
Fast Regular Expression SearchGonzalo Navarro1 and Mathieu Ra�not21 Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago,Chile. gnavarro@dcc.uchile.cl. Partially supported by Fondecyt grant 1-990627.2 Institut Gaspard Monge, Cit�e Descartes, Champs-sur-Marne, 77454Marne-la-Vall�ee Cedex 2, France. raffinot@monge.univ-mlv.frAbstract. We present a new algorithm to search regular expressions,which is able to skip text characters. The idea is to determine the min-imum length ` of a string matching the regular expression, manipulatethe original automaton so that it recognizes all the reverse pre�xes oflength up to ` of the strings accepted, and use it to skip text charactersas done for exact string matching in previous work. As we show exper-imentally, the resulting algorithm is fast, the fastest one in many casesof interest.1 IntroductionThe need to search for regular expressions arises in many text-based applications,such as text retrieval, text editing and computational biology, to name a few.A regular expression is a generalized pattern composed of (i) basic strings, (ii)union, concatenation and Kleene closure of other regular expressions. Readersunfamiliar with the concept and terminology related to regular expressions arereferred to a classical book such as [1].The traditional technique [16] to search a regular expression of length m ina text of length n is to convert the expression into a nondeterministic �niteautomaton (NFA) with O(m) nodes. Then, it is possible to search the text usingthe automaton at O(mn) worst case time. The cost comes from the fact thatmore than one state of the NFA may be active at each step, and therefore allmay need to be updated. A more e�cient choice [1] is to convert the NFA into adeterministic �nite automaton (DFA), which has only one active state at a timeand therefore allows to search the text at O(n) cost, which is worst-case optimal.The problem with this approach is that the DFA may have O(2m) states, whichimplies a preprocessing cost and extra space exponential in m.Some techniques have been proposed to obtain a good tradeo� between bothextremes. In 1992, Myers [13] presented a four-russians approach which obtainsO(mn= logn) worst-case time and extra space. The idea is to divide the syntaxtree of the regular expression into \modules", which are subtrees of a reasonablesize. These subtrees are implemented as DFAs and are thereafter considered asleaf nodes in the syntax tree. The process continues with this reduced tree untila single �nal module is obtained.



The DFA simulation of modules is done using bit-parallelism, which is atechnique to code many elements in the bits of a single computer word andmanage to update all them in a single operation. In this case, the vector ofactive and inactive states is stored as bits of a computer word. Instead of (alaThompson [16]) examining the active states one by one, the whole computer wordis used to index a table which, together with the current text character, providesthe new set of active states (another computer word). This can be consideredeither as a bit-parallel simulation of an NFA, or as an implementation of a DFA(where the identi�er of each deterministic state is the bit mask as a whole).Pushing even more on this direction, we may resort to pure bit-parallelismand forget about the modules. This was done in [19] by Wu and Manber, andincluded in their software Agrep [18]. A computer word is used to representthe active (1) and inactive (0) states of the NFA. If the states are properlyarranged and the Thompson construction [16] is used, all the arrows carry 1'sfrom bit positions i to i+ 1, except for the �-transitions. Then, a generalizationof Shift-Or [3] (the canonical bit-parallel algorithm for exact string matching)is presented, where for each text character two steps are performed. First, aforward step moves all the 1's that can move from a state to the next one,and second, the �-transitions are carried out. As �-transitions follow arbitrarypaths, an E : 2m ! 2m function is precomputed and stored, where E(w) isthe �-closure of w. Possible space problems are solved by splitting this table\horizontally" (i.e. less bits per entry) in as many subtables as needed, using thefact that E(w1w2) = E(w1) or E(w2). This can be thought of as an alternativedecomposition scheme, instead of Myers' modules.The ideas presented up to now aim at a good implementation of the automa-ton, but they must inspect all the text characters. In many cases, however, theregular expression involves sets of relatively long substrings that must appearfor the regular expression to match. In [17, chapter 5], a multipattern searchalgorithm is generalized to regular expression searching, in order to take advan-tage of this fact. The resulting algorithm �nds all su�xes (of a predeterminedlength) of words in the language denoted by the regular expression and usesthe Commentz-Walter algorithm [7] to search them. Another technique of thiskind is used in Gnu Grep v2.0, which extracts a single string (the longest) whichmust appear in any match. This string is searched for and the neighborhoodsof its occurrences are checked for complete matches using a lazy deterministicautomaton. Note that it is possible that there is no such single string, in whichcase the scheme cannot be applied.In this paper, we present a new regular expression search algorithm able toskip text characters. It is based on extending BDM and BNDM [9, 14]. Theseare simple pattern search algorithms whose main idea is to build an automatonable to recognize the reverse pre�xes of the pattern, and examine backwards awindow of length m on the text. This automaton helps to determine (i) whenit is possible to shift the window because no pattern substring has been seen,and (ii) the next position where the window can be placed, i.e. the last timethat a pattern pre�x was seen. BNDM is a bit-parallel implementation of this



