
Optimized Indirect Binary Search andText Retrieval(Preliminary Version)Gonzalo Navarro (1)Eduardo Fernandez Barbosa (2)Chris Perleberg (1)Ricardo Baeza-Yates (1)Nivio Ziviani (2)(1) Depto. de Ciencias de la Computaci�on,Universidad de ChileSantiago, Chile(2) Depto. de Ciencia da ComputacaoUniv. Fed. de Minas Gerais,Belo Horizonte, BrazilAbstractWe present an algorithm that minimizes the expected cost of indirect bina-ry search for data with non-constant access costs (e.g. disk data). The term\indirect" indicates that sorted access to the data is obtained through an arrayof pointers to the raw data. One immediate application of this algorithm is toimprove the retrieval performance of disk databases that are indexed using thesu�x array model (also called pat array). We consider the cost model of mag-netic and optical disks and the anticipated knowledge of the expected size of thesubproblem produced by reading each disk track. This information is used to de-vise a modi�ed binary searching algorithm to reduce overall retrieval costs. Bothan optimal and a practical algorithm are presented, together with analytical andsome experimental results, showing that standard binary search can be improvedby 50% or more.KEY{WORDS: Binary search, pat arrays, su�x arrays, read-only optical disks,cd-rom, magnetic disks, text retrieval.1 IntroductionIn many applications, including text retrieval, sorted access to data is provided throughan array of pointers to the data. This \indirect" array of pointers allows fast retrieval

using a binary search. Binary search minimizes the number of accesses needed to searchsorted data, and if all accesses to the data have constant cost, minimizes the searchtime. However, many applications do not have constant data access costs, especiallythose applications that have data distributed across a disk, where data near to the diskhead costs less to access than data farther away. In these applications it is necessaryto minimize the total cost of the search, which is equivalent to the number of dataaccesses multiplied by the average access cost.A new and simple type of index for text is the pat array [2], or su�x array [4]. Apat array achieves a compact representation of a digital tree called pat tree, by storingonly the external nodes of the tree. A pat tree is a Patricia tree [5] built on all indexingpoints of a text database.The su�x or pat array de�nes each indexing point of the text as the string thatbegins at that text position and extends arbitrarily to the right. The string is calleda semi-in�nite string or a sistring. A pat array is an array of pointers to the text,providing sorted access to all sistrings in the text. With a pat array, all occurrences ofa string pre�x can be found in a text with n index points in O(log n) time, using binarysearch. This binary search is indirect since it is necessary to access both the index andthe text to compare a key against a sistring.Building a pat array is similar to sorting variable length records, at a cost ofO(n log n). Searching in a pat array takes at most 2m log2 n character comparisonsand at most 4 log2 n disk accesses, where m is the length of a given query. The extraspace used by a pat array is only one pointer per indexing point.Due to the high retrieval costs inherent to disk technology, a naive implementationof pat array indices for a large textual database in this mediummay result in very poorperformance. A solution to improve the performance of text retrieval from disk wasproposed in [6], using an indices hierarchy model. This model consists of distributingthe index structure in the memory hierarchy, using up to three storage devices withdi�erent cost-performance ratios: the cd-rom optical disk (optionally), the magneticdisk and the main memory. The basic idea is to store most of the index structure infaster devices, so that fewer accesses are needed in the slower devices.Still further improvements in the search time are needed. For both magnetic andoptical disks, we are interested in reducing the time complexity of the search in thelast level, because optical disks have poor random access performance, more than amagnitude lower than magnetic disks, and magnetic disks are more than a magnitudeslower than main memory. We therefore use the algorithm presented in this paper tooptimize the total cost of searches, not just the total number of accesses to disks. Thealgorithm takes into account both the expected partition produced by reading eachtrack and the cost of accessing that track.In Section 2 we show why binary search does not minimize costs when disk accesstimes are considered, and we model this situation in order to characterize both thecost and the reduction of the problem size obtained by accessing a given track. InSection 3 an optimal (on average) algorithm is presented, which follows from the modelin a straightforward way. Section 4 presents a practical algorithm, and in Section 5 itsperformance is analyzed and compared against that of the optimal algorithm.

