
An Optimal Index for PAT ArraysGonzalo Navarro1Dept. of Computer Science, University of Chile.Blanco Encalada 2120, Santiago { Chile. gnavarro@dcc.uchile.clAbstract. We study the problem of keeping in main memory an in-dex for a large PAT array stored in secondary storage. This index isused to minimize the number of accesses to secondary memory, perform-ing the main part of the search in main memory. However, we have amaximum allowed size for this index, and it is not clear which is theoptimum between keeping many short keys or few long keys. We �rstderive the optimality criterion, then develop and analyze an algorithm to�nd the optimum index while building the PAT array, and �nally showa probabilistic algorithm that allows to trade e�ciency for precision.1 IntroductionLarge textual databases need e�cient indexing techniques to access the infor-mation they store.Inverted �les are the most commontype of textual indices used in informationretrieval systems [FBY92, chapter 3]. They impose a storage overhead between30% and 100%, depending on the retrieval capabilities and the use of stopwords.The search time is logarithmic.A newer type of index is the PAT array [FBY92, chapter 5] or su�x array[MM90], which is a compact representation of a digital tree (or trie [Knu73])built on all the positions of interest of the text. Each position is represented bythe string (or su�x) that starts there and extends arbitrarily to the right. ThePAT array stores the leaves of that trie, such that each cell represents a su�x(by storing its start position), and su�xes become lexicographically sorted inthe array.PAT arrays achieve similar space and time complexity than inverted �les.However, they can e�ciently answer a number of queries that are di�cult or in-e�cient over inverted �les. For example, searching for a long sequence of words,some types of boolean queries, regular expression searching, longest repetitionsand most frequent searching [GBY91]. Consequently, PAT arrays are an inter-esting choice when designing an indexing scheme for text databases that are notupdated frequently.Since PAT arrays store pointers to the text, searching is indirect. That is,a key must be binary searched in the PAT array, but each comparison mustaccess the text at the position indicated by the PAT array cell. Although binarysearching is fast, the amount of seek that must be carried out on magneticor optical disks may be signi�cant and deteriorate the search time of a naiveimplementation.

In [BYBZ94, Bar95], a solution to improve the performance of text retrievalfrom disk is proposed, by using a hierarchy of indices. The hierarchy uses themain memory to store (part of) su�xes extracted from the PAT array at �xedintervals, so that a direct binary search can be performed in main memory, andhopefully only a small portion of the PAT array has to be read from disk to�nish the (now indirect) search. We call \PAT index" the part of the arraythat is kept in main memory. [BYBZ94] considers a two-level (memory - disk)and a three-level (memory - magnetic disk - optical disk) hierarchy. Observethat the cost of the whole search is dominated by the �nal indirect search, andproportional to the size of the block to solve. In [BNBY+95] it is shown how toreduce the expected time of the �nal indirect search, by deviating from binarysearch. The idea is to partition the array not exactly in the middle but in a cellwhose track is near the current one's, if the badness of the non-binary partitionis balanced by the low cost of the access.In this work we address the problem of how to minimize the expected size ofthe PAT array block that has to be read into main memory to �nish the search.Since we have a limited amount of main memory, we have to balance betweenthe length of the keys that represent the selected su�xes and the number of keysthat can be hold. Longer keys minimize the probability of reading many blocks,but allow less keys to be included and therefore make the blocks longer. SeeFigure 1.28 14 38 17 11 25 6 30 1This text is an example1 6 11 14 17 databaseof a textual25 28 30 38'of ' 'Thi''dat'
TextPAT arrayPAT indexFig. 1. An example of a text database, a PAT array built on it, and an index on thePAT array, taking a su�x each three positions, and taking three characters from eachsu�x.The main contribution of this work is the optimality criterion for the PATindex and the di�erent algorithms to collect the required statistics on the textdatabase, allowing a tradeo� between precision and e�ciency.This work is organized as follows. In Section 2 we review previous work. InSection 3 we introduce notation and derive the optimality problem. In Section4 we draw an algorithm to �nd the optimal index. In Section 5 we analyze

