Large Text Searching Allowing Errors

Mércio Drumond Aratjo! Gonzalo Navarro?? Nivio Zivianil?

! Depto. de Ciéncia da Computacio, Universidade Federal de Minas Gerais, Brazil.
2 Depto. de Ciencias de la Computacién, Universidad de Chile, Chile.
® This work has been supported by Brazilian CNPqQ Project 520916/94-8, Project
RITOS/CYTED and Chilean Fondecyt grants 1960881 and 1950622.
E-mail: drumond@dcc.ufmg.br, gnavarro@dcc.uchile.cl, nivio@dcc.ufmg.br

Abstract. We present a full inverted index for exact and approximate
string matching in large texts. The index is composed of a table con-
taining the vocabulary of words of the text and a list of positions in the
text corresponding to each word. The size of the table of words is usu-
ally much less than 1% of the text size and hence can be kept in main
memory, where most query processing takes place. The text, on the
other hand, is not accessed at all. The algorithm permits a large num-
ber of variations of the exact and approximate string search problem,
such as phrases, string matching with sets of characters (range and ar-
bitrary set of characters, complements, wild cards), approximate search
with nonuniform costs and arbitrary regular expressions. The whole in-
dex can be built in linear time, in a single sequential pass over the text,
takes near 1/3 the space of the text, and retrieval times are near O(+/n)
for typical cases. Experimental results show that the algorithm works
well in practice: for a one-gigabyte text collection, all matchings of a
phrase of 3 words allowing up to 1 error can be found in approximately 6
seconds and allowing no errors can be found in under half a second. This
index has been implemented in a software package called Igrep, which
is publicly available. Experiments show that Igrep is much faster than
Glimpse in typical queries.

1 Introduction

The full text model in information retrieval (IR) is gaining popularity. In
this model, documents are represented by their complete full texts. The
user expresses his information needs by providing strings to be matched
and the information system retrieves those documents containing the user
specified strings. When the text collection is large it demands special-
ized index techniques for efficient text retrieval. A simple and popular
indexing technique is the inverted list. It is especially adequate when the
pattern to be searched for is formed by simple words. This is a common
type of query, for instance when searching the World Wide Web, and
therefore inverted lists have been widely used in that context.

One weakness of commercially available large text searching systems
is the need for exact spelling due to the use of hashing or tree structures
in the index. However, in many situations the pattern and/or the text
are not exact, due to optical character recognition, typing or misspelling
errors or because we are looking for approximate patterns. For example,
a name we are looking for may be misspelled in the text or we may not
remember its exact spelling. The approximate text searching problem is
to find all substrings in a text database that are at a given “distance” k or
less from a pattern p. The distance between two strings is the minimum
number of insertions, deletions or substitutions of single characters in the
strings that are needed to make them equal. The case k& = 0 corresponds
to the classical exact matching problem.

The classical solution for approximate searching is O(mn) time, where
m is the size of the pattern and n is the size of the text [Sel80]. Since
the beginning of the eighties there is a long list of papers on the subject,
where [BYG92, WM92, C1.92, ST95, BYP92, WMM96, BYN96a, Nav97]
is a partial list of the most recent ones.

From the practical point of view an important new paradigm called
bit-parallelism was developed by Baeza-Yates and Gonnet [BYG92]. In
their algorithm the state of the search is represented as a number and only
bitwise logical operations shifts and additions are used. Wu and Manber
[WMO2] extended this numeric scheme to deal with the more general
approximate string matching problem under some editing distance. They
present a O(kn) algorithm (where k is the number of errors) that supports
a large number of variations of the problem. Recently, this algorithm has
been improved to O(n) for small patterns (e.g. up to 9 letters on a 32-bit
architecture) [BYN96a].

On the other hand, the problem of finding good indexing schemes
that allow approximate searching was considered in [WM92, BY92] the
unresolved problem in this area. There are many different linear time
approximate string matching algorithms, but only recently there is some
work done for the case when the text is large and an index must be built
to speed up the search.

We can distinguish two different indexing models. The first is capable
of retrieving any substring of the text whose edit distance to the pattern
is sufficiently small. The second retrieves only complete words, whose
edit distance to the pattern is small enough. For instance, only the first
model will find "shallow" with one error in the text "...sha llow...",
although it will also find that pattern in the text "...hash allows...",
what we probably don’t want. Although the first model is more general,

the second one may be better suited for IR purposes on natural language
text. Moreover, most indices for the first model are still in a preliminary
stage: indices are too large and no disk storage strategies have been de-
vised yet. The implementations are in general very primitive prototypes.
Examples of these indices are [Ukk93, Cob95, BYNST96, ST96, LST96,
Mye94].

This work focuses on word-retrieving indices. One successful attempt
to solve this problem was presented by Manber and Wu [MW93] in a
system called Glimpse. They propose a two-level information retrieval
structure that combines a partial inverted file with sequential searching.
They divide the text into nearly 256 blocks of the same size and build
an index of all different words plus a list of the blocks where each word
appears. Approximate queries are handled by first using an on-line algo-
rithm (Agrep [WM92]) on the vocabulary to find all words in the index
that match approximately with the pattern, and then the corresponding
blocks are searched, using Agrep again, to find the particular matches.
In the worst case, it may be necessary to search all the blocks, which
makes Glimpse adequate for use with intermediate large text collections
(say up to 200 megabytes). Baeza-Yates and Navarro [BYN97] study an
alternative scheme where the text is not searched for the approximate
pattern but with a multipattern search of all the words in the vocabulary
that matched the pattern. They also prove that it is possible to have an
index which is sublinear in space and time simultaneously and study the
practical effect of the block size.