automaton, faster and much simpler than the traditional version BDM whichmakes the automaton deterministic.Our algorithm for regular expression searching is an extension where, by ma-nipulating the original automaton, we search for any reverse pre�x of a possiblematch of the regular expression. Hence, this transformed automaton is a compactdevice to achieve the same multipattern searching, at much less space. The au-tomata are simulated using bit-parallelism. Our experimental results show that,when the regular expression does not match too short or too frequent strings,our algorithm is among the fastest, faster than all those unable to skip charactersand in most cases faster than those based on multipattern matching. An extracontribution is our bit-parallel simulation, which di�ers from Agrep's in thatless bits are used and no �-transitions exist, although the transitions on lettersare arbitrary and therefore a separate table per letter is needed (the tables canbe horizontally split in case of space problems). Our simulation turns out to befaster than Agrep and the fastest in most cases.Some de�nitions that are used in this paper follow. A word is a string orsequence of characters over a �nite alphabet �. A word x 2 �� is a factor (orsubstring) of p if p can be written p = uxv, u; v 2 ��. A factor x of p is calleda su�x (resp. pre�x) of p is p = ux (resp. p = xu), u 2 ��. We call R ourpattern (a regular expression), which is of length m. We note L(R) the set ofwords generated by R. Our text is of size n.We de�ne also the language to denote regular expressions. Union is denotedwith the in�x sign \j", Kleene closure with the post�x sign \�", and concate-nation simply by putting the sub-expressions one after the other. Parenthesesare used to change the precedence, which is normally \�", \.", \j". We adaptsome widely used extensions: [c1:::ck] (where ci are characters) is a shorthandfor (c1j:::jck). Instead of a character c, a range c1-c2 can be speci�ed to avoidenumerating all the letters between (and including) c1 and c2. Finally, the period(.) represents any character.2 The reverse factor search approachIn this section we describe the general reverse factor search approach currentlyused for a single pattern [12,9, 14] or multiple patterns [8, 15].The search is done using a window which has the length of the minimumword that we search (if we search a single word, we just take its length). Wenote this minimum length `.We shift the window along the text, and for each position of the window,we search backwards (i.e from right to left, see Figure 1) for any factor of anylength-` pre�x of our set of patterns (if we search a single word, this meansany factor of the word). Also, each time we recognize a factor which is indeeda pre�x of some of the patterns, we store the window position in a variable last(which is overwritten, so we know the last time that this happened). Now, twopossibilities appear:



(i) We do not reach the beginning of the window. This case is shown in Figure 1.The search for a factor fail on a letter �, i.e �u is not a factor of a length-`pre�x of any pattern. We can directly shift the window to start at positionlast, since no pattern can start before, and begin the search again.(ii) We reach the beginning of the window. If we search just one pattern, thenwe have recognized it and we report the occurrence. Otherwise, we justrecognized a length-` pre�x of one or more patterns. We verify directly inthe text if there is a match of a pattern, with a forward (i.e left to right)scan. This can be done with a trie of the patterns. Next, in both cases, weshift the window according to position last.� lastWindowRecord in last the window position when a pre�x of any pattern is recognizedSearch for a factorlastThe maximum pre�x starts at lastFail of the search for a factor in �.�safe shift New windowFig. 1. The reverse factor search approach.This simple approach leads to very fast algorithms in practice, such as BDM [9]and BNDM [14]. For a single pattern, this is optimal on average, matching Yao'sbound [20] of O(n log(`)=`) (where n is the text size and ` the pattern length).In the worst case, this scheme is quadratic (O(n`) complexity). There existshowever a general technique to keep the algorithms sub-linear on average andlinear in the worst case.2.1 A linear worst case algorithmThe main idea used in [9, 14,8, 15] is to avoid retraversing the same charactersin the backward window veri�cation. We divide the work done on the text intwo parts: forward and backward scanning. To be linear in the worst case, noneof these two parts must retraverse characters. In the forward scan, it is enoughto keep track of the longest pattern pre�x v that matches the current text su�x.This is easily achieved with a KMP automaton [11] (for one pattern) or an Aho-Corasick automaton [2] (for multiple patterns). All the matches are found usingthe forward scan.



