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Abstract. We study the problem of keeping in main memory an in-
dex for a large PAT array stored in secondary storage. This index is
used to minimize the number of accesses to secondary memory, perform-
ing the main part of the search in main memory. However, we have a
maximum allowed size for this index, and it is not clear which is the
optimum between keeping many short keys or few long keys. We first
derive the optimality criterion, then develop and analyze an algorithm to
find the optimum index while building the PAT array, and finally show
a probabilistic algorithm that allows to trade efficiency for precision.

1 Introduction

Large textual databases need efficient indexing techniques to access the infor-
mation they store.

Inverted files are the most common type of textual indices used in information
retrieval systems [FBY92, chapter 3]. They impose a storage overhead between
30% and 100%, depending on the retrieval capabilities and the use of stopwords.
The search time is logarithmic.

A newer type of index is the PAT array [FBY92, chapter 5] or suffix array
[MM90], which is a compact representation of a digital tree (or trie [Knu73])
built on all the positions of interest of the text. Each position is represented by
the string (or suffiz) that starts there and extends arbitrarily to the right. The
PAT array stores the leaves of that trie, such that each cell represents a suffix
(by storing its start position), and suffixes become lexicographically sorted in
the array.

PAT arrays achieve similar space and time complexity than inverted files.
However, they can efficiently answer a number of queries that are difficult or in-
efficient over inverted files. For example, searching for a long sequence of words,
some types of boolean queries, regular expression searching, longest repetitions
and most frequent searching [GBY91]. Consequently, PAT arrays are an inter-
esting choice when designing an indexing scheme for text databases that are not
updated frequently.

Since PAT arrays store pointers to the text, searching is indirect. That is,
a key must be binary searched in the PAT array, but each comparison must
access the text at the position indicated by the PAT array cell. Although binary
searching is fast, the amount of seek that must be carried out on magnetic
or optical disks may be significant and deteriorate the search time of a naive
implementation.



In [BYBZ94, Bar95], a solution to improve the performance of text retrieval
from disk 1s proposed, by using a hierarchy of indices. The hierarchy uses the
main memory to store (part of) suffixes extracted from the PAT array at fixed
intervals, so that a direct binary search can be performed in main memory, and
hopefully only a small portion of the PAT array has to be read from disk to
finish the (now indirect) search. We call “PAT index” the part of the array
that is kept in main memory. [BYBZ94] considers a two-level (memory - disk)
and a three-level (memory - magnetic disk - optical disk) hierarchy. Observe
that the cost of the whole search is dominated by the final indirect search, and
proportional to the size of the block to solve. In [BNBY™*95] it is shown how to
reduce the expected time of the final indirect search, by deviating from binary
search. The idea is to partition the array not exactly in the middle but in a cell
whose track 1s near the current one’s, if the badness of the non-binary partition
is balanced by the low cost of the access.

In this work we address the problem of how to minimize the expected size of
the PAT array block that has to be read into main memory to finish the search.
Since we have a limited amount of main memory, we have to balance between
the length of the keys that represent the selected suffixes and the number of keys
that can be hold. Longer keys minimize the probability of reading many blocks,
but allow less keys to be included and therefore make the blocks longer. See
Figure 1.
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Fig.1. An example of a text database, a PAT array built on it, and an index on the
PAT array, taking a suffix each three positions, and taking three characters from each
suffix.

The main contribution of this work is the optimality criterion for the PAT
index and the different algorithms to collect the required statistics on the text
database, allowing a tradeoff between precision and efficiency.

This work is organized as follows. In Section 2 we review previous work. In
Section 3 we introduce notation and derive the optimality problem. In Section
4 we draw an algorithm to find the optimal index. In Section 5 we analyze



the algorithm and the resulting index. In Section 6 we develop a probabilistic
algorithm that collects approximate statistics on the text at low cost. In Section
7 we show experimental results that validate our model. Finally, in Section 8 we
present our conclusions and future work directions.

