
Noname manuscript No.
(will be inserted by the editor)

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph
Databases

Diego Arroyuelo · Daniela Campos · Adrián Gómez-Brandón · Yuval Linker ·
Gonzalo Navarro · Carlos Rojas · Domagoj Vrgoč

Received: date / Accepted: date

Abstract Leapfrog Triejoin (LTJ) is arguably the most
practical and popular worst-case-optimal (wco) algorithm
for solving basic graph patterns in graph databases. Its
main drawback is that it needs the database triples (subject,
predicate, object) represented as paths in a trie, for each of
the six orders of subject, predicate, and object. The resulting
blowup in space makes most systems disregard LTJ or im-
plement it only partially, which makes their corresponding
algorithms non-wco. In this paper we show that, by using
compact data structures, it is possible to build an index that
at the same time matches the query time performance of the
fastest classic wco index, and uses a fraction of the space of
non-wco indices (which are much slower). Concretely, we
make use of compact tree representations to store functional
tries using one bit per trie edge, instead of one pointer, and
further reduce the space by storing partial tries. Our most
compact variant uses 5–6 times less space than classic wco
implementations and 2–3 times less than classic non-wco
systems. At solving queries, it is on par with the fastest

D. Arroyuelo
DCC, Escuela de Ingenierı́a, Pontificia Universidad Católica de Chile
& IMFD, Santiago, Chile
E-mail: diego.arroyuelo@uc.cl, dvrgoc@ing.puc.cl

D. Campos, Y. Linker, G. Navarro
IMFD & DCC, University of Chile, Santiago, Chile
E-mail: dcampos@dcc.uchile.cl,yuvallinkerg@gmail.com,
gnavarro@uchile.cl

B A. Gómez-Brandón
IMFD & CITIC, Universidade da Coruña, A Coruña, Spain
E-mail: adrian.gbrandon@udc.es

C. Rojas
IMFD, Santiago, Chile
E-mail: carlos.rojas@imfd.cl

D. Vrgoč
Institute for Mathematical and Computational Engineering, Pontificia
Universidad Católica de Chile & IMFD, Santiago, Chile.

classic wco system, and 30–40 times faster than non-wco
systems. We further incorporate improved query resolu-
tion strategies into CompactLTJ variants, which makes it
considerably faster than classic wco systems as well, on
queries that do not output too many results. Finally, we
show how CompactLTJ can incorporate dynamism without
altering its performance, even under very demanding update
regimes. We leave a public fully-functional implementation
of CompactLTJ that can be directly used by practitioners.

Keywords Worst-case optimal joins; Leapfrog Triejoin;
compact data structures; graph patterns; graph databases

1 Introduction

Natural joins are fundamental in the relational algebra, and
generally the most costly operations to implement. A poor
implementation choice can lead to unaffordable query times,
so the implementation of joins has been a concern since the
birth of the relational model. Apart from efficient algorithms
to join two tables (i.e., pair-wise joins), database manage-
ment systems sought optimized strategies (e.g., [43]) to join
several tables (i.e., multijoins), where differences between
good and bad plans can be huge in terms of efficiency. Multi-
joins were typically handled as sequences of pair-wise joins:
a query plan was a binary expression tree where the leaves
were the tables to join and the internal nodes were the (pair-
wise) joins to carry out. The main optimization concern was
to avoid huge intermediate results, much larger than the final
outputs, at internal nodes of the expression tree.

The concept of a worst-case optimal (wco) algorithm [8]
was coined to define a multijoin algorithm that does not pro-
duce those huge intermediate results. Formally, a wco algo-
rithm takes time Õ(Q∗), where Q∗ is the largest output size
on some database instance with the same table sizes of the
given one (Õ(Q∗) allows multiplying Q∗ by terms that do

2 Arroyuelo et al.

not depend, or depend only logarithmically, on the database
size). They [8] proved that no pair-wise based multijoin al-
gorithm can be wco. Several wco join algorithms were pro-
posed since then [36, 37, 45, 21, 39, 35, 27].

