Bounding the Expected Length of
Longest Common Subsequences and Forests

Ricardo A. Baeza-Yates'? Ricard Gavalda! Gonzalo Navarro?

! Dept. LSI, Technical Univ. of Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain
2 Depto. de Cs. de la Computacién, University of Chile, Casilla 2777, Santiago, Chile
? This work has been partially supported by the ESPRIT Long Term Research
Project 20244, ALCOM IT. The second author has also been supported by Fondecyt
grants 1950569 and 1940520.

E-mail: {rbaeza,gavalda}@goliat.upc.es, gnavarro@dcc.uchile.cl.

Abstract. We present two techniques to find lower and upper bounds
for the expected length of longest common subsequences and forests of
two random sequences of the same length, over a fixed size, uniformly
distributed alphabet. We emphasize the power of the methods used,
which are Markov chains and Kolmogorov complexity. As a corollary,
we obtain some new lower and upper bounds for the problems mentioned.

1 Introduction

The longest common subsequence (LCS) of two strings is one of the main prob-
lems in combinatorial pattern matching. The LCS problem is related to DNA
or protein alignments, file comparison, speech recognition, etc. We say that z is
a subsequence of u if we can obtain z by deleting zero or more characters of u.
The LCS of two strings u and v of length n is defined as the longest subsequence
z common to u and v. For example, the LCS of longest and large 1s lge. An
open problem related to the LCS is its expected length for two random strings
of length n over a uniformly distributed alphabet of size &, denoted by ELglk).
In particular, if an alignment or common subsequence of two given sequences is
relatively larger than ELglk), we may infer that it is more than a coincidence,
and that the result should be studied further. If fes(u, v) denotes the length of
the LCS for two strings « and v, we have:

ELglk):% Z Les(u, v)

|u|=|v]|=n

Because ELglk) is superadditive, that 1s, ELglk) + EL%C) < ELglk_gm, it 1s possible
to show [CS75] that
ELY ELY

vr = lim = sup
n—00 n n n

exists. However, the exact values of y; are still not known. For that reason,
several lower and upper bounds have been devised for v;. For example, it is

known that

1<yVEk<e

First we present new lower bounds for & > 2 for the LCS. These new re-
sults are based on a new class of automata (following the work of Deken [Dek79]
and Danéik & Paterson [Dan94, PD94]) that simulates an algorithm that com-
putes the LCS over two random infinite strings. These automata are called CSS
(Common SubSequence) machines in [Dan94].

To obtain upper bounds, we refine and extend the Kolmogorov complexity
approach mentioned by Li and Vitdnyi [LV93], which is simple and elegant.
Kolmogorov complexity has been very useful in many areas of computer science.
The reader is referred to the monograph of Li and Vitanyi [LV93] for a very
complete treatment of the origins, development, and applications of this concept.

We also apply both techniques to a generalization of the LCS problem, called
the Longest Common Forest (LCF) by Pevzner and Waterman [PW93], obtain-
ing the first known lower and upper bounds for the expected size of the LCF
of two random sequences. In particular, we show that for large alphabets, the
fraction of the expected length of the LCF is also upper bounded by e/\/z.

2 Longest Common Subsequences and Forests

The LCS of two strings « and v can be computed using dynamic programming
over a matrix L defined by L[0,7] = L[¢,0] = 0 for 0 <i < n and

Lli, j] = max(L[i = 1, 4], L[i, j = 1], L[t = 1, j = 1] 4 (u[i] =70[j])), 1 < i,j <
where (u[i] =7v[j]) is defined as 1 if both characters are equal, or 0 otherwise.
The length of the LCS is given by L[n,n]. This algorithm can be implemented
using only 2n? comparisons. For faster algorithms which solve the LCS we refer
the reader to [GBY91, PD94, Ric95].

