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Abstract. We present a new technique to encode a deterministic finite automaton (DFA). Based on
the specific properties of Glushkov’s nondeterministic finite automaton (NFA) construction algorithm,
we are able to encode the DFA using (m + 1)(2"“"1 + |X|) bits, where m is the number of characters
(excluding operator symbols) in the regular expression and X is the alphabet. This compares favorably
against the worst case of (m + 1)2"""1 | X| bits needed by a classical DFA representation and '171(22'"‘|'1 +
| X]) bits needed by the Wu and Manber approach implemented in Agrep.

Our approach is practical and simple to implement, and it permits searching regular expressions of
moderate size (which include most cases of interest) faster than with any previously existing algorithm,
as we show experimentally.

1 Introduction and Related Work

The need to search for regular expressions arises in many text-based applications, such as text retrieval, text
editing and computational biology, to name a few. A regular expression is a generalized pattern composed of
(1) basic strings, (ii) union, concatenation and Kleene closure of other regular expressions. Readers unfamiliar
with the concept and terminology related to regular expressions are referred to a classical book such as [1].
We call RE our regular expression, which is of length m. This means that m is the total number of characters
in RE, not counting operators symbols “|”, “*” and parentheses. We note L(RE) the set of words generated
by RE and X the alphabet.

The traditional technique [10] to search a regular expression of length m in a text of length n is to
convert the expression into a nondeterministic finite automaton (NFA) with O(m) nodes. Then, it is possible
to search the text using the automaton at O(mn) worst case time. The cost comes from the fact that more
than one state of the NFA may be active at each step, and therefore all may need to be updated. A more
efficient choice [1] is to convert the NFA into a deterministic finite automaton (DFA), which has only one
active state at a time and therefore allows searching the text at O(n) cost, which is worst-case optimal. The
problem with this approach is that the DFA may have O(2™) states, which implies a preprocessing cost and
extra space exponential in m.

Some techniques have been proposed to obtain a good tradeoff between both extremes. In 1992, Myers [7]
presented a four-russians approach which obtains O(mn/log n) worst-case time and extra space. The idea is
to divide the syntax tree of the regular expression into “modules”, which are subtrees of a reasonable size.
These subtrees are implemented as DFAs and are thereafter considered as leaf nodes in the syntax tree. The
process continues with this reduced tree until a single final module is obtained.

The DFA simulation of modules is done using bit-parallelism, which is a technique to code many elements
in the bits of a single computer word (which is called a “bit mask”) and manage to update all them in a
single operation. Typical bit operations are infix “|” (bitwise or), infix “&” (bitwise and), prefix “~” (bit
complementation), and infix “<<” (“>>"), which moves the bits of the first argument (a bit mask) to higher
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(lower) positions in an amount given by the right argument. Additionally, one can treat the bit masks as
numbers and obtain specific effects using the arithmetic operations +, —, etc. Exponentiation is used to
denote bit repetition, e.g. 031 = 0001.

In our case, the vector of active and inactive states is stored as bits of a computer word. Instead of
(ala Thompson [10]) examining the active states one by one, the whole computer word is used to index a
table which, together with the current text character, provides the new bit mask of active states. This can
be considered either as a bit-parallel simulation of an NFA, or as an implementation of a DFA (where the
identifier of each deterministic state is the bit mask as a whole).

Pushing even more on this direction, one may resort to pure bit-parallelism and forget about the modules.
This was done in [13] by Wu and Manber, and included in their software Agrep [12]. A computer word is
used to represent the active (1) and inactive (0) states of the NFA. If the states are properly arranged and
the Thompson construction [10] is used, then all the arrows carry 1’s from bit positions i to i + 1, except
for the e-transitions. Then, a generalization of Shift-Or [2] (the canonical bit-parallel algorithm for exact
string matching) is presented, where for each text character two steps are performed. First, a forward step
moves all the 1’s that can move from a state to the next one. This is achieved by precomputing a table
B : ¥ — 20(m) such that the i-th bit of Blc] is set if and only if the character ¢ matches at the i-th position
of the regular expression. Second, the e-transitions are carried out. As e-transitions follow arbitrary paths,
a table E : 200m) 5 20(™) is precomputed, where E[D] is the e-closure of D. To move from the state set D
to the new D’ after reading text character c, the action is

D' « E[(D<<1)]| B[]

Possible space problems are solved by splitting this table “horizontally” (i.e. less bits per entry) in as
many subtables as needed, using the fact that E[D;D;] = E[D10/P2!] | E[0IP1] D,]. This can be thought of
as an alternative decomposition scheme, instead of Myers’ modules.