Leapfrog Triejoin (LTJ) [45] is probably the simplest and
most popular wco algorithm. At a high level, it can be re-
garded as reducing the multijoin by one attribute at a time,
instead of by one relation at a time as in the pair-wise-join
based query plans. LTJ chooses a suitable order in which
the joined attributes will be eliminated (which means find-
ing all their possible values in the output and branching on
the subset of the output matching each such value). To pro-
ceed efficiently, LTJ needs the rows of each relation stored in
a trie (or digital tree) where the root-to-leaf attribute order is
consistent with the chosen attribute elimination order. Even
though LTJ is wco with any elimination order, it turns out
that, just like with the traditional query plans, there can be
large performance differences when choosing different or-
ders [45, 17]. This means, first, that choosing a good order
is essential and, second, that LTJ needs tries storing each re-
lation in every possible order of its attributes, that is, d! tries
for a relation with d attributes that can participate in joins.

This high space requirement shows up, in one form or
another, in all the existing wco algorithms, and has become
an obstacle to their full adoption in database systems. Wco
algorithms are of particular interest in graph databases,
which can be regarded as labeled graphs, or as a single
relational table with three attributes: source node, label, and
target node. Standard query languages for graph databases
like SPARQL [16] feature most prominently basic graph
patterns (BGPs), which essentially are a combination of
multijoins and simple selections. The concept of wco
algorithms, as well as LTJ, can be translated into solving
BGPs on graph databases [17]. This is very relevant because
typical BGPs correspond to large and complex multijoins
by non-key attributes [39, 1, 20, 17], where non-wco algo-
rithms can be orders of magnitude slower than wco ones
[1]. Still, LTJ needs 3! = 6 copies of the database in the
form of tries, which even for three attributes is sufficiently
space-demanding to discourage its full adoption (for exam-
ple, one may restrict the query language to force labels to
be constant in queries, so that only two tries are needed).

The implementation of various wco indices for graph
databases seems to confirm that large space usage will be
the price for featuring wco query times. For example, a wco
version of Jena [17] doubles the space of the original non-
wco version. Efficient wco implementations like Jena LTJ
[17] and MillenniumDB [47] use around 14 times the space
required to store the graph triples in raw form. The most
popular systems for graph databases, like Jena [17], Virtu-
oso [13], RDF-3X [34], or Blazegraph [44], for example,
give up on worst-case optimality in order to use “only” 5 to
7.5 times the size of a plain triple storage.

1.1 Our contribution

In this paper we show that, by using compact data struc-
tures, it is possible to achieve at the same time worst-case
optimality—with an index that is as fast as the fastest
classical ones and sometimes even faster—, while using
much less space than the (orders of magnitude slower)
classic indices—as little as 2.3 times the space of the raw
triple data. More in detail:

1. We show how to implement the 6-trie wco LTJ algo-
rithm in little space by adapting compact data structures
for ordinal trees [18], in a way that requires only one
bit, instead of one pointer, per trie edge. We further re-
duce space by storing only partial tries, using trie switch-
ing [5] to retain full functionality. The resulting struc-
ture, which we call CompactLTJ, uses 16%–18% of the
space of classic LTJ implementations that store the 6
tries (MillenniumDB, Jena LTJ), and 30%–46% of the
space used by other non-wco systems (Virtuoso, RDF-
3X, Blazegraph). Our index matches the query time per-
formance of the fastest wco system (MillenniumDB),
while outperforming the others—particularly the non-
wco systems—by a factor of 30–40.

2. We explore the use of adaptive variable elimination or-
ders in LTJ, which recompute the best order as the join
proceeds and better estimations are available. We further
use an estimator for the next variable to bind that turns
out to be more accurate. The combination obtains much
more stable times than the traditional global-order strat-
egy. For example, it makes CompactLTJ up to twice as
fast as MillenniumDB to obtain the first 1000 results.