2 Previous Work

The problem of selecting the optimal key length is also studied in [Bar95]. They
consider whether or not is it better to force the keys in the PAT index to be
different. They argue, and experimentally show, that it is preferable to allow
repeated entries. The arguments regard not only that the keys are forced to be
too long, but also that it is very costly to build the index. In this work, we prove
analytically that forcing different keys is not optimal.

They do not solve, in fact, the problem of selecting the best key length, but
a different one: to find a key length that does not produce more than a given
bound of repeated entries. They present an algorithm that performs ~ M /6 disk
accesses, where M is the total size, in bytes, of memory available for the PAT
index. They experiment with a 600 Mb text database, where only the beginnings
of non-stopwords are indexed. They find in practice that a key length between
20 and 30 1s advisable.

We solve the problem of selecting the best key length, by running statistics on
the text. We allow more or less precision for those statistics, our corresponding
algorithms taking more or less time or memory.

3 The Problem

Let T[1..N] be a long sequence of characters representing the content of a textual
database. Let P[l..n] be a PAT array built on the interesting positions of T (e.g.
beginnings of words). Then, P[i] represents the suffix T[P[i]...], and we have that
T[P[7]...] < T[P[i + 1]...] lexicographically.

Let M be the total amount of memory available for our PAT index. That
PAT index holds one key of length £ for each block of the PAT array. Let S[1..r]
be our PAT index, where each S[i] holds T[P[bd].. P[bi] + £ — 1], where b is the
size of the blocks. It holds n & rb, and it must hold r¢ < M. Our problem is to
determine the best option for £.

In order to search a key on this index, the £ first characters of the key are
binary searched in the PAT index. The result of this search is a portion of S, call
it S[m..m+t— 1], whose strings are equal to key[l..£], where t > 0 ({ = 0 means
no equal string in the index). Hence, we must read into memory the portion of
the PAT array corresponding to P[bm..b(m 4+t + 1) — 1], i.e. b(t + 1) elements.
Since the cost of the search is dominated by the final indirect search, our goal
1s to minimize the expected number of elements of P that must be read into
memory and processed. We call that number 7.

Let p; be the probability that two strings of length £ match. These two
strings are drawn from the text or from a query. Since the PAT array can



be considered a uniform random sampling of n strings of size ¢, the expected
number of those strings equal to a given query is np,, thus the expected number
of blocks occupied by those np, strings is npe/b = rpe. This is the expected
value of t. Hence,

Tz:b(1+rpz):n<%+pz):n<%+pz) (1)

what shows that the size of the block is proportional to the length of the PAT
array, but the factor is quite small and can be optimized by properly selecting
£. The intuition behind the 1 that adds to rp, 1s that, even if the query is not
present in the array, one block is read.

This proves analytically what [Bar95] argues empirically. The criterion of
selecting the smaller £ that makes all keys different is not optimal, since that £ is
one of those considered in the above equation, and not necessarily the optimal.

We have two choices: we can modelize our database by providing a theoretical
value for p, and solve pj, = —1/M; or we can compute p, for our present database
and find the optimum by trying each value for £. In the next section we provide
an efficient algorithm to do the second.

Providing a theoretical model may be not easy, especially when dealing with
natural language. Moreover, we can afford a reasonable overhead at indexing
time to run the statistics on the text that determine p,. However, it must
be kept in mind that we have to assure that the queries will follow the same
probabilistic distribution of the text. If this is not the case, the only choice 1s to
use a theoretical model.

4 An Algorithm to Compute the Optimal Index

We present an algorithm that computes p, for all values of £ while the PAT array
is being built. The problem of finding the optimal £ is then trivial.

Consider all the sorted suffixes of the text, truncated at £ characters. Call
s1,...s; the positions where a suffix differs from its previous. Call also sg = 0
and sy41 = n+ 1. Then, in our database, p; is the probability of two suffixes a
and b being equal, i.e.

k 2
54 — 55
pe = ZP(a € 5i..8541 — DP(b € s;..841— 1) = % (2)
3=0 i=0

We can consider the s;..s,41 as “areas” where the suffixes do not change.
The longer ¢, the smaller the areas. See Figure 2.

