
Bounding the Expected Length ofLongest Common Subsequences and ForestsRicardo A. Baeza-Yates12 Ricard Gavald�a1 Gonzalo Navarro21 Dept. LSI, Technical Univ. of Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain2 Depto. de Cs. de la Computaci�on, University of Chile, Casilla 2777, Santiago, Chile3 This work has been partially supported by the ESPRIT Long Term ResearchProject 20244, ALCOM IT. The second author has also been supported by Fondecytgrants 1950569 and 1940520.E-mail: frbaeza,gavaldag@goliat.upc.es, gnavarro@dcc.uchile.cl.Abstract. We present two techniques to �nd lower and upper boundsfor the expected length of longest common subsequences and forests oftwo random sequences of the same length, over a �xed size, uniformlydistributed alphabet. We emphasize the power of the methods used,which are Markov chains and Kolmogorov complexity. As a corollary,we obtain some new lower and upper bounds for the problems mentioned.1 IntroductionThe longest common subsequence (LCS) of two strings is one of the main prob-lems in combinatorial pattern matching. The LCS problem is related to DNAor protein alignments, �le comparison, speech recognition, etc. We say that x isa subsequence of u if we can obtain x by deleting zero or more characters of u.The LCS of two strings u and v of length n is de�ned as the longest subsequencex common to u and v. For example, the LCS of longest and large is lge. Anopen problem related to the LCS is its expected length for two random stringsof length n over a uniformly distributed alphabet of size k, denoted by EL(k)n .In particular, if an alignment or common subsequence of two given sequences isrelatively larger than EL(k)n , we may infer that it is more than a coincidence,and that the result should be studied further. If `cs(u; v) denotes the length ofthe LCS for two strings u and v, we have:EL(k)n = 1k2n Xjuj=jvj=n `cs(u; v)Because EL(k)n is superadditive, that is, EL(k)n +EL(k)m � EL(k)n+m, it is possibleto show [CS75] that
k = limn!1 EL(k)nn = supn EL(k)nnexists. However, the exact values of
k are still not known. For that reason,several lower and upper bounds have been devised for
k. For example, it is

known that 1 �
kpk � eFirst we present new lower bounds for k > 2 for the LCS. These new re-sults are based on a new class of automata (following the work of Deken [Dek79]and Dan�c��k & Paterson [Dan94, PD94]) that simulates an algorithm that com-putes the LCS over two random in�nite strings. These automata are called CSS(Common SubSequence) machines in [Dan94].To obtain upper bounds, we re�ne and extend the Kolmogorov complexityapproach mentioned by Li and Vit�anyi [LV93], which is simple and elegant.Kolmogorov complexity has been very useful in many areas of computer science.The reader is referred to the monograph of Li and Vit�anyi [LV93] for a verycomplete treatment of the origins, development, and applications of this concept.We also apply both techniques to a generalization of the LCS problem, calledthe Longest Common Forest (LCF) by Pevzner and Waterman [PW93], obtain-ing the �rst known lower and upper bounds for the expected size of the LCFof two random sequences. In particular, we show that for large alphabets, thefraction of the expected length of the LCF is also upper bounded by e=pk.2 Longest Common Subsequences and ForestsThe LCS of two strings u and v can be computed using dynamic programmingover a matrix L de�ned by L[0; i] = L[i; 0] = 0 for 0 � i � n andL[i; j] = max(L[i� 1; j]; L[i; j � 1]; L[i� 1; j � 1] + (u[i] =?v[j])); 1 � i; j � nwhere (u[i] =?v[j]) is de�ned as 1 if both characters are equal, or 0 otherwise.The length of the LCS is given by L[n; n]. This algorithm can be implementedusing only 2n2 comparisons. For faster algorithms which solve the LCS we referthe reader to [GBY91, PD94, Ric95].Longest Common Forests (LCF) are de�ned in [PW93] as one particular caseof general alignments between strings, called the A-LCS problem. Basically, ina LCF we allow a character to match more than one character of the othersequence, but if we look at every match as an edge between the two sequences,then no edge crossings can exist. Hence, the alignment is a set of trees or forest.In [PW93] a cn2 algorithm to compute the A-LCS problem is given, where c isrelated to the determinant of a matrix de�ning the generalized alignment rules.They mention that c = 2 for the LCF problem, but a simple algorithm is notexplicitly given. In fact, the dynamic programming procedure for LCF is givenby L[i; j] = max(L[i� 1; j]; L[i; j � 1]) + (u[i] =?v[j])which requires only 2n2 comparisons. If `cf(u; v) denotes the length of the LCFfor two strings u and v, in general we have0 � `cf(u; v) � 2(juj+ jvj)� 1

