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Abstract. Karpinski and Nekrich (2008) introduced the problem of pa-
rameterized range majority, which asks to preprocess a string of length
n such that, given the endpoints of a range, one can quickly find all the
distinct elements whose relative frequencies in that range are more than
a threshold τ . Subsequent authors have reduced their time and space
bounds such that, when τ is given at preprocessing time, we need either
O(n lg(1/τ)) space and optimal O(1/τ) query time or linear space and
O((1/τ) lg lg σ) query time, where σ is the alphabet size. In this paper we
give the first linear-space solution with optimal O(1/τ) query time. For
the case when τ is given at query time, we significantly improve previous
bounds, achieving either O(n lg lg σ) space and optimal O(1/τ) query

time or compressed space and O
(
(1/τ) lg lg(1/τ)

lg lgn

)
query time. Along the

way, we consider the complementary problem of parameterized range mi-
nority that was recently introduced by Chan et al. (2012), who achieved
linear space and O(1/τ) query time even for variable τ . We improve their
solution to use either nearly optimally compressed space with no slow-
down, or optimally compressed space with nearly no slowdown. Some of
our intermediate results, such as density-sensitive query time for one-
dimensional range counting, may be of independent interest.

1 Introduction

Finding frequent elements in a dataset is a fundamental operation in data mining.
Finding the most frequent elements can be challenging when all the distinct
elements have nearly equal frequencies and we do not have the resources to
compute all their frequencies exactly. In some cases, however, we are interested
in the most frequent elements only if they really are frequent. For example, Misra
and Gries [20] showed how, given a string and a threshold τ with 0 < τ ≤ 1,
with two passes and O(1/τ) words of space we can find all the distinct elements
in a string whose relative frequencies are at least τ . These elements are called
the τ -majorities of the string. Misra and Gries’ algorithm was rediscovered by
Demaine, López-Ortiz and Munro [9], who noted it can be made to run in O(1)
time per element on a word RAM with Ω(lg n)-bit words, where n is the length
of the string, which is the model we use; it was then rediscovered again by Karp,
Shenker and Papadimitriou [16]. As Cormode and Muthukrishnan [8] put it,
“papers on frequent items are a frequent item!”
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Krizanc, Morin and Smid [18] introduced the problem of preprocessing the
string such that later, given the endpoints of a range, we can quickly return the
mode of that range (i.e., the most frequent element). They gave two solutions, one
of which takes O

(
n2−2ε

)
space for any fixed positive ε ≤ 1/2, and answers queries

in O(nε lg lg n) time; the other takes O
(
n2 lg lg n/ lg n

)
space and answers queries

in O(1) time. Petersen [22] reduced Krizanc et al.’s first time bound to O(nε)
for any fixed non-negative ε < 1/2, and Petersen and Grabowski [23] reduced
the second space bound to O

(
n2 lg lg n/ lg2 n

)
. Chan et al. [6] recently gave a

linear-space solution that answers queries in O
(√

n/ lg n
)

time. They also gave

evidence suggesting we cannot easily achieve query time substantially smaller
than

√
n using linear space; however, the best known lower bound, by Greve et

al. [15], says only that we cannot achieve query time o
(

lg(n)/ lg(sw/n)
)

using s
words of w bits each. Because of the difficulty of supporting range mode queries,
Bose et al. [5] and Greve et al. [15] considered the problem of approximate range
mode, for which we are asked to return an element whose frequency is at least
a constant fraction of the mode’s frequency.

Karpinski and Nekrich [17] took a different direction, analogous to Misra and
Gries’ approach, when they introduced the problem of preprocessing the string
such that later, given the endpoints of a range, we can quickly return the τ -
majorities of that range. We refer to this problem as parameterized range major-
ity. Assuming τ is given when we are preprocessing the string, they showed how
we can store the string inO(n(1/τ)) space and answer queries inO