In this paper we present an efficient word-retrieving indexing scheme
for large text searching, which is fast at indexing and querying time and
has the capability of searching exactly or allowing errors in the pattern
and/or in the text. The index can be built in O(n) time and takes O(n)
space. Querying performance is near O(y/n) time. The implementation
of the algorithm has been tested successfully for files with more than 1
gigabyte of text. It supports a large number of variations of the approx-
imate string search problem. In addition to single words and phrases,
the system supports string matching with sets of characters (range and
arbitrary set of characters, complements, wild cards), nonuniform costs
and arbitrary regular expressions.

The algorithms presented in this paper are being used in a software
package called Igrep. Igrep is an approximate matching tool for very large
text collections. The software package is a prototype in its version 1.0,
which is available from ftp://dcc.ufmg.br/pub/research/~nivio/-

igrep.

2 Structure of the Index

We present an index based on the traditional inverted list model. We
view a text file as a sequence of words, separated by the usual delimiters
(e.g. space, end-of-line, period, comma). We scan the whole text, word
by word, build a table containing all different words (the vocabulary) of
the text and store every occurrence of each word on a list. The list of
occurrences of each word are kept in order by position in the text. Figure 1
illustrates the structure of the index for an example of a text database
with six words. Each entry of the table of words contains a word and a
pointer to the end of its list of occurrences. A brief description of the
index construction can be found in Section 3.

Table of words:
(Main memory) ‘ a [2] ‘example [3]‘ of (4] ‘ text [6] ‘

List of occurrences:

(Disk)
Te_xt: a text example of a text
R R R

1 3 8 16 19 21

Fig. 1. Structure of the index

To answer a query the searching procedure needs only the table of
words and the list of occurrences, making the text itself not necessary at
all. The size of the vocabulary of any large literary text is very small if
compared to the size of the text, and so the table of words can be kept in
main memory all the time (more about the size of the vocabulary can be
found in Sections 3.2 and 5). For a single word pattern we just perform a
search in the table of words for the list of occurrences that contains all the
matches of the pattern. When the pattern is more than one word long
(phrase pattern) we first search the table for each word of the pattern
and retrieve the corresponding lists of occurrences. Next, we obtain the
intersection of the lists looking for pointers that have the same relative
positions they share in the pattern, thus obtaining the final answer.

To illustrate the searching procedure we present two examples. Exact
searching for the pattern text in Figure 1 involves binary searching the
table of words for the list interval (5,6). To search for the pattern text

sample with editing distance k = 2 in Figure 1 we search with & < 2 errors
the first word text of the pattern and obtain one list interval (5,6) for
k = 0. Next, we search with k£ < 2 errors the second word sample of the
pattern and obtain the word example corresponding to the list interval
(3,3) for £ = 2. Now we end up with the two lists {8} and {3,21}
corresponding to the list intervals (3,3) and (5,6). The final answer is
the list {3}, result of the intersection of the two lists, given that text and
sample are at the proper distance in the pattern. In general we consider
all lists related to each word of the query such that the total sum is < k.
In the pattern text sample we had one list related to the first word text
with £ = 0 and one list related to the word sample with k = 2.

3 Index Construction

The procedure to build the index works as follows. We scan the text,
word by word, find each word in a hash table and insert its text position
at the end of the corresponding occurrence list. If a word is not present
in the hash table, it is inserted and the corresponding occurrence list is
initialized. The index is stored on disk in the format shown in Figure 1.
However, the resulting index most probably will not fit in main mem-
ory. When the main memory is exhausted, we store the partial index as
if it were the complete final index. This partial index is called a dump.
We then continue the process starting from scratch with a new dump.
Once we complete this process, we merge the dumps. Merging two
dumps involves concatenating the lists of occurrences of each word, which
takes linear time. Partial dumps are merged until the complete index is
obtained. We can merge r dumps in a single process, in a fashion very
similar to r-way list merging, at O(nlog,r) time (e.g. using a heap).
We tested different values of r and, although larger values produce better
times in a reasonable range, the overall differences are too small to take
into account. We perform an in place merging as described in [MB95].

3.1 Time to Build the Index

The cost to search a word in the hash table is O(1) on average. As the
text addresses always increase as the scanning goes on, the insertions in
the list of occurrences happen always at the end of the lists, at O(1) cost.
Thus, the total CPU cost to build the dumps is O(n) on average.

By keeping the words of the vocabulary in a trie instead of a hash
table, the time cost can be made O(n) in the worst case. This is because,
for each one of the O(n) characters of the text, we work O(1) in the trie.

We analyze now merging times. Let M be the amount of main memory
available. Given that we can merge groups of » dumps in a single process,
we can divide the n/M dumps in groups of 7, merge each group and obtain
n/(Mr) groups of larger dumps. This process is repeated until we have
only one final index, as shown in Figure 2.