However, we need to use also backward searching in order to skip characters.The idea is that the window is placed so that the current longest pre�x matchedv is aligned with the beginning of the window. The position of the current textcharacter inside the window (i.e. jvj) is called the critical position. At any pointin the forward scan we can place the window (shifted jvj characters from thecurrent text position) and try a backward search. Clearly, this is only promisingwhen v is not very long compared to `. Usually, a backward scan is attemptedwhen the pre�x is less than b`=�c, where 0 < � < ` is �xed arbitrary (usually� = 2).The backward search proceeds almost as before, but it �nishes as soon as thecritical position is reached. The two possibilities are:(i) We reach the critical position. This case is shown in Figure 2. In this casewe are not able to skip characters. The forward search is resumed in theplace where it was left (i.e. from the critical position), totally retraverses thewindow, and continues until the condition to try a new backward scan holdsagain. We reached the critical positionuWindowv v0 WindowCritpos Critpos0End of the forward searchback to a normal stateWindowRe-read with a forward searchFig. 2. The critical position is reached, in the linear-time algorithm.(ii) We do not reach the critical position. This case is shown in Figure 3. Thismeans that there cannot be a match in the current window. We start aforward scan from scratch at position last, totally retraverse the window,and continue until a new backward scan seems promising.3 Extending the approach to regular expression searchingIn this section we explain how to adapt the general approach of Section 2 toregular expression searching. We �rst explain a simple extension of the basicapproach and later show how to keep the worst case linear. Recall that we search



Windowlast� Fail of the search for a factor in �.� last�Critposv Forward search from last.Safe shift New windowCritpos'v0End of the forward searchback to the current situationFig. 3. The critical position is not reached, in the linear-time algorithm.for a regular expression called R which is of size m and generates the languageL(R).3.1 Basic approachThe search in the general approach needs a window of length ` (shortest patternwe search). In regular expression searching this corresponds to the length of theshortest word of L(R). Of course, if this word is �, the problem of searching istrivial since every text position matches. We consider in the rest of the paperthat ` > 0.We use the general approach of Section 2, consisting of a backward and, ifnecessary (i.e we reached the beginning of the window), a forward scan. To adaptthis scheme to regular expression search, we need two modi�cations:(i) The backward search step of the general approach imposes here that we areable recognize any factor of the reverse pre�xes of length ` of L(R). Moreover,we mark in a variable last the longest pre�x of L(R) recognized (of coursethis pre�x will be of length less than `).(ii) The forward search (if we reached the beginning of the window) veri�es thatthere is a match of the regular expression starting at the beginning of thewindow (however, the match can be much longer than `).We detail now the steps of the preprocessing and searching phases. Com-plexities will be discussed in Section 4 because they are related to the way theautomata are built.Preprocessing The preprocessing consists of 3 steps:1. Build the automaton that recognizes R. We note it F (R), and its speci�cconstruction details are deferred to the next section.



