
A Fast Heuristic forApproximate String Matching2Ricardo Baeza-Yates1 Gonzalo Navarro11 Dept. of Computer Science, University of Chile.Blanco Encalada 2120, Santiago { Chile. frbaeza,gnavarrog@dcc.uchile.cl2 This work has been supported in part by FONDECYT grants 1950622 and 1960881.Abstract. We study a fast algorithm for on-line approximate stringmatching. It is based on a non-deterministic �nite automaton, whichis simulated using bit-parallelism. If the automaton does not �t in acomputer word, we partition the problem into subproblems. We showexperimentally that this algorithm is the fastest for typical text search.We also show which algorithms are the best in other cases, and derive thefastest known heuristic for on-line approximate string matching, whenthe pattern is not very large. The focus of this work is mainly practical.1 IntroductionApproximate string matching is one of the main problems in classical stringalgorithms, with applications to text searching, computational biology, patternrecognition, etc.The problem can be formally stated as follows: given a (long) Text of lengthn, and a (short) pattern pat of length m, both being sequences of charactersfrom an alphabet �, �nd all segments (called \occurrences" or \matches") ofText whose edit distance to pat is at most k, the number of allowed errors. Itis common to report only minimal or maximal occurrences, as well as not thematching segments but only their end point.The edit distance between two strings a and b is the minimum number ofedit operations needed to transform a into b. The allowed edit operations aredeleting, inserting and replacing a character. Therefore, the problem is non-trivial for k < m. We call � = k=m the \error ratio", and � = j�j the alphabetsize.The solutions to this problem di�er if the algorithm has to be on-line (that is,the text is not known in advance) or o�-line (the text can be preprocessed). Inthis work we focus on on-line algorithms, where the classical solution, involvingdynamic programming, is O(mn) time [11, 12].In the last years several algorithms have been presented that achieve O(kn)comparisons in the worst-case [18, 8, 9, 10] or in the average case [19, 8], bytaking advantage of the properties of the dynamic programming matrix. In thesame trend is [5], with average time complexity O(kn=p�).Other approaches attempt to �lter the text, reducing the area in which dy-namic programming needs to be used [16, 17, 15, 14, 6, 7]. These algorithms

achieve sublinear expected time in many cases (O(kn log� m=m) is a typical �g-ure) for moderate �, but the �ltration is not e�ective for larger ratios. Moreover,they are not practical if m is not very large. An exception is a simple and fast�ltering technique shown in [4], which yields an O(n) algorithm for moderate �.Yet other approaches use bit-parallelism [1, 23] in a RAM machine of wordlength O(logn) to reduce the number of operations. [22] achieves O(kmn= logn)time, which is competitive for patterns of length O(logn). [20] packs the cellsdi�erently to achieve O(mn log�= logn) time complexity. [24] uses a Four Rus-sians approach and packs the table in machine words, achieving O(kn= logn)time on average.In [3] we propose a new algorithm, which combines the ideas of taking advan-tage of the properties of the matrix, �ltering the text and using bit-parallelism.In this work, we experimentally study this algorithm, and �nd the fastest knownheuristic for on-line approximate string matching. This heuristic involves the useof [3] in the case of moderate pattern sizes, moderate error ratios, and not verysmall alphabet sizes. This is the normal case in text searching.This paper is organized as follows. In section 2 we explain our algorithm. Insection 3 we �ne-tune it. In section 4 we compare it with others and derive theoptimal heuristic. In section 5 we give our conclusions.2 Our AlgorithmConsider the NFA for searching pattwith at most k = 2 errors shown in Figure 1.Every row denotes the number of errors seen. The �rst one 0, the second one 1,and so on. Every column represents matching the pattern up to a given position.At each iteration, a new text character is considered and the automaton changesits states. Horizontal arrows represent matching a character (they can only befollowed if the corresponding match occurs), vertical arrows represent insertinga character in the pattern, solid diagonal arrows represent replacing a character,and dashed diagonal arrows represent deleting a character of the pattern (theyare empty transitions, since we delete the character from the pattern withoutadvancing in the text). Finally, the empty transition at the initial state allowsto consider any character as a potential starting point of a match, and theautomaton accepts a character (as the end of a match) whenever a rightmoststate is active. If we do not care about the number of errors, we can consider�nal states those of the last full diagonal. Because of the empty transitions, thismakes acceptance equivalent to the lower-right state being active.The main comparison-based algorithms for approximate string matching con-sist fundamentally in simulating this automaton by columns, while some bit-parallelism approaches simulate it by rows [2]. In all cases, the dependenciesintroduced by the diagonal empty transitions prevent the parallel computationof the new values. In [2, 3] we show how to avoid this dependence, by simulatingthe automaton using diagonals, such that each diagonal captures the �-closure.We arrange the states of the automaton diagonal-wise, and pack those diago-nals in a computer word. We �nd a constant time formula to update the matrix

