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Abstract. One of the simplest approaches to approximate string match-
ing is to consider the associated non-deterministic finite automaton and
make it deterministic. Besides automaton generation, the search time is
O(n) in the worst case, where n is the text size. This solution is men-
tioned in the classical literature but has not been further pursued, due
to the large number of automaton states that may be generated.

We study the idea of generating the deterministic automaton on the fly.
That is, we only generate the states that are actually reached when the
text is traversed. We show that this limits drastically the number of
states actually generated. Moreover, the algorithm is competitive, being
the fastest one for intermediate error ratios and pattern lengths.

1 Introduction

Approximate string matching is one of the main problems in classical string
algorithms, with applications to text searching, computational biology, pattern
recognition, etc.

The problem is defined as follows: given a text of length n and a pattern of
length m (both sequences over an alphabet X of size ¢), and given a maximal
number of errors allowed, k, we want to find all text positions where the pattern
matches the text up to k errors. Errors can be replacing, deleting or inserting
a character. We call o = k/m the error ratio. We are interested in the on-line
problem, i.e. the text is not known in advance and therefore only the pattern
can be preprocessed.

The classical solution to this problem is O(mn) running time [16, 17]. Tt
maintains a set of m + 1 values C; (¢ € 0..m), which at any moment represent
the amount of errors if patiern[l..i] is matched against the best suffix of the
already traversed text. A match is reported whenever C,, < k. Cj is initialized
at i, and the new C/ values are computed in O(m) time from the C; current
values using the formula

C! =if (pattern[i] == text_char) then C;_; else 1+ min ( C;_1,C/_,,C;)
(1)
where 1t 1s assumed that Cj 1s always 0.

Further improvements in the last years achieved O(kn) time in the average
case [23, 9] or even in the worst case [22, 9, 13, 14] by taking advantage of the



properties of the dynamic programming matrix. In the same trend is [6], with
average time complexity O(kn/\/o).

Especially interesting to this work is [23], which defined “active” C; values.
Active values are those from 1 to the last ¢ having C; < k. The outcome of
the algorithm depends only on the active values. Tt was conjectured (and later
proved in [6, 4]) that the average number of active values is O(k). By working
only on the active values, O(kn) average time is achieved.

Other approaches attempt to filter the text, reducing the area in which dy-
namic programming needs to be used [21, 20, 19, 7, 8, 11, 5, 18]. These al-
gorithms achieve sublinear expected time in many cases (O(knlog, m/m) is a
typical figure) for moderate k/m ratios, but the filtration is not effective for
larger ratios.

Yet other approaches use bit-parallelism [1, 27] to reduce the number of
operations [24, 28]. In [28], O(kn/w) average time is achieved, where w is the
number of bits in the computer word.

A radically different approach to the problem is to look at it as a regular
grammar matching problem. Consider the NFA (non-deterministic finite au-
tomaton) for searching patt with at most £ = 2 errors shown in Figure 1. Every
row denotes the number of errors seen. The first one 0, the second one 1, and
so on. Every column represents matching the pattern up to a given position. At
each iteration, a new text character is considered and the automaton changes
its states. Horizontal arrows represent matching a character (they can only be
followed if the corresponding match occurs), vertical arrows represent inserting
a character in the pattern, solid diagonal arrows represent replacing a charac-
ter, and dashed diagonal arrows represent deleting a character of the pattern
(they are e-transitions®; since we delete the character from the pattern without
advancing in the text). Finally, the loop transition at the initial state allows to
consider any character as a potential starting point of a match. We say that a
state is active if the automaton can reach that state after processing the text up
to now. The automaton accepts a character (as the end of a match) whenever
a rightmost state is active. This NFA has (m + 1)(k + 1) states. Initially, the
active states at row ¢ (¢ € 0..k) are at columns from 0 to ¢, to represent the
deletion of the first ¢ characters of the pattern.

If we look at the columns of this automaton, we see that once a state is
active, all subsequent states in the same column are active too, and therefore it
is possible to define a column by the minimum row active at that column. The
values obtained are precisely the C; already mentioned. Therefore, simulating
this NFA by columns leads to the classical algorithm.

Although we have cited [23] to mention the idea of active values, the central
point of the paper is to make this automaton deterministic. Once this is done,
the search time is O(n). However, the number of states of the DFA (determin-
istic finite automaton) can be huge. Although the regularities make the total
number of states far below the maximum O (Q(m"’l)(k"'l)), the bounds are still
discouraging. In [23], a bound of O(min(3™, (20m)*m)) is obtained. In [15] it

?e-transitions are those that the NFA may follow without reading any input.



no errors

1 error

2 errors

Fig.1. An NFA for approximate string matching. Unlabeled transitions match any
character.

is shown that O((k + 2)™*(k + 1)!) is also an upper bound. For this reason,
it has been attempted to simulate the non-deterministic automaton rather than
the deterministic one.