N N N Y AN N B Original dumps

\ | | | | | After a3-way merge
\ | Final index

Fig.2. The process of merging three dumps each time

Since the time to merge r groups of size M each is O(Mrlog, r), the
total amount of work in the first level is O(nlog,), which is the same for
each iteration. Since there are log,.(n/M) iterations, the total amount of
time is O(nlogy(n/M)), which is independent of r. The value of r affects
disk times, although the effect is barely noticeable.

Therefore the algorithm is O(nlogn) on average. However, it can be
made O(n) in the worst case. If instead of dumping and merging we
keep a separate file for each word in the vocabulary, for each word in the
text we must add an occurrence to the end of its file, at O(n) total cost.
However, except for huge texts, dumping and merging is more practical
because it avoids random accesses to disk. The algorithm could decide
which strategy to employ based on the text size, this way keeping O(n)
all the time as well as choosing the fastest strategy for each case.

3.2 Space for the Index

It is empirically known that the vocabulary of a text with n words
grows sublinearly. Moreover, the following relation holds very accurately
[Hea78]

V = Kn® = 0(n”) (1)
where V' is the size of the vocabulary and 0 < 3 < 1 is a constant depen-
dent on the particular text. We show later an experimental verification
of this fact.

Hence, the larger part of the index is the list of occurrences, which
is O(n). Stop words represent approximately 30-40% of the text (see
Section 5.2 for the definition of stop words). For each non-stop word,
we store a pointer (4 bytes is enough in most cases), while the length of
non-stop words is approximately 6-7 characters. This fact (that we later
verify experimentally) yields 0.35n, i.e. a 35% overhead over the text.

4 Querying

In our system there are basically two types of patterns: one word patterns
and phrase patterns. In each case we can look for exact and approximate
occurrences of the pattern in the text. Fach of these four combinations
involves quite different algorithms and tasks to be performed. Next, we
describe the most representative combinations derived from the two basic
types of patterns.

4.1 One Word Patterns

The most important characteristic of one word patterns is that only the
vocabulary is consulted and the list or lists of occurrences are immedi-
ately retrieved. For example, simply searching a word retrieves its list
of occurrences, searching for a word allowing errors or for a regular ex-
pression may retrieve more than one list as more than one word of the
vocabulary may match the query.

Searching on the vocabulary can be binary or sequential. Exact
searching a word involves a binary search on the vocabulary. Search-
ing a regular expression or approximate searching of a word involves a
sequential search on the vocabulary. For simple patterns allowing k errors
we use the algorithm [BYN96a], which is O(n) for small patterns, and ex-
tremely fast in practice. The algorithm is based on an automaton whose
behavior is simulated in O(1) per inspected character for short patterns.
In a 32-bit architecture, words of length up to 9 can be searched in O(n)
with any number of errors, and up to length 11 with one error. This is
good for our purposes, because most words are not longer than 9 letters
in practice. Qur experiments show that approximate searching on the
vocabulary always takes less than a second with this algorithm.

In [BYN96a] a number of techniques are developed to cope with longer
patterns. However, we take a different approach here. Since the few words
longer than 9 letters will have a few more characters, we truncate them to
the first 9 characters and use the algorithm as a filter. Fach occurrence
reported by the filter is checked with dynamic programming to verify if
it involves a real match of the complete word.

As it is shown in [BYNO96a], the number of verifications is extremely
low if the error ratio is reasonably small. It is also shown that there is
an abrupt division in the domain of error ratios. There is a point such
that any query allowing more than that error ratio will retrieve a huge
amount of information. Since this is of no use in terms of information
retrieval (because of lack of precision) we focus only in the case of lower

error ratios. It is possible to estimate beforehand the size of the result
(to give the user early feedback on the precision of his query) at very low
cost.

This automaton can have not only single letters in the pattern, but
any set of characters at each position. This allows our system to support
very efficiently the following extended queries (exactly or allowing errors):

— range of characters (e.g. t[a-z]xt, where [a-z] means any letter
between a and z);

— arbitrary sets of characters (e.g. t [aeilxt meaning the words taxt,
text and tixt);

— complements (e.g. t[~ablxt, where ~ab means any single char-
acter except a or b; t[~a-dlxt, where ~a-d means any single
character except a, b, c or d);

— arbitrary characters (e.g. t-xt means any character as the second
character of the word);

— case insensitive patterns (e.g. Text and text are considered as the
same words).

For more complicated patterns, allowing k errors or not, we use the
algorithm [WM92], which is O(kn) (and O(n) with no errors). Processing
the vocabulary with this algorithm takes typically 1-4 seconds. In addi-
tion to single strings of arbitrary size and classes of characters described
above the system supports patterns combining exact matching of some of
their parts and approximate matching of other parts, unbounded number
of wild cards, arbitrary regular expressions, and combinations, as follows:

— unions (e.g. t(elai)xt means the words text and taixt; the ex-
pression t(el|ai)*xt means the words beginning with t followed by
e or ai zero or more times followed by xt). In this case the word is
seen as a regular expression;

— arbitrary number of repetitions (e.g. t(ab)*xt means that ab will
be considered zero or more times). In this case the word is seen as
a regular expression;

— arbitrary number of characters in the middle of the pattern (e.g.
t#xt, where # means any character considered zero or more times).
Note that # is equivalent to - (e.g. t#xt and t-*xt obtain the same
matchings but the latter is considered as a regular expression). In
this case the word is not considered as a regular expression for
efficiency because the treatment of a regular expression generally
demands more bitwise operations than the # case;

— combining exact matching of some of their parts and approximate
matching of other parts (e.g. <te>xt, with k& = 1, meaning exact
occurrence of te followed by any occurrence of xt with 1 error);

— matching with nonuniform costs (e.g. the cost of insertions can be
defined to be twice the cost of deletions).