the algorithm and the resulting index. In Section 6 we develop a probabilisticalgorithm that collects approximate statistics on the text at low cost. In Section7 we show experimental results that validate our model. Finally, in Section 8 wepresent our conclusions and future work directions.2 Previous WorkThe problem of selecting the optimal key length is also studied in [Bar95]. Theyconsider whether or not is it better to force the keys in the PAT index to bedi�erent. They argue, and experimentally show, that it is preferable to allowrepeated entries. The arguments regard not only that the keys are forced to betoo long, but also that it is very costly to build the index. In this work, we proveanalytically that forcing di�erent keys is not optimal.They do not solve, in fact, the problem of selecting the best key length, buta di�erent one: to �nd a key length that does not produce more than a givenbound of repeated entries. They present an algorithm that performs �M=6 diskaccesses, where M is the total size, in bytes, of memory available for the PATindex. They experiment with a 600 Mb text database, where only the beginningsof non-stopwords are indexed. They �nd in practice that a key length between20 and 30 is advisable.We solve the problem of selecting the best key length, by running statistics onthe text. We allow more or less precision for those statistics, our correspondingalgorithms taking more or less time or memory.3 The ProblemLet T [1::N] be a long sequence of characters representing the content of a textualdatabase. Let P [1::n] be a PAT array built on the interesting positions of T (e.g.beginnings of words). Then, P [i] represents the su�x T [P [i]:::], and we have thatT [P [i]:::]� T [P [i+ 1]:::] lexicographically.Let M be the total amount of memory available for our PAT index. ThatPAT index holds one key of length ` for each block of the PAT array. Let S[1::r]be our PAT index, where each S[i] holds T [P [bi]::P [bi] + ` � 1], where b is thesize of the blocks. It holds n � rb, and it must hold r` �M . Our problem is todetermine the best option for `.In order to search a key on this index, the ` �rst characters of the key arebinary searched in the PAT index. The result of this search is a portion of S, callit S[m::m+ t�1], whose strings are equal to key[1::`], where t � 0 (t = 0 meansno equal string in the index). Hence, we must read into memory the portion ofthe PAT array corresponding to P [bm::b(m+ t+ 1)� 1], i.e. b(t+ 1) elements.Since the cost of the search is dominated by the �nal indirect search, our goalis to minimize the expected number of elements of P that must be read intomemory and processed. We call that number T`.Let p` be the probability that two strings of length ` match. These twostrings are drawn from the text or from a query. Since the PAT array can

be considered a uniform random sampling of n strings of size `, the expectednumber of those strings equal to a given query is np`, thus the expected numberof blocks occupied by those np` strings is np`=b = rp`. This is the expectedvalue of t. Hence,T` = b (1 + rp`) = n�1r + p`� = n�M̀ + p`� (1)what shows that the size of the block is proportional to the length of the PATarray, but the factor is quite small and can be optimized by properly selecting`. The intuition behind the 1 that adds to rp` is that, even if the query is notpresent in the array, one block is read.This proves analytically what [Bar95] argues empirically. The criterion ofselecting the smaller ` that makes all keys di�erent is not optimal, since that ` isone of those considered in the above equation, and not necessarily the optimal.We have two choices: we can modelize our database by providing a theoreticalvalue for p` and solve p0̀ = �1=M ; or we can compute p` for our present databaseand �nd the optimum by trying each value for `. In the next section we providean e�cient algorithm to do the second.Providing a theoretical model may be not easy, especially when dealing withnatural language. Moreover, we can a�ord a reasonable overhead at indexingtime to run the statistics on the text that determine p`. However, it mustbe kept in mind that we have to assure that the queries will follow the sameprobabilistic distribution of the text. If this is not the case, the only choice is touse a theoretical model.4 An Algorithm to Compute the Optimal IndexWe present an algorithm that computes p` for all values of ` while the PAT arrayis being built. The problem of �nding the optimal ` is then trivial.Consider all the sorted su�xes of the text, truncated at ` characters. Calls1; :::sk the positions where a su�x di�ers from its previous. Call also s0 = 0and sk+1 = n+ 1. Then, in our database, p` is the probability of two su�xes aand b being equal, i.e.p` = kXi=0 P (a 2 si::si+1 � 1)P (b 2 si::si+1 � 1) = kXi=0 (si+1 � si)2n2 (2)We can consider the si::si+1 as \areas" where the su�xes do not change.The longer `, the smaller the areas. See Figure 2.Our algorithm traverses the PAT array computing in parallel p` for everyrelevant `. Observe that there exists an ` such that p` = 1=n from there on.That one is the �rst non-relevant `.We keep two arrays, indexed by lengths (values for `). val is used to computethe sum (2), while last keeps track of the last time that the su�x of each length