pp
p aa

a
t
tt t

tt� � ���� �� 1 errorno errors�
2 errorsFig. 1. An NFA for approximate string matching. Unlabeled transitions match anycharacter.according to each new character read, what leads to a linear time, very fastalgorithm. Although this algorithm is O(n) regardless of m and k, it is limitedto the case (m�k)(k+2) � w, where w is the size in bits of the computer word.Figure 1 boxes the area of the automaton that is represented.A further improvement is not to run the automaton through all the text, butto scan the text looking for any of the k + 1 initial characters of the pattern,and only then starting the automaton. When the automaton returns to theinitial con�guration, we restart the scanning. This because every occurrencemust include at least one of the k+ 1 initial characters. We use a boolean tableS to store, for each character, whether it is one of the �rst k+ 1 of the pattern.If the automaton is larger, we show how to partition it into smaller sub-automata, which are similar to the simple one and �t in a computer word.We also show that it is possible to solve large problems is to partition thepattern in j subpatterns, and search each of them with bk=jc errors, since foreach occurrence of the complete pattern, at least one of the subpatterns mustoccur. The smaller patterns can be searched with the above automata. Later,we have to verify each sub-match to check whether it involves a complete match.This leads to a very fast algorithm provided the number of veri�cations is nottoo large.Moreover, we can combine both techniques. We return to this later.

3 Tuning the AlgorithmThe application of the di�erent partition techniques require careful analysis andexperimentation. In [3] we perform the theoretical analysis, while in this workwe carry out a number of experiments to determine which is the best heuristicin practice. We keep our results independent of the machine architecture.3.1 Probability of MatchingLet f(m; k) be the probability of a pattern of size m matching a given textposition with k errors. This probability is determinant to assure that the numberof veri�cations of candidate matches in pattern partitioning is not too large. In[3] we �nd that for � > 1� 2�1�� (1� �)2 (1)this probability is exponentially decreasing with m. An upper bound for theabove expression is obtained, which is� < 1� ep� (2)On the other hand, we can prove that the probability is not decreasing on mfor � > 1� 1=�.Here, we experimentally �nd the maximum value of � for which the veri�ca-tions are negligible. We tested di�erent values of m and �, and found that theresults, as theoretically expected, do not depend on m.The experiment consists of generating a large random text and running thesearch of a random pattern on that text, with k = m errors. At each character,we record the minimum k for which that position would match the pattern.Finally, we analyze the histogram, and consider that k is safe up to where thehistogram values become signi�cant. The threshold is set to n=m2, since m2 isthe cost to verify a match. However, the selection of this threshold is not veryimportant, since the histogram is extremely concentrated. For example, it has�ve or six signi�cative values for m in the hundreds.Figure 2 shows the results. The curve � = 1 � 1=p� is included to showits closeness to the experimental data. We use a least squares technique to �ndthat e must be replaced by 1.09. The squared error is smaller than 10�4.This value is also useful to compute the expected number of active columnsin the heuristic of [19], which we also need later. We prove in [3] that the numberof active columns is upper bounded byk1� e=p� +O(1)where the e has the same source as above, and therefore can be replaced by 1.09.We made experiments with di�erent alphabet sizes, and found that a very good