4.2 Phrase Patterns

For patterns containing more than one word we search each word sepa-
rately on the vocabulary and then intersect the lists of occurrences. Each
word of the phrase can be a simple word or a complex regular expression,
and can allow errors as in Section 4.1. IZxact searching a phrase involves
searching each word on the vocabulary and intersecting the lists of occur-
rences. The final answer contains the intersection of the lists represented
by that positions in the text with the same relative positions presented
by the words in the pattern.

It is also possible to search a phrase allowing k errors in the whole
phrase. This involves sequential searching of each word on the vocabulary
with k errors and intersecting the lists of occurrences, taking care of the
total number of errors. We keep a list of matches for each word and each
number of errors and intersect each combination that has less than or
equal to k total number of errors. For each word of the pattern a different
algorithm is chosen, according to the many possibilities described in the
previous section.

The intersection of many lists is carried out as follows: the shortest
list is selected as a first version of the result. Then, it is intersected with
each other list by binary searching the elements of the shorter lists inside
the other (taking care of the positions of the words in the text). This
works well because, as shown in the Appendix, it is very probable that
one of the lists is very short.

4.3 Time to Answer a Query

In the Appendix we analyze each type of query. We use a as a shorthand
for 1 — 3, and observe that 0 < a < 1. In natural language text 3
is between 0.4 and 0.6, hence a ~ [(see Section 5). The results are
approximate (since the text models are only approximations) and valid
for queries that have a reasonable degree of precision (i.e. queries useful
to the user). As explained in the Appendix, v is related to the number
of allowed errors and is typically in the range 0.1 to 0.2.

— Simple words: O(logn).

Phrases of simple words: o(n”) for two words, O(logn) for longer
phrases.

Extended patterns, regular expressions and approximate words:
O(n? + n®*t7log n).

— Phrases of the above patterns: O(n” 4+ n®+7logn).

— Approximate phrase matching: O(n® + no+t7logn).

Therefore, except for some types of exact searches, retrieval times
are in the range O(n%40%) depending on the vocabulary size and the
complexity of the search. In reasonable cases it is O(n"®), which is near
O(y/n). We also point out that the disk accesses to the index are sequen-
tial (except for buffering limitations).

5 Experimental Results

For the experimental results we used literary texts from the 2 giga-
bytes TREC collection [Har95]. We have chosen the following texts: ap
Newswire (1989), DOE - Short abstracts from DOE publications, Fr - Fed-
eral Register (1989), wsy - Wall Street Journal (1987, 1988, 1989) and
ZIFF - articles from Computer Selected disks (Ziff-Davis Publishing). We
also derived two other larger files by putting together AP plus ZIFF texts
(called Az text file) and AP plus DOE plus FR plus wsJ plus ZIFF texts
(called ADFWZ text file). Our objective here is to obtain two large files
containing 458.2 megabytes and 1.09 gigabytes, respectively. Table 1
presents some statistics about the seven text files. For the wsJ file the
vocabulary size (in bytes) is 0.58% of the text size and the number of
words of the vocabulary is 0.49% of the total number of words. For our
experiments we considered a word as a contiguous string of characters in
the set {A..Z, a..z} separated by other characters not in the set {A..Z,
a..z}.

The performance evaluation of the algorithms presented in the previ-
ous sections was obtained by means of 500 trials to query different text
files and 20 repetitions to build indices. This gives a confidence interval
of 95% for our measures.

The experiments show that our index is very efficient even for very
large text files. All tests were run on a SUN SparcStation 4 with 128
megabytes of RAM running Solaris 2.5.1.

. Text Vocabulary Vocab./Text
Files

Size (bytes) Words Size (bytes) | Words Size Words
AP 237,766,005 | 37,740,089 | 1,530,192 | 201,115 | 0.64% | 0.53%
DOE | 180,515,212 | 27,124,239 | 1,795,783 | 211,196 | 0.99% | 0.78%
FR 219,987,476 | 32,000,223 | 1,043,869 | 132,129 | 0.47% | 0.41%

wsJ 262,757,554 | 40,741,508 | 1,511,951 | 198,818 | 0.58% | 0.49%
ZIFF 242,660,178 | 38,047,824 | 1,639,677 | 216,482 | 0.68% | 0.57%
AZ 480,426,183 | 75,787,913 | 2,574,518 | 336,716 | 0.54% | 0.44%
ADFWZ | 1,143,686,425 | 175,653,883 | 4,629,371 | 573,661 | 0.40% | 0.32%

Table 1. Text files from the TREC collection

5.1 Time to Build the Index

Table 2 presents the times to build the index for three different files
containing 250.6, 458.2 and 1090.7 megabytes of text, respectively. The
third column shows the time devoted to merging times. In this case the
times were obtained for a 2-way merge (i.e. 7 = 2).