2. Determine ` and compute the set Pi(R) of all the nodes of F (R) reachable ini steps or less from the initial state, for each 0 � i � ` (so Pi(R) � Pi+1(R)).Both things are easily computed with a breadth-�rst search from the initialstate until a �nal node is reached (being then ` the current depth at thatpoint).3. Build the automaton B(R) that recognizes any factor of the reverse pre�xesof length ` of L(R). This is achieved by restricting the original automa-ton F (R) to the nodes of P`(R), reversing the arrows, taking as (the only)terminal state the initial state of F (R) and all the states as initial states.The most interesting part of the above procedure is B(R), which is a deviceto recognize the reverse factors of pre�xes of length ` of L(R). It is not hardto see that any such factor corresponds to a path in F (R) that touches onlynodes in P`(R). In B(R) there exists the same path with the arrows reversed,and since all the states of B(R) are initial, there exists a path from an initialstate that spells out the reversed factor. Moreover, if the factor is a pre�x, thenthe corresponding path in B(R) leads to its �nal state.Note, however, that B(R) can recognize more words than desired. For in-stance, if there are loops in B(R) it can recognize words longer than `. However,we can restrict more the set of words recognized by B(R). The idea is that, ifa state of B(R) is active but it is farther than i positions to the �nal state ofB(R), and only i window characters remain to be read, then this state cannotlead to a match. Hence, if we have to read i more characters of the window, weintersect the current active states of B(R) with the set Pi(R).It is easy to see that, with this modi�cation, the automaton recognizes exactlythe desired pre�xes, since if a state has not been \killed" with the intersectionwith Pi(R) it is because it is still possible to obtain a useful pre�x from it. Hence,only the desired (reverse) factors can survive all the process until they arrive tothe �nal state and become (reverse) pre�xes.In fact, an alternative method in this sense would be a classical multi-patternalgorithm to recognize the reverse factors of the set of pre�xes of length ` of L(R).However, this set may be large and the resulting scheme may need much morememory. The automaton B(R) is a more compact device to obtain the sameresult.Searching The search follows the general approach of Section 2. For each windowposition, we activate all the states of B(R) and traverse the window backwardsupdating last each time the �nal state of B(R) is reached (recall that after eachstep, we \kill" some states pfB(R) using Pi(R)). IfB(R) runs out of active stateswe shift the window to position last. Otherwise, if we reached the beginning of thewindow, we start a forward scan using F (R) from the beginning of the windowuntil either a match is found1, we reached the end of the text, or F (R) runs outof active states. After the forward scan, we shift the window to position last.1 Since we report the beginning of matches, we stop the forward search as soon as we�nd a match.



3.2 Linear worst case extensionWe also extended the general linear worst case approach (see Section 2.1) to thecase of regular expression searching.We transform the forward scan automaton F (R) of the previous algorithmby adding a self-loop at its initial state, for each letter of � (so now it recognizes��L(R)). This is the normal automaton used for classical searching, and the onewe use for the forward scanning.The main di�culty to extend the general linear approach is where to placethe window in order to not lose a match. The general approach considers thelongest pre�x of the pattern already recognized. However, this information can-not be inferred only from the active states of the automaton (for instance, it isnot known how many times we have traversed a loop). We use an alternativeconcept: instead of considering the longest pre�x already matched, we considerthe shortest path to reach a �nal state. This value can be determined from thecurrent set of states. We devise two di�erent alternatives that di�er on the useof this information.Prior to explaining both alternatives, we introduce some notation. In general,the window is placed so that it �nishes `0 characters ahead of the current textposition (for 0 � `0 � `). To simplify our explanation, we call this `0 the \forward-length" of the window.In the �rst alternative the forward-length of the window is the shortest pathfrom an active state of F (R) to a �nal state (this same idea has been used formultipattern matching in [8]). In this case, we need to recognize any reversefactor of L(R) in the backward scan (not only the factors of pre�xes of length`)2. Each time `0 is large enough to be promising (`0 � �`, for some heuristically�xed �), we stop the forward scan and start a backward scan on a window offorward-length `0 (the critical position being `� `0). If the backward automatonruns out of active states before reaching the critical position, we shift the windowas in the general scheme (using the last pre�x found) and restart a fresh forwardscan. Otherwise, we continue the previous forward scan from the critical posi-tion, totally traversing the window and continuing until the condition to start abackward scan holds again.The previous approach is linear in the worst case (since each text positionis scanned at most once forward and at most once backwards), and it is able toskip characters. However, a problem is that all the reverse factors of L(R) haveto be recognized, which makes the backward scans longer and the shifts shorter.Also, the window forward-length `0 is never larger than our previous `, since theinitial state of F (R) is always active.The second alternative solves some of these problems. The idea now is thatwe continue the forward scan until all the active states belong to Pi(R), forsome �xed i < ` (say, i = `=2). In this case, the forward-length of the windowis `0 = ` � i, since it is not possible to have a match after reading that number2 A more strict choice is to recognize any reverse factor of any word of length `0 thatstarts at an active state in F (R), but this needs much more space and preprocessingtime.