Longest Common Forests (LCF) are defined in [PW93] as one particular case
of general alignments between strings, called the A-LCS problem. Basically, in
a LCF we allow a character to match more than one character of the other
sequence, but if we look at every match as an edge between the two sequences,
then no edge crossings can exist. Hence, the alignment is a set of trees or forest.
In [PW93] a cn? algorithm to compute the A-LCS problem is given, where c is
related to the determinant of a matrix defining the generalized alignment rules.
They mention that ¢ = 2 for the LCF problem, but a simple algorithm 1s not
explicitly given. In fact, the dynamic programming procedure for LCF is given
by

L,) = max(Lli — 1,3], LT, j — 1)) + (uli] =7[j])

which requires only 2n? comparisons. If fef(u,v) denotes the length of the LCF
for two strings u and v, in general we have

0 <lef(u,v) <2(Jul+ |v|) =1

where the upper bound can be seen as the longest path where we either advance
in a row or a column of the matrix L. Similarly to the LCS, LCF is superadditive.

We can define)
EFT(Lk) =T Z Lef(u,v)

|u|=|v]|=n

and
EF® EF®
fe = lim = sup < 2.
n

n—o0 n n -

Figure 1 shows some examples of LCFs as well as the corresponding LCS length
(the solutions shown in the examples are not necessarily unique).

000000O00O 00010000 01010101 000000O00O

Y VY VYV A4 444444

11111111 11101111 10101010 000000O00O

les=lcf=0 les=2,lcf=n—1 les=n—1,lcf=n—1 lcs=mn,lcf=2n—1

(a) (b) () (d)

Fig.1. Some extreme LCS and LCF examples for a binary alphabet.

3 Lower Bounds: Markov Chains

The lower bounds are based on the work by Deken [Dek79] and Danéik & Pater-
son [PD94, Dan94]. They present a finite automaton that models an algorithm
which finds a common subsequence (CS) on two infinite strings (tapes). By
analyzing the associated Markov chain, a bound on the expected length of the
LCS is found. The same idea can be applied to the LCF problem. A complete
exposition of this section appears in [BYS95].

Dancik and Paterson use an automaton that alternatively reads from each
one of the two unbounded tapes. We read at the same time from both strings,
allowing the possibility of applying some symmetry rules which reduce the num-
ber of states. Informally, when reading a new pair of symbols of an alphabet X
of size k with symbols {0,1, -,k — 1}, the automaton outputs some matches
that increase the CS and computes a new state based on the symbols not yet
used. Therefore, at this point, all information about the past has been lost. So,
we obtain a lower bound, because potentially, a longer CS (the LCS) could have
been obtained looking at the complete strings. Nevertheless, the fact that we
only have to look at the current state and the future, simplifies the problem by
applying the following rules. Consider that each state s € S is identified by two
strings [a, b] which are the symbols not yet used in each tape, then:

1. We force that |a| > |b]. If it is not true, we just switch the two tapes and
the behavior of the automaton is the same. This is only true because the
contents of the tape are random and the symbols uniformly distributed.

2. We force that a < b lexicographically on their first min(|al, |b|) symbols.
We do that by exchanging symbols. If a[l] is not 0, we exchange in a
and b all the occurrences of a[l] with 0 and vice versa. The same thing
can be done with 6. If b[1] > 1 then we exchange in a and b all the
occurrences of b[1] with 1 and vice versa. This is valid because the symbols
are indistinguishable and uniformly distributed.

These two rules diminish approximately by a factor of 2k2 the possible number
of states that a machine like this can generate, by using classes of equivalence
between states. Rule 2 can be extended recursively to a[2], by permuting a[2]
with 2 if a[2] > 2, etc. We have done that for larger k, up to k — 1 characters,
reducing for every exchange the number of states by a factor of k. This symmetry
is used in a similar way in [Dan94].