(
(1/τ)(lg lg n)2

)
time. They also gave bounds for dynamic and higher-dimensional versions.
Durocher et al. [10] independently posed the same problem and showed how
we can store the string in O(n lg(1/τ + 1)) space and answer queries in O(1/τ)
time. Notice that, because there can be up to 1/τ distinct elements to return,
this time bound is worst-case optimal. Gagie et al. [14] showed how to store the
string in compressed space — i.e., O(n(H + 1)) bits, where H is the entropy of
the distribution of elements in the string — such that we can answer queries
in O((1/τ) lg lg n) time. They also showed how to drop the assumption that τ
is fixed and simultaneously achieve optimal query time, at the cost of increas-
ing the space bound by a (lg n)-factor. That is, they gave a data structure that
stores the string in O(n(H + 1)) space such that later, given the endpoints of a
range and τ , we can return the τ -majorities of that range in O(1/τ) time. Chan
et al. [7] recently gave another solution for variable τ , which also has O(1/τ)
query time but uses O(n lg n) space. As far as we know, these are all the rele-
vant bounds for Karpinski and Nekrich’s original exact, static, one-dimensional
problem, both for fixed and variable τ ; they are summarized in Table 1 together
with our own results. Related work includes Elmasry et al.’s [11] solution for the
dynamic version and Lai, Poon and Shi’s [19] and Wei and Yi’s [26] approximate
solutions for the dynamic version.

In this paper we first consider the complementary problem of parameterized
range minority, which was recently introduced by Chan et al. [7]. For this problem
we are asked to preprocess the string such that later, given the endpoints of a
range, we can return (if one exists) a distinct element that occurs in that range
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Table 1. Results for the problem of parameterized range majority on a string of length
n over an alphabet of size σ in which the distribution of the elements has entropy H.

source space time variable τ

Karpinski and Nekrich [17] O(n(1/τ)) words O
(
(1/τ)(lg lg n)2

)
no

Durocher et al. [10] O(n lg(1/τ)) words O(1/τ) no

Gagie et al. [14] O(n(H + 1)) bits O((1/τ) lg lg σ) no

Theorem 3 O(n) words O(1/τ) no

Gagie et al. [14] O(n(H + 1)) words O(1/τ) yes

Chan et al. [7] O(n lgn) words O(1/τ) yes

Theorem 4 O(n lg lg σ) words O(1/τ) yes

Theorem 5 nH + o(n lg σ) bits O((1/τ) lg lg σ) yes

Theorem 7 (1 + ε)nH + o(n lg σ) bits O
(
(1/τ) lg lg(1/τ)

lg lgn

)
yes

but is not one of its τ -majorities. Such an element is called a τ -minority for the
range. At first, finding a τ -minority might seem harder than finding a τ -majority
because, e.g., we are less likely to find a τ -minority by sampling. Nevertheless,
Chan et al. gave a linear-space solution with O(1/τ) query time even when τ is
given at query time. In Section 3 we give two results, also for the case of variable
τ :

1. for any positive constant ε, a solution with O(1/τ) query time that takes
(1 + ε)nH +O(n) bits;

2. for any function f(n) = ω(1), a solution with O((1/τ) f(n)) query time that
takes nH +O(n) + o(nH) bits.

In the full version of this paper we will reduce the space bound in point 2 above
to nH+o(n(H+1)) bits. That is, we improve Chan et al.’s solution to use either
nearly optimally compressed space with no slowdown, or optimally compressed
space with nearly no slowdown. We reuse ideas from this section in our solutions
for parameterized range majority.

In Section 4 we return to Karpinski and Nekrich’s original problem of pa-
rameterized range majority with fixed τ and give the first linear-space solution
with worst-case optimal O(1/τ) query time. In Section 5 we adapt this solution
to the more challenging case of variable τ and give three results:

1. a solution with O(1/τ) query time that takes O(n lg lg σ) space, where σ is
the size of the alphabet;

2. a solution with O((1/τ) lg lg σ) query time that takes nH + o(n lg σ) bits;

3. for any positive constant ε, a solution with O
(

(1/τ) lg lg(1/τ)
lg lgn

)
query time

that takes (1 + ε)nH + o(n lg σ) bits.

With (2), we can support O(1)-time access to the string and O(lg lg σ)-time rank
and select (see definitions in Section 2.1); with (3), select also takes O(1) time.
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In the full version of this paper we will reduce the space bounds in (2) and (3)
to nH + o(n(H + 1)) and (1 + ε)nH +O(n) bits, respectively. While proving (3)
we introduce a compressed data structure with density-sensitive query time for
one-dimensional range counting, which may be of independent interest; due to
space constraints, however, we leave the description of this data structure to the
full version of this paper. We will also show in the full version how to use our
data structures for (2) or (3) to find a range mode quickly when it is actually
reasonably frequent. We leave as an open problem reducing the space bound in
(1) or the time bound in (2) or (3), to obtain linear or compressed space with
optimal query time.