ab
12345678 p0 p1 p3p2 p4 p5

aabbbccc
bbaaaaaa

abaaaabb bacaaFig. 2. An example of the execution of the algorithm. The lines show the \areas" foreach level, whose lengths the algorithm computes. Note that when an area is cut at agiven level, it is cut from there on.di�ered from its previous (i.e. where the current area started). For each newsu�x we consider, we measure at which length it di�ers from the previous. Fromthat point on, all \areas" terminate and new areas begin, so we update val andlast.Figure 3 shows this algorithm. It is not the �nal algorithm, but helps tounderstand it. We use a pseudocode notation, the arrays starting at position 1.The main problem of the algorithm is that we cannot know where to stopwhen updating the values. For example, the relevance of p4 in Figure 2 is noticedonly when we process the element 8. Because of this, the algorithm is O(nM)time, which is too large.ComputeLengths (T,P,n)for k := 1 to Mval[k] := 0last[k] := 0for i := 1 to n+1if (i = 1) or (i = n) dif := 1else dif := first place where T[P[i-1]...] and T[P[i]...] differfor k := dif to Mval[k] := val[k] + ((i - last[k])/n)**2last[k] := iFig. 3. Naive algorithm.However, the same Figure 2 gives us the tip to improve the algorithm. Whilea length is not active (i.e. when the two current strings di�er before that length),we are always adding 1=n2 to it in the internal for, what adds up 1=n along

the whole process. So we start by assigning 1=n to each new length to consider,and only when it has an area longer than 1, we add as above and subtract(si+1 � si)=n2, that stands for all the 1=n2's that we added by default for thatarea. This allows to work only for non-trivial areas, what leads to a much moree�cient algorithm.We keep the previous value for dif, that we call pdif. That is, pdif is thepoint where the previous su�x di�ered from its previous su�x. We need towork only between dif and pdif. If the �rst one is larger, we update the lastarray between both positions, since the areas that start are longer than 1 anddeserve processing. If the second is larger, we update the val array betweenboth positions, since all areas from dif to pdif are being ended. The trickof the 1=n initial value takes care of all size-1 areas. Figure 4 shows the �nalalgorithm.ComputeLengths (T,P,n)size := 1pdif := 1for i := 2 to n+1if (i = n+1) dif := 1else dif := first place where T[P[i-1]...] and T[P[i]...] differfor k := dif to pdif-1val[k] = val[k] + ((i - last[k])**2 - (i - last[k]))/n**2if (dif > size)enlarge val and last to size diffor k := size to dif-1val[k] := 1/nsize := diffor k := pdif to dif-1last[k] := i-1pdif := difFig. 4. Final algorithm. Note that the arrays grow as needed.Once the algorithm computes val[0..size-1], we traverse those numberslooking for the minimal value of `=M + val[`].5 AnalysisThere are two main components in the time cost of this algorithm. The �rst oneis to �nd the �rst character where two consecutive strings di�er; the other is thesum of the jpdif� difj values, i.e. the di�erence of two consecutive positionswhere two su�xes di�er.We �rst focus on the second part of the cost. In Figure 5 we repeat theexample of Figure 2, this time boxing the areas corresponding to each length.

On the right side we show the trie for those su�xes. It should be clear that eachboxed area corresponds to a non-leaf subtree of the trie, i.e. to an internal node.On the other hand, we work O(1) for each area, since we start it when we setlast and we end it when we update val. So the amount of work is proportionalto the number of internal nodes of the corresponding trie.a b aa b bb a ab a a abb a a cc a ac a b a ac a b a b
12345678 b baa b c baa b a abaa ca

Fig. 5. The same example as before, now showing the areas as boxes and the associatedtrie. The dashed box has been mapped to its subtrie.The �rst part of the cost may be null if the PAT building process providesthe dif positions. If that is not the case, the cost corresponds to the externalpath length, since every path from the root to the parent of each leaf is thecommon part of a su�x with its previous one, and we have to compare one morecharacter to detect the di�erence. Notice that if we run the algorithm on thetrie instead of the PAT array, this cost becomes null too.Finally, the expected space complexity is the height of the trie.In [Szp92], these statistics are computed asymptotically on a su�x trie, forlarge n, using a Markovian model (which is quite good for natural language). Wetake here the simpler case of independent character generation (i.e. a Markovianmodel with no memory). The only di�erence in the general case is the constantfactor of the results, not the order. The reader is referred to [Szp92] for moredetails.Suppose our alphabet is composed from a �nite or in�nite number of symbols,call qi the probability of the i-th symbol, and call H = Pi qi log(1=qi) theentropy of the language. Then{ The height of the su�x trie isHn = 2 lnnlim`!1 ln 1=p`` = O(logn)where good approximations can be obtained by using a reasonable large `.

