
Compact DFA Representation for Fast Regular ExpressionSearch?Gonzalo Navarro1 and Mathieu Ra�not21 Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile. E-mail:gnavarro@dcc.uchile.cl.2 Equipe g�enome, cellule et informatique, Universit�e de Versailles, 45 avenue des Etats-Unis, 78035 VersaillesCedex, E-mail: raffinot@genetique.uvsq.fr.Abstract. We present a new technique to encode a deterministic �nite automaton (DFA). Based onthe speci�c properties of Glushkov's nondeterministic �nite automaton (NFA) construction algorithm,we are able to encode the DFA using (m+ 1)(2m+1 + j�j) bits, where m is the number of characters(excluding operator symbols) in the regular expression and � is the alphabet. This compares favorablyagainst the worst case of (m+1)2m+1j�j bits needed by a classical DFA representation and m(22m+1+j�j) bits needed by the Wu and Manber approach implemented in Agrep.Our approach is practical and simple to implement, and it permits searching regular expressions ofmoderate size (which include most cases of interest) faster than with any previously existing algorithm,as we show experimentally.1 Introduction and Related WorkThe need to search for regular expressions arises in many text-based applications, such as text retrieval, textediting and computational biology, to name a few. A regular expression is a generalized pattern composed of(i) basic strings, (ii) union, concatenation and Kleene closure of other regular expressions. Readers unfamiliarwith the concept and terminology related to regular expressions are referred to a classical book such as [1].We call RE our regular expression, which is of length m. This means that m is the total number of charactersin RE, not counting operators symbols \j", *" and parentheses. We note L(RE) the set of words generatedby RE and � the alphabet.The traditional technique [10] to search a regular expression of length m in a text of length n is toconvert the expression into a nondeterministic �nite automaton (NFA) with O(m) nodes. Then, it is possibleto search the text using the automaton at O(mn) worst case time. The cost comes from the fact that morethan one state of the NFA may be active at each step, and therefore all may need to be updated. A moree�cient choice [1] is to convert the NFA into a deterministic �nite automaton (DFA), which has only oneactive state at a time and therefore allows searching the text at O(n) cost, which is worst-case optimal. Theproblem with this approach is that the DFA may have O(2m) states, which implies a preprocessing cost andextra space exponential in m.Some techniques have been proposed to obtain a good tradeo� between both extremes. In 1992, Myers [7]presented a four-russians approach which obtains O(mn= log n) worst-case time and extra space. The idea isto divide the syntax tree of the regular expression into \modules", which are subtrees of a reasonable size.These subtrees are implemented as DFAs and are thereafter considered as leaf nodes in the syntax tree. Theprocess continues with this reduced tree until a single �nal module is obtained.The DFA simulation of modules is done using bit-parallelism, which is a technique to code many elementsin the bits of a single computer word (which is called a \bit mask") and manage to update all them in asingle operation. Typical bit operations are in�x \j" (bitwise or), in�x \&" (bitwise and), pre�x \�" (bitcomplementation), and in�x \<<" (\>>"), which moves the bits of the �rst argument (a bit mask) to higher? Partially supported by ECOS-Sud project C99E04 and, for the �rst author, Fondecyt grant 1-990627.