++ + + + + +��� � � � �
� � � � � �2 10 20 30 40 50 60 �0.20.40.60.8

1.0� � Upper bound 1� 1=�The curve 1� 1=p�Experimental data+ Exact lower bound of Eq. (1)� Conservative lower bound, 1� e=p�Fig. 2. Theoretical and practical bounds for �.approximation to the exact number is0:9 k1� 1:09=p� (3)with a squared error less than 0.03.Figure 3 (left side) shows the last active column for random patterns of length30 on random text, for di�erent values of �. Given the strong linearity, we takea �xed k = 5 and use least squares to �nd the slope of the curves. From that weobtain the 0.9 above. The right side of the �gure shows the experimental dataand the �tted curve. Our results are the same for any k less thanm(1�1:09=p�).3.2 Automaton PartitioningAs explained earlier, we can partition a large automaton that does not �t in acomputer word in a number of smaller sub-automata that do.The automaton is partitioned into a matrix of I rows and J columns, eachcell being a small sub-automaton, that stores `r rows of `c diagonals of thecomplete automaton. Because of the nature of the update formula, we need tostore (`r + 1)`c bits for each sub-automaton. Thus, the conditions to meet are(`r + 1)`c � w I`r � k + 1 J`c � m � k IJ minimalAlthough there are many possible options for I and J , we show in [3] that the�nal cost is O(IJn) = O(k(m � k)n=w), regardless of the selection. However,this does not account for the e�ect of round-o�s (caused by not fully occupiedcells), that are noticeable in practice.We use a technique similar to [19] to compute only active diagonals. Giventhe results of Eqs. (2) and (3), we have now that for � < 1 � 1:09=p�, only

5 305 10 15 20 25 300
30
0510152025
30

k 10 6010 20 30 40 50 600
20
051015
20

�Fig. 3. On the left, last active column for � = 2, 4, 8, 16, 32 and 64 (curves takenfrom left to right). On the right, last column for k = 5, experimental (full line) andtheoretical (dashed line).0:9k=(1� 1:09=p�) columns are active, while for larger � the worst case dom-inates. Since we work on diagonals instead of columns, and since we pack `cdiagonals in a single computer word, we work on average onI 0:5 + 0:9 k1�1:09=p� � k + 1`c ! (4)cells. For larger �, we work on IJ cells.We now focus on the problem of determining an optimal selection for I andJ . One could, in fact, try every I and J and pick the con�guration with less cells.However, it is shown in [3] that by selecting minimal I, the possible automataare: (a) horizontal (I = 1), (b) horizontal and with only one diagonal per cell(I = 1; `c = 1), or (c) not horizontal nor vertical, and with only one diagonalper cell (I > 1; J > 1; `c = 1). Those cases can be solved with a simpler updateformula (2 or 3 times faster than the general one). The special case k = m � 1is solved with the S table alone (each hit ends an occurrence).This much faster update formula is more important than the possible gainsdue to round-o�s, since they cannot force a cell sub-occupancy smaller than 1/2(this is because in that case we could pack two cells in one). Therefore, the gainwith a better arrangement cannot be higher than a factor of 2, less than thegain for the better update formulas. Hence, we prefer to take minimal I, i.e.I = d(k+1)=(w�1)e, `r = d(k+1)=Ie, `c = bw=(`r+1)c and J = d(m�k)=`ce.However, it has not been studied whether a purely vertical partitioning couldbe advisable. We compare this with (c), and leave aside cases (a) and (b), sincetheir update formulas are already faster than that of the vertical automaton,and they are not likely to need updating all the cells. Even (c) is faster than

vertical partitioning when not all the cells are updated, i.e. for � < 1�1:09=p�.We have experimentally veri�ed this fact.The selection for vertical partitioning (only applicable if 2(m � k) � w) isJv = 1, `vc = m � k, `vr = bw=(m � k)c � 1, Iv = d(k + 1)=`vre.We compare the number of cells of each technique multiplied by the numberof operations carried out per cell (observe that, since this comparison only holdsfor large �, all cells are normally updated). That is, we select the verticalautomaton whenever 2(m � k) � w, � � 1 � 1:09=p�, and Iv � 1:21 � IJ .Figure 4 (right plot) shows an example �tting our predictions.3.3 Pattern PartitioningAs mentioned earlier, we can also partition the pattern into j sub-patterns,so that each one can be searched with a simple automaton. Each match is acandidate for a complete match. Hence, it has to be veri�ed, at a cost of O(m2)time. This technique works if there are not too much veri�cations.We analyze in [3] when this happens, and prove that it is safe to use thisidea for � � 1� ep�m jm�k (5)and by taking j large enough for the sub-patterns automata to �t in a computerword, we obtain an O(pmk=w n) algorithm for � � �1, where�1 = 1� ep� m 1+p1+w�1=(1��1)walthough, as we found here, the e has to be replaced by 1.09 in practice.What we only brie
y mention in [3] is that it is useful to use a smaller j for� > �1, since a smaller j allows to use larger � while keeping the veri�cationsnegligible. In this case, the smaller automata are still too large to �t in acomputer word, and we have to use automaton partitioning.We call this strategy \mixed partitioning": for � > �1, we select the largestj that assures few veri�cations. We derive that j from Eq. (5)j = b(m � k) logm(p�(1� �)=1:09)c = O(m= log�m)and by counting the cost of carrying out j searches with the resulting sub-automata, the complexity of this scheme is O(kn logc(m)=w). This can be usedup to where j = 1, which implies pure automaton partitioning. This happensfor �2 = 1� 1:09p� m 1m(1��2)(observe that �2 �! 1� 1:09=p� when m grows).Therefore, we have a smooth transition from pattern partitioning to au-tomaton partitioning. The problem is how to select the best j for each case.Although the gross analysis of [3] suggests to use the largest admissible j, the