{ The external path length isEn = n lnnH = O(n logn){ The number of internal nodes isSn = nH = O(n)This last result is taken from [Mah91], for random tries. Statistics forrandom tries are equivalent to su�x tries over a random text, except foro(1) terms [SF96].Therefore, the space complexity of our algorithm is O(logn), and the timecomplexity is O(n) if we have already computed the dif values or we work on thetrie, O(n logn) otherwise. The constants depend on the probability distributionof the language.These costs are much cheaper than those of the PAT building process, whichis O(n logn) string comparisons, each one costing from P` `(1 � p`) (at �rst,when random strings are compared), to En=n = O(logn) (the average height ofa leaf) at last, when close strings are compared.For example, if we have a uniformly distributed alphabet with c symbols, thespace complexity is 2 logc n, and the time complexity is n= ln c for precomputeddif and n logc n otherwise. Moreover, the optimum ` for this case can be directlycomputed by di�erentiating Eq. (1), since p` = 1=c`:� 1M = p0̀ = � ln cc`) ` = logc(M ln c)In this case, the expected size of the block to work with isT` = n� ln(M ln c) + 1M ln c � = O(n logM=M)6 Approximate StatisticsAlthough the previous algorithm provides us the exact values of p`, it is farfrom practical in a text database stored on disk. This is because, although thealgorithm is very fast in RAM, each comparison has to access the text at arandom position on the disk, which takes about 15 ms on magnetic disks, oreven 1=3 second on optical disks. If we consider a 600 Mb database on magneticdisk and indexing only non-stopwords, we need more than ten days.To make this algorithm practical, we observe that in fact it is not necessary tocompute the exact values of p`. A reasonable approximation is acceptable. Wepropose a probabilistic algorithm that is much cheaper than the exact algorithm,and that allows more or less precision depending on how much main memory wecan provide.

The PAT building process proceeds by caching the text by portions intomain memory, sorting the entries, writing the partial PAT block to disk, andlater merging the partial blocks [FBY92]. When each block is sorted in mainmemory, we can run our full statistics algorithm only in the block (the text isalso in main memory). Later, we can average our estimated p` over all blocks.This is extremely e�cient, since no disk access is performed.Suppose we can build the PAT array from blocks of size s at a time. Thatmeans that we perform N = n=s samples in the algorithm, where each sample isobtained by running the exact algorithm on all the s elements of the PAT block.Let Xij` be 1 if the entries i and j of the PAT block are equal up to ` charac-ters. Clearly, Xij` has a binomial distribution with parameter p`. The process ofsorting and then comparing consecutive entries is equivalent to comparing all theXij` against all (for each i and j). Hence, we are de�ning a random variable Y`,that comes from averaging the result of s2 comparisons of each entry i againsteach other j. Y` = 1s2Xij Xij`Obviously, �(Y`) = p`. The variance is more complicated. We have �2(Y`) =�(Y 2̀)� �(Y`)2. The �rst term is�(Y 2̀) = �0@ 1s2 0@ 1s2Xij (Xij`)2 + 1s2 Xij 6=klXij` Xkl` 1A1A= 1s2 p` + �1� 1s2�p2̀where we used that (Xij`)2 = Xij` (since it takes the values 0 or 1), and thatXij` isindependent ofXkl` if (i; j) 6= (k; l). We can now compute �2(Y`) = p`(1�p`)=s2.Since we average N samples of Y`, our �nal statistic has�(Y`) = p`�2(Y`) = p`(1 � p`)Ns2 = p`(1� p`)nswhile from Chebyschev's inequality we know thatP (jY` � p`j > �) � �2(Y`)�2 = p`(1 � p`)ns�2 � 14ns�2We measure the error in terms of the amount of additional work at querytime. As shown in Eq. (1), the expected size of the block to solve in the �nalindirect search is n(p` + `=M). If we misestimate p` in �, we could select a non-optimal `0. However, the di�erence between both values of p` + `=M cannot belarger than 2�, and hence the di�erence between the optimal and the obtainedaverage block to solve is not larger than 2n�.