3. We incorporate dynamism into CompactLTJ, allowing
the insertion and deletion of triples in the graph. By re-
sorting to a recent technique to represent dynamic arrays
and bitvectors so that the performance adapts to the fre-
quency of the updates [30], we make CompactLTJ dy-
namic while retaining the performance of the static ver-
sion, even under very high update frequencies (e.g., just
30% slower when receiving 1,000 updates between each
pair of consecutive queries, and much less under more
typical regimes).

4. We leave public versions of CompactLTJ that can be
directly used by practitioners. These include our best
static and dynamic variants and address practical issues
like handling large outputs and using actual strings for
IRIs and literals instead of numeric identifiers. The map-
ping from strings to internal identifiers and back is done
through new compact data structures for string dictionar-
ies, which add a modest amount of extra space and query
time to the previous figures, both for static and dynamic
variants of CompactLTJ.

Recent research [5] has shown that it is possible to go
further in space reduction, so as to simulate the LTJ data

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 3

structures within 0.6 to 1.0 times the size of the raw triple
data. This significant reduction has a cost in terms of time
performance, however: we show in the experiments that
CompactLTJ is 30–60 times faster than these compressed
data structures. We also show that other recent indices that
offer beyond-wco query time guarantees, like Graphflow
[26], ADOPT [48], and EmptyHeaded [1], do outperform
CompactLTJ on particularly difficult queries, but again use
3–8 times more space. The techniques we develop in this
paper could be used to develop more compact versions of
those more powerful indices as well.

An early partial version of this paper appeared in Proc.
GRADES’24 [4]. This extended version includes, most
prominently, the trie-switching technique to further reduce
space, the implementation of dynamism, and the handling of
string identifiers, all with their corresponding experiments.
We also describe a public software for practitioners.

2 Preliminary Concepts

2.1 Graph joins

2.1.1 Edge-Labeled Graphs

Let U be a totally ordered, countably infinite set of con-
stants, which we call the universe. In the RDF model
[24], an edge-labeled graph is a finite set of triples
G ⊆ U3, where each triple (s, p, o) ∈ U3 encodes the
directed edge s

p−→ o from vertex s (the subject) to ver-
tex o (the object), with edge label p (the predicate). We
call N = |G| the number of triples in G. We also call
dom(G) = {s, p, o | (s, p, o) ∈ G} the subset of U used as
constants in G. For any element u ∈ U , let u + 1 denote
the successor of u in the total order U . We also denote
U = maxdom(G). For simplicity, we will assume that the
constants in U have been mapped to integers in the range
[1 . . U], and will even assume U = [1 . . U].

Example 1 Fig. 1 shows an example graph and the corre-
sponding mapping of the constants in U to integers. Nodes
are Physics researchers and the Nobel prize. Labels indicate
researchers advised by others (adv), that were nominated to
the Nobel prize (nom), and that won it (win). ⊓⊔

2.1.2 Basic Graph Patterns (BGPs)

A graph G is often queried to find patterns of interest, that is,
subgraphs of G that are homomorphic to a given pattern Q.
Unlike the graph G, which is formed only by constants in U ,
a pattern Q can contain also variables, formally defined as
follows. Let V denote an infinite set of variables, such that
U ∩V = ∅. A triple pattern t is a tuple (s, p, o) ∈ (U ∪V)3,

Strutt

Thomson

adv

Bohr advWheeler adv

Thorne

adv

Nobel win/nom

win/nomwin/nomnom

win/nom

Mapping
1=Bohr 2=Strutt 3=Thomson 4=Thorne 5=Wheeler
6=Nobel 7=adv 8=nom 9=win

Triples
(1,7,3) (3,7,2) (4,7,5) (5,7,1) (6,8,1) (6,8,2) (6,8,3)
(6,8,4) (6,8,5) (6,9,1) (6,9,2) (6,9,3) (6,9,4)

Fig. 1: A labeled graph G with its string to integer mapping.

and a basic graph pattern (BGP) is a finite set Q ⊆ (U∪V)3
of triple patterns. Each triple pattern in Q is an atomic query
over the graph, equivalent to equality-based selections on a
single ternary relation. Thus, a BGP corresponds to a full
conjunctive query (i.e., a join query plus simple selections)
over the relational representation of the graph.