All the approaches mentioned are based on the Thompson construction of the NFA, whose properties have
been exploited in different ways. An alternative, much less known, NFA construction algorithm is Glushkov’s
[6,3]. A good point of this construction is that, for a regular expression of m characters, the NFA obtained
has exactly m + 1 states and is free of e-transitions. Thompson’s construction, instead, produces between
m + 1 and 2m states. This means that Wu and Manber’s table may need a table of size 22™ entries of 2m
bits each, for a total space requirement of m(22™+! + |X|) bits (E plus B tables).

In [8], we proposed the use of Glushkov’s construction instead of Thompson’s. The table had then 2™+1
entries, but unfortunately the structural property that arrows were either forward or e-transitions did not
hold anymore. As a result, we needed a table M : 2™*! x ¥ — 2™+! indexed by the current state and
text character, for a total space requirement of (m + 1)2™*!|X| bits. The transition action was simply
D' + M]ID,¢], just as for a classical DFA implementation. We showed experimentally that the Glushkov
based construction was normally faster than the one based on Thompson, but not better than a classical
DFA.

In this paper, we use specific properties of the Glushkov construction (namely, that all the arrows arriving
to a state are labeled by the same letter) to eliminate the need of a separate table per text character. As a
result, we obtain the best of both worlds: we can have tables whose arguments have just m+1 bits and we can
have just one table instead of one per character. Thus we can represent the DFA using (m + 1)(2™+! + | X|)
bits, which is not only better than both previous bit parallel implementations but also better than the
classical DFA representation, which needs in the worst case (m + 1)2™+!| X| bits.

The net result is a simple algorithm for regular expression searching which uses normally less space
and has faster preprocessing and search time (albeit all are O(n) search time, a smaller DFA representation
implies more locality of reference). We show experimentally that we are at least 10% faster than any previous
algorithm for searching regular expressions of moderate size, which include most cases of interest.

The algorithms reviewed are called “forward scanning” algorithms because they inspect all the text
characters, one by one. It should be noted that there exist algorithms able to skip text characters, which



are based on discarding text areas that cannot contain a match and using a classical algorithm on the rest.
Example of these algorithms are that based on multi pattern matching (Watson [11, chapter 5]), on filtering
using necessary substrings (Gnu Grep v2.0) and on reversing the arrows of the DFA to search reversed factors
of the regular expression (Navarro and Raffinot [8]). Those algorithms are in some cases faster than ours, but
all them need a forward scan algorithm to search the text areas that cannot be discarded. Hence, a better
forward scanning algorithm is always welcome. Moreover, many interesting regular expressions cannot be
efficiently searched using backward scanning algorithms. In particular, we show how to use our compact
representation to obtain an improved version of our previous algorithm in [8].

2 Glushkov automaton

There exist currently many different techniques to build an NFA from a regular expression RE of m characters
(without counting the special symbols). The most classical one is the Thompson construction [10], which
builds an NFA with at most 2m states (and at least m + 1). This NFA has some particular properties (e.g.
O(1) transitions leaving each node) that have been extensively exploited in several regular expression search
algorithm such as that of Thompson [10], Myers [7] and Wu and Manber [13, 12].

Another particularly interesting NFA construction algorithm is by Glushkov [6], popularized by Berry and
Sethi in [3]. The NFA resulting from this construction has the advantage of having just m+ 1 states (one per
position in the regular expression). Its number of transitions is worst case quadratic, but this is unimportant
under our bit-parallel representation (it just means denser bit masks). We present this construction in depth.