where the upper bound can be seen as the longest path where we either advancein a row or a column of the matrixL. Similarly to the LCS, LCF is superadditive.We can de�ne EF (k)n = 1k2n Xjuj=jvj=n `cf(u; v)and fk = limn!1 EF (k)nn = supn EF (k)nn � 2 :Figure 1 shows some examples of LCFs as well as the corresponding LCS length(the solutions shown in the examples are not necessarily unique).0 0 0 0 0 0 0 01 1 1 1 1 1 11 1lcs = lcf = 0(a) 0 0 0 0 0 0 01 1 1 1 11 11 01(b)lcs = 2, lcf = n�1 0 0 01 1 1 10 0 0 01 1 1 10(c) 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0(d)lcs = n�1, lcf = n�1 lcs = n, lcf= 2n�1Fig. 1. Some extreme LCS and LCF examples for a binary alphabet.3 Lower Bounds: Markov ChainsThe lower bounds are based on the work by Deken [Dek79] and Dan�c��k & Pater-son [PD94, Dan94]. They present a �nite automaton that models an algorithmwhich �nds a common subsequence (CS) on two in�nite strings (tapes). Byanalyzing the associated Markov chain, a bound on the expected length of theLCS is found. The same idea can be applied to the LCF problem. A completeexposition of this section appears in [BYS95].Dan�c��k and Paterson use an automaton that alternatively reads from eachone of the two unbounded tapes. We read at the same time from both strings,allowing the possibility of applying some symmetry rules which reduce the num-ber of states. Informally, when reading a new pair of symbols of an alphabet �of size k with symbols f0; 1; � � �; k � 1g, the automaton outputs some matchesthat increase the CS and computes a new state based on the symbols not yetused. Therefore, at this point, all information about the past has been lost. So,we obtain a lower bound, because potentially, a longer CS (the LCS) could havebeen obtained looking at the complete strings. Nevertheless, the fact that weonly have to look at the current state and the future, simpli�es the problem byapplying the following rules. Consider that each state s 2 S is identi�ed by twostrings [a; b] which are the symbols not yet used in each tape, then:

1. We force that jaj � jbj. If it is not true, we just switch the two tapes andthe behavior of the automaton is the same. This is only true because thecontents of the tape are random and the symbols uniformly distributed.2. We force that a < b lexicographically on their �rst min(jaj; jbj) symbols.We do that by exchanging symbols. If a[1] is not 0, we exchange in aand b all the occurrences of a[1] with 0 and vice versa. The same thingcan be done with b. If b[1] > 1 then we exchange in a and b all theoccurrences of b[1] with 1 and vice versa. This is valid because the symbolsare indistinguishable and uniformly distributed.These two rules diminish approximately by a factor of 2k2 the possible numberof states that a machine like this can generate, by using classes of equivalencebetween states. Rule 2 can be extended recursively to a[2], by permuting a[2]with 2 if a[2] > 2, etc. We have done that for larger k, up to k � 1 characters,reducing for every exchange the number of states by a factor of k. This symmetryis used in a similar way in [Dan94].Formally, our CSS machine is a tuple (S; �;O) where S is a set of states,� is the transition function which given a state s and a pair of symbols givesthe new state (s0 �(s; [x; y])), and O is the output function which given astate s and a pair of symbols [x; y], returns the length of the chosen CS for thattransition (this is explained later). The expected behavior of a CSS machine canbe modeled by a strongly connected Markov chain (no absorbing states), wherethe probability of transition from one state to another state is the probabilityof the input symbol pair associated to that transition (1=k2). In the limit, theprobability of being in a given state converges to the solution ofT~p = ~p ; Xi pi = 1where T is the probability transition matrix and ~p is the steady state probabilityvector [CM65]. After these probabilities are obtained, a lower bound on
k isgiven by
k � Xs2S ps X[x;y]2��� O(s; [x; y])k2CSS machines can be produced automatically as shown in [Dan94]. In ourcase we have a di�erent production algorithm. The idea is that given a CSSmachine M (S; �;O), we select a subset of m states Um from S and we expandthose states. Expanding a state s means to concatenate all possible pairs ofsymbols to s, obtaining k2 states. We normalize each of those states by applyingrules 1 and 2 de�ned above. That is, all the transitions of s go to these states. Ofthose, some of them are new. Let S0 be the set of new states. For each s0 2 S0,we compute all the possible transitions as before, but we impose the conditionthat the states generated by s will have at most the same number of symbolsof s0. If we have a larger number of symbols, we drop one or two symbols (wechoose to delete the symbols with smaller frequency). If we produce new states,