2(lower) positions in an amount given by the right argument. Additionally, one can treat the bit masks asnumbers and obtain speci�c e�ects using the arithmetic operations +, �, etc. Exponentiation is used todenote bit repetition, e.g. 031 = 0001.In our case, the vector of active and inactive states is stored as bits of a computer word. Instead of(ala Thompson [10]) examining the active states one by one, the whole computer word is used to index atable which, together with the current text character, provides the new bit mask of active states. This canbe considered either as a bit-parallel simulation of an NFA, or as an implementation of a DFA (where theidenti�er of each deterministic state is the bit mask as a whole).Pushing even more on this direction, one may resort to pure bit-parallelism and forget about the modules.This was done in [13] by Wu and Manber, and included in their software Agrep [12]. A computer word isused to represent the active (1) and inactive (0) states of the NFA. If the states are properly arranged andthe Thompson construction [10] is used, then all the arrows carry 1's from bit positions i to i + 1, exceptfor the "-transitions. Then, a generalization of Shift-Or [2] (the canonical bit-parallel algorithm for exactstring matching) is presented, where for each text character two steps are performed. First, a forward stepmoves all the 1's that can move from a state to the next one. This is achieved by precomputing a tableB : � ! 2O(m), such that the i-th bit of B[c] is set if and only if the character c matches at the i-th positionof the regular expression. Second, the "-transitions are carried out. As "-transitions follow arbitrary paths,a table E : 2O(m) ! 2O(m) is precomputed, where E[D] is the "-closure of D. To move from the state set Dto the new D0 after reading text character c, the action isD0 E[(D << 1) j B[c]]Possible space problems are solved by splitting this table \horizontally" (i.e. less bits per entry) in asmany subtables as needed, using the fact that E[D1D2] = E[D10jD2j] j E[0jD1jD2]. This can be thought ofas an alternative decomposition scheme, instead of Myers' modules.All the approaches mentioned are based on the Thompson construction of the NFA, whose properties havebeen exploited in di�erent ways. An alternative, much less known, NFA construction algorithm is Glushkov's[6, 3]. A good point of this construction is that, for a regular expression of m characters, the NFA obtainedhas exactly m + 1 states and is free of "-transitions. Thompson's construction, instead, produces betweenm + 1 and 2m states. This means that Wu and Manber's table may need a table of size 22m entries of 2mbits each, for a total space requirement of m(22m+1 + j�j) bits (E plus B tables).In [8], we proposed the use of Glushkov's construction instead of Thompson's. The table had then 2m+1entries, but unfortunately the structural property that arrows were either forward or "-transitions did nothold anymore. As a result, we needed a table M : 2m+1 � � ! 2m+1 indexed by the current state andtext character, for a total space requirement of (m + 1)2m+1j�j bits. The transition action was simplyD0 M [D; c], just as for a classical DFA implementation. We showed experimentally that the Glushkovbased construction was normally faster than the one based on Thompson, but not better than a classicalDFA.In this paper, we use speci�c properties of the Glushkov construction (namely, that all the arrows arrivingto a state are labeled by the same letter) to eliminate the need of a separate table per text character. As aresult, we obtain the best of both worlds: we can have tables whose arguments have just m+1 bits and we canhave just one table instead of one per character. Thus we can represent the DFA using (m+ 1)(2m+1 + j�j)bits, which is not only better than both previous bit parallel implementations but also better than theclassical DFA representation, which needs in the worst case (m + 1)2m+1j�j bits.The net result is a simple algorithm for regular expression searching which uses normally less spaceand has faster preprocessing and search time (albeit all are O(n) search time, a smaller DFA representationimplies more locality of reference). We show experimentally that we are at least 10% faster than any previousalgorithm for searching regular expressions of moderate size, which include most cases of interest.The algorithms reviewed are called \forward scanning" algorithms because they inspect all the textcharacters, one by one. It should be noted that there exist algorithms able to skip text characters, which