2.1 Glushkov construction

The construction begins by marking the positions of the characters of X' in RE| counting only characters. For
instance, (AT|GA) ((AG|AAA)*) is marked (A1T%|G3A4)((AsGe|A7AgAg)*). A marked expression from a reg-
ular expression RE is denoted RE and its language (including the indices on each character) L(RE). On our
example, L((A1T2|G3A4)((A5G6|A7A8A9)*)) :_{A1T2 N G3A4, A1T2A5G6 N %4145(;6’ A1T2A7A8A9 N
G3A4A7A849, A1T2A5G6AsGs, ...} Let Pos(RE) be the set of positions in RE (i.e., Pos = {1...m})
and ¥ the marked character alphabet.

The Glushkov automaton is built first on the marked expression RE and it recognizes L(RE). We then
derive from it the Glushkov automaton that recognizes L(RE) by erasing the position indices of all the
characters (see below).

The idea of Glushkov is the following. The set of positions is taken as a reference, becoming the set of
states of the resulting automaton (adding an initial state 0). So we build m + 1 states labeled from 0 to m.
Each state j represents the fact that we have read in the text a string that ends at NFA position j. Now if
we read a new character o, we need to know which positions {j; ...jz} we can reach from j by ¢. Glushkov
computes from a position (state) j all the other accessible positions {j; ...z}

We need four new definitions to explain in depth the algorithm. We denote below by oy the indexed
character of RE that is at position v.

Definition First(RE) = {z € Pos(RE), Ju € T, oLu € L(RE)}, i.e. the set of initial positions of
L(RE), that is, the set of positions at which the reading can start. In our example, First((A1T3|GsA4)((AsGs|
A7AgAg)¥)) = {1,3}).

Definition Last(RE) = {z € Pos(RE), Ju ¢ f*, uo, € L(RE)}, i.e. the set of final positions of L(RE),
that is, the set of positions at which a string read can be recognized. In our ezample, Last((A1T2|G3A4)((AsGe|
ArAgAg)x)) = {2,4,6,9}).
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Definition Follow(z) = {y € Pos(RE), Ju,v € f*, uoyayv € L(RE)}, i.e. all the positions in Pos(RE)
accessible from x. For instance, in our erample, if we consider position 6, the set of accessible positions
Follow((A1T2|G3A4) ((A5G6| A7A8A9)*), 6) = {7, 5}

Definition The function Emptyrg is {¢} if € belongs to L(RE) and 0 otherwise.

The Glushkov automaton GL = (S, £, I, F,§) that recognizes the language L(RE) is built from these
three sets in the following way (Figure 1 shows our example NFA).
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Fig. 1. Marked Glushkov automaton built on the marked regular expression (A;7T2|GsA4)((AsGe|A7AgAg)*). The

state O is initial. Double-circled states are final.

1. S is the set of states, S = {0,1,...,m}, i.e., the set of positions Pos(RE) and the initial state is I = 0.

2. F is the set of final states, F = Last(RE)U(Emptyrg -{0}). Informally, a state (position) i is final if it is
in Last(RE) (in which case when reaching such a position we know that we recognized a string in L(RE)).
The initial state 0 is also final if the empty word ¢ belongs to L(RE), in which case Emptyrr = {c}
and hence Emptygg - {0} = {0}. If not, Emptyry = Emptyrg - {0} = 0.

3. & is the transition function of the automaton, defined by

Vz € Pos(RE), Yy € Follow(RE, ), §(z,04) = y. (1)
Informally, there is a transition from state z to y by oy if y follows z.
The Glushkov automaton of the original RE is now simply obtained by erasing the position indices in

the marked automaton. The new automaton recognizes the language L(RE). The Glushkov automaton of
our example (AT|GA) ((AG|AAA)*) is shown in Figure 2.
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Fig. 2. Glushkov automaton built on the regular expression (AT|GA) ((AG|AAA)*). The state 0 is initial. Double-circled
states are final.



The complexity of this construction is O(m?), which can be reduced to O(m?) in different ways by using
distinct properties of the First and Follow sets [4,5]. However, when using bit parallelism, the complexity
is directly reduced to O(m?) by manipulating all the states in a register (see Section 3).