As can be seen, the indexing times are almost linear with the size of
the text. In our machine, indexing performance is near 4 megabytes per
minute.

File Size (megabytes) | Total time (min) | Merge time (min) | Mb/min

WSJ 250.6 58.5 13.8 4.28

AZ 458.2 122.7 33.9 3.73
ADFWZ 1090.7 248.9 79.8 4.38

Table 2. Experimental results to build the index

5.2 Space for the Index

Table 3 presents the worst case and average case (n/V') for the sizes of the
lists of occurrences for the texts AP, DOE, FR, WSJ, ZIFF, AZ and ADFWZ.
Note that in all seven texts the largest size for the list of occurrences
corresponds to the word the.

The majority of the most common words in natural languages are
function words (also called stop words) whose purpose is mainly syntacti-
cal and do not carry enough content to occur alone in the query. An inter-
esting study of English texts by Miller, Newman and Friedman [MNF58]
classifies the words into function words (articles, prepositions, pronouns,
numbers, conjunctions and auxiliary verbs) and content words (nouns,
verbs, adjectives and most adverbs).

Fi Words Words Most freq. word n Index size Index
iles v Text
Text(n) Voc.(V) | Word Occ. (bytes)
AP 37,740,080 | 201,115 | the | 2,077,987 | 188 | 152,490,548 | 0.64
DOE | 27,124,239 | 211,196 | the | 1,722,275 | 128 | 110,292,739 | 0.61
FR 32,000,223 | 132,129 | the | 2,066,443 | 242 | 129,044,761 | 0.59
wsa | 40,741,508 | 198,818 | the | 2,020,113 | 205 | 165,989,934 | 0.63
ZIFF | 38,047,824 | 216,482 | the | 1,556,762 | 176 | 153,830,973 | 0.63
AZ 75,787,913 | 336,716 | the | 3,634,749 | 225 | 305,726,170 | 0.64
ADFWZ | 175,653,883 | 573,661 | the | 9,443,580 | 306 | 707,244,903 | 0.62

Table 3. Size of the lists of occurrences, including stopwords

Table 4 presents the influence of a set of 361 function words obtained
from [MNF58] in the five files. For the wsi file, the 361 words, which
are less than 0.18% of the vocabulary of 198,818 words, account for 44%
of all 40,741,508 word occurrences (our software is case sensitive so we
considered each stop word twice, starting with lower case and upper case
letters). By eliminating function words the worst and average lengths of
the lists of occurrences are much closer to what actually happens in prac-
tice, as we always try to use content words when retrieving information
from text databases. Moreover, our index takes approximately 35% of
the space of the text when the stop words are not indexed, which is the
option in general for information retrieval systems.

Fi Words Words Most freq. word n Index size Index
iles v Text
Text(n) Voc.(V) Word Occ. (bytes)
AP | 20,678,146 | 200,392 said | 504,998 | 103 | 84,239,271 | 0.35
pDoE | 15,515,153 | 210,523 | energy | 61,748 | 73.7 | 63,853,146 | 0.35
FR | 17,526,092 | 131,457 | Section | 104,490 | 133 | 71,145,018 | 0.32
wsa | 22,833,202 | 198,079 said | 303,618 | 106 | 92,841,139 | 0.35
ZIFF | 21,197,303 | 215,753 | software | 110,723 | 98.2 | 86,425,334 | 0.36
AZ | 41,875,449 | 335,974 | said | 576,987 | 125 | 170,072,682 | 0.35
ADFWZ | 97,749,896 | 572,903 said | 885,374 | 171 | 395,625,209 | 0.35

Table 4. Size of the lists of occurrences, excluding stopwords

5.3 Time to Answer a Query

The experiments to measure query times considered exact and approxi-
mate queries (k = 0,1,2,3), phrase patterns containing 1, 2, 3, 4, and 5
words and the texts wsJ, Az and ADFwWZ. The patterns were randomly
chosen from the texts, but avoiding patterns containing function words.

We tested our software against Glimpse version 3.0 [MW93] for the
ws1J file, using the same set of queries used for our software package Igrep.
For this experiment we used the option -b, when Glimpse builds an index
16.9% of the size of the text (index size of 42.4 megabytes), allowing
faster search. This option forces Glimpse to store an exact pointer to
each occurrence of each word (i.e. a full inverted index), except for some
very common words belonging to a stop list it always uses in this case.
Results are shown in Table 5.

1 word 2 words 3 words 4 words 5 words

t r t r t r t r t r
0.08 | 0.3% | 0.23 0.9% 0.24 1% 0.28 1% 0.34 | 1%
0.58 | 0.4% | 1.99 1.5% 2.15 | 1.6% | 2.59 | 1.9% | 3.16 *
0.85 | 0.5% | 8.27 5.1% 4.26 | 2.6% | 4.65 | 2.9% | 5.06 *
1.30 | 0.7% | 34.1 | 17.9% | 14.6 | 7.5% | 11.2 * 8.97 *

W N = O

* Glimpse does not accept queries allowing errors with more than 32 characters

Table 5. Igrep searching times in seconds (t) and ratio Igrep/Glimpse (r) for the wsJ
text

Tables 6 and 7 show the results using Igrep for the larger files Az
(458.2 megabytes) and ADFwWz (1090.7 megabytes), respectively. We did
not run Glimpse for these two files because its query times are too long
on very large texts. Our approach, instead, works well with texts of 1
gigabyte and more.