e�ect of round-o�s in the underlying partitioned automata shows up here too,forcing the use of a more detailed heuristic. To determine which j is better, weconsider Eq. (4) for the cost of each automaton (the worst case does not occur,since we have � < �2 < 1 � 1:09=p�). Thus, the cost for each j is j timesformula 4, where m is replaced by dm=je and k is replaced by bk=jc.Figure 4 (left plot) shows an example. As it can be seen, larger j tend to bebetter, but become useless sooner. Our heuristic makes always the better deci-sion except that stops using each j short before it should. This is an arti�ciallyintroduced guard to avoid catastrophic results in biased texts, since in specialcases we could have much more veri�cations than in the random model.Observe that we can take this idea as a generalization of plain pattern par-titioning, using it in the range �0 < � < �2.
45 6045 50 55 60040010203040

50
kt

25 4025 30 35 40 450
32
04812162024
2832 kt
Fig. 4. On the left, pattern partitioning for j = 2; 4; 6 (full lines, the larger j jump�rst), for maximal j (dotted) and the heuristic (dashed). On the right, vertical par-titioning (dashed) versus minimal rows partitioning (full). We use m = 61, w = 32,� = 32, n = 1 Mb, random text and patterns.Finally, we observe that if j = k+1, the sub-patterns are searched with zeroerrors, what can be accomplished by a fast multiple string searching algorithm.We use a variation of Boyer-Moore-Horspool-Sunday [13] to drive this search.Although this variant is linear and much faster than the others, it cannot beused past �0 = 1=(3 log� m), where the veri�cations become too expensive. Thisis essentially the idea of [4]. We �nd later a more exact replacement for thetheoretical value 3 in the above expression.3.4 The Combined AlgorithmOur �nal algorithm uses the simple automaton when it �ts in a word, otherwiseit uses j = k + 1 for � < �0, pure pattern partitioning for �0 < � < �1, mixedpartitioning for �1 < � < �2, and pure automaton partitioning for � > �2.

This scheme, unlike the original one [3], does not degrade as m grows, since itis O(kn logc(m)=w) up to �2, which tends to a constant.We have derived above exact practical values for �1, �2, the j of the mixedpartition, where to use each kind of automaton partitioning, and the expectedcost of the algorithm in each case. The only remaining practical value is �0,which is obtained in the next section, by comparing the di�erent algorithms.4 Experimental ComparisonWe run the fastest algorithms we are aware of, for a number of di�erent values of�, m and k. Later, we derive the fastest hybrid algorithm to solve this problem.Since we compare only the fastest algorithms, we leave aside [12, 18, 8, 9, 15],which were not competitive in our experimental study. The algorithms includedin this comparison areUkkonen [19] is the standard dynamic programming algorithm, except that itavoids to compute inactive columns. The code is ours.Chang [5] is the algorithm kn.clp, which computes only the places where thevalue of the dynamic programming matrix does not change along eachcolumn. The code is from the author.Suntinen-Tarhio [14] is, to our knowledge, the best �ltration algorithm. Themethod is limited to � < 1=2, and the implementation to k � w=2 � 3.The code is from the authors. We use s = 2 (number of samples to match)and maximal q (length of the q-grams), as suggested in [14].Baeza-Yates/Perleberg [4] is essentially the heuristic j = k + 1, that ourhybrid algorithm uses for � < �0. The code is ours.Wu-Manber [22] uses bit-parallelism to simulate the automaton by rows. Thecode is taken fromWright's tests [20]. It is limited to m � 31, and it wouldbe slower if generalized.Wright [20] uses bit-parallelism to pack the diagonals (perpendicular to ours)of the dynamic programming matrix (not the automaton). The code isfrom the author.Wu-Manber-Myers [24] applies a Four Russians technique to the dynamicprogramming matrix, storing the states of the automaton in computerwords. The code is from the authors, and is used with r = 5 as suggestedin [24] (r is related with the size of the Four Russians tables).Agrep [21] is a widely distributed approximate search software (version 2.04),that implements a hybrid algorithm. It is limited, although not inherently,to m � 29 and k � 8, so it is only included in the test for small patterns.Because of its match reporting policy and its options, it is hard to comparefairly with the other algorithms, but we include it as a reference point.