Formally, our CSS machine is a tuple (S,8,0) where S is a set of states,
6 1s the transition function which given a state s and a pair of symbols gives
the new state (s’ — 68(s,[#,y])), and O is the output function which given a
state s and a pair of symbols [z, y], returns the length of the chosen CS for that
transition (this is explained later). The expected behavior of a CSS machine can
be modeled by a strongly connected Markov chain (no absorbing states), where
the probability of transition from one state to another state is the probability
of the input symbol pair associated to that transition (1/k%). In the limit, the
probability of being in a given state converges to the solution of

where T is the probability transition matrix and p'is the steady state probability
vector [CM65]. After these probabilities are obtained, a lower bound on 73 is

given by
OS’ x’y
T

s€S [z,y]exxXZ

CSS machines can be produced automatically as shown in [Dan94]. In our
case we have a different production algorithm. The idea is that given a CSS
machine M(S, 4, 0), we select a subset of m states Uy, from S and we expand
those states. Expanding a state s means to concatenate all possible pairs of
symbols to s, obtaining k? states. We normalize each of those states by applying
rules 1 and 2 defined above. That is, all the transitions of s go to these states. Of
those, some of them are new. Let S’ be the set of new states. For each s’ € 5’,
we compute all the possible transitions as before, but we impose the condition
that the states generated by s will have at most the same number of symbols
of s'. If we have a larger number of symbols, we drop one or two symbols (we
choose to delete the symbols with smaller frequency). If we produce new states,

we add them to S’ marking s’ as expanded. The condition above implies that at
some point all states in S’ have been expanded, obtaining a new CSS machine
M’. All states that have been expanded plus the states of M, form M'(see
Figure 2).

M/

M

Expanded states

Fig.2. Production process.

We can repeat this process several times to obtain larger and larger CSS
machines, starting with the empty state [A, A] where A denotes the empty string.

There are several possibilities to generate the next state in a transition. We
tried several ways to do it and the most successful one was the following. Given a
state s = [a, b], and a pair of symbols [z, y], the next state is given by s = [¢’, V']
such that ax = ua’ and by = vd’ where u and v are the strings that maximize

Les(u, v)
|ul + v

if Les(a,b) > 0. If there is more than one candidate we minimize over |u| + |v|.
Otherwise, if ¢es(a,b) = 0, we use u = a[l]. In this case, for v, we use v = A
if |a] > [b] or [b] = 0; else v = b[1]. This can be seen as a heuristic that locally
maximizes 7 by using the fewest possible number of characters. In practice,
most of the time the cut u, v will happen on the “best” first match from left to
right. Note that it may happen that a[1] = b[1] in opposition to [Dan94] where
they force the starting symbols to be different.

Figure 3 shows the basic CSS machine for general k for the LCS case when
applying the production algorithm once starting from the empty state and using
m = 1. The output function is shown between parenthesis.

[$,$]$>1(+1) [xay]x7éyax7élay7éo
[z, 2] (+1)

P1

[z, 2]z # 0 (+1) [1,2]or [y,0] (+1)
[z,9]c £y, y#0

[2,0] (+1) "

Fig.3. CSS example for LCS.

The transition probability matrix of this example 1s

1/k 1—1/k 0
T= (k—2)/k2 ((k’—l)z—(k‘—Q))/k‘z (2/@—1)//@2
(k—l)/k2 (/c—l)z/k2 1/k
and the steady state probabilities are
_k2—1 _kz(k—l) _k(?k—l)
Po = D P = D y P2 = D)
where D = k% + 2k? — k — 1. For this automaton we have
Po 3(]6‘ — 1)])1 (2]6‘ — 1)])2 3]6’2 — k‘ — 1 3 _2
> = = — k’
Wt T T e P —fo1 - F O

For k = 2 we obtain y; > 9/13 & 0.6923.

In the production algorithm we have left open the question as to how to
select U,,. Here, the number of states m to be expanded and the selection
procedure is not fixed. In [Dan94] a next state is selected by “looking ahead”
on the random input and chosing the transition where on average a longer CS is
lost. Although this might be the best selection procedure, looking ahead can be
computationally very expensive. They do it only for k¥ = 2 using the average of
all possible strings of length 6. This is not practical for £ > 2 as the number of
look ahead strings grows very fast. For that reason, we tried different heuristic

cost functions associated with a state s. The one that gave the best results was
to expand the states with largest expected output, that is:

Cost(s) = ps Z O(s, [z, y])

[¢,y]€X XX

So, the selection procedure chooses the m states with largest C'ost to obtain U,,.
For small k& we used m between 2 and 10 to speed up the growing rate of the
CSS machine. For larger k&, m = 1 was enough, as the number of states grows
exponentially.