of characters. Again, we select heuristically a minimum `0 = �` value. In thiscase, we do not need to recognize all the factors. Instead, we can use the alreadyknown B(R) automaton. Note that the previous approach applied to this case(with all active states belonging to Pi(R)) yields di�erent results. In this casewe limit the set of factors to recognize, which allows to shift the window sooner.On the other hand, its forward-length is shorter.4 Building an NFA from a regular expressionThere exist currently many di�erent techniques to build an NFA from a regularexpression R of size m. The most classical one is the Thomson construction[16]. It builds an NFA with at most 2m states that present somes particularproperties. Some algorithms like that of Myers [13] and of Wu and Manber inAgrep [19, 18] make use of these properties.A second one is the Glushkov's construction, popularized by Berry and Sethiin [4]. The NFA resulting of this construction has the advantage of having justm + 1 states (one per position in the regular expression). A lot of research onGlushov's construction has been pursued, like [5], where it is shown that theresulting NFA is quadratic in the number of edges in the worst case. In [10], along time open question about the minimal number of edges of an NFA withlinear number of states was answered, showing a construction with O(m) statesand O(m(logm)2) edges, as well as a lower bound of O(m logm) edges. Hence,Glushkov construction is not space-optimal.Some research has been done also to try to construct directly a DFA from aregular expression, without constructing an NFA, such as [6].For our purpose, when we consider bit-parallelism, the most interesting is tohave a minimal number of states, because we manage computer words of a �xedlength w to represent the set of possible states. Hence, we choose the originalGluskov's construction, which leads to an NFA with m+1 states and a quadratic(in the worst case) number of edges. The number of edges is unimportant forour case.In Gluskov's construction, the edges have no simple structure, and we needa table which, for each current set of states and each current text character,gives the new set of states. On the other hand, the construction of Wu andManber uses the regularities of Thompson's construction so that they need onlya table for the �-transitions, not for every character. In exchange, we have m+1states instead of nearly 2m states, and hence their table sizes square ours. Aswe show later experimentally, our NFA simulation is faster than those based onthe Thompson construction, so the tradeo� pays o�.5 Experimental resultsWe compare in this section our approach against previous work. We divide thiscomparison in three parts. First, we compare di�erent existing algorithms toimplement an automaton. These algorithms process all the text characters, one



by one, and they only di�er in the way they keep track of the state of the search.The goal of this comparison is just to show that our simulation is competitive.Second, we compare, using our automaton simulation, a simple forward-scanalgorithm against the di�erent variants of backward search proposed, to showthat backward searching is faster in general. Finally, we compare our backwardsearch algorithm against other algorithms that are also able to skip characters.We use an English text (writings of B. Franklin), �ltered to lower-case andreplicated until obtaining 10 Mb. A major problem when presenting experi-ments on regular expressions is that there is not a concept of \random" regularexpression, so it is not possible to search, say, 1,000 random patterns. Lackingsuch good choice, we �xed a set of 10 patterns, which were selected to illustratedi�erent interesting cases rather than more or less \probable" cases. In fact webelieve that common patterns have long exact strings and our algorithm wouldbehave even better than in these experiments. Therefore, the goal is not to showwhat are the typical cases in practice but to show how the scheme behaves underdi�erent characteristics of the pattern.The patterns are given in Table 1. We also show their number of letters,which is closely related to the size of the automata recognizing them, the mini-mum length ` of a match for each pattern, and a their empirical matching proba-bility (number of matches divided by n). The period (.) in the patterns matchesany character except the end of line (lines have approximately 70 characters).No. Pattern Size Minimum Prob. match(# letters) length ` (empirical)1 benjamin|franklin 16 8 .000035862 benjamin|franklin|writing 23 7 .00010143 [a-z][a-z0-9]*[a-z] 3 2 .60924 benj.*min 8 7 .0000079155 [a-z][a-z][a-z][a-z][a-z] 5 5 .20246 (benj.*min)|(fra.*lin) 15 6 .000035867 ben(a|(j|a)*)min 9 6 .0094918 be.*ja.*in 8 6 .000012119 ben[jl]amin 8 8 .00000791510 (be|fr)(nj|an)(am|kl)in 14 8 .00003586Table 1. The patterns used on English text.Our machine is a Sun UltraSparc-1 of 167 MHz, with 64 Mb of RAM, runningSolaris 2.5.1. We measured CPU times in seconds, averaging 10 runs over the 10Mb (the variance was very low). We include the time for preprocessing in the�gures.