Our algorithm traverses the PAT array computing in parallel p, for every
relevant £. Observe that there exists an ¢ such that p; = 1/n from there on.
That one is the first non-relevant £.

We keep two arrays, indexed by lengths (values for €). val is used to compute
the sum (2), while 1ast keeps track of the last time that the suffix of each length
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Fig.2. An example of the execution of the algorithm. The lines show the “areas” for
each level, whose lengths the algorithm computes. Note that when an area is cut at a
given level, it is cut from there on.

differed from its previous (i.e. where the current area started). For each new
suffix we consider, we measure at which length it differs from the previous. From
that point on, all “areas” terminate and new areas begin, so we update val and
last.

Figure 3 shows this algorithm. It is not the final algorithm, but helps to
understand it. We use a pseudocode notation, the arrays starting at position 1.

The main problem of the algorithm is that we cannot know where to stop
when updating the values. For example, the relevance of ps in Figure 2 is noticed
only when we process the element 8. Because of this, the algorithm is O(nM)
time, which is too large.

ComputeLengths (T,P,n)

for k :=1 to M

vall[k] := 0
last[k] := 0
for i := 1 to n+1

if (i = 1) or (4 = n) dif :=1
else dif := first place where T[P[i-1]...] and T[P[i]...] differ
for k := dif to M

vallk] := vallk] + ((i - last[k])/n)**x2

last[k] := i

Fig.3. Naive algorithm.

However, the same Figure 2 gives us the tip to improve the algorithm. While
a length is not active (i.e. when the two current strings differ before that length),
we are always adding 1/n? to it in the internal for, what adds up 1/n along



the whole process. So we start by assigning 1/n to each new length to consider,
and only when it has an area longer than 1, we add as above and subtract
(sit1 — s;)/n?, that stands for all the 1/n?’s that we added by default for that
area. This allows to work only for non-trivial areas, what leads to a much more
efficient algorithm.

We keep the previous value for dif, that we call pdif. That 1s, pdif is the
point where the previous suffix differed from its previous suffix. We need to
work only between dif and pdif. If the first one is larger, we update the last
array between both positions, since the areas that start are longer than 1 and
deserve processing. If the second is larger, we update the val array between
both positions, since all areas from dif to pdif are being ended. The trick
of the 1/n initial value takes care of all size-1 areas. Figure 4 shows the final
algorithm.

ComputeLengths (T,P,n)

gize := 1
pdif := 1
for i := 2 to n+1

if (i = n+1) dif := 1
else dif := first place where T[P[i-1]...] and T[P[i]...] differ
for k := dif to pdif-1

vallk] = vallk] + ((i - last[k])**2 - (i - last[k]))/n**2
if (dif > size)

enlarge val and last to size dif

for k := size to dif-1

vallk] := 1/n

size := dif
for k := pdif to dif-1

last[k] := i-1
pdif := dif

Fig.4. Final algorithm. Note that the arrays grow as needed.

Once the algorithm computes val[0..size-1], we traverse those numbers
looking for the minimal value of £/M + val[{].

5 Analysis

There are two main components in the time cost of this algorithm. The first one
is to find the first character where two consecutive strings differ; the other is the
sum of the |pdif — dif| values, i.e. the difference of two consecutive positions
where two suffixes differ.

We first focus on the second part of the cost. In Figure 5 we repeat the
example of Figure 2, this time boxing the areas corresponding to each length.



On the right side we show the trie for those suffixes. It should be clear that each
boxed area corresponds to a non-leaf subtree of the trie, 1.e. to an internal node.
On the other hand, we work O(1) for each area, since we start it when we set
last and we end it when we update val. So the amount of work is proportional
to the number of internal nodes of the corresponding trie.
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Fig.5. The same example as before, now showing the areas as boxes and the associated
trie. The dashed box has been mapped to its subtrie.