3are based on discarding text areas that cannot contain a match and using a classical algorithm on the rest.Example of these algorithms are that based on multi pattern matching (Watson [11, chapter 5]), on �lteringusing necessary substrings (Gnu Grep v2.0) and on reversing the arrows of the DFA to search reversed factorsof the regular expression (Navarro and Ra�not [8]). Those algorithms are in some cases faster than ours, butall them need a forward scan algorithm to search the text areas that cannot be discarded. Hence, a betterforward scanning algorithm is always welcome. Moreover, many interesting regular expressions cannot bee�ciently searched using backward scanning algorithms. In particular, we show how to use our compactrepresentation to obtain an improved version of our previous algorithm in [8].2 Glushkov automatonThere exist currently many di�erent techniques to build an NFA from a regular expression RE ofm characters(without counting the special symbols). The most classical one is the Thompson construction [10], whichbuilds an NFA with at most 2m states (and at least m + 1). This NFA has some particular properties (e.g.O(1) transitions leaving each node) that have been extensively exploited in several regular expression searchalgorithm such as that of Thompson [10], Myers [7] and Wu and Manber [13, 12].Another particularly interesting NFA construction algorithm is by Glushkov [6], popularized by Berry andSethi in [3]. The NFA resulting from this construction has the advantage of having just m+1 states (one perposition in the regular expression). Its number of transitions is worst case quadratic, but this is unimportantunder our bit-parallel representation (it just means denser bit masks). We present this construction in depth.2.1 Glushkov constructionThe construction begins by marking the positions of the characters of � in RE, counting only characters. Forinstance, (AT|GA)((AG|AAA)*) is marked (A1T2jG3A4)((A5G6jA7A8A9)�). A marked expression from a reg-ular expression RE is denoted RE and its language (including the indices on each character) L(RE). On ourexample, L((A1T2jG3A4)((A5G6jA7A8A9)�)) = fA1T2, G3A4, A1T2A5G6, G3A4A5G6, A1T2A7A8A9,G3A4A7A8A9, A1T2A5G6A5G6; : : :g. Let Pos(RE) be the set of positions in RE (i.e., Pos = f1 : : :mg)and � the marked character alphabet.The Glushkov automaton is built �rst on the marked expression RE and it recognizes L(RE). We thenderive from it the Glushkov automaton that recognizes L(RE) by erasing the position indices of all thecharacters (see below).The idea of Glushkov is the following. The set of positions is taken as a reference, becoming the set ofstates of the resulting automaton (adding an initial state 0). So we build m + 1 states labeled from 0 to m.Each state j represents the fact that we have read in the text a string that ends at NFA position j. Now ifwe read a new character �, we need to know which positions fj1 : : : jkg we can reach from j by �. Glushkovcomputes from a position (state) j all the other accessible positions fj1 : : : jkg.We need four new de�nitions to explain in depth the algorithm. We denote below by �y the indexedcharacter of RE that is at position y.De�nition First(RE) = fx 2 Pos(RE); 9u 2 ��; �xu 2 L(RE)g, i.e. the set of initial positions ofL(RE), that is, the set of positions at which the reading can start. In our example, First((A1T2jG3A4)((A5G6jA7A8A9)�)) = f1; 3g).De�nition Last(RE) = fx 2 Pos(RE); 9u 2 ��; u�x 2 L(RE)g, i.e. the set of �nal positions of L(RE),that is, the set of positions at which a string read can be recognized. In our example, Last((A1T2jG3A4)((A5G6jA7A8A9)�)) = f2; 4; 6; 9g).

4De�nition Follow(x) = fy 2 Pos(RE); 9u; v 2 ��; u�x�yv 2 L(RE)g, i.e. all the positions in Pos(RE)accessible from x. For instance, in our example, if we consider position 6, the set of accessible positionsFollow((A1T2jG3A4) ((A5G6j A7A8A9)�); 6) = f7; 5g.De�nition The function EmptyRE is f"g if " belongs to L(RE) and ; otherwise.The Glushkov automaton GL = (S;�; I; F; �) that recognizes the language L(RE) is built from thesethree sets in the following way (Figure 1 shows our example NFA).
9AA8A7G6A5A4A1

G3

2T

A5 A5

A7

A7

A7

A5

0 1 2 3 4 5 6 7 98Fig. 1. Marked Glushkov automaton built on the marked regular expression (A1T2jG3A4)((A5G6jA7A8A9)�). Thestate 0 is initial. Double-circled states are �nal.1. S is the set of states, S = f0; 1; : : :;mg, i.e., the set of positions Pos(RE) and the initial state is I = 0.2. F is the set of �nal states, F = Last(RE)[(EmptyRE �f0g). Informally, a state (position) i is �nal if it isin Last(RE) (in which case when reaching such a position we know that we recognized a string in L(RE)).The initial state 0 is also �nal if the empty word " belongs to L(RE), in which case EmptyRE = f"gand hence EmptyRE � f0g = f0g. If not, EmptyRE = EmptyRE � f0g = ;.3. � is the transition function of the automaton, de�ned by8x 2 Pos(RE); 8y 2 Follow(RE; x); �(x; �y) = y: (1)Informally, there is a transition from state x to y by �y if y follows x.The Glushkov automaton of the original RE is now simply obtained by erasing the position indices inthe marked automaton. The new automaton recognizes the language L(RE). The Glushkov automaton ofour example (AT|GA)((AG|AAA)*) is shown in Figure 2.
0 1 2 3 4 5 6 7 98

G

A T A

A

A

A

A

A

G A A

A

A

AFig. 2. Glushkov automaton built on the regular expression (AT|GA)((AG|AAA)*). The state 0 is initial. Double-circledstates are �nal.