P1

[1,z]or [y, 0] (+1)
£, y#1

[0,0] (+2)

[z,9]z#y, y#0

(2,0] (41) (+1/(k=1))

z #0

Fig.4. CSS example for LCF.

The CSS machine for the LCF problem is given in Figure 4 for the case
m = 1. We can further improve this automaton by noticing that in states 0 and
2, the previous event is always a match. So, if one of the new symbols is equal
to the previous match, we can increase the LCF by 1. This has been considered
in the output by adding the adequate terms which are a function of k. So, we
have the following transition matrix

1/k 1—1/k 0
T=| 1/k ((16—1)2—(19—2))/162 (2k—3)/k2
1/k (/c—l)z/k2 (k—l)/k2
and we obtaln
P (k+ 1)po N (3k—1) (1 +p2) = 3k? —k:;k+ 2

k? k?

which for k = 2 gives fo > 1.

The generation algorithm described has been implemented using the Maple
symbolic algebra system [CGG191]. Table 1 shows the lower bounds obtained so
far by using our CSS machines up to 2000 states for the LCS and LCF problem.

k Our g Previous g fr (New)
Lower bound | [PD94, Dan94] || Lower bound

2 0.75796 0.77391 1.41031

3 0.63376 0.61538 1.03554

4 0.55282 0.54545 0.83356

5 0.50952 0.50615 0.67948

6 0.46695 0.47169 0.56400

Table 1. New lower bounds for LCS and LCF.

4 Upper Bounds: Kolmogorov Complexity

The original goal of Kolmogorov complexity was to have a quantitative measure
of the complexity of a finite object. Kolmogorov and others had the following
idea: the regularities of an object can be used to give short descriptions of it; on
the other hand, if an object is highly non-regular, or random, there should be
no way of describing i1t that is much shorter than giving the full object itself. To
formalize this notion, we first encode discrete objects as strings, as is customary
in the theory of computation. Second, we want to have descriptions that can
be handled algorithmically, so we identify descriptions with “programs for a
sufficiently powerful model of computation”.

Fix a Universal Turing Machine U whose input alphabet is {0, 1} and output
alphabet is ¥. The Kolmogorov complexity of a string € X* is the minimum
length of a program that makes U generate # and stops.

Observe that this definition seems to depend on the choice of the Universal
Turing Machine. However, it can be shown that changing the machine only
affects this measure of complexity by an additive constant.

Strings whose Kolmogorov complexity is equal, or close to, their length are
called Kolmogorov-random. These are strings that cannot be compressed algo-
rithmically.

As there are at most 27 — 1 binary “programs” of length n — 1 or less, clearly
there is some string of length n whose Kolmogorov complexity is at least n. A
slight generalization of this counting argument gives that for every ¢ and n, there
are at most 27 7° strings in X" having Kolmogorov complexity < n — c.

For ¢ even a small constant, this amounts to say that most strings, all but a
fraction of 27¢, are almost random: they cannot be compressed by more than ¢
bits.

Many combinatorial properties have simple proofs via this prepackaged count-
ing argument. Suppose that we want to show that property P(z) holds for some

string #. Take a Kolmogorov-random string #. Assume that P(z) is false; show
that this gives a way to describe & concisely. This is a contradiction. In fact,
this argument usually gives proof that P(x) holds with high probability, as the
majority of strings are Kolmogorov random up to small constants.

For example, P(x) could be some static property of z, such as “the difference
between zeros and ones in z is at most 2log |z|”%; or a dynamic property such as
“algorithm A takes time at most 5|x| on input #”. In fact, several lower bounds
on the (worst-case and expected) running time of algorithms have been proved
using Kolmogorov complexity [LV93].

To apply this kind of argument to the case of LCS, observe that if two n-bit
strings have a very long LCS (i.e., close to n bits), these two strings are in some
sense very similar: knowing one of them gives away a lot of information about
the other. Intuitively, if two strings are mutually random, knowing one of them
should give essentially zero information to build the other. This must be true,
in particular, if the two strings are obtained by chopping a Kolmogorov random
string of 2n bits into two n-bit pieces. This argument is given in [LV93, Exercise
6.12, p.343], though in fact they only do it for k = 2.