2 Searching in a PAT Array on DisksWhen the hierarchy model is used [6], the last phase of the search is performed by anindirect binary search in which a subset of the pat array is stored in main memory,as a pat block with b elements. Each entry of the pat array is a pointer to the text�le stored on disk, so in order to make each comparison, the position of the text �lepointed to by the pat must be read into main memory. Due to the nature of thetext, the pointer addresses in the pat array block point to random locations in thetext. Thus, the sequence of disk positions to be visited during a binary search is alsorandom, producing random displacements of the disk access mechanism.The time cost of the binary search can be reduced if we chose pivots that need littledisk head movement and that bisect the remaining pointers as closely as possible. Eachhead movement produced by accessing a pivot changes the costs of accessing remainingpotential pivots, so the problem changes with each iteration of the binary search.This problem is related to binary search when the nodes have di�erent access prob-abilities. In that case, an optimal binary search tree is constructed by moving to theroot those nodes that have higher probability. However, this solution cannot be appliedto our case, mainly because our costs are dynamically varying, since they depend onthe current head position of the reading device.In order to present an optimal algorithm for this problem, we begin by de�ning thecost function for accessing a track and the reduction of the problem it produces.2.1 Cost functionThe cost function is the time needed to access a given track, that is, to read all usefulsectors in it.A cost function for disks has three components: seek time, latency, and transfertime. Seek time is the time needed to move the disk head to the desired disk trackand therefore depends on the current head position. Latency (or rotation time) is theexpected time spent waiting for the desired sector to pass under the reading head. Theaverage latency is constant for a magnetic disk and variable for cd-roms, which rotatefaster reading inner tracks than when reading outer tracks. In our analysis, we use anaverage cd-rom latency. Transfer time is the time needed to transfer the desired datafrom the disk head to main memory.Although these costs vary from one disk to another, and especially between magneticand optical disks, we can state the following cost function for reading ns sectors fromtrack t, with the reading head currently on track c:Cost(c; t; ns) = Seek(jc� tj) + Latency + ns � TransferWe ignore in this de�nition some details, for example if one has to read two sectorsfrom a multiplate disk which are in the same cylinder and rotational position but indi�erent surfaces, that cannot be done without waiting two latencies.Note that although it is possible to de�ne this cost as a function of sector ratherthan track, we have chosen the above de�nition for simplicity. Thus, by \reading atrack" it is meant to read all useful sectors in it.

2.2 Reduction functionGiven a track t, it is possible to determine which of its sectors are useful, namely thosewhich contain some text position present in our current pat block. The number ofuseful sectors is called size(t). We ignore details regarding the position to read insidethe sector, which could be near the right end, making it necessary to read also the nextsector to make a string comparison with the query.We also know which elements in the pat block could be compared if we had all usefulsectors of t in memory. Those elements cut the pat block in segments (see Figure 1).Once we have those sectors available for string comparison, only one of those segmentswould qualify for the next iteration. Since we are searching for an interval in the patarray in which a string pre�x occurs, we just search for one edge of the interval, whichdivides the pat block into a portion that belongs to the interval and a portion whichdoes not.If we assume that the searched point can occur anywhere in the pat block with equalprobability, then the probability that a given segment is selected for the next iterationis proportional to its size. More formally, suppose the positions of a pat block of sizeb are numbered 1..b, and that t \owns" positions p1; p2; :::pk of the pat block.p0 p8 = b� � � � � � �p1 p2 p3 p4 p5 p6 p7Figure 1: Partition of the pat block generated by reading all keys on a track. Afterreading the track, only one of the segments will become the next subproblem.Then, the expected size after reading that track isnewsize(t) = k+1Xi=1 (Length of segment i)� (Probability of i being selected)that is newsize(t) = k+1Xi=1 (pi � pi�1 � 1)2b (1)where p0 = 0 and pk+1 = b.It can be shown by counting over all possible values for pi (all positions have thesame probability) that if one only knows that a track owns k positions, without knowingwhich positions, the expected size of the next iteration isnewsize(k) = (b� k)(2b � k)b(k + 2) � 2k + 2 b (2)the approximation holds when k << b. An important improvement that an optimalalgorithm can make is to search for tracks owning two or more pat block positions, sinceit would drastically reduce the new size at a negligible additional cost. The optimaland practical algorithms that we present take full advantage of this idea.