we add them to S0 marking s0 as expanded. The condition above implies that atsome point all states in S0 have been expanded, obtaining a new CSS machineM 0. All states that have been expanded plus the states of M , form M 0(seeFigure 2). s0MS S0Expanded statessUmM 0
Fig. 2. Production process.We can repeat this process several times to obtain larger and larger CSSmachines, starting with the empty state [�; �] where � denotes the empty string.There are several possibilities to generate the next state in a transition. Wetried several ways to do it and the most successful one was the following. Given astate s = [a; b], and a pair of symbols [x; y], the next state is given by s0 = [a0; b0]such that ax = ua0 and by = vb0 where u and v are the strings that maximize`cs(u; v)juj+ jvjif `cs(a; b) > 0. If there is more than one candidate we minimize over juj+ jvj.Otherwise, if `cs(a; b) = 0, we use u = a[1]. In this case, for v, we use v = �if jaj > jbj or jbj = 0; else v = b[1]. This can be seen as a heuristic that locallymaximizes
k by using the fewest possible number of characters. In practice,most of the time the cut u; v will happen on the \best" �rst match from left toright. Note that it may happen that a[1] = b[1] in opposition to [Dan94] wherethey force the starting symbols to be di�erent.Figure 3 shows the basic CSS machine for general k for the LCS case whenapplying the production algorithm once starting from the empty state and usingm = 1. The output function is shown between parenthesis.

p0 p2[�; �] [0; 1][0; �] [1; x] or [y; 0] (+1)[x; y] x 6= y
[x; 0] (+1)[x; x] x 6= 0 (+1) [x;y] x 6= y; x 6= 1; y 6= 0[x; x] x > 1 (+1)

[x; y] x 6= y; y 6= 0p1[x; x] (+1)
Fig. 3. CSS example for LCS.The transition probability matrix of this example isT = 24 1=k 1� 1=k 0(k � 2)=k2 ((k � 1)2 � (k � 2))=k2 (2k � 1)=k2(k � 1)=k2 (k � 1)2=k2 1=k 35and the steady state probabilities arep0 = k2 � 1D p1 = k2(k � 1)D ; p2 = k(2k � 1)D ;where D = k3 + 2k2 � k � 1. For this automaton we have
k � p0k + 3(k � 1)p1k2 + (2k � 1)p2k2 = 3k2 � k � 1k3 + 2k2 � k � 1 = 3k + O(k�2)For k = 2 we obtain
2 � 9=13 � 0:6923.In the production algorithm we have left open the question as to how toselect Um. Here, the number of states m to be expanded and the selectionprocedure is not �xed. In [Dan94] a next state is selected by \looking ahead"on the random input and chosing the transition where on average a longer CS islost. Although this might be the best selection procedure, looking ahead can becomputationally very expensive. They do it only for k = 2 using the average ofall possible strings of length 6. This is not practical for k > 2 as the number oflook ahead strings grows very fast. For that reason, we tried di�erent heuristic

cost functions associated with a state s. The one that gave the best results wasto expand the states with largest expected output, that is:Cost(s) = ps X[x;y]2���O(s; [x; y])So, the selection procedure chooses the m states with largest Cost to obtain Um.For small k we used m between 2 and 10 to speed up the growing rate of theCSS machine. For larger k, m = 1 was enough, as the number of states growsexponentially.
p0 p2[�; �] [0; 1][0; �][x; y] x 6= y