The first part of the cost may be null if the PAT building process provides
the dif positions. If that is not the case, the cost corresponds to the external
path length, since every path from the root to the parent of each leaf is the
common part of a suffix with its previous one, and we have to compare one more
character to detect the difference. Notice that if we run the algorithm on the
trie instead of the PAT array, this cost becomes null too.

Finally, the expected space complexity is the height of the trie.

In [Szp92], these statistics are computed asymptotically on a suffix trie, for
large n, using a Markovian model (which is quite good for natural language). We
take here the simpler case of independent character generation (i.e. a Markovian
model with no memory). The only difference in the general case is the constant
factor of the results, not the order. The reader is referred to [Szp92] for more
details.

Suppose our alphabet is composed from a finite or infinite number of symbols,
call ¢; the probability of the i-th symbol, and call H = 3, ¢;log(1/¢;) the
entropy of the language. Then

— The height of the suffix trie is

2Inn
Hy= —2"""  — Ologn
limg_ o 2122 (los )

where good approximations can be obtained by using a reasonable large /.



— The external path length is

This last result is taken from [Mah91], for random tries. Statistics for
random tries are equivalent to suffix tries over a random text, except for

o(1) terms [SF96].

Therefore, the space complexity of our algorithm is O(logn), and the time
complexity is O(n) if we have already computed the dif values or we work on the
trie, O(nlogn) otherwise. The constants depend on the probability distribution
of the language.

These costs are much cheaper than those of the PAT building process, which
is O(nlogn) string comparisons, each one costing from >, #(1 — p,) (at first,
when random strings are compared), to F, /n = O(logn) (the average height of
a leaf) at last, when close strings are compared.

For example, if we have a uniformly distributed alphabet with ¢ symbols, the
space complexity is 2log,. n, and the time complexity is n/ In ¢ for precomputed
dif and nlog, n otherwise. Moreover, the optimum ¢ for this case can be directly
computed by differentiating Eq. (1), since p, = 1/¢%:

! Ine

__:pzz_

% ~ = {=log.(Mlnc)
c

In this case, the expected size of the block to work with 1s

B In(MIne)4+1Y

6 Approximate Statistics

Although the previous algorithm provides us the exact values of p;, it i1s far
from practical in a text database stored on disk. This is because, although the
algorithm is very fast in RAM, each comparison has to access the text at a
random position on the disk, which takes about 15 ms on magnetic disks, or
even 1/3 second on optical disks. If we consider a 600 Mb database on magnetic
disk and indexing only non-stopwords, we need more than ten days.

To make this algorithm practical, we observe that in fact it 1s not necessary to
compute the exact values of py. A reasonable approximation is acceptable. We
propose a probabilistic algorithm that is much cheaper than the exact algorithm,
and that allows more or less precision depending on how much main memory we
can provide.



The PAT building process proceeds by caching the text by portions into
main memory, sorting the entries, writing the partial PAT block to disk, and
later merging the partial blocks [FBY92]. When each block is sorted in main
memory, we can run our full statistics algorithm only in the block (the text is
also in main memory). Later, we can average our estimated p; over all blocks.
This is extremely efficient, since no disk access is performed.

Suppose we can build the PAT array from blocks of size s at a time. That
means that we perform N = n/s samples in the algorithm, where each sample is
obtained by running the exact algorithm on all the s elements of the PAT block.