3 An Optimal AlgorithmHere we present an optimal algorithm, using the de�nitions above, and show its im-practicability. Then, using some simplifying assumptions, a feasible optimal algorithmis presented, still too complex for most uses, but useful for comparitive purposes.Let's call C(h; 1::b) the cost of the optimal algorithm when the current track is hand 1::b is the portion of the pat block where we are searching. Then, the track t tobe read next is that which minimizesCost(h; t; size(t))+ C(t; from(t); to(t))where from(t)::to(t) is the selected segment after the comparisons made posible byreading track t.Then, the optimal algorithm satis�es the recurrence equationC(h; 1::b) = mint(Cost(h; t; size(t))+ C(t; from(t)::to(t)))Unfortunately, it is not possible to know in advance which segment would be selectedafter reading t (i.e. from(t)::to(t)), so it is not possible to recursively compute the Cfunction of the right side of the equation.However, we can develop an algorithm that optimizes the expected cost by replac-ing C with the expected C. It is then possible to take each candidate segment andrecursively compute the cost of the algorithm provided this segment is selected andthe search starts from t, and then sum up the costs for all segments weighted by theprobability for each segment to be selected. With a naive implementation, this strategyrequires O(3b) time; it can be reduced to O(b4) time and O(b3) space using dynamicprogramming. These CPU costs make it impractible for use in situations where b islarge, since CPU calculations could demand more time than the savings produced bythe smart search strategy.We present here the naive algorithm, which is invoked as MinCost(head,1,b),where head is the actual head position and b is the size of the pat block. The functionreturns the optimal cost, while the track which must be read is the s which achievesthis cost.bPAT[1..b] = pat block where to searchAveCost (t,from,to)/* returns the average optimal cost to solve bPAT[from..to]if the search starts by reading track t */{ P = set of segments that t produces on bPAT (recall section 2.2)return SUM (MinCost (t,p.from,p.to) * p.length / (to-from+1),summing over all p in P)}

MinCost (head,from,to)/* returns the optimal cost to solve bPAT[from..to] ifthe disk head is currently on position 'head' */{ S = set of useful tracks(those which own some position of bPAT[from..to])return MIN (Cost (head,s,size(s)) + AveCost (s,from,to),minimizing over all s in S)}The dynamic programming algorithm stores previously computed values of AveCost,in a matrix M[t,from,to], which can be computed for increasing values of (to-from),to deliver the �nal answer mint M[t,1,b]. That matrix needs to be computed onlyfor the �rst iteration.We develop a simpler heuristic strategy by weakening the de�nition of expected C,interpreting it as if one had no information about the contents of the pat block (ofcourse we use it for the Cost function, but not for the C of the right side). Thatmeans to use simply a C averaged over all possible pat block contents, and to use someweighting strategy to favor those tracks whose neighborhood is \good", in the sense ofowning a large number of positions of the current pat block. More formally,C(h; b) = mint(Cost(h; t; size(t)) + weight(t)� C 0(newsize(t)))where C 0(x) is an average estimate of the cost of the algorithm with a pat block of sizex. In the next section we present an algorithm which follows these lines.4 A Practical AlgorithmTo design a practical algorithm from the general heuristic principle stated in the pre-vious section, we need the following: a suitable weighting function, and an estimationof the average cost of the algorithm, which is part of the of the de�nition of the verysame algorithm.The simplest weighting function is not having a weighting function at all, thatis weight(t) = 1 for all tracks. This is equivalent to not taking into account theneighborhood of tracks, but only their contents and distance from current position. Weshow later that this simple strategy is quite close to optimal, so the e�ort of making amore complex analysis at each iteration is not worth doing.The next section presents an approximate analysis of this algorithm. By usingthese formulas to estimate the cost of smaller instances of the problem, we are able tocomplete the de�nition of the algorithm, thus eliminating its self-reference.Note that it is possible to apply the practical algorithm until obtaining a pat blocksmall enough to be tractable with the optimal strategy. It has to be experimentallydetermined whether this improvement is worth doing for small sizes.The practical algorithm follows.