Tgrep
k 1 word 2 words 3 words 4 words 5 words
0 | 0.087 £ 0.004 | 0.32 & 0.03 | 0.33 £0.02 | 0.35 &£ 0.02 | 0.40 & 0.02
1 0.95 + 0.01 3.3+03 3.8 £0.1 4.3 £ 0.1 5.2 £ 0.1
2 1.4 +£ 0.1 13 +£3 7.0 £ 1.0 7.2 £ 0.5 8.2 £ 0.4
3 2.2 +0.1 70 £+ 21 7.1+ 0.6 12 +£ 2 14 £+ 2

Table 6. Searching times (in seconds) for the Az file text using Igrep

The only case in which our index does not work well is for phrases of
two words searched with 3 errors or more. This agrees with the analysis,
in the sense that two words are not enough to guarantee that one of them
has a sufficiently small list of occurrences. Three errors imply searching
both words with three errors, and later intersecting the appropriate lists.
A word searched with three errors generates a huge list of matches in the
vocabulary.

Tgrep
k 1 word 2 words 3 words 4 words 5 words
0 | 0.095 £+ 0.006 | 0.46 4+ 0.05 | 0.41 £ 0.03 | 0.44 & 0.03 | 0.48 4 0.03
1 1.6 £ 0.1 6.2 £ 0.6 6.1 £ 0.3 7.1 £ 0.2 8.4 £ 0.2
2 2.3 +£0.1 38 + 10 18 + 3 15+ 2 15+1
3 35 +0.1 108 £ 30 52 + 12 34 + 8 37 £ 11

Table 7. Searching times (in seconds) for the 1 gigabyte ADFWZ text file using Igrep

A possible solution is to forbid more than 2 errors in a single word
of a phrase. Another one involves using the text at query time: instead
of generating all the matches of a word with 3 errors, generate those of
the other one with zero errors and check directly in the text whether the
whole phrase appears with 3 errors. Thus, the huge list of matches is
never generated.

The following test was for more complicated patterns, as follows:

1. <exe>cutive: meaning exact occurrence of exe followed by any

occurrence of cutive with k errors.

2. prob#atic sign#ance: where # means any character considered
zero or more times (one possible answer is problematic signifi-
cance).

3. <[LMN]ACM># received: meaning a word starting by L, M, or N
followed by ACM followed by any character considered zero or more
times followed by the word received (one possible answer is LACM
received). For this example, the search is case insensitive for both
Igrep and Glimpse.

4. earl# retir[aeioul#<ent> program: the #, [] and <> meaning
as before (one possible answer is early retirement program).

5. acclaeiou]l*unt compril[ms] (es|ent): pattern is a regular ex-
pression (one possible answer is account comprises).

Table 8 presents searching times and ratio against Glimpse using the
wsJ file for £ = 0,1,2,3, for the five patterns above.

Table 9 presents experimental results for the values of K and 8 from
Eq.(1) and 6 from Eq.(2). From the values obtained for 3 we can conclude
that retrieval times are near O(y/n) for typical texts.

6 Conclusions and Future Extensions

We have presented an indexing scheme capable of retrieving words and
phrases, exact and approximate search, using classes of characters and

Pattern k=0 k=1 k=2 k=3

t R t R t R t R
0.031 | 0.004% | 3.18 | 0.028 | 6.92 | 0.047 | 11.4 *
3.64 0.048 12.4 0.1 20.7 | 0.126 | 30.1 | 0.171
3.74 0.047 11.7 0.1 19.3 | 0.133 | 29.0 | 0.169
4.60 0.061 14.5 | 0.124 | 38.0 0.26 191 *
10.2 8.4% 22.2 8.8% *x *x *x *x

T W N =

* For Glimpse k must be smaller than the number of characters between < and >

The number of errors must be smaller than the number of characters
of the smallest sequence between (and) in a regular expression

ok

Table 8. Igrep searching times in seconds (¢) and ratio against Glimpse (R) for the
WsJ text

| Text [ap | DOE | FR | wsJ [zIFF | Az [ADFWZ |
K 26.8 | 10.8 | 13.2 | 43.5 | 11.3 9.2 4.8
) 0.46 | 0.52 | 0.48 | 0.43 | 0.51 | 0.52 0.56
0 1.87 | 1.70 | 1.94 | 1.87 | 1.79 | 1.85 1.85

Table 9. Experimental results for the coefficients of Heaps and Zipf equations

general regular expressions. It is based on full inverted lists, where the
work is done on the vocabulary and the text is not accessed at all. This
allows to work with texts stored on remote, slow or removable devices, or
even with no text at all. The index is implemented as a software package
called Igrep, which is publicly available.