In [26], this automaton is simulated by rows (using bit-parallelism) and
O(kmn/w) time complexity is achieved. In [4, 3] it is simulated by diago-
nals (which allows higher parallelism) and O(y/km/w n) time is achieved for

moderate error ratios.

We return to the idea of building the DFA. However, we observe that most
of the states of the DFA are never reached throughout the search. Therefore,
instead of building the automaton beforehand and then using i1t to search the
text, we have a partially built automaton. This partial automaton has only
the states and transitions that have been reached. As we search, if we find a
transition which has not been computed yet, we compute it before proceeding.
This is as efficient as building the automaton completely, but the number of
states can be much smaller.

The 1dea of on-the-fly construction of DFAs is not new. For instance, it has
been mentioned before, although not exploited, for the more restricted case of
string matching allowing character replacements (no deletions nor insertions)
[2]. Tt has also been used for the general problem in [12], where it was imple-
mented on a lazy functional language. They arrive to similar conclusions about
performance, although we include more algorithms in the comparison and our
test suite i1s much larger and has no hidden performance factors that could be
included in a funcional language implementation.

We explain the algorithm and show experimentally that it outperforms all



the others for intermediate error ratios. This is because for very low error ratios
the filtration techniques inspect less than n characters, while for very high error
ratios we generate a huge number of states anyway. We also show how the partial
automaton grows with the text size.

2 The Partial DFA Algorithm

We begin with some terminology. A deterministic finite automaton or DFA is
a set of states connected by transitions. Transitions are arrows among states
labeled with symbols drawn from an alphabet X. There is exactly one transition
leaving every state for each alphabet symbol. One of the states is initial and some
states are final. The automaton is run over a text beginning at its initial state.
Given each text character, it follows the appropriate transition and reaches a
new state. We say that the automaton accepts a text position whenever it is at
a final state just after that position is read.

A partial DFA is a DFA where some transitions are missing. A missing
transition means that we still have not computed to which state it should go.

A configuration represents the state of the search at a given moment. It
can be represented as the set of active or inactive states of the NFA, or as
the current (active) values of the the dynamic programming algorithm. Each
possible configuration corresponds to a state of the DFA.

Our DFA will have one state per “known” configuration. Only the configu-
rations (states) which are actually reached in the processing of the text will be
present.

We begin with a partial DFA with just one state and all missing transitions.
The state corresponds to the initial configuration (C; = ¢). We traverse the
text exactly as if we had a complete DFA. The difference is that, whenever we
must follow a missing transition, we compute it. That is, we take the current
state (we store the configuration that corresponds to each state) and perform an
O(m) step of the classical algorithm. This gives us the configuration of a new
state. We search the configuration among the known states. If it already exists,
we put the previously missing transition pointing to that state. Otherwise, we
must first create a new state (with all missing transitions leaving it).

The advantage of such construction is that, although the DFA of a pattern
can be very large, only a small portion of the states may be actually reached
along the text. Of course, the larger the text, the more states will be generated,
but this larger text will compensate for the effort of generating the automaton.
Note that in natural language some substrings never appear, no matter how long
the text.

The only disadvantage is that once the complete DFA is generated, the con-
figuration to which each state corresponds needs not be stored, while in the
partial DFA we need to keep those configurations all the time to be able to gen-
erate new transitions and states. This extra space turns out to be about a 25%
extra per generated state, which is not too much, especially because much less
states are generated in the partial DFA (as we show in the experimental section).



On the other hand, the complete DFA algorithm needs to keep all configurations
to generate the DFA, and only then can free their space. Therefore, at some
point it demands strictly more memory than what the partial DFA algorithm
demands along the whole search.

Our algorithm can thus be sketched as follows

Search (text,n,pat,m,k)
Aut — initial state (configuration C; =¢)
state «— initial state
Ve € X, transition(Aut, state, ¢) — unknown
for (1 =031 < n;i++)
{ nstate — transition(Aut, state, text[i])
if (nstate == unknown)

{ neonf — perform_step(conf(Aut, state), text[i])
nstate «— state in Aul corresponding to nconf
if (nstate not found)

{ nstale «— new state
Aut — Aut U {nstate}
Ve € X, transition(Aut, nstate, ¢) — unknown

1

transition(Aut, state, text[i]) — nstate
}
state «— nstate
if (state is final) report match

1

The ¥ in the algorithm does not stand for the complete alphabet, but only
for those symbols appearing in the pattern, plus one that represents “any symbol
not in the pattern”. The alphabet is then mapped to the interval [0..p] where
p < m, and therefore creating a new state costs O(m). The text characters are
mapped in O(1) time by using a global O(¢) size table.