3 DFA representation and search algorithm

The classical algorithm to produce a DFA from an NFA consists in making each DFA state represent a set
of NFA states which may be active at that point. A possible way to represent the states of a DFA (i.e.
the sets of states of an NFA) is to use a bit mask of O(m) bits, as already explained. Previous bit-parallel
implementations [7, 13] are built on this idea. We present in this section a new bit-parallel DFA representation
based on Glushkov’s construction. As we make heavy use of this construction and its properties, we start by
presenting a bit-parallel implementation of Glushkov’s construction.

3.1 Bit-parallel Glushkov construction

All along the Glushkov algorithm we manipulate sets of NFA states. As it is useful for the search algorithm,
we will use bit-parallelism to represent these sets of states, that is, we will represent sets using bit masks of
m + 1 bits, where the ¢-th bit is 1 if and only if state number 2 belongs to the set.

An immediate advantage of using a bit-parallel implementation is that we can easily handle classes of
characters. This means that at each position of the regular expression there is not just a character of X' but
a set of characters, any of which is good to traverse the corresponding arrow. Rather than just converting
the set {a1,az,...ar} into (ai]az|...|ar) (and creating k positions instead of one), we can consider the class
as a single letter.

The algorithm of Glushkov is based on the parse tree of the regular expression. Each node v of this
tree represents a sub-expression RE, of RE. For each node, its variables First(v), Last(v), Follow(v,z) and
Empty, are computed in postfix order. We will consider that regular expressions contain classes of characters
rather than single characters at the leaves of their syntax trees.

Figure 3 shows this preprocessing. Together with the above mentioned variables, we fill a table of bitmasks
B: XY — 2™*! such that the i-th bit of B[c] is set if and only if ¢ belongs to the class at the i-th position
of the regular expression. We assume that the table is initialized with zeros.

We do not complete the Glushkov algorithm because we do not really use its NFA. Rather, we build
directly from its First, Last and Follow variables.

3.2 Properties of Glushkov’s construction

We present now some properties of the Glushkov construction which are necessary for our compact DFA
representation. All them are very easy to prove.

A first property should be obvious at this point, but it is important because it makes our problem totally
different from that of a Thompson’s construction. Since we do not build any e-transitions, we have

Property Glushkov’s NFA is e-free.

That is, in the approach of Wu and Manber [13], the e-transitions are the complicated part, because all
the others move forward. We do not have these transitions in the Glushkov automaton, but on the other
hand the normal transitions do not follow such a simple pattern.

However, there are still important structural properties in the arrows. One of these is captured in the
following Lemma.



Glushkov_variables(vrg, lpos)
1 Ifv=1[]|](vi,vs) OR’U:I:I(’U[,’UT) Then

2 lpos + Glushkov_variables(v;, lpos)

3 lpos + Glushkov_variables(v,, lpos)

4, Else If v = * Then lpos + Glushkov_variables(v,, lpos)
5. End of if

6 If v = (¢) Then

7 First(v) «+ 0™t!, Last(v) « 0™*', Empty, < TRUE
8 Else If v = (C), C C ¥ Then

9 lpos + lpos +1

10. For o € C Do B[o] « Blo] | 0™~ Fo*10P°*

11. First(v) « 0™ P°210'°° | Last(v) « 0™~ 'Poc10'P°*

12. Empty, < FALSE , Follow(lpos) «+ 0™*!

13. Else If v = [ |] (vi,v.) Then

14. First(v) « First(vw) | First(vy), Last(v) < Last(v;) | Last(vy)
15. Empty, <+ Empty., oR Empty.,

16. Else If v = D (vi,vr) Then

17. First(v) « First(v), Last(v) < Last(v,)

18. If Empty,, = TRUE Then First(v) « First(v) | First(v,)
19. If Empty,, = TRUE Then Last(v) < Last(vi) | Last(v)
20. Empty, <+ Empty., AND Empty.,

21. For = € Last(v;) Do Follow(z) + Follow(z) | First(v,)

22. Else Ifv= (v«) Then

23. First(v) « First(v.), Last(v) + Last(v.), Empty, < TRUE
24. For z € Last(v.) Do Follow(z) + Follow(z) | First(v«)

25.  End of if
26. Return lpos

Fig. 3. Computing the variables for the Glushkov algorithm. The syntax tree can be a union node ([ | ] (vi,v-)) or
a concatenation node (D (vi,vr)) of subtrees v; and v,; a Kleen star node ( (v«)) with subtree vy, or a leaf node
corresponding to the empty string (¢) or a class of characters (C).