We formalize this argument for general alphabets 3: just bear in mind that
we can identify strings of length n over k letters with binary strings of length
nlogk.

We will determine 5 such that €es(z, y) < yn for Kolmogorov random strings
z and y. Then averaging over all strings we obtain gLl < ykn 4+ O(1/n).
Indeed, let A be the set of words zy (z, y € £") that have Kolmogorov complexity
at least (2n — 3logn) -logk. See that all but a fraction O(1/n?) of strings have
this property. Then

ELF) = 1/k™ Z Les(zy) + Z Les(zy)
_xyEA TYygA
< 1/k* Z yn + Z n
_xyEA TYygA

1/E*" [&°"(1 — O(1/n®))yn + k*"O(1/n’)n]
(14 O(1/n*))yn.

Assume fLes(x,y) = yn. Clearly we can obtain zy if we have the following
information:

The values of n and n.
— The LCS of # and y: LCS(z,y).
— A description of the letter positions of # and y that give LCS(z, y).

— The sequence of letters of that do not belong to LCS(x, y).

* All logarithms in this paper are in base 2.

— The sequence of letters of y that do not belong to the LC'S(z, y).

Formally, there is a fixed program (independent of n, z, and y) that, given
this information, makes the Universal Turing Machine produce zy. As zy is
random, the length of writing down this information in bits, plus the size of this
program, must be at least (2n — 3logn)logk. Let us estimate the bit-length of
each part.

The values of n and yn can be given in 2logn bits each. By assumption,
LCS(z,y) can be encoded in (yn)logk bits. The bits necessary to specify the
letter positions is the log of the number of position sets that correspond to LCS’s
of two strings. Call this number I, ..

For the last item, we use the following. A pair of strings may have several
LCS’s. We take as a representative that one with a lexicographically smallest
set of positions: that is; if there are two choices for matching a letter we match
it with the lowest index. Then, for every letter not in the LCS we can discard
one out of k& possibilities: if adjacent letters from positions ¢ to j of x are not in
the LCS, but letter j 4+ 1 is, we know that «[k] # «[j + 1], for any i < k < j.
Hence, the (1 —v)n letters of # not in the LCS can be encoded given as a string
of length (1 — y)n over an alphabet with k — 1 letters, and similarly for y. In
particular, for £ = 2, this information is empty.

1.0
0.9
Vi 0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0 T T T 1
2 6 10 14 18

Fig.5. Lower and upper bounds on 4% for each alphabet size k. In between we show
experimental results for n = 100, 000.

Adding up, we obtain the equation
4logn + ypnlogk +log I, 4, + 2(1 — v)nlog(k — 1) > (2n — 3logn)log k

Dividing the equation by n, all sublinear terms vanish asymptotically, so we

obtain:
log I, -,
n

+2(1 - 5 log(k — 1) > (2 —) log k. (1)

A first upper bound on I, -, is the number of all subsets of {1...n} with yzn
elements, squared (once for choosing in x, times the choice for y). By Stirling’s
approximation, log <7:n) = nH(y;)(1 + o(1)), where H(z) = —zlog(z) — (1 —
z)log(1 —) is the binary entropy function. So we obtain the equation

2H (7k) + 2(1 =y) log(k — 1) > (2 — 7) log k

For every k, solving this equation numerically gives a feasible range for 7. For
example, for £ = 2 it gives 0.282 < v, < 0.867. Figure 5 plots the values of v
up to k = 18, as well as experimental results for n = 100,000 (average taken
over ten trials). Table 2 gives some exact values. By taking the limit on k, we
obtain the already known result v, < e/\/z.

For k = 2 this is the result obtained in [LV93]. We obtain a better bound for
k = 2 by estimating more accurately the number of positions I, -, .

/\ZH/\

142

Z

|
y[7] y[i+1] y[i+2]

vv

Fig.6. Forbidden case for an LCS with £ = 2, and counting variables used.