Let vars(Q) denote the set of variables used in pattern
Q. The evaluation of Q over a graph G is then defined to be
the set of mappings Q(G) := {µ : vars(Q) → dom(G) |
µ(Q) ⊆ G}, called solutions, where µ(Q) denotes the im-
age of Q under µ, that is, the result of replacing each variable
x ∈ vars(Q) in Q by µ(x).

Example 2 A triple pattern, (Nobel,win, x), on the graph
G of Fig. 1, aims to bind variable x to all the values that
make the triple (or edge) occur in G, namely Thorne, Bohr,
Thomson, and Strutt. For example, in the first case, the
triple (Nobel,win,Thorne) is in G. Formally, and already
mapping strings to integers, the query with this single triple
is Q1 = {(6, 9, x)}, and its evaluation on G is Q1(G) =

{⟨µ(x) = 4⟩, ⟨µ(x) = 1⟩, ⟨µ(x) = 3⟩, ⟨µ(x) = 2⟩}.
Consider now the query formed by the triple patterns

(Nobel,win, x), (Nobel,win, y), and (x, adv, y), which
looks for pairs of Nobel winners where one was advised by
the other. The answers are the pairs (Bohr,Thomson) and
(Thomson,Strutt). On a relational table TG with attributes
(s, p, o), this query corresponds to the relational algebra
formula

ρ(x/o)(σs=Nobel,p=win(TG)) ▷◁

ρ(y/o)(σs=Nobel,p=win(TG)) ▷◁

ρ(x/s, y/o)(σp=adv(TG)).

In our formalism, and translating to integers again, our query
is Q2 = {(6, 9, x), (6, 9, y), (x, 7, y)}. Its evaluation is
Q2(G) = {⟨µ(x) = 1, µ(y) = 3⟩, ⟨µ(x) = 3, µ(y) = 2⟩}.

⊓⊔

4 Arroyuelo et al.

2.2 Worst-case optimal joins

2.2.1 The AGM bound

A well-established bound to analyze join algorithms is the
AGM bound, introduced by Atserias et al. [8], which sets a
limit on the maximum output size for a natural join query.
Let Q denote such a query and D a relational database in-
stance. The AGM bound of Q over D, denoted Q∗, is the
maximum number of tuples generated by evaluating Q over
any database instance D′ containing a table R′ for each ta-
ble R of D, with the same attributes and |R′| ≤ |R| tuples.
Though BGPs extend natural joins with self joins, constants
in U , and the multiple use of a variable in a triple pattern, the
AGM bound can still be applied to them by regarding each
triple pattern as a relation formed by the triples that match
its constants [17].

Given a join query (or BGP) Q and a database instance
D, a join algorithm enumerates Q(D), the solutions for Q
over D. A join algorithm is worst-case optimal (wco) if it
has a running time in Õ(Q∗), which is O(Q∗) multiplied by
terms that do not depend, or depend only polylogarithmi-
cally, on |D|. Atserias et al. [8] proved that there are queries
Q for which no plan using only pair-wise joins can be wco.

Example 3 The query Q2 of Ex. 2 is a so-called triangle
query. When it has no constants, the maximum output size
of a triangle query on a graph of N edges is O(N3/2). All
pairwise-join strategies used in relational databases take
time Θ(N2) to solve the triangle query on certain graphs,
and thus are not wco. A wco algorithm must solve the
triangle query in time Õ(N3/2). ⊓⊔

We describe next the the most frequently implemented
wco algorithm.