5.1 Forward scan algorithmsIn principle, any forward scan algorithm can be enriched with backward search-ing to skip characters. Some are easier to adapt than others, however. In thisexperiment we only consider the performance of the forward scan method weadopted. The purpose of this test is to show that our approach is competitiveagainst the rest. We have tested the following algorithms for the forward scanning(the implementations are ours except otherwise stated). See the Introduction fordetailed descriptions of previous work.DFA: builds the classical deterministic automaton and runs it over the text.We have not minimized the automaton.Thompson: simulates the nondeterministic automaton by keeping a list of ac-tive states which is updated for each character read (this does not mean thatwe build the automaton using Thompson's method).BP-Thompson: same as before, but the set of active states is kept as a bitvector. Set manipulation is faster when many states are active.Agrep: uses a bit mask to handle the active states [19]. The software [18] isfrom S. Wu and U. Manber, and has an advantage on frequently occurringpatterns because it abandons a line as soon as it �nds the pattern on it.Myers: is the algorithm based on modules implemented as DFAs [13]. The codeis from G. Myers.Ours: our forward algorithm, similar to that of Agrep except because we elimi-nate the �-transitions and have a separate transition table for each character(Section 4).Except for Agrep and Myers, which have their own code, we use the NFAconstruction of Section 4. Table 2 shows the results on the di�erent patterns. Asit can be seen, the schemes that rely on nondeterministic simulation (Thompsonvariants) worsen when the combination of pattern size and matching probabilityincreases. The rest is basically insensitive to the pattern, except because allworsen a little when the pattern matches very frequently. If the pattern getssigni�cantly larger, however, the deterministic simulations worsen as well, assome of them are even exponentially depending on the automaton size. Agrep,Myers and Ours can adapt at higher but reasonable costs, proportional to thepattern length. This comes not only from the possible need to use many machinewords but also because it may be necessary to cut the tables horizontally.With respect to the comparison, we point out that our scheme is competitive,being the fastest in many cases, and always at most 5% over the performanceof the fastest. DFA is the best in the other cases. Our algorithm can in fact beseen as a DFA implementation, where our state identi�er is the bit mask and thetransition table is the one we use. However, the DFA has less states, since mostof the bit combinations we store are in fact unreachable3 . On the other hand,3 We do not build the transition table for unreachable states, but we do not compactreachable states in consecutive table positions as the DFA implementation does. Thisis the essence of the bit-parallel implementation.