Consider the example given in Figure 6. If letters z[i + 1] and y[j + 1] are
equal, we can match them and obtain a longer common sequence. If they are
different, one of them equals [i 4+ 2] = y[i + 2], so we can match it with either
z[i + 2] or y[j + 2] and obtain a lexicographically smaller set of positions. So
we have to count sets of positions that do not leave gaps simultaneously on the
upper and lower strings.

As we will take the log of the number of strings divided by n for large n,
we disregard smaller terms such as leading polynomials, etc., without further
notice. In particular, we count only those strings that end with a match; it is
not hard to see that this does not affect the base of the exponential.

To count the number of strings in the language defined, we use generating
functions. Let G(z,y, z) be

G(z,y, = ZG,JM‘QI/]Z

5,0

where G ; ¢ is the number of LCSs which have £cs of length ¢ with 741 symbolsin
the upper string and j + 1 symbols in the lower string. That is, = is a symbolic
variable associated to movements in the upper string, y to movements in the
lower string, and z counts the edges between both strings (it may seem awkward

to count movements and edges separately, but this makes possible to use the
same approach for the LCF). The counting model is depicted in Figure 6. So,
we are interested in Gp_1 n—1,ny-

In our case we have,

1

G(z,y,z) = (ﬂ + %) yezGz,y,z)+ 1 =

1
= (g) oo

That 1s, all strings are obtained by all possible ways to have zero or more y’s
(1/(1—y)) or zero or more &’s, not counting twice the case of no letters in both
strings (1/(1 —«) — 1) and then a match zyz; concatenated with a string of the
same form, that is G(z,y, z). Then

Gitaw) = G (25 + 2) B> Olerrere

_ b4 ml—ﬁ—l mz—i—l
G’”’”‘_ZQ)(i—1)(E—i—l)

which when expressed in terms of the original n becomes

o= () (070 ()

K3

and

We do not need the exact solution to the above sum, just its logarithm divided
by n, for large n. Call M,, , the maximum term of the summation. Then we
have

Mn,[S Gn,[S EMTL,Z

log(Mn,e)/n < log(Gn.c)/n smg(Mn,z)/nw(bgn)

n

which shows that the larger term dominates the result. Moreover, we can maxi-
mize the logarithm of the term and use Stirling as before. Let ¢ = wn, take the
logarithm of the term ¢ of the sum, divide by n and maximize with respect to
w. We obtain that the maximum is reached for

2—y—+/by?—8y+4
w(y) = 5
that satisfies the constraints of the sum, namely 0 < w(y) < min(y, 1 —). By

using this maximum term instead of the whole sum, and using the asymptotic

formula log (gZ) = anH(f/a)+ O(logn), we have

yH(w(7)/7)+(1=7)H(w(7)/(1=7)+(1—w(y)H((y—w(y))/(1-w(y)) = 2=7

whose numerical solution 1s

s < 0.86019

which is still larger than what other more complicated theoretical models provide
[Dan94], although quite close. Also, with this technique it is possible to obtain
asymptotic results on k, which are not possible with ad-hoc methods.

Let us now consider the longest common forest problem. The LCF allows a
better letter representation, since in this case not only each not connected letter
must be different than that of the next alignment. The letters corresponding to
each tree of the forest must be different than that of the next tree (otherwise we
could join both trees). Hence, we need log(k — 1) bits for all letters (connected
and not connected), except the first one. For example, we need only one bit for
k = 2. Therefore, our inequality is

log I,
O8It 4 (92— fu)log(k —1) > 2logk 2)
n

The next step is to obtain a bound for I, ¢, , the number of configurations
for the forest. In this case, a single letter can be matched to many, so we drop
the requirement for at least one gap between two edges. However, not both gaps
can be zero. Hence,

1

1
G(z,y,2) = (m — 1) 2G(e,y,2)+ 1 =

1= (== - 1) -

Computing the inverse in z we have

B (x +y — xy)
Ge(z,y) = ;((1_95)(1—31))‘

> (=1 (f) (E; Z) ((ﬁzjgijﬁgv

i,j

J2

Now we invert in z and y to get

Gt = 31yt (f) (15 ; z) <m1£—|—_j1— 1) <m2£+_i1— 1)

i,j

e (L) e () ()

K3

o ()2 e ()

)

and by expressing it in terms of the original n we have
ANE T X n
oo ()

Using the same maximizing technique as before (i = wn), we have

—1+v1+4
w(f):%”

fx

0.2
0.0 T T T 1
2 6 10 14 18

Fig.7. Lower and upper bounds for fi, for each alphabet size k. In between we show
experimental results for n = 100, 000.