2.2.2 Leapfrog TrieJoin (LTJ)

We describe a popular wco algorithm, Leapfrog Triejoin [45],
originally designed for natural joins in relational databases,
as it is adapted for BGP matching on labeled graphs [17].
This algorithm relies on the trie representation of the graph
edges (i.e., the triples). To work properly, LTJ requires
3! = 6 different tries to be stored, each representing the
triples in a specific order of their components. The need
for this requirement shall be made clear later. We call SPO,
SOP, POS, PSO, OSP, and OPS these orders. For each triple
(s, p, o) ∈ G, there is a corresponding root-to-leaf path
labeled s, p, and o, in the SPO trie. Similarly, there is a
path labeled s, o, and p in the SOP trie, and so on for the
remaining orders. Consequently, each trie has height 3 and
N leaves.

Example 4 Fig. 2 shows the 6 tries corresponding to the
graph of Fig. 1; the root of each trie indicates the order. Dis-
regard for now the marks τ on some nodes. ⊓⊔

Let Q = {t1, . . . , tq} be a BGP and vars(Q) =

{x1, . . . , xv} its set of variables. LTJ uses a variable elim-
ination approach. The algorithm carries out v = |vars(Q)|
iterations, handling one particular variable of vars(Q) at a
time. This involves defining a total order on vars(Q), which
we call a variable elimination order (VEO).

Each triple pattern ti, for i = 1, . . . , q, is associated with
a suitable trie τi. The root-to-leaf path in τi must start with
the constants that appear in ti, and the rest of its levels must
visit the variables of ti in an order that is consistent with the
VEO chosen for Q. This is why we need tries in the 6 orders.

The algorithm starts at the root of every τi and descends
by the children that correspond to the constants in ti. We
then proceed to the variable elimination phase. Assume the
order of the variables is ⟨x1, . . . , xv⟩ and let Qj ⊆ Q be the
triple patterns that contain variable xj . Starting with the first
variable, x1, LTJ finds each c ∈ dom(G) such that for every
t ∈ Q1, c is a child of the current node of trie τ of t (if the
trie τ of t is consistent with the VEO, then the children of its
current node contain precisely the possible values c for x1).

During the execution, we keep a mapping µ with the so-
lutions of Q. As we find each constant c suitable for x1, we
bind x1 to c, that is, we set µ = ⟨x1 := c⟩ and branch on
this value c. In this branch, we go down by c in all the tries
τ of triples t ∈ Q1. We now repeat the same process with
Q2, finding suitable constants d for x2 and increasing the
mapping to µ = ⟨x1 := c, x2 := d⟩, and so on. Once we
have bound all variables in this way, µ is a solution for Q
(this happens many times because we branch on every bind-
ing to c, d, etc.). When it has considered all the bindings
c for some variable xj , LTJ backtracks and continues with
the next binding for Qj−1. When this process finishes, the
algorithm has reported all the solutions for Q.

Example 5 Let us follow LTJ over the solution of query
Q2 = {t1 = (6, 9, x), t2 = (6, 9, y), t3 = (x, 7, y)} of
Ex. 2, using the VEO ⟨x, y⟩. From the tries of Fig. 2, we
will use SPO as the tries τ1 = τ2 for the triple patterns t1
and t2, and PSO as the trie τ3 for the triple pattern t3 (if we
had chosen the VEO ⟨y, x⟩, τ3 should have been POS). We
then descend by the constants 6 and 9 in both τ1 and τ2, and
by 7 in the trie τ3. We reach the nodes marked τ1, τ2, and τ3
in the figure.