Lemma 1 All the arrows leading to a given state in Glushkov’s NFA are labeled by the same character.
Moreover, if classes of characters are permitted at the positions of the regular expression, then all the arrows
leading to a given state in Glushkov’s NFA are labeled by the same class.

Proof. This is easily seen in Formula (1). The character labeling the arrows that arrive at state y is precisely
oy. This also holds if we consider that oy is in fact a subset of X.

These properties can be combined with the B table to yield our most important property.

Lemma 2 Let B(o) be the set of positions of the regular expression that contain character o. Let Follow(z)
be the set of states that can follow state z in one transition, by Glushkov’s construction. Leté: Sx X — 8§
the transition function of the Glushkov’s NFA, i.e. y € é(z,0) if and only if from state ¢ we can move to
state y by character o. Then, it holds

§(z,0) = Follow(z) N B(o)



Proof. The lemma follows from Lemma 1. Let y € d(z, ). This means that y can be reached from z by o
and therefore y € Follow(z)NB(c). Conversely, let y € Follow(z)NB(c). Then y can be reached by letter
and it can be reached from z. But Lemma 1 implies that every arrow leading to y is labeled by o, including
the one departing from , and hence y € 6(=, o).

Finally, a last property is necessary for technical reasons made clear shortly.
Lemma 3 The initial state 0 in Glushkov’s NFA does not receive any arrow.

Proof. This is clear since all the arrows are built in Formula (1), and the initial state is not in the Follow
set of any other state (see the definition of Follow).

With these properties in mind we can design now a compact DFA representation.

3.3 A compact DFA representation

We now use Lemma 2 to obtain a compact representation of the DFA. The idea is to compute the transitions
by using two tables: the first one is simply B[c], which is built in algorithm Glushkov_variables and gives
a bit mask of the states reachable by each letter (no matter from where). The second is a deterministic
version of Follow, i.e. a table T from sets of states to sets of states (in bit mask form) such that

T[D] = |J Follow(i)
i€D

tells which states can be reached from an active state in D, no matter by which character.
By Lemma 2, it holds that
§(D,o) = T[D] & BJo]

(where we are using bit mask representation for sets). Hence instead of the complete transition table
§: 2™l x % — 2% we build and store only T : 2™+! — 2+l and B : X — 2™+, The number
of bits required in this representation is (m + 1)(2™*+! + | ¥|). Figure 4 shows the algorithm to build T from
Follow at optimal cost O(2™).

BuildT (Follow,m)
T[0] « o™*!
For:€0...m Do
For j€0...2° —1 Do
T[2' 4 4] « Follow(i) | T[4]
End of for
End of for
Return T

R ol

Fig. 4. Construction of table T from Glushkov’s variables. We use a numeric notation for the argument of T’ and use
Follow in bit mask form.



3.4 A search algorithm

We present now the search algorithm based on the previous construction. Let us call First and Last the
variables corresponding to the whole regular expression.

Our first step will be to set Follow(0) = First for technical convenience. Second, we will add a self
loop at state 0 which can be traversed by any ¢ € X. This is because, for searching purposes, the NFA
that recognizes a regular expression must be converted into one that searches the regular expression. This
is achieved by appending X* at its beginning, or which is the same, adding a self-loop as described. As, by
Lemma 3, no arrow goes to state 0, it still holds that all the arrows leading to a state are labeled the same
way (Lemma 1). Figure 5 shows the search algorithm.