[x; 0] (+1)x 6= 0
[x; x] x � 1 (+2)[x; x] (+1+1=k) [x;y] x 6= y; x 6= 1; y 6= 0p1[1; x] or [y; 0] (+1)x 6= 1; y 6= 1[x;y] x 6= y; y 6= 0(+1=(k�1))[0; 0] (+2)Fig. 4. CSS example for LCF.The CSS machine for the LCF problem is given in Figure 4 for the casem = 1. We can further improve this automaton by noticing that in states 0 and2, the previous event is always a match. So, if one of the new symbols is equalto the previous match, we can increase the LCF by 1. This has been consideredin the output by adding the adequate terms which are a function of k. So, wehave the following transition matrixT = 24 1=k 1� 1=k 01=k ((k � 1)2 � (k � 2))=k2 (2k � 3)=k21=k (k � 1)2=k2 (k � 1)=k2 35and we obtainfk � (k + 1)p0k2 + (3k � 1)k2 (p1 + p2) = 3k2 � 3k + 2k3

which for k = 2 gives f2 � 1.The generation algorithm described has been implemented using the Maplesymbolic algebra system [CGG+91]. Table 1 shows the lower bounds obtained sofar by using our CSS machines up to 2000 states for the LCS and LCF problem.k Our
k Previous
k fk (New)Lower bound [PD94, Dan94] Lower bound2 0.75796 0.77391 1.410313 0.63376 0.61538 1.035544 0.55282 0.54545 0.833565 0.50952 0.50615 0.679486 0.46695 0.47169 0.56400Table 1. New lower bounds for LCS and LCF.4 Upper Bounds: Kolmogorov ComplexityThe original goal of Kolmogorov complexity was to have a quantitative measureof the complexity of a �nite object. Kolmogorov and others had the followingidea: the regularities of an object can be used to give short descriptions of it; onthe other hand, if an object is highly non-regular, or random, there should beno way of describing it that is much shorter than giving the full object itself. Toformalize this notion, we �rst encode discrete objects as strings, as is customaryin the theory of computation. Second, we want to have descriptions that canbe handled algorithmically, so we identify descriptions with \programs for asu�ciently powerful model of computation".Fix a Universal Turing Machine U whose input alphabet is f0; 1g and outputalphabet is �. The Kolmogorov complexity of a string x 2 �? is the minimumlength of a program that makes U generate x and stops.Observe that this de�nition seems to depend on the choice of the UniversalTuring Machine. However, it can be shown that changing the machine onlya�ects this measure of complexity by an additive constant.Strings whose Kolmogorov complexity is equal, or close to, their length arecalled Kolmogorov-random. These are strings that cannot be compressed algo-rithmically.As there are at most 2n�1 binary \programs" of length n�1 or less, clearlythere is some string of length n whose Kolmogorov complexity is at least n. Aslight generalization of this counting argument gives that for every c and n, thereare at most 2n�c strings in �n having Kolmogorov complexity � n� c.For c even a small constant, this amounts to say that most strings, all but afraction of 2�c, are almost random: they cannot be compressed by more than cbits.Many combinatorial properties have simple proofs via this prepackaged count-ing argument. Suppose that we want to show that property P (x) holds for some