Search (bPAT, head)while (size of bPAT > 0){ compute S = set of useful tracks (which own a position of bPAT)compute newsize(s), for each s in S (recall Equation (2))t = s in S which minimizes Cost(head,s,size(s)) + C'(newsize(s))move to t and read all useful sectorsbPAT = appropriate new partition(after key comparison with nodes read)head = t}Observe that we can traverse the pat block from left to right, and keep the set ofuseful tracks (those which own some pat block node). At the same time we can compute(recall Equation (1)) the sum of squares of the segments of the partition that each trackproduces in the pat block, since it determines the average size of the subproblem thattrack generates (newsize). Note that if the pat block is traversed from one side toanother, it is easy to accumulate the sum of squares, by recording the previous nodeowned by each track, together with the current sum of squares. This way, both S andnewsize can be computed in one pass, that is, O(b) time.Although the most important complexity measure is the total disk access cost, itis worth discussing the CPU cost of this algorithm, since although it is not the centralpoint, it makes impractical other algorithms more close to the optimal in disk accesscost because of their CPU intractability.In the average case, this algorithm is O(b) at each iteration (note b decreases at eachstep), since at most b tracks may be useful and they may be stored in a hash table toachieve constant search cost (when searching for a track in S). Of course it is O(b log b)in the worst case. The space requirement is O(b).In the next section we show that this algorithmmakes, on average, less than log 1! (b+1) iterations, where 12 � ! < 1 is the expected reduction in the size of the pat block(i.e. the size of the pat block at iteration i is bwi). Comparing this with classicalbinary search, we note that more iterations are required. The total CPU cost isb 0B@log 1! (b+1)�1Xi=0 !i1CA = b2(b+ 1)(1 � !) � 11� !bwhich is linear. The worst case is when the search for each candidate takes log b, makingeach iteration O(b log b):log 1! (b+1)�1Xi=0 b!i log2(b!i) � b �(1� !)b log2 b+ ! log2 � 1!� b+ (1 � !) log2(b+ 1)�(b+ 1)(1 � !)2� 11� !b log 1! bNote that the better candidates for selection are those tracks that either are near tothe current position, or those that generate a good partition of the pat block, especiallyif they own more than one position of the pat block.

