4 *2 3.64 0.048 12.4 0.1 20.7 0.126 30.1 0.1713 3.74 0.047 11.7 0.1 19.3 0.133 29.0 0.1694 4.60 0.061 14.5 0.124 38.0 0.26 191 *5 10.2 8.4% 22.2 8.8% ** ** ** **� For Glimpse k must be smaller than the number of characters between < and >�� The number of errors must be smaller than the number of charactersof the smallest sequence between (and) in a regular expressionTable 8. Igrep searching times in seconds (t) and ratio against Glimpse (R) for thewsj text Text ap doe fr wsj ziff az adfwzK 26.8 10.8 13.2 43.5 11.3 9.2 4.8� 0.46 0.52 0.48 0.43 0.51 0.52 0.56� 1.87 1.70 1.94 1.87 1.79 1.85 1.85Table 9. Experimental results for the coe�cients of Heaps and Zipf equationsgeneral regular expressions. It is based on full inverted lists, where thework is done on the vocabulary and the text is not accessed at all. Thisallows to work with texts stored on remote, slow or removable devices, oreven with no text at all. The index is implemented as a software packagecalled Igrep, which is publicly available.Our analytical and experimental results show that the performance ofthe index is good even for text �les of more than 1 gigabyte. The indexcan be built in linear time and a single pass over the text (in our machinethe average indexing speed is 4 megabytes per minute), and takes linearspace (35% of the text size is typical). Querying performance is nearO(pn) for queries that are useful in terms of precision. Typical times forone gigabyte of text are a few seconds for useful queries.We are currently working on extensions of this index. It is easy toextend the index to handle collections instead of single �les, and restrictthe queries to some subcollections. Reindexing is also easy, since it issu�cient to index again the �les that were added or updated and mergethe original and the di�erential indices, which can be e�ciently done andallows to use the original index until the last minute. This lightweightreindexing capability is very good in the Web environment, where changesare continuous but not extensive.

We are also studying the best way to handle approximate phrasesearching, to compare the current approach to the one of verifying di-rectly in the text.Finally, we are working on integrating compression techniques, tomake the whole index plus compressed text nearly half of the originaltext [MNZ97].AcknowledgementsWe wish to acknowledge the helpful comments of Ricardo Baeza-Yates.References[BY92] R. Baeza-Yates. Text retrieval: theory and practice. In Proc. of 12thIFIP World Computer Congress, volume I, pages 465{476, 1992. ElsevierScience.[BYG92] R. Baeza-Yates, G.H. Gonnet. A new approach to text searching. Com-munications of the ACM, 35(10): 74{82, 1982.[BYN96a] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate stringsearching. In Proc. CPM'96, Springer-Verlag LNCS, v. 1075, pages 1{13,1996.[BYN97] R. Baeza-Yates and G. Navarro. Block addressing indices for approximatetext retrieval. Tech. Report TR/DCC-97-3, Dept. of CS, Univ. of Chile.Submitted.[BYNST96] R. Baeza-Yates, G. Navarro, E. Sutinen and J. Tarhio. Indexing methodsfor approximate text retrieval. Tech. Report TR/DCC-97-2, Dept. of CS,Univ. of Chile.[BYP92] R. Baeza-Yates and C. Perleberg. Fast and practical approximate patternmatching. In Proc. CPM'92, Springer-Verlag LNCS, v. 644, pages 185{192, 1992.[CL92] W. Chang and J. Lampe. Theoretical and empirical comparisons of ap-proximate string matching algorithms. In Proc. CPM'92, Springer-VerlagLNCS, v. 644, pages 172{181, 1992.[Cob95] A. L. Cobbs. Fast approximate matching using su�x trees. In Proc.CPM'95, Springer-Verlag LNCS v. 937, pages 41{54, 1995.[GBY91] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and DataStructures. Addison-Wesley, 1991.[Har95] D. K. Harman. Overview of the third text retrieval conference. In Proc.Third Text Retrieval Conference (TREC-3), pages 1-19, NIST Special Pub-lication 500-207, Gaithersburg, Maryland, 1995.