2 Preliminaries

2.1 Access, select and (partial) rank

Let S[1..n] be a string over an alphabet of size σ and let H be the entropy
of the distribution of elements in S. An access query on S takes a position k
and returns S[k]; a rank query takes a distinct element a and a position k and
returns the number of occurrences of a in S[1..k]; a select query takes a distinct
element a and a rank r and returns the position of the rth occurrence of a in S.
A partial rank query is a rank query with the restriction that the given distinct
element must occur in the given position; i.e., S[k] = a. These are among the
most well-studied operations on strings, so we state here only the results most
relevant to this paper.

For σ = 2 and any constant c, Pǎtraşcu [24] showed how we can store S in

nH +O(n/ lgc n) bits. For σ = lgO(1) n, Ferragina et al. [12] showed how we can
store S in nH + o(n) bits and support access, rank and select in O(1) time. For
σ < n, Barbay et al. [1] showed how, for any positive constant ε, we can store S
in (1 + ε)nH + o(n) bits and support access and select in O(1) time and rank in
O(lg lg σ) time. Belazzougui and Navarro [3] showed how to support O(1)-time
partial rank using O(n(lgH + 1)) bits; in the full version of their paper [2] they
reduced that space bound to o(n)(H + 1) bits. In another paper, Belazzougui
and Navarro [4] showed how, for any function f(n) = ω(1), we can store S in
nH+o(n(H+1) bits and support access in O(1) time, select in O(f(n)) time and
rank in O(lg lg σ) time. They also proved, via a reduction from the predecessor
problem, that we cannot support general rank queries in o(lg(lg σ/ lg lg n)) time

while using n lgO(1) n space.

2.2 Coloured range listing

Motivated by the problem of document listing, Muthukrishnan [21] showed how
we can store S[1..n] such that, given the endpoints of a range, we can quickly list
the distinct elements in that range and the positions of their leftmost occurrences
therein. This is the special case of one-dimensional coloured range listing in which
the points’ coordinates are the integers from 1 to n. Let C[1..n] be the array in
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which C[k] is the position of the last occurrence of the distinct element S[k] in
S[1..k− 1] — i.e., the last occurrence before S[k] itself — or 0 if there is no such
occurrence. Notice S[k] is the first occurrence of that distinct element in a range
S[i..j] if and only if i ≤ k ≤ j and C[k] < i. We store C, implicitly or explicitly,
and a data structure supporting O(1)-time range-minimum queries on C that
return the position of the leftmost occurrence of the minimum in the range.

To list the distinct elements in a range S[i..j] given i and j, we find the
position m of the leftmost occurrence of the minimum in the range C[i..j]; check
whether C[m] < i; and, if so, output S[m] and m and recurse on C[i..m − 1]
and C[m+ 1..j]. This procedure is online — i.e., we can stop it early if we want
only a certain number of distinct elements — and the time it takes per distinct
element is O(1) plus the time to access C.

Suppose we already have data structures supporting access, select and partial
rank queries on S, all inO(t) time. Notice C[k] = S.selectS[k]

(
S.rankS[k](k)− 1

)
,

so we can also support access to C in O(t) time. Sadakane [25] and Fischer [13]
gave O(n)-bit data structures supporting O(1)-time range-minimum queries.
Therefore, we can implement Muthukrishnan’s solution using O(n) extra bits
such that it takes O(t) time per distinct element listed.

3 Parameterized Range Minority

Recall from Section 1 that a τ -minority for a range is a distinct element that
occurs in that range but is not one of its τ -majorities. The problem of parameter-
ized range minority is to preprocess a string such that later, given the endpoints
of a range and τ , we can quickly return a τ -minority for that range if one exists.
Chan et al. gave a linear-space solution with O(1/τ) query time even for the
case of variable τ . They first build a list of b1/τc + 1 distinct elements that
occur in the given range (or as many as there are, if fewer) and then check those
elements’ frequencies to see which are τ -minorities. There cannot be more than
b1/τc τ -majorities so, if there exists a τ -minority for that range, then at least
one must be in the list. In this section we show how to implement this idea using
compressed space.