Ours are our algorithms (simple automaton, pattern partitioning and automa-ton partitioning). We show only the pure strategies (and exclude mixedpartitioning) to simplify the exposition. As we see later, mixed partitioningis always beaten by other algorithms.We tested random patterns against 1 Mb of random text on a Sun Sparc-Classic, of approximately Specmark 26, running SunOS 4.1.3, with 16 Mb ofRAM. In our machine, w = 32. Each data point was obtained by averaging theUnix's user time over ten trials. We also tested on lowercase English text, forpatterns randomly selected from the text, at word beginnings.Figure 5 shows the results for m = 9 (where our simple automaton can beused for any k) and all values for k. Similarly, Figure 6 shows the results form = 31, and Figure 7 for m = 61. Finally, Figure 8 shows the results for Englishtext.We use the experimental data to depict the fastest heuristic to solve thisproblem on-line. The behavior of the algorithms for English text is approxi-mately the same as for random text with � = 1=p, where p is the probability oftwo characters of the text being equal (� � 13 in our English texts).An exception to the above statement is Agrep, which performs signi�cantlybetter for English than for random text, and Wright, which needs to representall letters and digits, and hence was used with � = 64.If the problem is small enough for our simple automaton to be applied, that isthe best choice, except for � < 1=(5:4 log�m), where it is convenient to partitionthe pattern into exact matching (j = k + 1). Therefore, our algorithms are thebest for small patterns, except for English text, where Agrep is better to searchwith one error.If the simple automaton cannot be used, there are four clearly distinct areas(some of them can be empty for certain values of �):{ For � < �0, our partitioning into exact matching is the best choice (from�0 its veri�cations become signi�cant). Although we know from [3] that�0 is close to 1=(3 log�m), we re�ne here that value by using least squares.We �nd �0 = 1=(2:9 log�m).{ For �0 < � < �1, our pattern partitioning is the best choice (from �1 itsveri�cations become signi�cant). We know that�1 = 1� 1:09p� m 1+p1+w�1=(1��1)wHowever, in practice it is better to terminate this area for k one or twobefore this value. The reason is that this algorithm is very sensitive to theinput distribution, and starting the next area before the right point is notvery harmful, while doing it after the right point can be catastrophic.{ For �1 < � < �3, the best choice is between Chang [5] and Wright [20](we de�ne �3 in the next item). To compare them, we proceed as follows.

� � � � � � �� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �
1 81 2 3 4 5 6 7 80

7
012345
67 kt � � � � � � � ��� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �

1 81 2 3 4 5 6 7 80
7
012345
67 kt

� � � � � � � ��� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �
1 81 2 3 4 5 6 7 80

7
012345
67 kt � � � � � � � ��� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �

1 81 2 3 4 5 6 7 80
7
012345
67 kt

� � � � � � � �� �� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �
1 81 2 3 4 5 6 7 80

7
012345
67 kt � � � � � � � �� � �� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �

1 81 2 3 4 5 6 7 80
7
012345
67 kt

� UkkonenChang� Suntinen-Tarhio Baeza-Yates/Perleberg� Wu-Manber2 Wright Wu-Manber-Myers� AgrepOurs (simple autom.)Fig. 5. Times in seconds for m = 9 and k = 0::8. From top to bottom and left toright, the plots are for � = 2, 4, 8, 16, 32 and 64.