Now we point out some details of the algorithm.

We represent configurations as the current C; values of the classical dynamic
programming algorithm. Therefore the configurations are O(m) size. The action
perform_step of the algorithm simply makes a step of the classical algorithm
on the given configuration, and therefore it is O(m) time. Since we work only
on active values, our representation for a column is [a, ¢q, ..., ¢,], where a is the
position of the last active value. As conjectured in [23] and proved in [6, 4], the
average number of active values is O(k). However, this is probably not true if
we compute each configuration only once.

Once nconf has been computed, it is necessary to know whether it corre-
sponds to a state which is already present in the automaton. Therefore, we
must search in a set of “known” configurations. This search can be done in time
proportional to the length of the searched configuration (i.e. O(m)) in the worst
case. The data structure to achieve this is a trie on the a + 1 “digits” of the
configuration.



The structure of this trie is quite particular. The root has m—#k subtries (one
per possible a value). The subtrie number ¢ has height i. Every non-root node
which is not a leaf has at most 3 children. This is because the difference between
two consecutive values in the column is —1, 0 or 1 (recall Eq. (1)). This fact,
already noted in [23], allows to save a lot of space in the trie implementation.
This structure is used in [12].

However, we found that a simple hashing turns out to be the most efficient
data structure in practice. We take the hash function over the a + 1 “digits”
of the configuration. Collisions are resolved with a linked list. If the table size
and the hash function are well chosen, the average cost is O(m) (to evaluate the
hash function), at much less space consumption.

3 Analysis

We call s and ¢ the total number of states and transitions, respectively, in the
complete automaton. This is an upper bound to those actually generated (s
and t', respectively). As Ukkonen has shown in [23], the number of states can
be upper bounded by s = O(min(3™, (20m)*m)) (the first one comes from the
property mentioned before about tries, the second one considers all possible
strings at distance < k from the pattern). Since we can map X to O(m) func-
tionally different symbols, we replace o by min(c, m) (this is also noted in [15]).
In [15], an alternative bound is given by s = O((k+2)™~*(k+1)!). This is clear
by looking at the approach of [4], where the NFA is represented by diagonals
with m — k numbers in the range 0..k + 1 (the non-full diagonals were discarded
in that paper and correspond to the (k 4 1)! present here).

The number of transitions is therefore ¢t = O(smin(im, 5)). We have s’ =
O(min(s,n)) and ' = O(min(t, n)), since each text character can create at most
one state and transition. The space needed by our algorithm is O(s’ min(m, o)+
t') = O(s' min(m, o)) in the worst case, i.e. O(min(s,n)min(m,c)). The al-
gorithm is linear time except for the generation of the states and new tran-
sitions, each one costing O(m). This makes the total cost of the algorithm
O(n + s’ min(m, ) +t'm) = O(n + t'm) = O(n + mmin(t, n)).

It is extremely difficult to set up a correct probabilistic model to compute the
number of states that are generated on average after reading n random symbols.
We make the simplifying assumption that each new character produces a random
transition. This assumption is pessimistic since some transitions are much more
probable than others.

The probability of a given transition not being generated at a particular text
position is (1 — 1/t). Therefore, the average number of generated states after
reading n text characters is

=t (1 - (1 - %)n) :t(l - e_”/t) +0(1/1)

and therefore the average time complexity is O(n 4+ mt(1 — e="/*)). Notice that



(1- e_”/t) is the factor by which building our partial DFA is more efficient than
building the full DFA. We have three cases now

[n = o(t)] In this case e="/* = 1 —n/t + O((n/t)?), which makes the total time
cost O(n + mn(l + o(1))) = O(mn). That is as bad as plain dynamic
programming. However, in this case the partial DFA is asymptotically

better than the full DFA (i.e. partial/full = 1 — e~/ = o(1)).

[n = w(t)] Inthis case we have that the timeis O(n+mt) = o(mn), and therefore
we improve dynamic programming. If n = Q(mt), then the algorithm is

O(n).
[n = ©(t)] We have that (1 —e=?/") = ©(1) (i.e. constant) and therefore the

total time is ©(mn), although the constant is smaller. For instance, if
n =11t is &~ 0.63mn.

This shows that the algorithm is competitive when the text is large compared
to the size of the automaton, which is intuitively clear. However, this analysis is
pessimistic and the results are much better in practice, as well as the efficiency
ratio among partial and full DFA. We show this in the next section.

4 Experiments

We present some experimental results collected on English text. We first show
the growth of the automata and then we compare our algorithm against the
others.