We now bind variable x, whose candidates descend from
the current nodes of τ1 and τ3. Their children in common
are 1, 3, and 4. LTJ branches with each of those candidates.
The branch with ⟨µ(x) = 1⟩ descends by the corresponding
nodes in τ1 and τ3; we mark the reached nodes τx1 and τx3 .
We now bind variable y, whose candidates descend from the
current nodes in τ2 and τ3. Their only common children is

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 5

spo

1

7

3

3

7

2

4

7

5

5

7

1

6

8

1 2 3 4 5

9

1 2 3 4

τ1 τ2

τx1 τy2

sop

1

3

7

3

2

7

4

5

7

5

1

7

6

1

8 9

2

8 9

3

8 9

4

8 9

5

8

pos

7

1

5

2

3

3

1

5

4

8

1

6

2

6

3

6

4

6

5

6

9

1

6

2

6

3

6

4

6

pso

7

1

3

3

2

4

5

5

1

8

6

1 2 3 4 5

9

6

1 2 3 4

τ3

τx3

τy3

osp

1

5

7

6

8 9

2

3

7

6

8 9

3

1

7

6

8 9

4

6

8 9

5

4

7

6

8

ops

1

7

5

8

6

9

6

2

7

3

8

6

9

6

3

7

1

8

6

9

6

4

8

6

9

6

5

7

4

8

6

Fig. 2: The six tries corresponding to the graph of Fig. 1. The τ marks on some nodes correspond to Ex. 5.

3, so we complete the binding ⟨µ(x) = 1, µ(y) = 3⟩; we
mark the reached nodes τy2 and τy3 in the figure. Since we
have bound all the variables, we deliver this binding as the
first solution of Q2(G). The other solution is found when
branching with ⟨µ(x) = 3⟩ and then growing it to ⟨µ(x) =
3, µ(y) = 2⟩. Instead, the branch with binding ⟨µ(x) = 4⟩
does not produce any solution. ⊓⊔

Operationally, the values c, d, etc. are found by inter-
secting the children of the current nodes in all the tries τi for
ti ∈ Qj . LTJ carries out the intersection using the primitive
leap(vi, c), which finds the smallest constant ci ≥ c within
the children of the current node vi in trie τi; if there is no
such value ci, leap(vi, c) returns a special value ⊥.

The intersection process is as follows. Assume that we
are handling variable xj from the VEO. For each ti ∈ Qj ,
we are at a specific node vi in trie τi. The goal is to find the
values that appear in the list of children of all such nodes vi.
We keep the next candidate to be in the intersection, cmin,
which is initialized to c. For each trie τi, we update c ←
leap(vi, c). After traversing all nodes vi, if cmin = c, we
return cmin as the next value in the intersection. Otherwise,
we reset cmin to c and restart the scan of trie nodes.

Every time a value c is returned, we know that c appears
as a child of every vi. We then launch, as explained, a re-
cursive branch with the new binding ⟨xij := c⟩. Upon re-
turning from that recursion branch, we remove the binding
⟨xj := c⟩ from µ and continue looking for other elements
in the intersection. The intersection terminates when some
leap() returns ⊥, in which case the recursive call returns to
Qj−1 (or LTJ finishes if j = 1).

Operation leap() uses exponential search [45, 9]: For
each current node vi we record where the previous leap()
ended within its child list, and each new exponential search
starts from that position. As a result, each leap() runs in
O(lg ℓ) time, where ℓ is the distance between the two latest
ending positions and lg is the logarithm in base 2. While any
polylogarithmic time guarantees that LTJ runs in wco time
[45], exponential search is particularly effective in practice
as leap() takes less time on nodes with more children.

Algorithm 1 shows the pseudocode for LTJ. It builds on
just three primitives on the tries:

1. child(v, i), which descends to the ith child of node v,
2. degree(v), which computes the degree of a node, and
3. access(v, i), which reads the value of the ith child of v.

6 Arroyuelo et al.

Algorithm 1 Evaluating the BGP Q = {t1, . . . , tq}with trie
nodes τ1, . . . , τq and variable ordering ⟨x1, . . . , xv⟩. Sym-
bol ‘:’ in line 7 denotes concatenation.