To support parameterized range minority on S[1..n] in O(1/τ) time, we store
data structures supporting O(1)-time access, select and partial rank queries on
S and a data structure supporting O(1)-time range-minimum queries on C.
For any positive constant ε, we can store these data structures in a total of
(1 + ε)nH + O(n) bits. Given τ and endpoints i and j, in O(1/τ) time we use
Muthukrishnan’s algorithm to build a list of b1/τc + 1 distinct elements that
occur in S[i..j] (or as many as there are, if fewer) and the positions of their
leftmost occurrences therein. We check whether these distinct elements are τ -
minorities using the following lemma:

Lemma 1. Suppose we know the position of the leftmost occurrence of a distinct
element in a range. We can check whether that distinct element is a τ -minority
or a τ -majority using a partial rank query and a select query on S.
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Proof. Let k be the position of the first occurrence of a in S[i..j]. If S[k] is the
rth occurrence of a in S, then a is a τ -minority for S[i..j] if and only if the
(r + dτ(j − i + 1)e − 1)th occurrence of a in S is strictly after S[j]; otherwise
a is a τ -majority. That is, we can check whether a is a τ -minority for S[i..j] by
checking whether

S.selecta

(
S.ranka(k) + dτ(j − i+ 1)e − 1

)
> j ;

since S[k] = a, computing S.ranka(k) is only a partial rank query. ut

This gives us the following theorem, which improves Chan et al.’s solution
to use nearly optimally compressed space with no slowdown.

Theorem 1. For any positive constant ε, we can store S in (1+ε)nH+O(n) bits
such that later, given the endpoints of a range and τ , we can return a τ -minority
for that range (if one exists) in O(1/τ) time.

Alternatively, for any function f(n) = ω(1), we can store our data structures
for access, select and partial rank on S and range-minimum queries on C in a
total of nH +O(n) + o(nH) at the cost of select queries taking O(f(n)) time.

Theorem 2. For any function f(n) = ω(1), we can store S in nH + O(n) +
o(nH) bits such that later, given the endpoints of a range and τ , we can return
a τ -minority for that range (if one exists) in O((1/τ) f(n)) time.

In the full version of this paper we will reduce the space bound of Theorem 2
to nH + o(n(H + 1)) bits. That is, we improve Chan et al.’s solution to use
optimally compressed space with nearly no slowdown.

4 Parameterized Range Majority with Fixed τ

The standard approach to finding τ -majorities, going back to Misra and Gries’
work, is to build a list of O(1/τ) candidate elements and then verify them.
For parameterized range majority, an obvious way to verify candidates is to
use rank queries. The problem with this approach is that, as noted in Subsec-
tion 2.1, we cannot support general rank queries in o(lg(lg σ/ lg lg n)) time while

using n lgO(1) n space; e.g., with only linear space, we cannot support general
rank queries in O(1) time when the alphabet is super-polylogarithmic. If we can
find the position of candidates’ first occurrences in the range, however, then by
Lemma 1 we can check them using only partial rank and select queries.

Suppose we want to support parameterized range majority on S[1..n] for a
fixed threshold τ . We first store data structures that support access, select and
partial rank on S in O(1) time, which takes O(n) space. For 0 ≤ b ≤ blg nc, let
Fb[1..n] be the binary string in which Fb[k] = 1 if the distinct element S[k] occurs
at least τ2b times in S[k..k+ 2b+1−1]; and let Sb and Cb be the subsequences of
S and C, respectively, consisting of those elements flagged by 1s in Fb. We store
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Fb in O(n) bits such that we can support access, rank and select queries on Fb in
O(1) time. Notice we can implement an access query on Sb or Cb as a select query
on Fb and access queries on S or C, respectively. As described in Subsection 2.2,
we can implement an access query to C as access, select and partial rank queries
on S. We also store an O(1)-time range-minimum data structure for Cb, which
takes O(|Sb|) bits.

With these data structures, given endpoints i and j with blg(j−i+1)c = b, we
use Muthukrishnan’s algorithm to list the distinct elements in Sb[Fb.rank1(i)..
Fb.rank1(j)] and the positions of their leftmost occurrences therein; we then use
select queries on Fb to find the positions of those elements in S. That is, we list
the distinct elements in S[i..j] that are flagged by 1s in Fb and the positions
of their leftmost flagged occurrences therein. We then apply Lemma 1 to each
of these elements, treating the positions of their leftmost flagged occurrences as
the positions of their leftmost occurrences. Since each distinct element in S[i..j]
that is flagged in Fb occurs at least τ2b times in S[i..j+2b+1−1] ⊂ S[i..i+2b+2],
there are O(1/τ) of them and we use a total of O(1/τ) time.