�� � � � � � �2 2 2 2 2 2 2� � � � � � �
5 305 10 15 20 25 300

20
0481216
20

k � � �� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �
5 305 10 15 20 25 300

20
0481216
20

k
� �� � � � � � �2 2 2 2 2 2 2� � � � � � �
5 305 10 15 20 25 300

20
0481216
20

k � � �� � � � � � � �2 2 2 2 2 2 2 2� � � � � �
5 305 10 15 20 25 300

20
0481216
20

k
� �

�� � � � � � �2 2 2 2 2 2 2� � � � � � �
5 305 10 15 20 25 300

20
0481216
20

k � � �� � � � � � � �2 2 2 2 2 2 2 2� � � � � �
5 305 10 15 20 25 300

20
0481216
20

k� UkkonenChang� Suntinen-Tarhio Baeza-Yates/Perleberg� Wu-Manber2 Wright Wu-Manber-MyersOurs (problem part.)Ours (automaton part.)Fig. 6. Times in seconds for m = 31 and k = 0::30. From top to bottom and left toright, the plots are for � = 2, 4, 8, 16, 32 and 64.

� �� � � � � � � �2 2 2 2 2 2 2 210 6010 20 30 40 50 600
30
0510152025
30

k � �� � � � � � � � �2 2 2 2 2 2 2 2 210 6010 20 30 40 50 600
30
0510152025
30

k
�� � � � � � � �2 2 2 2 2 2 2 210 6010 20 30 40 50 600

30
0510152025
30

k � �� � � � � � � � �2 2 2 2 2 2 2 2 210 6010 20 30 40 50 600
30
0510152025
30

k
� �� � � � � � � �2 2 2 2 2 2 2 210 6010 20 30 40 50 600

30
0510152025
30

k � �� � � � � � � � �2 2 2 2 2 2 2 2 2
10 6010 20 30 40 50 600

30
0510152025
30

k� UkkonenChang� Suntinen-Tarhio Baeza-Yates/Perleberg2 WrightWu-Manber-Myers Ours (problem part.)Ours (automaton part.)Fig. 7. Times in seconds for m = 61 and k = 0::60. From top to bottom and left toright, the plots are for � = 2, 4, 8, 16, 32 and 64.

� � � � � � � ��� � � � � � � �2 2 2 2 2 2 2 2� � � � � � � �
1 81 2 3 4 5 6 7 80

7
012345
67 kt � � �� � � � � � � �2 2 2 2 2 2 2 2� � � � � � �

5 305 10 15 20 25 300
20
0481216
20

kFig. 8. Times in seconds for English text. The plots are for m = 9 and 31.We know from [5] that Chang is O(kn=p�), while from [20] we have thatWright is O(mn log(�)=w). We use least squares to �nd the actual con-stants, in seconds for a 1 Mb text. Although the constants are for ourmachine, we use them only to compare among algorithms. We �nd verytight approximations, namely 2:0+ 0:26k=(1:04p�� 0:99) for Chang, and2mdlog2(�)e=w for Wright. We can use those numbers directly to selectthe best algorithm, or simplify the formula to obtain that we should useChang up to �cw � 7:7(p� � 1)dlog2 �ewwhich depends only on the alphabet size and the size of the computer word.{ For � > �3, our automaton partitioning is the best choice. The selectionof �3 proceeds by comparing the real costs drawn in the previous item withour real costs. The corresponding times for our di�erent types of automataare: (a) 1:00 � IJ , (b) 0:83 � IJ , (c) 1:26� IJ , vertical 1:04� Iv. Thispractical prediction method succeeded in our experiments.Figure 9 summarizes the results, showing in which case should each algorithmbe applied, and the practical performance achieved.5 Concluding RemarksWe studied the practical performance of a new algorithm for approximate stringmatching. We made a number of experiments comparing the fastest on-line algo-rithms that solve this problem, and found the situations in which each algorithmshould be applied.This provides not only an experimental analysis of the performance of ournew algorithm against others, but also the fastest known heuristic for on-line

50� m30 60�1�0pattern partitioningsimple �3part.autom.exact partitioning (j = k+1)20.80.70.40.3 50.50.70.40.3
0.20.61 2 2 0.22