Our analytical and experimental results show that the performance of
the index is good even for text files of more than 1 gigabyte. The index
can be built in linear time and a single pass over the text (in our machine
the average indexing speed is 4 megabytes per minute), and takes linear
space (35% of the text size is typical). Querying performance is near
O(y/n) for queries that are useful in terms of precision. Typical times for
one gigabyte of text are a few seconds for useful queries.

We are currently working on extensions of this index. It is easy to
extend the index to handle collections instead of single files, and restrict
the queries to some subcollections. Reindexing is also easy, since it is
sufficient to index again the files that were added or updated and merge
the original and the differential indices, which can be efficiently done and
allows to use the original index until the last minute. This lightweight
reindexing capability is very good in the Web environment, where changes
are continuous but not extensive.

We are also studying the best way to handle approximate phrase
searching, to compare the current approach to the one of verifying di-
rectly in the text.

Finally, we are working on integrating compression techniques, to

make the whole index plus compressed text nearly half of the original
text [MNZ97].

Acknowledgements

We wish to acknowledge the helpful comments of Ricardo Baeza-Yates.

References

[BY92] R. Baeza-Yates. Text retrieval: theory and practice. In Proc. of 12th
IFIP World Computer Congress, volume I, pages 465-476, 1992. Elsevier
Science.

[BYGY92] R. Baeza-Yates, G.H. Gonnet. A new approach to text searching. Com-
munications of the ACM, 35(10): 74-82, 1982.

[BYN96a] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string
searching. In Proc. CPM’96, Springer-Verlag LNCS, v. 1075, pages 1-13,
1996.

[BYN97] R. Baeza-Yates and G. Navarro. Block addressing indices for approximate
text retrieval. Tech. Report TR/DCC-97-3, Dept. of CS, Univ. of Chile.
Submitted.

[BYNST96] R. Baeza-Yates, G. Navarro, E. Sutinen and J. Tarhio. Indexing methods
for approximate text retrieval. Tech. Report TR/DCC-97-2, Dept. of CS,
Univ. of Chile.

[BYP92] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern
matching. In Proc. CPM’92, Springer-Verlag LNCS, v. 644, pages 185—
192, 1992.

CL92 W. Chang and J. Lampe. Theoretical and empirical comparisons of ap-
g
proximate string matching algorithms. In Proc. CPM’92, Springer-Verlag
LNCS, v. 644, pages 172-181, 1992.

[Cob95] A. L. Cobbs. Fast approximate matching using suffix trees. In Proc.
CPM’95, Springer-Verlag LNCS v. 937, pages 41-54, 1995.

[GBYY91] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data
Structures. Addison-Wesley, 1991.

[Har95] D. K. Harman. Overview of the third text retrieval conference. In Proc.
Third Text Retrieval Conference (TREC-3), pages 1-19, NIST Special Pub-
lication 500-207, Gaithersburg, Maryland, 1995.

[HeaT8]

[LST96]

[MBYS5]

[MNZ97]

[MNF58]

[MW93]

[Mye94]

[Nav97]

[Sel80]

[ST95]

[ST96]

[Ukks5]

[Ukk93]

[WM92]

[WMMO96]

[Zipfa9]

J. Heaps. Information Retrieval - Computational and Theoretical Aspects.
Academic Press, NY, 1978.

O. Lehtinen, E. Sutinen and J. Tarhio. Experiments on block indexing.
In Proc. Third South American Workshop on String Processing (WSP’96),
Carleton University Press International Informatics Series, v. 4, pages 183—
193, 1996.

A. Moffat and T. Bell. In situ generation of compressed inverted files.
Journal of the American Society for Information Science 46(7):537-550,
1995.

E. de Moura, G. Navarro and N. Ziviani. Indexing compressed text. In
R. Baeza-Yates, editor, Proceedings Fourth South American Workshop on
String Processing, Carleton University Press International Informatics Se-
ries, Valparaiso, Chile, 1997.

G. A. Miller, E. B. Newman and E. A. Friedman. Length-frequency sta-
tistics for written English. Information and Control 1:370-380, 1958.

U. Manber and S. Wu. GLIMPSE: A tool to search through entire file
systems. Tech. Report 93-34, Dept. of CS, Univ. of Arizona, Oct 1993.

E. Myers. A sublinear algorithm for approximate keyword searching. Al-
gorithmica 12(4/5):345-374, 1994. Springer-Verlag.

G. Navarro. Approximate string matching by counting. Tech. Report
TR/DCC-97-1, Dept. of CS, Univ. of Chile. Submitted.

P. Sellers. The theory and computation of evolutionary distances: pattern
recognition. J. of Algorithms, 1:359-373, 1980.

E. Sutinen and J. Tarhio. On using ¢-gram locations in approximate string
matching. In P. Spirakis, editor, Proc. ESA’95 Springer-Verlag LNCS
v. 979, Corfu, Greece, pages 327-340, 1995.

E. Sutinen and J. Tarhio. Filtration with g-samples in approximate string
matching. In Proc. CPM’96, Springer-Verlag LNCS v. 1075, pages 50-61,
1996.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-
rithms 6:132-137, 1985.

E. Ukkonen. Approximate string-matching over suffix trees. In Proc.
CPM’93; Springer-Verlag LNCS 684, pages 228-242, 1993.

S. Wu, U. Manber. Fast text searching allowing errors. Communications

of the ACM, 35(10):83-91.