string x. Take a Kolmogorov-random string x. Assume that P (x) is false; showthat this gives a way to describe x concisely. This is a contradiction. In fact,this argument usually gives proof that P (x) holds with high probability, as themajority of strings are Kolmogorov random up to small constants.For example, P (x) could be some static property of x, such as \the di�erencebetween zeros and ones in x is at most 2 log jxj"4; or a dynamic property such as\algorithm A takes time at most 5jxj on input x". In fact, several lower boundson the (worst-case and expected) running time of algorithms have been provedusing Kolmogorov complexity [LV93].To apply this kind of argument to the case of LCS, observe that if two n-bitstrings have a very long LCS (i.e., close to n bits), these two strings are in somesense very similar: knowing one of them gives away a lot of information aboutthe other. Intuitively, if two strings are mutually random, knowing one of themshould give essentially zero information to build the other. This must be true,in particular, if the two strings are obtained by chopping a Kolmogorov randomstring of 2n bits into two n-bit pieces. This argument is given in [LV93, Exercise6.12, p.343], though in fact they only do it for k = 2.We formalize this argument for general alphabets �: just bear in mind thatwe can identify strings of length n over k letters with binary strings of lengthn logk.We will determine
 such that `cs(x; y) �
n for Kolmogorov random stringsx and y. Then averaging over all strings we obtain EL(k)n �
kn + O(1=n).Indeed, let A be the set of words xy (x; y 2 �n) that have Kolmogorov complexityat least (2n� 3 logn) � log k. See that all but a fraction O(1=n3) of strings havethis property. ThenEL(k)n = 1=k2n24Xxy2A `cs(xy) + Xxy 62A `cs(xy)35� 1=k2n24Xxy2A
n + Xxy 62An35� 1=k2n �k2n(1� O(1=n3))
n + k2nO(1=n3)n�= (1 + O(1=n2))
n:Assume `cs(x; y) =
n. Clearly we can obtain xy if we have the followinginformation:{ The values of n and
n.{ The LCS of x and y: LCS(x; y).{ A description of the letter positions of x and y that give LCS(x; y).{ The sequence of letters of x that do not belong to LCS(x; y).4All logarithms in this paper are in base 2.

{ The sequence of letters of y that do not belong to the LCS(x; y).Formally, there is a �xed program (independent of n, x, and y) that, giventhis information, makes the Universal Turing Machine produce xy. As xy israndom, the length of writing down this information in bits, plus the size of thisprogram, must be at least (2n� 3 logn) logk. Let us estimate the bit-length ofeach part.The values of n and
n can be given in 2 logn bits each. By assumption,LCS(x; y) can be encoded in (
n) log k bits. The bits necessary to specify theletter positions is the log of the number of position sets that correspond to LCS'sof two strings. Call this number In;
 .For the last item, we use the following. A pair of strings may have severalLCS's. We take as a representative that one with a lexicographically smallestset of positions: that is, if there are two choices for matching a letter we matchit with the lowest index. Then, for every letter not in the LCS we can discardone out of k possibilities: if adjacent letters from positions i to j of x are not inthe LCS, but letter j + 1 is, we know that x[k] 6= x[j + 1], for any i � k � j.Hence, the (1�
)n letters of x not in the LCS can be encoded given as a stringof length (1 �
)n over an alphabet with k � 1 letters, and similarly for y. Inparticular, for k = 2, this information is empty.
2 182 6 10 14 180.0

1.0
0.00.10.20.30.40.50.60.70.8
0.9

k
k
Fig. 5. Lower and upper bounds on
k for each alphabet size k. In between we showexperimental results for n = 100; 000.Adding up, we obtain the equation4 logn +
kn logk + log In;
k + 2(1�
k)n log(k � 1) � (2n� 3 logn) log kDividing the equation by n, all sublinear terms vanish asymptotically, so weobtain: log In;
kn + 2(1�
k) log(k � 1) � (2 �
k) log k: (1)

A �rst upper bound on In;
k is the number of all subsets of f1 : : :ng with
knelements, squared (once for choosing in x, times the choice for y). By Stirling'sapproximation, log � n
kn� = nH(
k)(1 + o(1)), where H(x) = �x log(x) � (1 �x) log(1� x) is the binary entropy function. So we obtain the equation2H(
k) + 2(1�
k) log(k � 1) � (2�
k) logkFor every k, solving this equation numerically gives a feasible range for
k. Forexample, for k = 2 it gives 0:282 �
2 � 0:867. Figure 5 plots the values of
kup to k = 18, as well as experimental results for n = 100; 000 (average takenover ten trials). Table 2 gives some exact values. By taking the limit on k, weobtain the already known result
k � e=pk.For k = 2 this is the result obtained in [LV93]. We obtain a better bound fork = 2 by estimating more accurately the number of positions In;
k .x[i] x[i+1]y[i] y[i+1]z xy y : : :: : :xx[i+2]y[i+2]: : :: : : zFig. 6. Forbidden case for an LCS with k = 2, and counting variables used.Consider the example given in Figure 6. If letters x[i + 1] and y[j + 1] areequal, we can match them and obtain a longer common sequence. If they aredi�erent, one of them equals x[i+ 2] = y[i + 2], so we can match it with eitherx[i + 2] or y[j + 2] and obtain a lexicographically smaller set of positions. Sowe have to count sets of positions that do not leave gaps simultaneously on theupper and lower strings.As we will take the log of the number of strings divided by n for large n,we disregard smaller terms such as leading polynomials, etc., without furthernotice. In particular, we count only those strings that end with a match; it isnot hard to see that this does not a�ect the base of the exponential.To count the number of strings in the language de�ned, we use generatingfunctions. Let G(x; y; z) beG(x; y; z) =Xi;j;`Gi;j;`xiyjz`where Gi;j;` is the number of LCSs which have `cs of length ` with i+1 symbols inthe upper string and j + 1 symbols in the lower string. That is, x is a symbolicvariable associated to movements in the upper string, y to movements in thelower string, and z counts the edges between both strings (it may seem awkward