Search(RE, T = tity ... tp)

1 Preprocessing

2 (vrE, m) < Parse(RE) /* parse the regular expression */

3 Glushkov_variables(vrg,0) /* build the variables on the tree */
4. Follow(0) + 0™1 | First /* add initial self-loop */

5. For o € ¥ Do Blo] « Blo]|0™1

6 T + BuildT(Follow,m) /* build T table */

7 Searching

8 D + 0™1 /* the initial state */

9. For jel...n Do

10. If D & Last # 0™ Then report an occurrence ending at j — 1
11. D + T[D] & B[t;] /* simulate transition */

12. End of for

Fig. 5. Glushkov-based bit-parallel search algorithm. We assume that Parse gives the syntax tree vgg and the
number of positions m in RE.

Compared to Wu and Manber’s algorithm [13], ours has the advantage of needing (m+1)(2™+! +|X|) bits
of space instead of their m(2?2™+! + | Z|) bits in the worst case (their best case is equal to our complexity).
Just as they propose, we can split T horizontally to reduce space, so as to obtain O(mn/ log s) time with O(s)
space. Compared to our previous algorithm [8], the new one compares favorably against its (m + 1)2™+1| |
bits of space. Therefore, our new algorithm should be always preferred over previous bit parallel algorithms.

With respect to a classical DFA implementation, its worst case is 2™1! states, and it stores a table which
for each state and each character stores the new state. This requires (m + 1)2™+1| 3| bits in the worst case.
However, in the classical algorithm it is customary to build only the states that can actually be reached,
which can be much less than all the 2™t possibilities.

We can do something similar, in the sense of filling only the reachable cells of T' (yet, we cannot pack
them consecutively as a classical DFA). Figure 6 shows the recursive construction of this table, which is
invoked with D = 0™1, the initial state, and assumes that 7T is initialized with zeros and that B, Follow
and m are already computed.

4 Experimental results

We compare in this section our approach against previous work. We use two different texts: an English one
(writings of B. Franklin, filtered to lower-case) and a DNA sequence (h.influenzae). Both were replicated
until obtaining 10 Mb.



BuildTrec (D)
For : €0...m Do /* first build T[D] */
If D & 0™7*10" # 0™*! Then T[D] « T[D] | Follow(s)
End of for
For 0 € ¥ Do
If T[N & B[o]] = 0™*! Then /* not built yet */
BuildTrec (N & B[c])
End of for

NS g w

Fig. 6. Recursive construction of table T. We fill only the reachable cells.

A major problem when presenting experiments on regular expressions is that there is not a concept of
“random” regular expression, so it is not possible to search, say, 1,000 random patterns. Lacking such good
choice, we fixed a set of 10 patterns for English and 10 for DNA, which were selected to illustrate different
interesting cases rather than more or less “probable” cases. Therefore, the goal is not to show what are the
typical cases in practice but to show how the scheme behaves under different characteristics of the pattern.

The patterns are given in Table 1. We also show their number of letters, which is closely related to the
size of the automata recognizing them. The period (.) in the patterns matches any character except the end
of line (lines have approximately 70 characters). We also use [c1...ci] (where ¢; are characters) as a shorthand
for (ci|...|ck). Instead of a character ¢, a range c'-c? can be specified to avoid enumerating all the letters
between (and including) ¢! and ¢?.

Z
o

.DNA Pattern

Z
o

m .|English Pattern m
1 JACC(AIG)T)*A 6|1 |benjamin|franklin 16
2 |AGT(TGACAG)*A 10{|2 |benjamin|franklin|writing |23
3 [(A(TICYG) | ((CG)*A) 7|3 |[a-z][a-z0-9]+*[a-z] 3
4 |GTTIT|AG* 6|4 |benj.*min 8
5 |A(G|CT)* 4|5 |[a-z][a-z][a-z][a-z][a-z] |5
6 |((AlCG)*|(AC(TIG))*)AG 9|6 |(benj.*min)|(fra.*1lin) 15
7 |AG(TC|G)*TA 7117 |pben(al(jla)*)min 9
8 |[ACG][ACG] [ACG] [ACG][ACG]I[ACGIT |7 ||8 |be.*ja.*in 8
9 |TTTTTTTTTT[AG] 119 |ben[jllamin 8
10 |AGT.*AGT 7]|10 |(belfr)(njlan) (am|k1l)in |14

Table 1. The patterns used on DNA and English.