Let X,” be 1 if the entries ¢ and j of the PAT block are equal up to £ charac-
ters. Clearly, ij has a binomial distribution with parameter p,. The process of
sorting and then comparing consecutive entries is equivalent to comparing all the
X, against all (for each 7 and j). Hence, we are defining a random variable Y7,
that comes from averaging the result of s? comparisons of each entry i against

each other j.
1 Iy
Ye= ) Z Xy
]

Obviously, (Yy) = pe. The variance is more complicated. We have ¢2(Y;) =
p(Y2) — p(Ye)?. The first term is

u(V7)

1 1 i 1 i
H 2 S_QZ(X/)Z + 2 Z X/Xf’
ij ij £kl

1 1y
= abet (1—5—2)Pz

where we used that (ij)2 = ij (since it takes the values 0 or 1), and that ij is
independent of Xé” if (,7) # (k,1). We can now compute 0?(Y;) = ps(1—ps)/s%.
Since we average N samples of Y, our final statistic has

p(Ye) = pe
= L—pe)  pe(1—pe)
2y = P -
o (¥r) Ns2 ns

while from Chebyschev’s inequality we know that

- o*(Ye) _ pe(1—pr) 1
P(|Y, — < = <
(¥e=pel > ) < €2 nse2 T 4nse?

We measure the error in terms of the amount of additional work at query
time. As shown in Eq. (1), the expected size of the block to solve in the final
indirect search is n(p, + ¢/M). If we misestimate p, in €, we could select a non-
optimal ¢/. However, the difference between both values of p; +£/M cannot be
larger than 2¢, and hence the difference between the optimal and the obtained
average block to solve is not larger than 2ne.



We show in [BNBY*95] that the cost to solve a block of length b is O(logb)
(since we deviate from binary search, the base of the logarithm is between 2 and
3/2). Hence, the number of disk accesses is less than
n 2¢

log(3/2)(pe + £/ M)

logsa(n(pe + £/ M + 2¢)) < logz s (n(pe + £/M))

where the first term of the sum is the optimum number of disk accesses and the
second one the extra accesses due to misestimation. Unfortunately, the number
of extra accesses depends on the final size of the block, so 1t cannot be estimated
beforehand. We can only use a gross bound p, + ¢/M < 1/M, which gives
2Me/log(3/2), i.e. about 5Me additional disk accesses. That means that, if we
can afford k extra disk accesses for each query, we have to set ¢ = k/5M.

Returning to the probability of misestimating by €, we conclude that the
probability of paying k£ more disk accesses because of the approximation is much
less than 6M2/nsk?. For instance, if we have 600 Mb of text and index only
the beginning of non-stopwords (i.e. n =~ 60M), and use M = 2 Mb and s =
1M (i.e. about 5 Mb of main memory, since we need a cell of the PAT block for
each character), then the probability of making k additional accesses is 0.4/k?,
which is more than reasonable (e.g. 10% of probability of performing two extra
accesses). Keep in mind that our analysis is extremely pessimistic.

We can improve the approximation by enlarging s, 1.e. sorting larger blocks
in main memory. Therefore, we can trade main memory for precision, or time for
precision (if we prefer to run the algorithm on disk or a combination of both).
It is normally reasonable to assume that one has more memory for indexing
than for querying. Even if we have the same memory, i.e. s = M/5, in the
above example we have 10% of probability of performing more than 3 additional
accesses.

7 Experimental Results

We tested the behavior of our algorithm in practice, both on random and English
text. In the first case, we generated random strings on a uniformly distributed
alphabet of 32 symbols (close to normal text), and indexed each position. In the
second case, we filtered English literary texts, converting letters to lowercase,
and all but letters and numbers to blanks; and indexing only word beginnings.
Hence, in what follows, a text of size n means that it has n index points, although
the real text is longer in the English case.

We ran our simulations on a Sun SparcClassic with 16 Mb RAM, of approx-
imately SpecMark 26, running SunOs. We measured Unix user times, averaging
each number over ten samples. Since the PAT building process is intended to be
run in real main memory (no paging), user times accurately reflects the costs.