5The complexity of this construction is O(m3), which can be reduced to O(m2) in di�erent ways by usingdistinct properties of the First and Follow sets [4, 5]. However, when using bit parallelism, the complexityis directly reduced to O(m2) by manipulating all the states in a register (see Section 3).3 DFA representation and search algorithmThe classical algorithm to produce a DFA from an NFA consists in making each DFA state represent a setof NFA states which may be active at that point. A possible way to represent the states of a DFA (i.e.the sets of states of an NFA) is to use a bit mask of O(m) bits, as already explained. Previous bit-parallelimplementations [7, 13] are built on this idea. We present in this section a new bit-parallel DFA representationbased on Glushkov's construction. As we make heavy use of this construction and its properties, we start bypresenting a bit-parallel implementation of Glushkov's construction.3.1 Bit-parallel Glushkov constructionAll along the Glushkov algorithm we manipulate sets of NFA states. As it is useful for the search algorithm,we will use bit-parallelism to represent these sets of states, that is, we will represent sets using bit masks ofm + 1 bits, where the i-th bit is 1 if and only if state number i belongs to the set.An immediate advantage of using a bit-parallel implementation is that we can easily handle classes ofcharacters. This means that at each position of the regular expression there is not just a character of � buta set of characters, any of which is good to traverse the corresponding arrow. Rather than just convertingthe set fa1; a2; : : :akg into (a1ja2j : : : jak) (and creating k positions instead of one), we can consider the classas a single letter.The algorithm of Glushkov is based on the parse tree of the regular expression. Each node v of thistree represents a sub-expression REv of RE. For each node, its variables First(v), Last(v), Follow(v; x) andEmptyv are computed in post�x order. We will consider that regular expressions contain classes of charactersrather than single characters at the leaves of their syntax trees.Figure 3 shows this preprocessing. Together with the above mentioned variables, we �ll a table of bitmasksB : � ! 2m+1, such that the i-th bit of B[c] is set if and only if c belongs to the class at the i-th positionof the regular expression. We assume that the table is initialized with zeros.We do not complete the Glushkov algorithm because we do not really use its NFA. Rather, we builddirectly from its First, Last and Follow variables.3.2 Properties of Glushkov's constructionWe present now some properties of the Glushkov construction which are necessary for our compact DFArepresentation. All them are very easy to prove.A �rst property should be obvious at this point, but it is important because it makes our problem totallydi�erent from that of a Thompson's construction. Since we do not build any "-transitions, we haveProperty Glushkov's NFA is "-free.That is, in the approach of Wu and Manber [13], the "-transitions are the complicated part, because allthe others move forward. We do not have these transitions in the Glushkov automaton, but on the otherhand the normal transitions do not follow such a simple pattern.However, there are still important structural properties in the arrows. One of these is captured in thefollowing Lemma.

6 Glushkov variables(vRE ; lpos)1. If v = [j] (vl; vr) or v = � (vl; vr) Then2. lpos Glushkov variables(vl ; lpos)3. lpos Glushkov variables(vr ; lpos)4. Else If v = � Then lpos Glushkov variables(v� ; lpos)5. End of if6. If v = (") Then7. First(v) 0m+1, Last(v) 0m+1, Emptyv true8. Else If v = (C) ; C � � Then9. lpos lpos+ 110. For � 2 C Do B[�] B[�] j 0m�lpos10lpos11. First(v) 0m�lpos10lpos, Last(v) 0m�lpos10lpos12. Emptyv false , Follow(lpos) 0m+113. Else If v = [j] (vl; vr) Then14. First(v) First(vl) j First(vr), Last(v) Last(vl) j Last(vr)15. Emptyv Emptyvl or Emptyvr16. Else If v = � (vl; vr) Then17. First(v) First(vl), Last(v) Last(vr)18. If Emptyvl = true Then First(v) First(v) j First(vr)19. If Emptyvr = true Then Last(v) Last(vl) j Last(v)20. Emptyv Emptyvl and Emptyvr21. For x 2 Last(vl) Do Follow(x) Follow(x) j First(vr)22. Else If v = � (v�) Then23. First(v) First(v�), Last(v) Last(v�), Emptyv true24. For x 2 Last(v�) Do Follow(x) Follow(x) j First(v�)25. End of if26. Return lposFig. 3. Computing the variables for the Glushkov algorithm. The syntax tree can be a union node ([j] (vl; vr)) ora concatenation node (� (vl; vr)) of subtrees vl and vr; a Kleen star node (� (v�)) with subtree v�, or a leaf nodecorresponding to the empty string (") or a class of characters (C).Lemma 1 All the arrows leading to a given state in Glushkov's NFA are labeled by the same character.Moreover, if classes of characters are permitted at the positions of the regular expression, then all the arrowsleading to a given state in Glushkov's NFA are labeled by the same class.Proof. This is easily seen in Formula (1). The character labeling the arrows that arrive at state y is precisely�y. This also holds if we consider that �y is in fact a subset of �.These properties can be combined with the B table to yield our most important property.Lemma 2 Let B(�) be the set of positions of the regular expression that contain character �. Let Follow(x)be the set of states that can follow state x in one transition, by Glushkov's construction. Let � : S �� ! Sthe transition function of the Glushkov's NFA, i.e. y 2 �(x; �) if and only if from state x we can move tostate y by character �. Then, it holds�(x; �) = Follow(x) \ B(�)