This maximum value for ¢ = w(f)n is always in the bounds of the summation

(i.e. max(f —1,0) < w(f) < min(f,1)). Then, we have

FH(w(£)/+A+w()HS/A+w(f)+H(w(f) = 2logh—(2—f)log(k—1) .

We can now numerically solve this inequality for each alphabet size k. Figure
7 plots the values of fr up to & = 18 as well as experimental results for n =
100, 000 (average taken over ten trials), and Table 2 shows some exact values.
These are the first theoretical upper bounds for the LCF problem. Taking the
limit on k, we obtain

fo < — + O(1/k)

Vk
k Our g Previous i fr (New)
Upper bound | [PD94, Dan94] || Upper bound
2 0.86019 0.83763 2.00000
3 0.78647 0.76581 1.76704
4 0.72971 0.70824 1.56594
5 0.68612 0.66443 1.41289
6 0.65098 0.62932 1.29384
7 0.62172 0.60019 1.19855
8 0.59676 0.57541 1.12033
9 0.57507 0.55394 1.05478
10 0.55597 0.53486 0.99890
15 0.48538 0.46462 0.80753

Table 2. Upper bounds for .LCS and LCF.

Acknowledgements

Some ideas for this work originated while the second author was visiting the
University of Chile in Santiago during 1995 and attending the XV Conference
of the Chilean CS Society (SCCC) in Arica. He is grateful to Eric Goles and
Martin Matamala for inviting him to the first, and to the SCCC and particularly
Ricardo Baeza-Yates for inviting him to the second. This work continued thanks
to the kind invitation of Josep Diaz to the first author to do a sabbatical at the
Technical University of Barcelona and to the third author to visit the same place
during February of 1996.

References

[BYS95] R. Baeza-Yates and R. Scheihing. New lower bounds for the expected length
of longest common subsequences and forests. In XV International Confer-
ence of the Chilean Computer Science Society, pages 48—58, Arica, Chile,
November 1995.

[CGGT91] B. Char, G. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt.
MAPLE V Language and Library Reference Manual. Springer-Verlag, 1991.

[CM65] D. Cox and H. Miller. The Theory of Stochastic Processes. Chapman and
Hall, London, 1965.

[CST5] V. Chvatal and D. Sankoff. Longest common subsequences of two random
sequences. Journal of Applied Probability, 12:306-315, 1975.

[Dan94] V. Dandik. Ezpected Length of Longest Common Subsequences. PhD thesis,
CS Dept, Univ. of Warwick, Warwick, UK, 1994.

[Dek79] J. Deken. Some limit results for longest common subsequences. Discrete
Mathematics, 26:17-31, 1979.

[GBYY91] G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-
tures - In Pascal and C. Addison-Wesley, Wokingham, UK, 1991. (second
edition).

[LV93] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer-Verlag, New York, 1993.

[PD94] M. Paterson and V. Danc¢ik. Longest common subsequences. In B. Rovan
1. Privara and P. Ruzicka, editors, 19th MFCS’94, LNCS 841, pages 127—
142, Kosice, Slovakia, August 1994. Springer Verlag.

[PW93] P. Pevzner and M. Waterman. Generalized sequence alignment and duality.
Advances in Applied Mathematics, 14:139-171, 1993.

[Ric95] Claus Rick. A new flexible algorithm for the longest common subsequence
problem. In CPM’95, 6th Annual Symposium on Combinatorial Pattern
Matching, Lecture Notes in Computer Science 937, pages 340-351, Espoo,
Finland, 1995. Springer-Verlag.

This article was processed using the ¥ TEX 2¢ macro package with CUP_CS class