S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approxi-
mate limited expression matching. Algorithmica, 15(1):50-67, 1996.

G. Zipf. Human Behaviour and the Principle of Least Effort. Addison-
Wesley, 1949.

Appendix: Times for Different Querying Operations

There are a number of different types of query to analyze. Each type in-
volves carrying out different tasks. For example, simply searching a word
involves a binary search on the vocabulary; searching a phrase involves
binary searching each word and then intersecting the lists; searching for
a regular expression involves a sequential search on the vocabulary plus
merging the resulting lists.

We remark that this analysis is approximate, since it relies on rules
such as the Heaps law or the Zipf law, which are only rough approxi-
mations to the statistical structure of texts. Moreover, the results are
valid only for queries useful to the user (i.e. with reasonable degree of
precision).

We first analyze the cost of each task, and use the results to deduce the
cost of each type of query. The description of the tasks follow, together
with their analysis. Recall that the size of the vocabulary is V = O(n?)
and that @ = 1 — 3, where a and 8 are normally in the range 0.4 to 0.6
[Hea78].

bin-search Binary searching a word in the vocabulary and retrieving
the list. Since the search is binary, we have O(logn”) = O(logn)
cost for this type of task.

seq-search Sequential searching a word in the vocabulary is O(n?). This
is the case of regular expressions and others. It is also the case of
approximate simple word matching, since, as explained, we use a
linear-time filter and the number of verifications is not significant
in practice. Searching a complex expression with k errors, on the
other hand, is O(kn”). We take k as a constant.

Ist-merge List merging of j lists occurs in approximate search, non-
standard patterns, etc. Since the average size of each list of occur-
rences is n/V = O(n'~") and we merge ordered lists to produce an
ordered list, we work O(n®jlog j).

Ist-inters List intersection of j lists occurs in phrases. Those lists can
come from searching simple words or complex expressions. In the
latter case we use an algorithm similar to that of list merging to
achieve O(jllogj) for j lists of length (. In the case of simple
words we select the smaller list and, for each element, binary search
adjacent positions in the other lists. We show that in this case the
length of the shortest list is O(1) on average, so we work O(jlogn)
on average. To show that, we assume valid the generalized Zipf law

[Zipf49, GBY91], which says that the number of occurrences of the
:-th more frequent word is, for some # dependent on the text,

)= gy where s(e)zzil@ 2)

which is constant for 8 > 1. We experimentally validated this law
in Section 5.

It must hold f(V) = O(1), i.e. there exist words that appear once
(there are a lot, in fact). Under the model V = O(n”) we have =
1/5 for sufficiently large texts (e.g. ADFWz). If we consider X;..X;
the rank of the words present in a phrase (which are uniformly
distributed over [1..V]), we have

P(min f(X;) > a) = (P(f(X1) > a))!

(r(vs (o))

(3 e

Hence, the expectation of the shortest list is

v

. 1 1
ZP(mmf(Xi) >a) < W;W

a=1

which is O(1) for j > 6. This is typically out of question for phrases
of three words or more. However, for j = 2 that may not be the
case. Bounding the summation with an integral, we get that the ex-
pectation is smaller than 1+ V'=//%/(j = 1)4+0(1/4) = O(n?(1=52).
In that case the total cost of the intersection is O(n®(*=57) logn).
Observe that we took j (phrase length) as a constant).

We now point out the times for each type of query, as follows:

— Simple words: A bin-search taking O(logn).

— Phrases of j simple words: the time is O(jlogn), which is both the
time to search each word (7 bin-searches) and to intersect the lists
(Ist-inters). For j = 2 the time can be O(n?(1=2%) log n), which is
o(n?).

— Extended patterns, regular expressions and approximate word match-
ing: seq-search and Ist-merge, taking O(n” + pn®logp), where
p is the number of matching words in the sequential search phase.
This is good if we assume that there is a small number p of matches,
which is the case of interest as we explain later.

— Phrases formed with complex patterns: j searches as those for the
above expressions (which add up O(j(n” + pn®logp))), plus a lst-
inters, which costs O(pn®jlogj). Observe that the lists have length
O(pn®). This is because they come from merging the lists of p
random words in the vocabulary (which matched the extended or
approximate pattern), and therefore the merging-like algorithm is
used. The total time is thus O(j(n” 4 pn®log(pj))).

— Approximate phrase matching of j words and k errors: j seq-
searches considering a number of different Ist-inters, has a cost of
0 (](nﬁ + pn“logp) + (k"}'j)pnaj log j), under the same conditions
as above. A number of intersections are made here, since for each
word and each number of errors up to k, a different list is kept with
the words that matched with each number of errors. Later, we have
to try all alternatives of selecting a list of each word, such that the
total number of errors does not exceed k. That is (k";]) Again, the
lists of occurrences are O(pn®) size.

In all these results, we can consider j and k as small constants. On
the other hand, as shown in [BYN97], p = O(n") for 4 in the range 0.1

0.2 if the precision is reasonably good (i.e. k < 3 for words). The
same should happen for complex patterns, since otherwise a large p value
means a query which has too low precision and is of no use to the final
user. This condition can be detected beforehand.

This article was processed using the ¥ TEX 2¢ macro package with CUP_CS class