7Proof. The lemma follows from Lemma 1. Let y 2 �(x; �). This means that y can be reached from x by �and therefore y 2 Follow(x)\B(�). Conversely, let y 2 Follow(x)\B(�). Then y can be reached by letter �and it can be reached from x. But Lemma 1 implies that every arrow leading to y is labeled by �, includingthe one departing from x, and hence y 2 �(x; �).Finally, a last property is necessary for technical reasons made clear shortly.Lemma 3 The initial state 0 in Glushkov's NFA does not receive any arrow.Proof. This is clear since all the arrows are built in Formula (1), and the initial state is not in the Followset of any other state (see the de�nition of Follow).With these properties in mind we can design now a compact DFA representation.3.3 A compact DFA representationWe now use Lemma 2 to obtain a compact representation of the DFA. The idea is to compute the transitionsby using two tables: the �rst one is simply B[�], which is built in algorithm Glushkov variables and givesa bit mask of the states reachable by each letter (no matter from where). The second is a deterministicversion of Follow, i.e. a table T from sets of states to sets of states (in bit mask form) such thatT [D] = [i2D Follow(i)tells which states can be reached from an active state in D, no matter by which character.By Lemma 2, it holds that �(D;�) = T [D] & B[�](where we are using bit mask representation for sets). Hence instead of the complete transition table� : 2m+1 � � ! 2m+1 we build and store only T : 2m+1 ! 2m+1 and B : � ! 2m+1. The numberof bits required in this representation is (m+ 1)(2m+1 + j�j). Figure 4 shows the algorithm to build T fromFollow at optimal cost O(2m).BuildT (Follow;m)1. T [0] 0m+12. For i 2 0 : : :m Do3. For j 2 0 : : : 2i � 1 Do4. T [2i + j] Follow(i) j T [j]5. End of for6. End of for7. Return TFig. 4. Construction of table T from Glushkov's variables. We use a numeric notation for the argument of T and useFollow in bit mask form.

83.4 A search algorithmWe present now the search algorithm based on the previous construction. Let us call First and Last thevariables corresponding to the whole regular expression.Our �rst step will be to set Follow(0) = First for technical convenience. Second, we will add a selfloop at state 0 which can be traversed by any � 2 �. This is because, for searching purposes, the NFAthat recognizes a regular expression must be converted into one that searches the regular expression. Thisis achieved by appending �� at its beginning, or which is the same, adding a self-loop as described. As, byLemma 3, no arrow goes to state 0, it still holds that all the arrows leading to a state are labeled the sameway (Lemma 1). Figure 5 shows the search algorithm.Search(RE, T = t1t2 : : : tn)1. Preprocessing2. (vRE ;m) Parse(RE) /* parse the regular expression */3. Glushkov variables(vRE ,0) /* build the variables on the tree */4. Follow(0) 0m1 j First /* add initial self-loop */5. For � 2 � Do B[�] B[�] j 0m16. T BuildT(Follow;m) /* build T table */7. Searching8. D 0m1 /* the initial state */9. For j 2 1 : : : n Do10. If D & Last 6= 0m+1 Then report an occurrence ending at j � 111. D T [D] & B[tj] /* simulate transition */12. End of forFig. 5. Glushkov-based bit-parallel search algorithm. We assume that Parse gives the syntax tree vRE and thenumber of positions m in RE.Compared to Wu and Manber's algorithm [13], ours has the advantage of needing (m+1)(2m+1+j�j) bitsof space instead of their m(22m+1 + j�j) bits in the worst case (their best case is equal to our complexity).Just as they propose, we can split T horizontally to reduce space, so as to obtain O(mn= log s) time with O(s)space. Compared to our previous algorithm [8], the new one compares favorably against its (m+ 1)2m+1j�jbits of space. Therefore, our new algorithm should be always preferred over previous bit parallel algorithms.With respect to a classical DFA implementation, its worst case is 2m+1 states, and it stores a table whichfor each state and each character stores the new state. This requires (m+ 1)2m+1j�j bits in the worst case.However, in the classical algorithm it is customary to build only the states that can actually be reached,which can be much less than all the 2m+1 possibilities.We can do something similar, in the sense of �lling only the reachable cells of T (yet, we cannot packthem consecutively as a classical DFA). Figure 6 shows the recursive construction of this table, which isinvoked with D = 0m1, the initial state, and assumes that T is initialized with zeros and that B, Followand m are already computed.4 Experimental resultsWe compare in this section our approach against previous work. We use two di�erent texts: an English one(writings of B. Franklin, �ltered to lower-case) and a DNA sequence (h.in
uenzae). Both were replicateduntil obtaining 10 Mb.