Our machine is a Sun UltraSparc-1 of 167 MHz, with 64 Mb of RAM, running Solaris 2.5.1. We measured
CPU times in seconds, averaging 100 runs over the 10 Mb (the variance was very low).

We have tested the following forward scanning algorithms (the implementations are ours except otherwise
stated). See the Introduction for detailed descriptions of previous work. We have left aside some algorithms
that are clearly not competitive, such as Thompson’s [10].

DFA: builds the classical deterministic automaton and runs it over the text. We have not minimized the
automaton.

Agrep: uses a bit mask to handle the active states [13]. The software [12] is from S. Wu and U. Manber,
and has an advantage on frequently occurring patterns because it abandons a line as soon as it finds the
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pattern on it. We forced it to build one table, except for the English pattern #2, where two tables were
faster.

Myers: is the algorithm based on modules implemented as DFAs [7]. The code is from G. Myers.

Ours (old): our previous forward algorithm of [8] (see Section 2). It builds only the reachable states, just
like the classical DFA algorithm.

Ours (naive): our new algorithm building the whole table T' with BuildT.

Ours (optim): our new algorithm where we build only the 7' mask for the reachable states, using BuildTrec.

The goal of showing two versions of our algorithm is as follows. Our normal algorithm builds the complete
T, table for all the 2™*! possible combinations (reachable or not) of active and inactive states. It permits
comparing directly against Agrep and to show that our technique is superior. Our optimized algorithm
builds only the reachable states and it permits comparing against DFA (the classical algorithm) and our
old algorithm. The disadvantage of our optimized algorithm is that it does not permit splitting the tables
(neither does DFA), while our “naive” algorithm and that of Agrep do.

Tables 2 and 3 show the results on the different patterns, where we have separated preprocessing and
search time. As it can be seen, Myers’ algorithm is out of competition (it should be a good choice for much
larger regular expressions). Our new algorithm (naive version) compares favorably in search time against
Agrep, scanning (averaging over the 20 patterns) 16.0 Mb/sec versus about 13.2 Mb/sec of Agrep. It works
quite well except on large patterns like the natural language pattern #2. Our optimized algorithm behaves
well in those situations too, and compares favorably against the classical DFA algorithm and our old bit
parallel algorithm, which scan the text at 14.4 and 14.6 Mb/sec, respectively. This means that our new
algorithm is at least 10% faster than any alternative approach.

In all cases, searching larger expressions costs more, both in preprocessing and in search time because of
locality of reference. Note that our optimized algorithm is sometimes worse than the naive one. This occurs
when most states are reachable, in which case the naive algorithm fills all them without the overhead of the
recursion. But this only happens when the preprocessing time is negligible.

DFA Agrep Myers Ours (old) | Ours (naive) | Ours (optim)
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0.034 + 0.643n
0.006 + 0.624n
0.028 + 0.796n
0.025 + 0.883n
0.018 + 0.831n
0.007 + 0.658n
0.004 + 0.634n
0.004 + 0.646n
0.006 + 0.621n
0.038 + 0.639n

0.104 + 0.756n
0.133 4 0.754n
0.095 + 0.758n
0.101 + 0.760n
0.089 + 0.757n
0.126 4 0.762n
0.104 + 0.750n
0.101 + 0.831n
0.096 + 0.694n
0.108 + 0.748n

0.086 + 2.201n
0.090 + 4.965n
0.080 + 2.182n
0.082 + 2.141n
0.088 + 2.205n
0.089 + 2.148n
0.092 + 2.173n
0.099 + 2.132n
0.085 + 5.304n
0.098 + 2.109n

0.007 + 0.631n
0.011 + 0.630n
0.007 + 0.803n
0.008 + 0.865n
0.007 + 0.814n
0.008 + 0.652n
0.005 + 0.635n
0.012 + 0.638n
0.024 + 0.626n
0.018 + 0.645n