The tests were run on a Sun SparcServer-1000 running SunOS 5.5, with 128
Mb of RAM (this implies w = 32). We tested English text from the TREC collec-
tion [10], selecting the patterns randomly from the same text, at the beginning
of non-stopwords. The text was converted to lower-case and all separators to a
single space (respecting lines). This filtering is to mimic classical Information
Retrieval scenarios. We used 10 Mb of filtered text.

Each data point was obtained by averaging over 10 trials.

4.1 Automaton Growth

We experimentally show in Figure 2 which is the growth of the partial and
complete DFAs as the error level increases and as the traversed text increases.

As it can be seen, the size of the automaton grows slowly with the text size
after a sharp start. Even after processing 10 Mb of natural language, the sizes
are less than 20% of the complete automata (except for very small £ where the
complete automata are very small anyway). Memory limitations prevented us
to compute automata with more than 500,000 states. For m = 20 we could not
generate the complete automaton past & = 6 and for m = 30 past ¥k = 5. For
those larger patterns our improvement is more dramatic, since the partial DFAs
are completely manageable up to ¥ = 10 or 11, being hundreds of times smaller.
For m = 30 we could not even compute the partial automata past & = 18.
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Fig.2. Number of states of the partial and complete DFAs. The rows are for m = 10,
20 and 30, respectively. The left column shows the growth in terms of k¥ (for n=1 to 10
Mb, from lower to upper, and the thick line for the full automaton). The right column
shows the growth in terms of n (for £ =1 to m — 1, in general from lower to upper).



4.2 Comparison Against Other Algorithms

We experimentally compare our algorithm against the fastest previous algo-
rithms we are aware of. These are (in alphabetical order)

Agrep [25] is a widely distributed approximate search software; that imple-
ments a hybrid algorithm. It is limited, although not inherently, to m < 29
and k& < 8, so it is only included in the test for small patterns. Because
of its match reporting policy and its options, it is hard to compare fairly
with the other algorithms, but we include it as a reference point.

Baeza-Yates/Navarro [4] parallelizes the NFA by diagonals using bits of the
computer word. The code is from the authors.

Baeza-Yates/Perleberg [5] is a filter based on partitioning the pattern plus
exact search of the pieces. The code is ours.

Chang-Lampe [6] is the algorithm kn.clp, which computes only the places
where the value of the dynamic programming matrix does not change along
each column. The code is from the author.

Jokinen-Tarhio-Ukkonen [11] is a filter based on moving a window over the
text and keeping a counter of text characters of the window that are present
in the pattern. The code is ours.

Ours is our partial DFA algorithm.

Sutinen-Tarhio [19] is a filtration algorithm based on finding portions (¢-
grams) of the pattern in the text. The method is limited to o < 1/2,
and the implementation to k¥ < w/2 — 3. The code is from the authors.
We use s = 2 (number of samples to match) and maximal ¢ (length of the
q-grams), as suggested in [19].

Ukkonen [23] is the standard dynamic programming algorithm, modified to
work only on active columns. The code is ours.

Wu-Manber-Myers [28] applies a Four Russians technique to the dynamic
programming matrix, storing the states of the automaton in computer
words. The code is from the authors, and is used with r = 5 as suggested
in [28] (r is related with the size of the Four Russians tables).

Figure 3 shows the results. As it can be seen, our algorithm is the most
efficient for intermediate error ratios, especially in not very short patterns. That
is, from the point where filtration algorithms cease to work (since they are faster
than linear) to the point where the number of states of the automaton grow
too much. Observe that, as m grows, that point is reached for smaller « value,
which allows to predict that the area where the method is the best will shrink
and disappear for larger patterns.
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The plots are for m = 10, 20 and 30.



5 Conclusions and Future Work

We have explored the use of a deterministic automaton for approximate string
matching. The main drawback of the method, namely the huge number of states
of the automaton, 1s partially alleviated by building only the part of the automa-
ton that is really needed in the search of that particular text. We have shown
experimentally that the method outperforms all the others for intermediate error
ratios and pattern lengths, and studied the growth of the partial automaton as
the traversed text grows, finding that the partial DFA is much smaller and more
manageable than the complete one.

Future work regarding this issue involves better handling of the number of
states. For instance, some states may have been generated and never used again
since a long time ago, and could be deallocated (and later re-generated if needed).
Another alternative is to stop using the automaton in the interesting parts of
the text (i.e. when the last active column approaches m). This would reduce
drastically the number of states at the cost of using the classical algorithm in
some portions of the text.

We are also studying how to estimate accurately the correct size of the hash
table beforehand, or to use extendible hashing techniques. Finally, we can ap-
proach multipattern approximate search by making a single DFA for all the
patterns. However, the number of states would grow even more than for a single
pattern.
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