9BuildTrec (D)1. For i 2 0 : : :m Do /* �rst build T [D] */2. If D & 0m�i10i 6= 0m+1 Then T [D] T [D] j Follow(i)3. End of for4. For � 2 � Do5. If T [N & B[�]] = 0m+1 Then /* not built yet */6. BuildTrec (N & B[�])7. End of forFig. 6. Recursive construction of table T . We �ll only the reachable cells.A major problem when presenting experiments on regular expressions is that there is not a concept of\random" regular expression, so it is not possible to search, say, 1,000 random patterns. Lacking such goodchoice, we �xed a set of 10 patterns for English and 10 for DNA, which were selected to illustrate di�erentinteresting cases rather than more or less \probable" cases. Therefore, the goal is not to show what are thetypical cases in practice but to show how the scheme behaves under di�erent characteristics of the pattern.The patterns are given in Table 1. We also show their number of letters, which is closely related to thesize of the automata recognizing them. The period (.) in the patterns matches any character except the endof line (lines have approximately 70 characters). We also use [c1:::ck] (where ci are characters) as a shorthandfor (c1j:::jck). Instead of a character c, a range c1-c2 can be speci�ed to avoid enumerating all the lettersbetween (and including) c1 and c2.No. DNA Pattern m No. English Pattern m1 AC((A|G)T)*A 6 1 benjamin|franklin 162 AGT(TGACAG)*A 10 2 benjamin|franklin|writing 233 (A(T|C)G)|((CG)*A) 7 3 [a-z][a-z0-9]*[a-z] 34 GTT|T|AG* 6 4 benj.*min 85 A(G|CT)* 4 5 [a-z][a-z][a-z][a-z][a-z] 56 ((A|CG)*|(AC(T|G))*)AG 9 6 (benj.*min)|(fra.*lin) 157 AG(TC|G)*TA 7 7 ben(a|(j|a)*)min 98 [ACG][ACG][ACG][ACG][ACG][ACG]T 7 8 be.*ja.*in 89 TTTTTTTTTT[AG] 11 9 ben[jl]amin 810 AGT.*AGT 7 10 (be|fr)(nj|an)(am|kl)in 14Table 1. The patterns used on DNA and English.Our machine is a Sun UltraSparc-1 of 167 MHz, with 64 Mb of RAM, running Solaris 2.5.1. We measuredCPU times in seconds, averaging 100 runs over the 10 Mb (the variance was very low).We have tested the following forward scanning algorithms (the implementations are ours except otherwisestated). See the Introduction for detailed descriptions of previous work. We have left aside some algorithmsthat are clearly not competitive, such as Thompson's [10].DFA: builds the classical deterministic automaton and runs it over the text. We have not minimized theautomaton.Agrep: uses a bit mask to handle the active states [13]. The software [12] is from S. Wu and U. Manber,and has an advantage on frequently occurring patterns because it abandons a line as soon as it �nds the