to count movements and edges separately, but this makes possible to use thesame approach for the LCF). The counting model is depicted in Figure 6. So,we are interested in Gn�1;n�1;n
.In our case we have,G(x; y; z) = � 11� y + x1� x� yxzG(x; y; z) + 1 = 11� � 11�y + x1�x�xyzThat is, all strings are obtained by all possible ways to have zero or more y's(1=(1� y)) or zero or more x's, not counting twice the case of no letters in bothstrings (1=(1� x)� 1) and then a match xyz; concatenated with a string of thesame form, that is G(x; y; z). ThenG`(x; y) = (xy)` � 11� y + x1� x�` =Xi �ì� xi+`y`(1� x)i(1� y)`�iand Gm1;m2;` =Xi �ì��m1 � ` � 1i� 1 ��m2 � i � 1` � i � 1 �which when expressed in terms of the original n becomesGn�1;n�1;` =Xi �ì��n� `i � 1�� n� i`� i� 1�We do not need the exact solution to the above sum, just its logarithmdividedby n, for large n. Call Mm;` the maximum term of the summation. Then wehave Mn;` � Gn;` � `Mn;`log(Mn;`)=n � log(Gn;`)=n � log(Mn;`)=n +O� lognn �which shows that the larger term dominates the result. Moreover, we can maxi-mize the logarithm of the term and use Stirling as before. Let i = wn, take thelogarithm of the term i of the sum, divide by n and maximize with respect tow. We obtain that the maximum is reached forw(
) = 2�
 �p5
2 � 8
 + 42that satis�es the constraints of the sum, namely 0 � w(
) � min(
; 1 �
). Byusing this maximum term instead of the whole sum, and using the asymptoticformula log ��n�n� = �nH(�=�) + O(logn), we have
H(w(
)=
)+(1�
)H(w(
)=(1�
))+(1�w(
))H((
�w(
))=(1�w(
)) � 2�
whose numerical solution is
2 � 0:86019

which is still larger than what other more complicated theoretical models provide[Dan94], although quite close. Also, with this technique it is possible to obtainasymptotic results on k, which are not possible with ad-hoc methods.Let us now consider the longest common forest problem. The LCF allows abetter letter representation, since in this case not only each not connected lettermust be di�erent than that of the next alignment. The letters corresponding toeach tree of the forest must be di�erent than that of the next tree (otherwise wecould join both trees). Hence, we need log(k � 1) bits for all letters (connectedand not connected), except the �rst one. For example, we need only one bit fork = 2. Therefore, our inequality islog In;fkn + (2� fk) log(k � 1) � 2 logk (2)The next step is to obtain a bound for In;fk , the number of con�gurationsfor the forest. In this case, a single letter can be matched to many, so we dropthe requirement for at least one gap between two edges. However, not both gapscan be zero. Hence,G(x; y; z) = � 1(1� x)(1� y) � 1� zG(x; y; z) + 1 = 11� � 1(1�x)(1�y) � 1� zComputing the inverse in z we haveG`(x; y) = X̀ (x + y � xy)`((1� x)(1� y))`= Xi;j (�1)`�i�j�ì��`� ij � xiyj(xy)`�i�j((1 � x)(1� y))`Now we invert in x and y to getGm1;m2 ;` = Xi;j (�1)`�i�j�ì��` � ij ��m1 + j � 1`� 1 ��m2 + i� 1` � 1 �= Xi (�1)`+i�ì��m2 + i � 1` � 1 �Xj (�1)j�` � ij ��m1 + j � 1` � 1 �= Xi (�1)`+i�ì��m2 + i � 1` � 1 �(�1)`�i�m1 � 1i� 1 �and by expressing it in terms of the original n we haveGn�1;n�1;` =Xi �ì��n+ i`� 1�� ni � 1�Using the same maximizing technique as before (i = wn), we havew(f) = �1 +p1 + 4f2