We show in [BNBY+95] that the cost to solve a block of length b is O(log b)(since we deviate from binary search, the base of the logarithm is between 2 and3/2). Hence, the number of disk accesses is less thanlog3=2(n(p` + `=M + 2�)) � log3=2(n(p` + `=M)) + 2�log(3=2)(p` + `=M)where the �rst term of the sum is the optimum number of disk accesses and thesecond one the extra accesses due to misestimation. Unfortunately, the numberof extra accesses depends on the �nal size of the block, so it cannot be estimatedbeforehand. We can only use a gross bound p` + `=M � 1=M , which gives2M�= log(3=2), i.e. about 5M� additional disk accesses. That means that, if wecan a�ord k extra disk accesses for each query, we have to set � = k=5M .Returning to the probability of misestimating by �, we conclude that theprobability of paying k more disk accesses because of the approximation is muchless than 6M2=nsk2. For instance, if we have 600 Mb of text and index onlythe beginning of non-stopwords (i.e. n � 60M), and use M = 2 Mb and s =1M (i.e. about 5 Mb of main memory, since we need a cell of the PAT block foreach character), then the probability of making k additional accesses is 0:4=k2,which is more than reasonable (e.g. 10% of probability of performing two extraaccesses). Keep in mind that our analysis is extremely pessimistic.We can improve the approximation by enlarging s, i.e. sorting larger blocksin mainmemory. Therefore, we can trade main memory for precision, or time forprecision (if we prefer to run the algorithm on disk or a combination of both).It is normally reasonable to assume that one has more memory for indexingthan for querying. Even if we have the same memory, i.e. s = M=5, in theabove example we have 10% of probability of performing more than 3 additionalaccesses.7 Experimental ResultsWe tested the behavior of our algorithm in practice, both on random and Englishtext. In the �rst case, we generated random strings on a uniformly distributedalphabet of 32 symbols (close to normal text), and indexed each position. In thesecond case, we �ltered English literary texts, converting letters to lowercase,and all but letters and numbers to blanks; and indexing only word beginnings.Hence, in what follows, a text of size nmeans that it has n index points, althoughthe real text is longer in the English case.We ran our simulations on a Sun SparcClassic with 16 Mb RAM, of approx-imately SpecMark 26, running SunOs. We measured Unix user times, averagingeach number over ten samples. Since the PAT building process is intended to berun in real main memory (no paging), user times accurately re
ects the costs.We �rst measured the time taken by building the PAT array and by com-puting the values of p` with our algorithm. Figure 6 shows the results. As itcan be seen, the additional time paid to run our algorithm is less than 10% ofthe sorting process (and less than 5% on random text), which shows that we can

determine the best partition with little overhead. It is also apparent that timesare larger on natural language, since it is more common to have long repeatedstrings inside the text. For instance, the height of the tries, which is directlyrelated to the space complexity of the algorithm, is between 7 and 9 for randomtext, while it goes from 75 to 200 for English text. The average depth of a leaf(i.e. the number of character comparisons per string), which is directly relatedto the time complexity of the algorithm, is near 4.3 for random text, and near11 for English text.
1 101 2 3 4 5 6 7 8 9 100

75
02550
75

nt
Fig. 6. Times, in seconds, to process a text with n index points (n is indicated inhundreds of Kb). Full lines are the times of our algorithm, dashed lines correspond tothe PAT building process. Thick lines are for English text, thin lines for random text.Our second experiment shows the behavior of ` when M grows. We testedwith an English text of n = 2M. See Figure 7. The ` grows very slowly asexpected, from 8 to 16. This does not contradict the results of [Bar95], since ourtext is small compared to theirs, at the point that past ` = 20, our p` re
ectsmore the structure of our particular text than the true statistics of naturallanguage text. That is, although the true p` is not dependent on n, there aretoo few strings equal up to 20 characters in our texts, and hence we cannotaccurately estimate p` from ` = 20 on.Finally, our third experiment shows how close to reality are our estimations.We plot the estimated values of T` (using Eq. (1)), together with the real sizesof the resulting blocks when searching for words randomly selected from thetext. We averaged over 10,000 searches. As Figure 8 shows, our estimations arevery accurate in the interesting area, what shows that our theoretical predictionsaccurately determine the optimum `.

1 81 2 3 4 5 6 7 80
50
010203040
50

MT̀`Fig. 7. The optimum ` (thick line) and the corresponding T` (thin line). M is expressedin Mb. Recall that T` is for n = 2M, and must be scaled if applied to other n.
8 208 10 12 14 16 18 200

50
010203040
50

`
T`

Fig. 8. The estimated (full line) and experimental (dashed) values of T`, for di�erentvalues of M . From top to bottom, the lines are for M = 1, 2, 4 and 8 Mb.