[Hea78] J. Heaps. Information Retrieval - Computational and Theoretical Aspects.Academic Press, NY, 1978.[LST96] O. Lehtinen, E. Sutinen and J. Tarhio. Experiments on block indexing.In Proc. Third South American Workshop on String Processing (WSP'96),Carleton University Press International Informatics Series, v. 4, pages 183{193, 1996.[MB95] A. Mo�at and T. Bell. In situ generation of compressed inverted �les.Journal of the American Society for Information Science 46(7):537-550,1995.[MNZ97] E. de Moura, G. Navarro and N. Ziviani. Indexing compressed text. InR. Baeza-Yates, editor, Proceedings Fourth South American Workshop onString Processing, Carleton University Press International Informatics Se-ries, Valparaiso, Chile, 1997.[MNF58] G. A. Miller, E. B. Newman and E. A. Friedman. Length-frequency sta-tistics for written English. Information and Control 1:370-380, 1958.[MW93] U. Manber and S. Wu. glimpse: A tool to search through entire �lesystems. Tech. Report 93-34, Dept. of CS, Univ. of Arizona, Oct 1993.[Mye94] E. Myers. A sublinear algorithm for approximate keyword searching. Al-gorithmica 12(4/5):345{374, 1994. Springer-Verlag.[Nav97] G. Navarro. Approximate string matching by counting. Tech. ReportTR/DCC-97-1, Dept. of CS, Univ. of Chile. Submitted.[Sel80] P. Sellers. The theory and computation of evolutionary distances: patternrecognition. J. of Algorithms, 1:359{373, 1980.[ST95] E. Sutinen and J. Tarhio. On using q-gram locations in approximate stringmatching. In P. Spirakis, editor, Proc. ESA'95, Springer-Verlag LNCSv. 979, Corfu, Greece, pages 327{340, 1995.[ST96] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate stringmatching. In Proc. CPM'96, Springer-Verlag LNCS v. 1075, pages 50{61,1996.[Ukk85] E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-rithms 6:132-137, 1985.[Ukk93] E. Ukkonen. Approximate string-matching over su�x trees. In Proc.CPM'93, Springer-Verlag LNCS 684, pages 228{242, 1993.[WM92] S. Wu, U. Manber. Fast text searching allowing errors. Communicationsof the ACM, 35(10):83{91.[WMM96] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approxi-mate limited expression matching. Algorithmica, 15(1):50{67, 1996.[Zipf49] G. Zipf. Human Behaviour and the Principle of Least E�ort. Addison-Wesley, 1949.

Appendix: Times for Di�erent Querying OperationsThere are a number of di�erent types of query to analyze. Each type in-volves carrying out di�erent tasks. For example, simply searching a wordinvolves a binary search on the vocabulary; searching a phrase involvesbinary searching each word and then intersecting the lists; searching fora regular expression involves a sequential search on the vocabulary plusmerging the resulting lists.We remark that this analysis is approximate, since it relies on rulessuch as the Heaps law or the Zipf law, which are only rough approxi-mations to the statistical structure of texts. Moreover, the results arevalid only for queries useful to the user (i.e. with reasonable degree ofprecision).We �rst analyze the cost of each task, and use the results to deduce thecost of each type of query. The description of the tasks follow, togetherwith their analysis. Recall that the size of the vocabulary is V = O(n�)and that � = 1� �, where � and � are normally in the range 0.4 to 0.6[Hea78].bin-search Binary searching a word in the vocabulary and retrievingthe list. Since the search is binary, we have O(logn�) = O(logn)cost for this type of task.seq-search Sequential searching a word in the vocabulary is O(n�). Thisis the case of regular expressions and others. It is also the case ofapproximate simple word matching, since, as explained, we use alinear-time �lter and the number of veri�cations is not signi�cantin practice. Searching a complex expression with k errors, on theother hand, is O(kn�). We take k as a constant.lst-merge List merging of j lists occurs in approximate search, non-standard patterns, etc. Since the average size of each list of occur-rences is n=V = O(n1��) and we merge ordered lists to produce anordered list, we work O(n�j log j).lst-inters List intersection of j lists occurs in phrases. Those lists cancome from searching simple words or complex expressions. In thelatter case we use an algorithm similar to that of list merging toachieve O(j` log j) for j lists of length `. In the case of simplewords we select the smaller list and, for each element, binary searchadjacent positions in the other lists. We show that in this case thelength of the shortest list is O(1) on average, so we work O(j log n)on average. To show that, we assume valid the generalized Zipf law