Notice that the leftmost flagged occurrences of a distinct element a in S[i..j]
may not necessarily be the leftmost occurrence therein. However, if a is a τ -
majority in S[i..j] then, by definition, a occurs at least τ(j − i+ 1) ≥ τ2b times
in S[i..j] ⊂ S[i..i+ 2b+1 − 1], so a’s leftmost occurrence in S[i..j] is flagged by a
1 in Fb and, therefore, we apply Lemma 1 to it. It follows that we return each
τ -majority in S[i..j].

We store only one set of data structures supporting access, select and partial
rank on S. Summing over b from 0 to blg nc, the data structures for access,
select, partial rank and range-minimum queries take a total of O(n lg n) bits,
which is O(n) words. Therefore, we have the first linear-space data structure
with worst-case optimal O(1/τ) query time for Karpinski and Nekrich’s original
problem of parameterized range majority with fixed τ .

Theorem 3. Given a threshold τ , we can store a string in linear space and
support parameterized range majority in O(1/τ) time.

5 Parameterized Range Majority with Variable τ

5.1 Nearly linear space with optimal query time

Suppose we have an instance of the data structure from Theorem 3 for each
threshold 1, 1/2, 1/4, . . . , 1/2dlgne, which takes a total of O(n lg n) space. Given
endpoints i and j and a threshold τ , we can use the instance for threshold
1/2dlg(1/τ)e to build a list of O(1/τ) candidate elements and then check them
with Lemma 1; this takes a total of O(1/τ) time and returns all the τ -majorities
in S[i..j]. Gagie et al. used a variant of this idea to obtain the first data structure
for variable τ . We can easily reduce our space bound to O(n lg σ) because, if
1/τ ≥ σ, then we can simply use Muthukrishnan’s algorithm with S and C to
list in O(σ) = O(1/τ) time all the distinct elements in S[i..j] and the positions
of their leftmost occurrences therein, then check them with Lemma 1.
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Notice that we need store only one set of data structures supporting access,
select and partial rank on S. Also, if S[k] is a (1/2t)-majority in a range, then
it is also a (1/2t

′
)-majority for all t′ ≥ t. It follows that if, instead of querying

only the instance for the threshold 1/2dlg(1/2)e, we query the instances for all the

thresholds 1, 1/2, 1/4, . . . , 1/2dlg(1/τ)e — which still takes O
(∑2dlg(1/τ)e

t=0 2t
)

=

O(1/τ) time — then we can modify the instances to reduce the total number
of 1s in their binary strings. Specifically, for 0 ≤ t ≤ dlg σe, let F tb be the
binary string Fb in the instance for threshold 1/2t; we modify F tb such that
F tb [k] = 1 if and only if the number of occurrences of the distinct element S[k]
in S[k..k + 2b+1 − 1] is at least 2b−t times but less than 2b−t+1.

For 0 ≤ b ≤ blg nc and 1 ≤ k ≤ n, we have F tb [k] = 1 for at most one value of
t. Therefore, all the binary strings contain a total of at most n(blg nc+ 1) copies
of 1, so all the range-minimum data structures take a total of O(n lg n) bits.
Since the binary strings have total length ndlg nedlg σe, we can use Pǎtraşcu’s
data structure to store them in a total of O(n lg(n) lg lg σ) bits. A slightly neater

approach is to represent all the binary strings F 0
b , . . . , F

dlg σe
b as a single string

Tb[1..n] in which Tb[k] = t if F tb [k] = 1, and∞ if there is no such value t. We can

implement access, rank and select queries on F 0
b , . . . , F

dlg σe
b by access, rank and

select queries on Tb. Since Tb is an alphabet of size O(lg σ), we can use Ferragina
et al.’s data structure to store it in O(n lg lg σ) bits and support access, rank
and select queries in O(1) time. Either way, in total we use O(n lg lg σ) space.

Theorem 4. We can store S in O(n lg lg σ) space such that later, given the
endpoints of a range and τ , we can return the τ -majorities for that range in
O(1/τ) time.

5.2 Optimally compressed space with nearly optimal query time

To be able to apply Lemma 1, we must be able to find the leftmost occurrence
of each τ -majority in a range. For this reason, we may flag many occurrences of
the same distinct element even when they appear in close succession, because
we cannot know in advance where the query range will start. As discussed in
Section 4, however, if we have a data structure that supports rank queries on
S, then it is sufficient for us to build a list of O(1/τ) candidate elements that
includes all the τ -majorities — without any information about positions — and
then verify them using rank queries. This lets us flag fewer elements and so
reduce our space bound, at the cost of using slightly suboptimal query time.