LTJ({τ1, . . . , τq})

1: for i ∈ [1 . . q] do
2: vi ← descend from the root of τi by the constants of ti
3: leapfrog(∅, 1) // vi and xj are global variables

leapfrog(µ, j)

1: if j = v + 1 then output µ as a solution in Q(G)
2: else
3: V ← {vi, ti ∈ Qj} // i.e., xj appears in ti
4: c← seek(V, j, 1)
5: while c ̸= ⊥ do
6: descend by c in every vi ∈ V
7: leapfrog(µ : ⟨xj := c⟩, j + 1)
8: return to the parent in every vi ∈ V
9: c← seek(V, j, c+ 1)

seek(V, j, c)

1: while true do
2: cmin ← c
3: for vi ∈ V do
4: c← leap(vi, c)
5: if c = ⊥ then return ⊥
6: if cmin = c then return cmin

Operations child and access are required at line 2 of LTJ
and line 6 of leapfrog, while degree and access are required
by leap(). Note that returning to the parent node, in line 8
of leapfrog, can be done by just remembering it before de-
scending by c in line 6. Note also that, in this line 6, we do
not really need to find the children that lead to c because we
have already found them in seek. Storing those nodes is also
useful to speed up the exponential searches of leap in line 4
of seek, so as to start from where the previous search ended.

2.3 Variable Elimination Orders (VEOs)

Veldhuizen [45] showed that if leap() runs in polylogarith-
mic time, then LTJ is wco no matter the VEO chosen, as long
as the tries used have the right attribute order. In practice,
however, the VEO plays a fundamental role in the efficiency
of the algorithm [45, 17]. A VEO yielding a large number of
intermediate solutions that are later discarded during LTJ ex-
ecution, will be worse than one that avoids exploring many
such alternatives. One would prefer, in general, to first elim-
inate selective variables (i.e., the ones that yield a smaller
candidate set when intersecting).

A heuristic to generate a good VEO in practice [17, 47,
5] computes, for each variable xj , its minimum weight

wj = min{wij | xj appears in triple ti}, (1)

where wij is the weight of xj in ti. The VEO sorts the vari-
ables in increasing order of wj , with a couple of restrictions:

(i) each new variable should share some triple pattern with
a previous variable, if possible; (ii) variables appearing only
once in Q (called lonely) must be processed at the end.

To compute wij , we (temporarily) choose a trie τj where
xj appears right after the constants of ti, and descend in τj
by the constants. The number of children of the trie node v

we have reached is the desired weight wij . This is the size
of the list in τi to intersect when eliminating xj .

In this paper we explore the use of adaptive VEOs,
which are defined progressively as the query processing
advances, and may differ for each different binding of
the preceding variables. ADOPT [48] is the first system
combining LTJ with adaptive VEOs. The next variables to
bind are chosen using reinforcement learning, by partially
exploring possibly upcoming orders, and balancing the cost
of exploring with that of the obtained improvements. We
will compute adaptive VEOs, instead, simply as a variant of
the formula presented above for global VEOs [17].

Other systems go even further in this beyond-wco
path. Building on the well-known Yannakakis’ instance-
optimal algorithm for acyclic queries [51], EmptyHeaded
[1] applies a so-called Generalized Hypertree Decomposi-
tion [15], which decomposes cyclic queries into a tree where
the nodes are cyclic components, so as to solve the nodes
using a wco algorithm [36] and then apply Yannakakis’
algorithm on the resulting acyclic query on the intermediate
results. Graphflow [26], Umbra [33], and Free Join [49] are
examples of systems that integrate wco joins with pairwise
joins in order to generate hybrid plans for evaluating graph
queries. Other approaches like Tetris [21], Minesweeper
[38] and Panda [2] also offer guarantees finer than just wco.

2.4 Trie switching

Trie switching [5, Sec. 7.2.1] is a mechanism to decrease
the space required by the six tries of LTJ, at the expense of
possibly increasing query times by a small margin. The idea
is that some parts of some tries are redundant with others
and can be deleted. Consider the tries SPO and PSO. Once
we have descended by instantiated values of p and s in PSO,
reaching node v, and need to work (e.g., intersect) the chil-
dren o of node v, we could instead switch to the equivalent
node v′ in the trie SPO, by descending by s and p from its
root. The children of v and v′ are the same, and therefore we
can omit the children o of v in the trie PSO.