10 pattern on it. We forced it to build one table, except for the English pattern #2, where two tables werefaster.Myers: is the algorithm based on modules implemented as DFAs [7]. The code is from G. Myers.Ours (old): our previous forward algorithm of [8] (see Section 2). It builds only the reachable states, justlike the classical DFA algorithm.Ours (naive): our new algorithm building the whole table T with BuildT.Ours (optim): our new algorithm where we build only the T mask for the reachable states, usingBuildTrec.The goal of showing two versions of our algorithm is as follows. Our normal algorithm builds the completeTd table for all the 2m+1 possible combinations (reachable or not) of active and inactive states. It permitscomparing directly against Agrep and to show that our technique is superior. Our optimized algorithmbuilds only the reachable states and it permits comparing against DFA (the classical algorithm) and ourold algorithm. The disadvantage of our optimized algorithm is that it does not permit splitting the tables(neither does DFA), while our \naive" algorithm and that of Agrep do.Tables 2 and 3 show the results on the di�erent patterns, where we have separated preprocessing andsearch time. As it can be seen, Myers' algorithm is out of competition (it should be a good choice for muchlarger regular expressions). Our new algorithm (naive version) compares favorably in search time againstAgrep, scanning (averaging over the 20 patterns) 16.0 Mb/sec versus about 13.2 Mb/sec of Agrep. It worksquite well except on large patterns like the natural language pattern #2. Our optimized algorithm behaveswell in those situations too, and compares favorably against the classical DFA algorithm and our old bitparallel algorithm, which scan the text at 14.4 and 14.6 Mb/sec, respectively. This means that our newalgorithm is at least 10% faster than any alternative approach.In all cases, searching larger expressions costs more, both in preprocessing and in search time because oflocality of reference. Note that our optimized algorithm is sometimes worse than the naive one. This occurswhen most states are reachable, in which case the naive algorithm �lls all them without the overhead of therecursion. But this only happens when the preprocessing time is negligible.# DFA Agrep Myers Ours (old) Ours (naive) Ours (optim)1 0:034 + 0:643n 0:104 + 0:756n 0:086 + 2:201n 0:007 + 0:631n 0:009 + 0:584n 0:005 + 0:575n2 0:006 + 0:624n 0:133 + 0:754n 0:090 + 4:965n 0:011 + 0:630n 0:049 + 0:566n 0:000 + 0:576n3 0:028 + 0:796n 0:095 + 0:758n 0:080 + 2:182n 0:007 + 0:803n 0:007 + 0:759n 0:087 + 0:775n4 0:025 + 0:883n 0:101 + 0:760n 0:082 + 2:141n 0:008 + 0:865n 0:012 + 0:788n 0:029 + 0:807n5 0:018 + 0:831n 0:089 + 0:757n 0:088 + 2:205n 0:007 + 0:814n 0:005 + 0:755n 0:008 + 0:777n6 0:007 + 0:658n 0:126 + 0:762n 0:089 + 2:148n 0:008 + 0:652n 0:014 + 0:584n 0:004 + 0:592n7 0:004 + 0:634n 0:104 + 0:750n 0:092 + 2:173n 0:005 + 0:635n 0:015 + 0:571n 0:040 + 0:567n8 0:004 + 0:646n 0:101 + 0:831n 0:099 + 2:132n 0:012 + 0:638n 0:008 + 0:583n 0:071 + 0:582n9 0:006 + 0:621n 0:096 + 0:694n 0:085 + 5:304n 0:024 + 0:626n 0:005 + 0:568n 0:007 + 0:565n10 0:038 + 0:639n 0:108 + 0:748n 0:098 + 2:109n 0:018 + 0:645n 0:011 + 0:560n 0:036 + 0:562nTable 2. Search times on English, in the form of a+ bn, where a is the preprocessing time and b is the search timeper megabyte, all in tenths of seconds.5 ConclusionsWe have presented a new technique for compact DFA representation based on the properties of Glushkov'sNFA construction, as opposed to the much better known Thompson's. As a result, we can represent theDFA using (m + 1)(2m+1 + j�j) bits (where m is the number of normal characters in the pattern and � is