We store an instance of Belazzougui and Navarro’s data structure supporting
access on S in O(1) and rank and select on S in O(lg lg σ) time, which takes
nH + o(n(H + 1)) bits. For 0 ≤ t ≤ dlg σe and blg(2t lg lg σ)c ≤ b ≤ blg nc, we
divide S into blocks of length 2b−1 and store data structures supporting access,
rank and select on the binary string Gtb[1..n] in which Gtb[k] = 1 if, first, the
distinct element S[k] occurs at least 2b−t times in S[k − 2b+1..k + 2b+1] and,
second, S[k] is the leftmost or rightmost occurrence of that distinct element in
its block. We also store an O(1)-time range-minimum data structure for the
subsequence of C consisting of elements flagged by 1s in Gtb.
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The number of distinct elements that occur at least 2b−t times in a range of
size O

(
2b
)

is O(2t), so there are O(2t) elements in each block flagged by 1s in Gtb.
It follows that we can store an instance of Pǎtraşcu’s data structure supporting
O(1)-time access, rank and select on Gtb in O

(
n2t−b(b− t) + n/ lg3 n

)
bits; we

need O(2t) bits for the corresponding range-minimum data structure. Summing
over t from 0 to dlg σe and over b from blg(2t lg lg σ)c to blg nc, calculation

shows we use a total of O
(
n lg σ lg lg lg σ

lg lg σ + n
lgn

)
= o(n lg σ) bits for the binary

strings and range-minimum data structures. Therefore, including the instance
of Belazzougui and Navarro’s data structure for S, we use nH + o(n lg σ) bits
altogether.

Given endpoints i and j and a threshold τ , if

blg(j − i+ 1)c <
⌊
lg
(

2dlg(1/τ)e lg lg σ
)⌋

,

then we simply run Misra and Gries’ algorithm on S[i..j] inO(j − i) = O((1/τ) lg lg σ)
time. Otherwise, we use Muthukrishnan’s algorithm to list the distinct elements
flagged by 1s in Gtb, where t = dlg(1/τ)e and b = blg(j− i+1)c ≥ blg(2t lg lg σ)c,
and use rank queries on S to check whether each of them is a τ -majority in
S[i..j]. Since S[i..j] overlaps at most 5 blocks of length 2b−1, it contains O(1/τ)
distinct elements flagged by 1s in Gtb; therefore, Muthukrishnan’s algorithm takes
O(1/τ) time and we use a total of O((1/τ) lg lg σ) time for all the rank queries
on S.

Since S[i..j] cannot be completely contained in a block of length 2b−1, if
S[i..j] overlaps a block then it includes one of that block’s endpoints. Therefore,
if S[i..j] contains an occurrence of a distinct element a, then it includes the
leftmost or rightmost occurrence of a in some block. Suppose a is a τ -majority
in S[i..j]. For i ≤ k ≤ j, a occurs at least 2b−t times in S[k− 2b+1..k+ 2b+1], so
some occurrence of a in S[i..j] is flagged by a 1 in Gtb. Therefore, we return a.

Theorem 5. We can store S in nH + o(n lg σ) bits such that later, given the
endpoints of a range and τ , we can return the τ -majorities for that range in
O((1/τ) lg lg σ) time.

Since our solution includes an instance of Belazzougui and Navarro’s data
structure, we can also support O(1)-time access to S and O(lg lg σ)-time rank
and select. In the full version of this paper we will reduce the space bound of
Theorem 5 to nH + o(n(H + 1)) bits.

5.3 Nearly optimally compressed space with very nearly optimal
query time

Recall from Subsection 5.1 that, if 1/τ ≥ σ, then we can simply use Muthukrish-
nan’s algorithm to list all the distinct elements in a range and then check them
with Lemma 1; therefore, we can assume 1/τ < σ. In this subsection we use a new
data structure with density-sensitive query time for one-dimensional range count-
ing, which may be of independent interest, to obtain a nearly optimally com-

pressed data structure for parameterized range majority with O
(

(1/τ) lg lg(1/τ)
lg lgn

)
9



query time. Due to space constraints, however, we leave the description of our
range-counting data structure to the full version of this paper and merely state
our result here:

Theorem 6. For any positive constant ε, we can store S in (1 + ε)nH +O(n)
bits such that later, given endpoints i and j and a distinct element a, we can

return occ(a, S[i..j]) in O
(

lg
lg j−i+1

occ(a,S[i..j])

lg lgn

)
time. We can also support access

and select in O(1) time and rank in O(lg lg σ) time.