We first measured the time taken by building the PAT array and by com-
puting the values of p, with our algorithm. Figure 6 shows the results. As it
can be seen, the additional time paid to run our algorithm is less than 10% of
the sorting process (and less than 5% on random text), which shows that we can



determine the best partition with little overhead. It is also apparent that times
are larger on natural language, since it 18 more common to have long repeated
strings inside the text. For instance, the height of the tries, which is directly
related to the space complexity of the algorithm, is between 7 and 9 for random
text, while it goes from 75 to 200 for English text. The average depth of a leaf
(i.e. the number of character comparisons per string), which is directly related
to the time complexity of the algorithm, is near 4.3 for random text, and near
11 for English text.
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Fig.6. Times, in seconds, to process a text with n index points (n is indicated in
hundreds of Kb). Full lines are the times of our algorithm, dashed lines correspond to
the PAT building process. Thick lines are for English text, thin lines for random text.

Our second experiment shows the behavior of £ when M grows. We tested
with an English text of n = 2M. See Figure 7. The ¢ grows very slowly as
expected, from 8 to 16. This does not contradict the results of [Bar95], since our
text is small compared to theirs, at the point that past ¢ = 20, our p, reflects
more the structure of our particular text than the true statistics of natural
language text. That is, although the true p; is not dependent on n, there are
too few strings equal up to 20 characters in our texts, and hence we cannot
accurately estimate p, from £ = 20 on.

Finally, our third experiment shows how close to reality are our estimations.
We plot the estimated values of T; (using Eq. (1)), together with the real sizes
of the resulting blocks when searching for words randomly selected from the
text. We averaged over 10,000 searches. As Figure 8 shows, our estimations are
very accurate in the interesting area, what shows that our theoretical predictions
accurately determine the optimum £.
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Fig.7. The optimum £ (thick line) and the corresponding 7 (thin line). M is expressed
in Mb. Recall that T} is for n = 2M, and must be scaled if applied to other n.
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Fig.8. The estimated (full line) and experimental (dashed) values of T}, for different
values of M. From top to bottom, the lines are for M = 1, 2, 4 and 8 Mb.



8 Conclusions and Further Work

We addressed the problem of computing the best index for a PAT array given a
limited amount of main memory. We found the formula to optimize and devel-
oped an efficient algorithm to compute the needed statistics on the PAT array,
if no theoretical model can be used to find a formal solution. We analyzed the
algorithm and, for uniformly distributed alphabets, the resulting index, finding
that the cost of the algorithm is negligible compared to that of building the
PAT array. We also developed and analyzed a probabilistic algorithm to com-
pute the statistics approximately, which is practical for databases stored on disk.
Finally, we conducted a number of experiments that allow to conclude that our
theoretical model is satisfactory in terms of closeness to reality.

We need more experiments, particularly on larger text databases, so that we
can find more stable values for p,, at least to £ = 40 or 50. This would allow us
to draw conclusions about the optimal values of £ in typical text, for each value
of M. We need also to test the probabilistic algorithms developed, in order to
measure the estimation error.

There are a number of interesting research directions. One of them is that
the algorithm may be refined, since given that we minimize p; + ¢/M and that
val[k]-val[k+1] can only increase along the process, whenever the difference is
larger than 1/M we can discard val[k] as a candidate. So we can keep a linked
list of surviving candidates instead of an array, and at the end the optimum is
the first element of the list. This can reduce the constant factor of the time
complexity.

It 1s also interesting to study other variations, for example: could i1t be
convenient to use non-fixed partitions (i.e. different block sizes for each key),
provided the space overhead it imposes? Is it better, in a natural language
database, not to use a fixed £ but, for example, whole words? [BZ95].

Finally, the understanding of this process can provide us tools to analyze
some compression schemes for PAT arrays, such as [BZ95, Bar95], where they
store the differential strings of size £ —dif. For instance, since the average value
for dif is E,/n, and £ < H,, an immediate (though not very tight) bound
for the size of the index with n strings is H, — E,/n. In the case of uniform
distribution with ¢ characters, this is nlog, n. Another idea (that we have shown
not optimal) is to select minimal £ such that no two strings in the PAT index
are equal. Since for a given r the appropriate £ is 1 + H,, we can numerically
solve £ = 1+ Hyy/e to obtain £.
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