0.009 + 0.584n
0.049 + 0.566n
0.007 + 0.759n
0.012 + 0.788n
0.005 + 0.755n
0.014 + 0.584n
0.015 + 0.571n
0.008 + 0.583n
0.005 + 0.568n
0.011 + 0.560n

0.005 + 0.575n
0.000 + 0.576n
0.087 + 0.775n
0.029 + 0.807n
0.008 + 0.777n
0.004 + 0.592n
0.040 + 0.567n
0.071 + 0.582n
0.007 + 0.565n
0.036 + 0.562n

Table 2. Search times on English, in the form of a 4 bn, where a is the preprocessing time and b is the search time

per megabyte, all in tenths of seconds.

5 Conclusions

We have presented a new technique for compact DFA representation based on the properties of Glushkov’s
NFA construction, as opposed to the much better known Thompson’s. As a result, we can represent the
DFA using (m + 1)(2™*! + | Z|) bits (where m is the number of normal characters in the pattern and ¥ is



DFA

Agrep

Myers

Ours (old)

Ours (naive)

Ours (optim)
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0.010 + 0.633n
0.022 + 0.629n
0.003 + 0.932n
0.068 + 0.639n
0.009 + 0.879n
0.242 + 0.645n
0.007 + 0.631n
0.081 + 0.628n
0.000 + 0.627n
0.012 + 0.632n

0.114 4 0.779n
0.112 + 1.583n
0.106 + 0.769n
0.100 + 0.755n
0.095 + 0.871n
1.494 4 0.775n
0.122 4 0.755n
0.103 + 0.755n
0.102 + 0.704n
0.774 4 0.789n

0.090 + 5.293n
0.090 + 8.452n
0.090 + 2.103n
0.080 + 2.111n
0.090 + 2.110n
0.090 + 5.204n
0.090 + 2.140n
0.090 + 2.133n
0.086 + 2.100n
0.081 + 5.244n

0.006 + 0.633n
0.009 + 0.699n
0.050 + 0.897n
0.023 + 0.631n
0.063 + 0.727n
0.083 + 0.640n
0.006 + 0.625n
0.023 + 0.624n
0.008 + 0.626n
0.007 + 0.643n

0.074 + 0.569n
20.61 + 0.575n
0.007 + 0.856n
0.008 + 0.567n
0.050 + 0.664n
0.043 + 0.569n
0.006 + 0.572n
0.048 + 0.562n
0.011 + 0.567n
0.018 + 0.567n

0.009 + 0.563n
0.019 + 0.569n
0.022 + 0.898n
0.000 + 0.578n
0.000 + 0.684n
0.013 + 0.567n
0.001 + 0.578n
0.027 + 0.556n
0.002 + 0.565n
0.005 + 0.561n
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Table 3. Search times on English, in the form of a 4 bn, where a is the preprocessing time and b is the search time
per megabyte, all in tenths of seconds.

the alphabet). This compares favorably against previous techniques which needed either (m + 1)2™*!|X] or
m(22™+1 4 | Z|) bits.

The representation is quite practical. We are not only still able of searching in O(n) time using the
compact DFA, but thanks to more locality of reference we can search faster in practice than any previous
approach, as we show experimentally.

Despite that we have presented a forward scan algorithm, our approach can be adapted to character
skipping algorithms as well. For example, our algorithm presented in [8] modified the automaton by reversing
its arrows, making all the states initial and making the initial state final, so as to recognize reverse prefixes
of the original language L(RE). This algorithm is used to extend BNDM [9] so as to obtain a fast character
skipping algorithm for regular expression search.

Reversing the arrows means that the property that all arrows arriving to a state have the same label
does not hold anymore (once we reverse the arrows, the result is not a Glushkov NFA). Rather, all the
arrows departing from a state have now the same label. Once again, we can represent the DFA in a compact
form by noting that §(D,0) = T [D &B[o]], where T is the deterministic Follow table of the reversed
automaton and B is the character table of the original automaton. That is, we first keep the states of D that
can originate arrows labeled by o, and once they are obtained we find all the target states.
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