To obtain a compressed data structure for parameterized range majority

with O
(

(1/τ) lg lg(1/τ)
lg lgn

)
query time, we combine our solution from Theorem 5

with Theorem 6. Instead of using O(lg lg σ)-time rank queries to check each of
the O(1/τ) candidate elements returned by Muthukrishnan’s algorithm, we use
range-counting queries. We can make all O(1/τ) range-counting queries each

take O
(

lg lg(1/τ)
lg lgn

)
time because, if one starts taking too much time, then the

distinct element we are checking cannot be a τ -majority and we can stop the
query early. (In fact, as we will show in the full version of this paper, our data
structure from Theorem 6 does not need such intervention.) This gives us our
final result:

Theorem 7. We can store S in (1 + ε)nH + o(n lg σ) bits such that later, given
the endpoints of a range and τ , we can return the τ -majorities for that range in

O
(

(1/τ) lg lg(1/τ)
lg lgn

)
time.

Notice our solution in Theorem 7 takes optimal O(1/τ) time when 1/τ =

lgO(1) n. Again, we can also support access and select in O(1) time and rank in
O(lg lg σ) time. In the full version of this paper we will reduce the space bound in
Theorem 7 to (1+ε)nH+O(n) bits, and show how to use our data structures from
Theorems 5 and 7 to find a range mode quickly when it is actually reasonably
frequent.

6 Conclusions

We have given the first linear-space data structure for parameterized range ma-
jority with query time O(1/τ), which is worst-case optimal in terms of n and τ .
Moreover, we have improved the space bounds for parameterized range major-
ity and minority in the important case of variable τ . For parameterized range
majority with variable τ , we have achieved nearly linear space and worst-case
optimal query time, or compressed space with a slight slowdown. For parame-
terized range minority, we have improved Chan et al.’s solution to use nearly
compressed space with no slowdown or compressed space with nearly no slow-
down. In the full version of this paper we will also reduce the lower-order terms
in our compressed space bounds to o(n(H + 1)) with the same slowdowns. We
leave as an open problem achieving linear or compressed space with O(1/τ)
query time for variable τ , or showing that this is impossible.
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12. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2),
2007.

13. J. Fischer. Optimal succinctness for range minimum queries. In Proceedings of
the 9th Latin American Symposium on Theoretical Informatics (LATIN), pages
158–169, 2010.

14. T. Gagie, M. He, J. I. Munro, and P. K. Nicholson. Finding frequent elements in
compressed 2D arrays and strings. In Proceedings of the 18th Symposium on String
Processing and Information Retrieval (SPIRE), pages 295–300, 2011.

15. M. Greve, A. G. Jørgensen, K. D. Larsen, and J. Truelsen. Cell probe lower bounds
and approximations for range mode. In Proceedings of the 37th International Collo-
quium on Automata, Languages and Programming (ICALP), pages 605–616, 2010.

11



16. R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems,
28(1):51–55, 2003.

17. M. Karpinski and Y. Nekrich. Searching for frequent colors in rectangles. In Pro-
ceedings of the 20th Canadian Conference on Computational Geometry (CCCG),
pages 11–14, 2008.

18. D. Krizanc, P. Morin, and M. H. M. Smid. Range mode and range median queries
on lists and trees. Nordic Journal of Computing, 12(1):1–17, 2005.

19. Y. K. Lai, C. K. Poon, and B. Shi. Approximate colored range and point enclosure
queries. Journal of Discrete Algorithms, 6(3):420–432, 2008.

20. J. Misra and D. Gries. Finding repeated elements. Science of Computer Program-
ming, 2(2):143–152, 1982.

21. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Pro-
ceedings of the 13th Symposium on Discrete Algorithms (SODA), pages 657–666,
2002.

22. H. Petersen. Improved bounds for range mode and range median queries. In
Proceedings of the 34th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), pages 418–423, 2008.

23. H. Petersen and S. Grabowski. Range mode and range median queries in con-
stant time and sub-quadratic space. Information Processing Letter, 109(4):225–
228, 2009.
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