1053 CHANG�cw(WRIGHT if � � 4)
Fig. 9. The optimal heuristic. The numbers inside the plot are the search performance,in Mb per second, for our machine, with � = 32. For this value, �cw is outside therelevant area (i.e. between �1 and �3). Although we draw a dashed �cticious �cw toshow its shape, the numbers inside the area correspond to Chang.approximate string matching, for m not extremely large (which is the case intext searching). This heuristic involves the use of our algorithms, as well asthose of Wright [20] and Chang [5].To complete this study, the case of very large m must be included. In thatcase, sublinear algorithms that are not practical for mediumm become relevant(essentially, �ltration algorithms [16, 17, 15, 14, 6, 7]).AcknowledgmentsWe thank Gene Myers and Udi Manber for their helpful comments on a previousversion of this work. We also thank all those who sent us working versions oftheir algorithms, what made the tests a lot easier and, in some sense, morefair: William Chang, Alden Wright (who also gave us his implementations of[22, 8, 18]), Gene Myers, Erkki Suntinen, and Tadao Takaoka.References1. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Comput-er Congress, volume I: Algorithms, Software, Architecture, pages 465{476. ElsevierScience, September 1992.2. R. Baeza-Yates. A uni�ed view to pattern-matching problems. In Proc. PAN-EL'96, Bogot�a, Colombia, 1996. To appear. ftp://sunsite.dcc.uchile.cl/-pub/users/rbaeza/unified.ps.gz.

3. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-ing. In Proc. of CPM'96, Laguna Beach, California, June 1996. To appear. ftp//-sunsite.dcc.uchile.cl/pub/users/gnavarro/cpm96.ps.gz.4. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-ing. In Proc. CPM'92, pages 185{192. Springer-Verlag, 1992. LNCS 644.5. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximatestring matching algorithms. In Proc. of CPM'92, pages 172{181. Springer-Verlag,1992. LNCS 644.6. W. Chang and E. Lawler. Sublinear approximate string matching and biologicalapplications. Algorithmica, 12(4/5):327{344, Oct/Nov 1994.7. W. Chang and T. Marr. Approximate string matching and local similarity. InProc. of CPM'94, pages 259{273. Springer-Verlag, 1994. LNCS 807.8. Z. Galil and K. Park. An improved algorithm for approximate string matching.SIAM J. of Computing, 19(6):989{999, 1990.9. G. Landau and U. Vishkin. Fast string matching with k di�erences. J. of ComputerSystems Science, 37:63{78, 1988.10. G. Landau and U. Vishkin. Fast parallel and serial approximate string matching.J. of Algorithms, 10:157{169, 1989.11. S. Needleman and C. Wunsch. A general method applicable to the search forsimilarities in the amino acid sequences of two proteins. J. of Molecular Biology,48:444{453, 1970.12. P. Sellers. The theory and computation of evolutionary distances: pattern recog-nition. J. of Algorithms, 1:359{373, 1980.13. D. Sunday. A very fast substring search algorithm. CACM, 33(8):132{142, August1990.14. E. Suntinen and J. Tarhio. On using q-gram locations in approximate string match-ing. In Proc. of ESA'95. Springer-Verlag, 1995. LNCS 979.15. T. Takaoka. Approximate pattern matching with samples. In Proc. of ISAAC'94,pages 234{242. Springer-Verlag, 1994. LNCS 834.16. J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string matching.In Proc. of SWAT'90, pages 348{359. Springer-Verlag, 1990. LNCS 447.17. E. Ukkonen. Approximate string matching with q-grams and maximal matches.Theoretical Computer Science, 1:191{211, 1992.18. Esko Ukkonen. Algorithms for approximate string matching. Information andControl, 64:100{118, 1985.19. Esko Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.

20. A. Wright. Approximate string matching using within-word parallelism. SoftwarePractice and Experience, 24(4):337{362, April 1994.21. S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. InProc. of USENIX Technical Conference, pages 153{162, 1992.22. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91,October 1992.23. S. Wu, U. Manber, and E. Myers. A subquadratic algorithm for approximateregular expression matching. J. of Algorithms, 19:346{360, 1995.24. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.

This article was processed using the LaTEX macro package with CUP CS class