5 EvaluationIn this section we evaluate the proposed practical algorithm, both for magnetic andoptical disks. In each case, an analytical cost model is presented and analytical boundsfor the algorithm under this cost model are obtained. Finally, some experimental resultscomparing the optimal and the practical algorithms are presented.5.1 Magnetic disks5.1.1 A seek cost model for magnetic disksThe cost function of magnetic disks may be modeled by a function of the formf(�T) = � + ��Twhere � is the sum of the latency and transfer time (which in fact depends on thenumber of sectors to read), and � is the seek time per track.According to [3], typical disks have 500{2000 tracks by surface, each of them dividedin 32 sectors. Sectors hold 512{2048 bytes. The typical value for latency is 8.3 ms,while transfer rates vary from 1 to 4MB per second. Average seek times range from 12ms to 20 ms. Disks have from 1 to 20 plates, that is, 2 to 40 surfaces. The set of tracksfrom all surfaces which are at the same distance to the center is called a cylinder. Forpractical purposes, one can treat a disk with k surfaces as if it had only one surface,but whose tracks held 32� k sectors, with the same latency (8.3 ms). So the followingdiscussion assumes only one surface, although the number of surfaces must be takeninto account when calculating the number of tracks (cylinders) required by a �le of aspeci�ed size.Average seek time means the sum of all possible head displacements, divided by thenumber of possible displacements. This is2T 2 TXi=1 iXj=1(i� j) = T 2 � 13T � T3 (3)where T is the total number of tracks (later, we make this de�nition more precise).From the above discussion, we get the following values (in milliseconds):� = 8:3 + ns � (0:125::2:0)� = 0:018::0:12It is clear that for our purposes it is better for the �le to be contiguously allocatedon the disk, to reduce seek time. That also means that it should use as least cylindersas possible, so it should �ll cylinders as completely as possible.It is important to note that in many environments, the sectors composing a �lemay be scattered on the disk. This will obviously degrade the performance of anyalgorithm, although our algorithms are also optimal (in their own sense) under thissituation. Another problem is that under di�erent operating system policies, the costmodel may vary. For example, some disk administrators do not serve requests that

would make the disk head to switch to the opposite direction of movement until thelast request in the current direction is served. Under this scheme, those tracks thatare following the current direction are much cheaper than the others. Both algorithmsare able to handle all of these complications provided the cost function is appropriatelyde�ned. However, in the analysis we assume contiguous allocation and the simple costmodel, which is optimistic if the �le is scattered on the disk.5.1.2 Analysis of the algorithmSince a useful comparison value for the algorithm is how much better it is in relationwith binary search, we begin by giving the binary search cost. The cost of each binarysearch step includes one seek, one rotational latency, and one transfer. Since the seekis random, we may use Equation (3) to show that on average, 1/3 of the disk surfaceis traversed (we denote by T the total number of tracks used up by the �le, assumingcontiguous allocation). The number of steps needed to to complete the search is log2(b+1), where b is the initial pat block size. Thus we haveBinary Search Magnetic Cost (b) = �� + T3 �� log2(b+ 1)Now we turn out attention to our algorithm.Since we are not able to analyze the real algorithm, we use a simpli�ed model,whose predictions are to be experimentally tested against the real algorithm, to showits precision. It is important to note that this model is an upper bound for the expectedcase of the algorithm, so its predictions are always pessimistic.The model is as follows. Suppose there are no tracks with more than one usefulsector (this is worse than reality). At each step, we select the � central positions ofour pat block, and read the nearest track which own some of those central positions.The process continues until our pat block size is � �. At this point, we traverse thedisk from one end to the other, in one pass, reading any useful track, until the patblock becomes empty. Since the real algorithm considers all (useful) tracks (includingthe � central ones) and selects the best one taking into account just seek cost andthe generated partition, this model can never make a better decision than the realalgorithm.We �rst obtain the expected size of the new pat block. This is (by using the sameidea of Equation (1))1�b b+�2 �1Xi= b��2 (i� 1)2 + (b� i)2 = b2 � 1 + �2 + 146b � b2 + �6 + 43and the bound is obtained by considering b � �. Note the bound is of the form Xb+Y .The next step is to obtain the average seek needed to access the nearest of any ofthe � tracks, from a total of T . Let's call