8 Conclusions and Further WorkWe addressed the problem of computing the best index for a PAT array given alimited amount of main memory. We found the formula to optimize and devel-oped an e�cient algorithm to compute the needed statistics on the PAT array,if no theoretical model can be used to �nd a formal solution. We analyzed thealgorithm and, for uniformly distributed alphabets, the resulting index, �ndingthat the cost of the algorithm is negligible compared to that of building thePAT array. We also developed and analyzed a probabilistic algorithm to com-pute the statistics approximately, which is practical for databases stored on disk.Finally, we conducted a number of experiments that allow to conclude that ourtheoretical model is satisfactory in terms of closeness to reality.We need more experiments, particularly on larger text databases, so that wecan �nd more stable values for p`, at least to ` = 40 or 50. This would allow usto draw conclusions about the optimal values of ` in typical text, for each valueof M . We need also to test the probabilistic algorithms developed, in order tomeasure the estimation error.There are a number of interesting research directions. One of them is thatthe algorithm may be re�ned, since given that we minimize p` + `=M and thatval[k]-val[k+1] can only increase along the process, whenever the di�erence islarger than 1=M we can discard val[k] as a candidate. So we can keep a linkedlist of surviving candidates instead of an array, and at the end the optimum isthe �rst element of the list. This can reduce the constant factor of the timecomplexity.It is also interesting to study other variations, for example: could it beconvenient to use non-�xed partitions (i.e. di�erent block sizes for each key),provided the space overhead it imposes? Is it better, in a natural languagedatabase, not to use a �xed ` but, for example, whole words? [BZ95].Finally, the understanding of this process can provide us tools to analyzesome compression schemes for PAT arrays, such as [BZ95, Bar95], where theystore the di�erential strings of size `�dif. For instance, since the average valuefor dif is En=n, and ` � Hn, an immediate (though not very tight) boundfor the size of the index with n strings is Hn � En=n. In the case of uniformdistribution with c characters, this is n logc n. Another idea (that we have shownnot optimal) is to select minimal ` such that no two strings in the PAT indexare equal. Since for a given r the appropriate ` is 1 + Hr, we can numericallysolve ` = 1 +HM=` to obtain `.AcknowledgmentsWe thank the many helpful comments of the anonymous referees.References[Bar95] E. Barbosa. E�cient Text Searching Methods for Secondary Memory.PhD thesis, Univ. Federal de Minas Gerais, Brazil, September 1995. Tech-

nical Report 013/95.[BNBY+95] E. Barbosa, G. Navarro, R. Baeza-Yates, C. Perleberg, and N. Ziviani.Optimized binary search and text retrieval. In P. Spirakis, editor, Pro-ceedings of ESA'95 Third Annual European Symposium on Algorithms,pages 311{326, Corfu, Greece, September 1995. Springer-Verlag. LNCS979.[BYBZ94] R. Baeza-Yates, E. Barbosa, and N. Ziviani. Hierarchies of indices for textsearching. In Proceedings of RIAO'94 Intelligent Multimedia InformationRetrieval Systems and Management, pages 11{13, Rockefeller University,New York, October 1994.[BZ95] E. Barbosa and N. Ziviani. From partial to full inverted lists for textsearching. In Proceedings of WSP'95 Second South American Workshopon String Processing, pages 1{10, Valpara��so, Chile, April 1995.[FBY92] W. Frakes and R. Baeza-Yates, editors. Information Retrieval: DataStructures and Algorithms. Prentice-Hall, 1992.[GBY91] G. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-tures. Addison-Wesley, 1991.[Knu73] D.E. Knuth. The Art of Computer Programming, volume 3: Sorting andSearching. Addison-Wesley, 1973.[Mah91] H. Mahmoud. Evolution of Random Search Trees. John Wiley & Sons,1991.[MM90] U. Manber and G. Myers. Su�x arrays: A new method for on-line stringsearches. In Proceedings of the 1st ACM-SIAM Symposium on DiscreteAlgorithms, pages 319{327, San Francisco, CA, January 1990.[SF96] R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley,1996.[Szp92] Wojciech Szpankowski. Probabilistic analysis of generalized su�x trees.In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Pro-ceedings of CPM'92 Third Annual Symposium on Combinatorial PatternMatching, pages 1{14, Tucson, Arizona, April 1992. Springer-Verlag. L-NCS 644.
This article was processed using the LaTEX macro package with CUP CS class