2 182 6 10 14 180.0
2.0
0.00.20.40.60.81.01.21.41.6
1.8

kfk
Fig. 7. Lower and upper bounds for fk, for each alphabet size k. In between we showexperimental results for n = 100; 000.This maximum value for i = w(f)n is always in the bounds of the summation(i.e. max(f � 1; 0) � w(f) � min(f; 1)). Then, we havefH(w(f)=f)+(1+w(f))H(f=(1+w(f))+H(w(f)) � 2 logk�(2�f) log(k�1) :We can now numerically solve this inequality for each alphabet size k. Figure7 plots the values of fk up to k = 18 as well as experimental results for n =100; 000 (average taken over ten trials), and Table 2 shows some exact values.These are the �rst theoretical upper bounds for the LCF problem. Taking thelimit on k, we obtain fk � epk + O(1=k)k Our
k Previous
k fk (New)Upper bound [PD94, Dan94] Upper bound2 0.86019 0.83763 2.000003 0.78647 0.76581 1.767044 0.72971 0.70824 1.565945 0.68612 0.66443 1.412896 0.65098 0.62932 1.293847 0.62172 0.60019 1.198558 0.59676 0.57541 1.120339 0.57507 0.55394 1.0547810 0.55597 0.53486 0.9989015 0.48538 0.46462 0.80753Table 2. Upper bounds for LCS and LCF.

AcknowledgementsSome ideas for this work originated while the second author was visiting theUniversity of Chile in Santiago during 1995 and attending the XV Conferenceof the Chilean CS Society (SCCC) in Arica. He is grateful to Eric Goles andMart��n Matamala for inviting him to the �rst, and to the SCCC and particularlyRicardo Baeza-Yates for inviting him to the second. This work continued thanksto the kind invitation of Josep Diaz to the �rst author to do a sabbatical at theTechnical University of Barcelona and to the third author to visit the same placeduring February of 1996.References[BYS95] R. Baeza-Yates and R. Scheihing. New lower bounds for the expected lengthof longest common subsequences and forests. In XV International Confer-ence of the Chilean Computer Science Society, pages 48{58, Arica, Chile,November 1995.[CGG+91] B. Char, G. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt.MAPLE V Language and Library Reference Manual. Springer-Verlag, 1991.[CM65] D. Cox and H. Miller. The Theory of Stochastic Processes. Chapman andHall, London, 1965.[CS75] V. Chvatal and D. Sanko�. Longest common subsequences of two randomsequences. Journal of Applied Probability, 12:306{315, 1975.[Dan94] V. Dan�c��k. Expected Length of Longest Common Subsequences. PhD thesis,CS Dept, Univ. of Warwick, Warwick, UK, 1994.[Dek79] J. Deken. Some limit results for longest common subsequences. DiscreteMathematics, 26:17{31, 1979.[GBY91] G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-tures - In Pascal and C. Addison-Wesley, Wokingham, UK, 1991. (secondedition).[LV93] Ming Li and Paul Vit�anyi. An Introduction to Kolmogorov Complexity andIts Applications. Springer-Verlag, New York, 1993.[PD94] M. Paterson and V. Dan�c��k. Longest common subsequences. In B. RovanI. Privara and P. Ruzicka, editors, 19th MFCS'94, LNCS 841, pages 127{142, Kosice, Slovakia, August 1994. Springer Verlag.[PW93] P. Pevzner and M. Waterman. Generalized sequence alignment and duality.Advances in Applied Mathematics, 14:139{171, 1993.[Ric95] Claus Rick. A new
exible algorithm for the longest common subsequenceproblem. In CPM'95, 6th Annual Symposium on Combinatorial PatternMatching, Lecture Notes in Computer Science 937, pages 340{351, Espoo,Finland, 1995. Springer-Verlag.This article was processed using the LATEX2" macro package with CUP CS class