11# DFA Agrep Myers Ours (old) Ours (naive) Ours (optim)1 0:010 + 0:633n 0:114 + 0:779n 0:090 + 5:293n 0:006 + 0:633n 0:074 + 0:569n 0:009 + 0:563n2 0:022 + 0:629n 0:112 + 1:583n 0:090 + 8:452n 0:009 + 0:699n 20:61 + 0:575n 0:019 + 0:569n3 0:003 + 0:932n 0:106 + 0:769n 0:090 + 2:103n 0:050 + 0:897n 0:007 + 0:856n 0:022 + 0:898n4 0:068 + 0:639n 0:100 + 0:755n 0:080 + 2:111n 0:023 + 0:631n 0:008 + 0:567n 0:000 + 0:578n5 0:009 + 0:879n 0:095 + 0:871n 0:090 + 2:110n 0:063 + 0:727n 0:050 + 0:664n 0:000 + 0:684n6 0:242 + 0:645n 1:494 + 0:775n 0:090 + 5:204n 0:083 + 0:640n 0:043 + 0:569n 0:013 + 0:567n7 0:007 + 0:631n 0:122 + 0:755n 0:090 + 2:140n 0:006 + 0:625n 0:006 + 0:572n 0:001 + 0:578n8 0:081 + 0:628n 0:103 + 0:755n 0:090 + 2:133n 0:023 + 0:624n 0:048 + 0:562n 0:027 + 0:556n9 0:000 + 0:627n 0:102 + 0:704n 0:086 + 2:100n 0:008 + 0:626n 0:011 + 0:567n 0:002 + 0:565n10 0:012 + 0:632n 0:774 + 0:789n 0:081 + 5:244n 0:007 + 0:643n 0:018 + 0:567n 0:005 + 0:561nTable 3. Search times on English, in the form of a+ bn, where a is the preprocessing time and b is the search timeper megabyte, all in tenths of seconds.the alphabet). This compares favorably against previous techniques which needed either (m+ 1)2m+1j�j orm(22m+1 + j�j) bits.The representation is quite practical. We are not only still able of searching in O(n) time using thecompact DFA, but thanks to more locality of reference we can search faster in practice than any previousapproach, as we show experimentally.Despite that we have presented a forward scan algorithm, our approach can be adapted to characterskipping algorithms as well. For example, our algorithm presented in [8] modi�ed the automaton by reversingits arrows, making all the states initial and making the initial state �nal, so as to recognize reverse pre�xesof the original language L(RE). This algorithm is used to extend BNDM [9] so as to obtain a fast characterskipping algorithm for regular expression search.Reversing the arrows means that the property that all arrows arriving to a state have the same labeldoes not hold anymore (once we reverse the arrows, the result is not a Glushkov NFA). Rather, all thearrows departing from a state have now the same label. Once again, we can represent the DFA in a compactform by noting that �(D;�) = T [D &B[�]], where T is the deterministic Follow table of the reversedautomaton and B is the character table of the original automaton. That is, we �rst keep the states of D thatcan originate arrows labeled by �, and once they are obtained we �nd all the target states.References1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley, 1985.2. R. Baeza-Yates and G. Gonnet. A new approach to text searching. CACM, 35(10):74{82, October 1992.3. G. Berry and R. Sethi. From regular expression to deterministic automata. Theoretical Computer Science,48(1):117{126, 1986.4. A. Br�uggemann-Klein. Regular expressions into �nite automata. Theoretical Computer Science, 120(2):197{213,November 1993.5. C.-H. Chang and R. Paige. From regular expression to DFA's using NFA's. In Proceedings of the 3rd AnnualSymposium on Combinatorial Pattern Matching, LNCS v. 664, pages 90{110, 1992.6. V-M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1{53, 1961.7. E. Myers. A four-russian algorithm for regular expression pattern matching. J. of the ACM, 39(2):430{448, 1992.8. G. Navarro and M. Ra�not. Fast regular expression search. In Proceedings of the 3rd Workshop on AlgorithmEngineering, LNCS v. 1668, pages 199{213, 1999.9. G. Navarro and M. Ra�not. Fast and
exible string matching by combining bit-parallelism and su�x automata.ACM Journal of Experimental Algorithmics (JEA), 5(4), 2000. http://www.jea.acm.org/2000/NavarroString.10. K. Thompson. Regular expression search algorithm. CACM, 11(6):419{422, 1968.

1211. B. Watson. Taxonomies and Toolkits of Regular Language Algorithms. Phd. dissertation, Eindhoven Universityof Technology, The Netherlands, 1995.12. S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc. of USENIX TechnicalConference, pages 153{162, 1992.13. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, October 1992.