[Zipf49, GBY91], which says that the number of occurrences of thei-th more frequent word is, for some � dependent on the text,f(i) = ni�s(�) ; where s(�) = VXi=1 1i� (2)which is constant for � > 1. We experimentally validated this lawin Section 5.It must hold f(V) = O(1), i.e. there exist words that appear once(there are a lot, in fact). Under the model V = O(n�) we have � =1=� for su�ciently large texts (e.g. adfwz). If we consider X1::Xjthe rank of the words present in a phrase (which are uniformlydistributed over [1::V]), we haveP (min f(Xi) � a) = (P (f(X1) � a))j= P X1 � � na s(�)�1=�!!j= � na s(�)�1=� 1V !j = (a s(�))�j=�Hence, the expectation of the shortest list isVXa=1P (min f(Xi) � a) � 1s(�)j=� Xa�1 1aj=�which is O(1) for j > �. This is typically out of question for phrasesof three words or more. However, for j = 2 that may not be thecase. Bounding the summation with an integral, we get that the ex-pectation is smaller than 1+V 1�j=�=(j�1)+O(1=j) = O(n�(1��j)).In that case the total cost of the intersection is O(n�(1��j) logn).Observe that we took j (phrase length) as a constant).We now point out the times for each type of query, as follows:{ Simple words: A bin-search taking O(logn).{ Phrases of j simple words: the time is O(j logn), which is both thetime to search each word (j bin-searches) and to intersect the lists(lst-inters). For j = 2 the time can be O(n�(1�2�) logn), which iso(n�).

{ Extended patterns, regular expressions and approximate wordmatch-ing: seq-search and lst-merge, taking O(n� + pn� log p), wherep is the number of matching words in the sequential search phase.This is good if we assume that there is a small number p of matches,which is the case of interest as we explain later.{ Phrases formed with complex patterns: j searches as those for theabove expressions (which add up O(j(n� + pn� log p))), plus a lst-inters, which costsO(pn�j log j). Observe that the lists have lengthO(pn�). This is because they come from merging the lists of prandom words in the vocabulary (which matched the extended orapproximate pattern), and therefore the merging-like algorithm isused. The total time is thus O(j(n� + pn� log(pj))).{ Approximate phrase matching of j words and k errors: j seq-searches considering a number of di�erent lst-inters, has a cost ofO �j(n� + pn� log p) + �k+jj �pn�j log j�, under the same conditionsas above. A number of intersections are made here, since for eachword and each number of errors up to k, a di�erent list is kept withthe words that matched with each number of errors. Later, we haveto try all alternatives of selecting a list of each word, such that thetotal number of errors does not exceed k. That is �k+jj �. Again, thelists of occurrences are O(pn�) size.In all these results, we can consider j and k as small constants. Onthe other hand, as shown in [BYN97], p = O(n
) for
 in the range 0.1.. 0.2 if the precision is reasonably good (i.e. k � 3 for words). Thesame should happen for complex patterns, since otherwise a large p valuemeans a query which has too low precision and is of no use to the �naluser. This condition can be detected beforehand.
This article was processed using the LATEX2" macro package with CUP CS class