Pattern DFA Thompson BP-Thompson Agrep Myers Ours Ours/best1 0.70 4.47 4.19 1.88 5.00 0.68 1.002 0.73 4.13 5.10 1.89 8.57 0.76 1.043 1.01 18.2 3.75 0.98 2.19 0.99 1.014 0.71 4.16 3.17 0.97 2.17 0.68 1.005 0.87 18.7 4.32 1.05 2.18 0.82 1.006 0.76 4.25 4.06 1.87 4.94 0.72 1.007 0.73 4.67 2.82 0.99 2.17 0.72 1.008 0.72 4.93 3.40 0.96 2.18 0.73 1.019 0.66 4.75 3.11 1.00 2.16 0.68 1.0310 0.71 4.36 3.97 1.86 5.01 0.73 1.03Table 2. Forward search times on English, in seconds for 10 Mb.the bit-parallel implementation is much more 
exible when it comes to adapt itfor backward searching or to extend it to handle extended patterns or to allowerrors.We have left aside lazy deterministic automata implementations. However,as we show in Section 5.3, these also tend to be slower than ours.5.2 Forward versus backward scanningWe compare now our new forward scan algorithm (called Fwd in this sectionand Ours in Section 5.1) against backward scanning. There are three backwardscanning algorithms. The simplest one, presented in Section 3.1, is called Bwd.The two linear variations presented in Section 3.2 are called LBwd-All (thatrecognizes all the reverse factors) and LBwd-Pref (that recognizes reverse fac-tors of length-` pre�xes). The linear variations depend on an � parameter, whichis between 0 and 1. We have tested the values 0.25, 0.50 and 0.75 for �, althoughthe results change little.Table 3 shows the results. We obtained improvements in 7 of the 10 patterns(and very impressive in four cases). In general, the linear versions are quite badin comparison with the simple one, although in some cases they are faster thanforward searching. It is di�cult to determine which of the two versions is betterin which cases, and which is the best value for �.5.3 Character skipping algorithmsFinally, we consider other algorithms able to skip characters. Basically, theother algorithms are based in extracting one or more strings from the regularexpression, so that some of those strings must appear in any match. A single-or multi-pattern exact search algorithm is then used as a �lter, and only wheresome string in the set is found its neighborhood is checked for an occurrence ofthe whole regular expression. Two approaches exist:



Pattern Fwd Bwd LBwd-All LBwd-Pref� = 0:25 � = 0:50 � = 0:75 � = 0:25 � = 0:50 � = 0:751 0.68 0.28 0.44 0.43 0.46 0.47 0.49 0.502 0.76 0.65 1.17 1.00 1.09 0.93 0.98 0.953 0.99 2.37 3.30 2.59 3.01 2.56 2.56 2.564 0.68 0.56 1.70 1.68 1.71 0.94 0.93 0.925 0.82 2.02 2.05 2.40 2.09 2.13 2.15 2.186 0.72 0.70 1.82 1.85 1.84 1.10 1.12 1.097 0.72 0.30 0.46 0.45 0.47 0.51 0.52 0.518 0.73 0.91 1.75 1.85 1.87 1.33 1.45 1.479 0.68 0.24 0.37 0.37 0.39 0.41 0.39 0.4110 0.73 0.29 0.42 0.45 0.44 0.47 0.46 0.48Table 3. Backward search times on English, in seconds for 10 Mb.Single pattern: one string is extracted from the regular expression, so that thestring must appear inside every match. If this is not possible the scheme can-not be applied. We use Gnu Grep v2.3, which implements this idea. Wherethe �lter cannot be applied, Grep uses a forward scanning algorithm whichis 30% slower than our Fwd4. Hence, we plot this value only where the ideacan be applied. We point out that Grep also abandons a line when it �nds a�rst match in it.Multiple pattern: this idea was presented in [17]. A length `0 < ` is selected,and all the possible su�xes of length `0 of L(R) are generated and searchedfor. The choice of `0 is not obvious, since longer strings make the search faster,but there are more of them. Unfortunately, the code of [17] is not public, sowe have used the following procedure: �rst, we extract by hand the su�xesof length `0 for each regular expression; then we use the multipattern searchof Agrep [18], which is very fast, to search those su�xes; and �nally thematching lines are sent to Grep, which checks the occurrence of the regularexpression in the matching lines. We �nd by hand the best `0 value for eachregular expression. The resulting algorithm is quite similar to the idea of[17].Our algorithms are called Fwd and Bwd and correspond to those of theprevious sections. Table 4 shows the results. The single pattern �lter is a verye�ective trick, but it can be applied only in a restricted set of cases. In somecases its improvement over our backward search is modest. The multipattern�lter, on the other hand, is more general, but its times are higher than ours ingeneral, especially where backward searching is better than forward searching(an exception is the 2nd pattern, where we have a costly preprocessing).4 Which shows that our implementation is faster than a good lazy deterministic au-tomaton implementation.