 = 1 � �T the probability of a track notowning a value from the central �. By symmetry, we analyze only the left half of thearray of tracks. Suppose the disk head is in a given position, call it N (N is in the range1::T=2). Let's call M the minimum movement needed to reach a useful track. Then,for i in the range 0::N � 1, the probability to move more than i tracks is
2i, since the

move may be in any direction. In the range N::(T � N), only the right direction ispossible, thus the probability is
i.Then, given the disk head is in position N , the expected movement isEN(M) = T�NXi=1 iP (M = i) = T�N�1Xi=0 P (M > i)= N�1Xi=0
2i + T�N�1Xi=N
i = 1 �
2N1 �
2 +
N �
T�N1�
By summing up all (equally probable) values for NE(M) = 1T=2 T=2XN=1 1 �
2N1�
2 +
N �
T�N1�
 � T � � 8 e� �2 + 5 e�� + 32 �2 � T2�Thus, a bound for the cost for size b (until obtaining a block of size � �) isC(b) = � + � T2� + C(Xb+ Y) (b > �)By unfolding the right side of this recurrence, we get its closed expressionC(b) = �� + � T2�� log2 63� � 8 b� 3� + 163� � 8 ! + C(�)� �� + � T2�� log2 � 63� � 8 b� + C(�)The value of C(�) corresponds to solve the pat block of size �, which consists oflinearly traversing the disk surface and reading any useful track. On average, half ofthe � tracks are read, and half of the surface is traversed. Thus,C(�) = ��2 + �T2which gives us the �nal cost expressionC(b) � �� + � T2�� log2 � 63� � 8 b�+ ��2 + �T2The optimum value for � depends on the rest of the parameters, and has to benumerically determined for each case. For example, for b = 1000, T = 5000, � = 10.3,� = 0.045, we have � = 16, and C(b) = 320, a 37% of the standard binary search(simulations yield 33% for the real algorithm).5.2 CD-ROM Disks5.2.1 A Seek Cost Model for CD-ROM DisksThe cost function of the cd-rom drive is highly dependent on disk position and theamount of the displacement of the access mechanism. An important feature to be

considered is that the cd-rom drives exhibit the capability of accessing nearby tracksfrom the current position with no displacement of the reading mechanism, with anegligible seek time. This feature is called span access and the number of tracks thatcan be accessed in this way is called span size. In actual cd-rom drives the span sizeis up to 60 tracks, depending on the type of the drive. The data access located withinspan boundaries requires a seek time of only 1 millisecond per additional track, whilethe access of tracks outside the span size may require 200 to 600 milliseconds.The set of tracks covered by a span in a cd-rom might be compared to the set oftracks belonging to a cylinder in a magnetic disk. In [1] the set of tracks inside a spanis considered as an optical cylinder. Thus, the data access in cd-rom disks has twomodes: (i) proximal access, for tracks inside the optical cylinder, and (ii) non-proximalaccess, for tracks outside the optical cylinder boundaries. These two modes are alsoknown as short seeks and long seeks, respectively.Other components of the access time to a given sector are the rotational delay (orlatency) and the transfer time from disk to the main memory. The latency is directlyproportional to the position of the data on the disk, due to the constant linear velocity(clv) physical format, costing from 65 milliseconds (inner track) to 153 milliseconds(outer track) to locate a sector. The transfer time is directly proportional to the amountof data transferred from disk to the main memory, at the constant rate of 150 kilobytesper second (300 kilobytes per second in some drives). Any data in the cd-rom isaccessed by giving the physical address of the corresponding sector, and the sector sizeis always 2048 bytes. We call c the sum of latency and transfer time by sector read, sowe have c = (65::153) + 13The seek time (ts), is a function of the distance that separates the current track andthe next, �T = jTi � Tjj, where Ti and Tj are any two disk tracks. This function maybe linearized, considering a slope between 0.02 and 0.04 milliseconds per track for non-proximal accesses and 1 millisecond per track for proximal accesses. The expression forts is: ts = f(�T) = � ��T for �T � Q; (proximal access)ts = f(�T) = t0 + ��T for �T > Q; (non � proximal access)where Q is the span size, � and � represent the growing rates of the seek time as a func-tion of the displacement of the access mechanism (in tracks) for short and long seeks,respectively, and t0 represents the seek time for the �rst track outside the boundariesof the current optical cylinder, therefore requiring a seek. Some typical values for �, �and Q are: � � 1 ms/track, 0:02 � � � 0:04 ms/track, 200 ms � t0 � 600 ms and1 < Q � 60 tracks.We have also to consider that the optical head adjust itself every time a new accessis done, centering the anchor point to the track it has just moved to.5.2.2 Analysis of the algorithmWe begin this section again with an analysis of binary search on this cost model. Sincethe probability for a random track to be within the span size is negligible, we have

Binary Search Optical Cost (b) = �c+ t0 + T3 �� log2(b+ 1)We use a di�erent model to approximately analyze the behavior of our algorithmon the optical cost model, since the one used for the magnetic case is far from optimalhere. The idea is as follows: at any time, if there is a node within the span size, weread it; else we read the track owning the middle position of the pat block. Again, thismodel cannot perform better than our algorithm, on average, since we include thesenodes in our considerations.Assuming that we read any node within the span size, this node is at random, sousing Equation (2) with k = 1, the expected size of the new pat block after readingthat node is bound by 23b, while of course the non-proximal access cuts the pat blockby half.Since the disk head is in the middle of the span size, the expected cost for theproximal access is A = c+ �Q4while for the non-proximal access, since the track to read is at random but surelyoutside the span, we have the expected costB = c+ t0 + � �Q2 + T �Q3 �Finally, the probability for the nearest track out of b to be without the span size is�1� QT �b =
bWe use A, B and
 just as shorthands.Then, the cost expression satis�es the following recurrenceC(b) = (1 �
b)�A+ C �23 b��+
b �B + C �12 b�� (4)with the border condition C(0) = 0. Note that A < B in our case.Although this recurrence is hard to solve, it is possible to numerically compute anydesired value. In order to provide a deeper insight on the complexity of this algorithm,we �rst prove a bound for C and then present an approximation, useful to compare thealgorithm against binary search.We begin by writing C(b) � A log 32 b+D(b)and using induction it follows that a su�cient condition for D isD(b) � D �23 b�+
b �B �A log 32 2�

with the border condition D(1) = B. By unfolding that leads toD(b) � �B �A log 32 2� log 32 bXi=0
(32)i +Bthe summation can be bounded by extending to in�nite and using an integral1Xi=0
(32)i �
+Z 10
(32)xdx =
+ 1ln 32 Z 11
uu du �
+ 1ln 32 1Xn=1
nn =
+log 32 11�
�nally, we getC(b) � A log 32 b + B + �B �A log 32 2�
 + log 32 11�
!In order to be able to compare with binary search, it is mandatory to �nd a tightvalue for the constant term, although it may be not a formal bound. The idea is toreplace the sum of the costs for all traversed values of b by an integral, thus we haveto use a logarithmic scale. The problem is that there are two logarithms involved here:base 2 and base 32 . We handle this situation by using a stretched 0::1 scale, that willbe expanded di�erently for each type of seek. We simulate the process of summingup costs while partitioning b by the process of integrating the average cost over thelogarithmic stretched 0::1 interval. The probability function we use isf(x) =
b1�xif x = 0, f(x) is the probability of a track not within the span size at the beginningof the process; while at x = 1 it represents the end of the process. While x advanceslinearly, the exponent of
 decreases exponentially, so a linear sum (integration) in therange x = 0::1 of the costs weighted by f(x) and advancing with the correspondingdi�erential e�ectively simulates the logarithmic process. Finally, since this is a 0::1scale, we have to multiply the �nal result by the number of steps for the correspondingseek. This is Z 10 (1 � f(x))Adx1 + f(x)Bdx2by expanding the stretched intervals for dx1 and dx2, we haveC(b) = log 32 (b+ 1) A �1� Z 10 f(x)dx� + log2(b+ 1) B Z 10 f(x)dx (5)Although f(x) has no primitive, the de�nite integral may be numerically comput-ed for each b and
, but again in order to get some idea of the involved values, weapproximate it:Z 10
b1�xdx = 1log b Z b1
uu du � 1log b 1Xn=1
nn = log 11�
log bFinally, we obtain the approximate cost of this algorithm:

C(b) � �c+ � Q4 � log 32 ((b+ 1)(1 �
)) + �c+ t0 + � T3 � log2 11 �
This �nal formula does give us a good understanding of the performance of thealgorithm, and although it is not formally an upper bound, it is tight enough to extractpercentages to compare it against binary search. For example, for b = 1000, T = 5000,c = 125, � = 1, � = 0.03, t0 = 400 and Q = 50, this �nal approximation gives us C(b)= 4601, 80.2% of binary search, while numerically integrating the expression (5) weobtain C(b) = 4321 (75.4%). By computing directly from the recurrence (4), we getC(b) = 4491 (78.4%). Simulations yield 66% for the real algorithm.5.3 Experimental resultsIn order to determine how close the practical and the optimal algorithms are, simula-tions must be carried out. Although the simulators are �nished, experiments are stillongoing. The initial results indicate savings of 60% in magnetic disks, and 35% inoptical disks.Without being still able to draw statistical results (especially since this process has alarge variance), we found that most of the time the practical and the optimal algorithmmake exactly the same decisions. In the few cases in which they take di�erent paths(a bit more common with optical disks), the optimal beats the practical by 5-10% inthe magnetic case, and 10-20% in the optical case. And in very few cases, one of themde�nitely beats the other, but this occurrs symmetrically, and is due just to luck. Forexample, the practical one may take a decision which on average is worse, but it islucky and a little (low-probability) segment is selected, this way beating the optimalalgorithm (recall that it is optimal just on average).This shows that no more complex heuristic is advisable, since the one we proposeis so close to optimal.We are also going to use the simulators to show that the analysis are reasonablyclose to reality. Our �rst results con�rm this fact.6 Summary and ConclusionsWe began by showing that binary search does not search optimally (in terms of timecost) a text that is indexed with a pat array on disk, since data elements have di�erentaccess costs depending on their position on the disk and the current head position.We then proposed an algorithm to optimize the total access cost for this case, andshowed that its CPU cost makes it impractical. We described a heuristic algorithm,which we analyzed and found to have similar performance to the optimal algorithm.We have explored the use of our algorithms in both magnetic and optical disks. Ithas been shown that with magnetic disks, the total average search time may be reducedto less than 40% of the binary search time, while with optical disks, the cost is close to65% of that of the binary search.We must complete our simulations to measure the impact of the di�erent param-eters (e.g. text size) on this reduction factor, both for the optimal and the practical

algorithms, and determine how close they are. We also have to show that our analysisare reasonably close to reality. Finally, we must determine whether is it advisable touse the optimal algorithm for pat blocks of small size.This work shows that when making indirect search on disks, it is possible to usealgorithms that are much better than the naive one, by minimizing the total costinstead of the number of accesses. This idea can be applied to other scenarios involvingdynamically varying access costs.AcknowledgementsThe authors wish to acknowledge the �nancial support from the Brazilian CNPq -Conselho Nacional de Desenvolvimento Cient���co e Tecnol�ogico, Fondecyt Grant No.1930765, IBM do Brasil, and Programa de Cooperaci�on Cient���ca Chile-Brasil de Fun-daci�on Andes.References[1] E. F. Barbosa and N. Ziviani. Data structures and access methods for read-only op-tical disks. In R. Baeza-Yates and U. Manber, editors, Computer Science: Researchand Applications, pages 189{207. Plenum Publishing Corp., 1992.[2] G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures.Addison-Wesley, 1991.[3] J. L. Hennesy and D. A. Patterson. Computer Architecture. A Quantitative Ap-proach. Morgan Kaufmann Publishers, Inc., 1990.[4] U. Manber and G. Myers. Su�x Arrays: A new method for on-line string searches.ACM-SIAM Symposium on Discrete Algorithms, pages 319{327, January 1990.[5] D. R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Codedin Alphanumeric. Journal of the ACM, 15(4):514{534, 1968.[6] E. F. Barbosa R. Baeza-Yates and N. Ziviani. Hierarchies of indices for text search-ing. In Proceedings RIAO'94 Intelligent Multimedia Information Retrieval Systemsand Management, pages 11{13. Rockefeller University, New York, October 1994.