Pattern Fwd Bwd Single pattern Multipattern�lter �lter1 0.68 0.28 | 0.312 0.76 0.65 | 0.373 0.99 2.37 | 1.654 0.68 0.56 0.17 0.875 0.82 2.02 | 2.026 0.72 0.70 | 1.007 0.72 0.30 0.26 0.448 0.73 0.91 0.63 0.669 0.68 0.24 0.19 0.3110 0.73 0.28 0.98 0.35Table 4. Algorithm comparison on English, in seconds for 10 Mb.6 ConclusionsWe have presented a new algorithm for regular expression searching able toskip characters. It is based on an extension of the backward DAWG matchingapproach, where the automaton is manipulated to recognize reverse pre�xes ofstrings of the language. We also presented two more complex variants whichare of linear time in the worst case. The automaton is simulated using bit-parallelism.We �rst show that the bit-parallel implementation is competitive (at most5% over the fastest one in all cases). The advantage of bit-parallelism is that thealgorithm can easily handle extended patterns, such as classes of characters, wildcards and even approximate searching. We then compare the backward matchingagainst the classical forward one, �nding out that the former is superior whenthe minimum length of a match is not too short and the matching probability isnot too high.Finally, we compare our approach against others able to skip characters.These are based on �ltering the search using multipattern matching. The ex-periments show that our approach is faster in many cases, although there existsome faster hybrid algorithms which can be applied in some restricted cases.Our approach is more general and performs reasonably well in all cases.The preprocessing time is a subject of future work. In our experiments thepatterns were reasonably short and the simple technique of using one transi-tion table was the best choice. However, longer patterns would need the useof the table splitting technique, which worsens the search times. More work onminimizing the NFA could improve the average case.Being able to skip characters and based on an easily generalizable techniquesuch as bit-parallelism permits to extend our scheme to deal with other cases,such as searching a regular expression allowing errors, and being still able toskip characters. This is also a subject of future work.



References1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.Addison-Wesley, 1985.2. A. V. Aho and M. J. Corasick. E�cient string matching: an aid to bibliographicsearch. Communications of the ACM, 18(6):333{340, 1975.3. R. Baeza-Yates and G. Gonnet. A new approach to text searching. CACM,35(10):74{82, October 1992.4. G. Berry and R. Sethi. From regular expression to deterministic automata. Theor.Comput. Sci., 48(1):117{126, 1986.5. A. Br�uggemann-Klein. Regular expressions into �nite automata. Theoretical Com-puter Science, 120(2):197{213, November 1993.6. C.-H. Chang and R. Paige. From regular expression to DFA's using NFA's. InProc. of the CPM'92, number 664 in LNCS, pages 90{110. Springer-Verlag, 1992.7. B. Commentz-Walter. A string matching algorithm fast on the average. In Proc.ICALP'79, number 6 in LNCS, pages 118{132. Springer-Verlag, 1979.8. M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,and W. Rytter. Fast practical multi-pattern matching. Rapport 93{3, InstitutGaspard Monge, Universit�e de Marne la Vall�ee, 1993.9. A. Czumaj, Maxime Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq,W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.Algorithmica, 12:247{267, 1994.10. Juraj Hromkovi�c, Sebastian Seibert, and Thoma s Wilke. Translating regularexpression into small "-free nondeterministic automata. In STACS 97, LNCS,pages 55{66. Springer-Verlag, 1997.11. D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.SIAM Journal on Computing, 6(1):323{350, 1977.12. T. Lecroq. Experimental results on string matching algorithms. Softw. Pract. Exp.,25(7):727{765, 1995.13. E. Myers. A four-russian algorithm for regular expression pattern matching. J. ofthe ACM, 39(2):430{448, 1992.14. G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fastextended string matching. In Proc. CPM'98, LNCS v. 1448, pages 14{33, 1998.15. Mathieu Ra�not. On the multi backward dawg matching algorithm (MultiBDM).In Proc. WSP'97, pages 149{165. Carleton University Press, 1997.16. K. Thompson. Regular expression search algorithm. CACM, 11(6):419{422, 1968.17. B. Watson. Taxonomies and Toolkits of Regular Language Algorithms. Phd. dis-sertation, Eindhoven University of Technology, The Netherlands, 1995.18. S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc.of USENIX Technical Conference, pages 153{162, 1992.19. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91,October 1992.20. A. Yao. The complexity of pattern matching for a random string. SIAM J. onComputing, 8:368{387, 1979.