By using trie switching we can then store some partial
tries, from which we switch to others in case of need. For ex-
ample, we can store only the tries SPO, PS, POS, OP, OSP, and
SO, thereby saving 3 of the 6 last levels of the tries, which
are the biggest (each last level has exactly N nodes). Further,
a clever implementation can share the first level of the tries
PSO and PO, SOP and SP, and OPS and OS, further saving 3
of the 6 first levels of the tries (of total size |dom(G)|).

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 7

spo + so

1

7

3

3

3

7

2

2

4

7

5

5

5

7

1

1

6

8

1 2 3 4 5

9

1 2 3 4

1 2 3 4 5

s

p

o

o

s

p

o

o

s

p

o

o

s

p

o

o

s

p

o o

p

o o

o o

pos+ps

7

1

5

2

3

3

1

5

4

1 3 4 5

8

1

6

2

6

3

6

4

6

5

6

6

9

1

6

2

6

3

6

4

6

6

p

o

s s s

o

s

s s

p

o

s s s s

o

s

s

p

o

s s s

o

s

s

osp + op

1

5

7

6

8 9

7 8 9

2

3

7

6

8 9

7 8 9

3

1

7

6

8 9

7 8 9

4

6

8 9

8 9

5

4

7

6

8

7 8

o

s

p

s

p p

p p p

o

s

p

s

p p

p p

o

s

p

s

p p

p p

o

s

p p

p p

o

s

p

s

p

p p

Fig. 3: A partial trie configuration for the six tries of Fig. 2. The set of red edges and nodes (which are also doubly-circled)
corresponds to a second set of children that descend by another attribute from the same first-level nodes.

Example 6 Fig. 3 shows the partial tries corresponding to
our running example. ⊓⊔

Overall, we expect a space saving between 1/4 and 1/2

with the use of partial tries (we will obtain around 1/3 in
practice in this paper). In exchange, some slowdown is to be
expected due to the need to switch between tries, reentering
another trie from the root instead of directly navigating to
the children of the current node.

3 CompactLTJ: Leapfrog Triejoin on Compact Tries

We now introduce our compact representation of the LTJ
tries, and combine them with techniques that improve the
performance of the original proposal. Our index, Com-
pactLTJ, represents separately the trie topology and the
edge labels.

3.1 Trie topology

The Level-Order Unary Degree Sequence (LOUDS) [18] is
a representation of n-node tree topologies using just 2n +

o(n) bits. It is obtained by traversing the tree levelwise (with
each level traversed left to right). We append the encoding
0d1 of each traversed node to a bit sequence T , where d is
the number of children of the node. The final sequence T

represents the tree using two bits per node: a 0 in the encod-
ing of its parent and a 1 to terminate its own encoding. A
bitvector representation of T then needs 2n+ o(n) bits, and
allows navigating the tree in constant time.

Example 7 Fig. 4 shows the LOUDS representation of the
trie SPO of Fig. 2 (ignore the bottom-right part and node
names for now). ⊓⊔

Our trie topologies are particular in that all the leaves
have the same depth, 3. Therefore, every internal node at
depths 0–2 have children, and thus we can reduce their en-
coding to 0d−11. The leaves need not be encoded, which fur-
ther saves space. In the original encoding, then, every node
with d children spends d + 1 bits (leaves, with d = 0, in-
cluded). In our new code, it spends d bits per node (leaves
included, which means they disappear). Thus, we save n bits
and therefore halve the original space [18].

8 Arroyuelo et al.

spo

1

7

3

3

7

2

5

7

5

5

7

1

6

8

1 2 3 4 5

9

1 2 3 4

v
000001

01

01

1

01

01

1

01

01

1

01

01

1

001

000001

1 1 1 1 1

00001

1 1 1 1

LOUDS representation:

000001

01 01 01 01 001

01 01 01 01 000001 00001

1 1 1 1 1 1 1 1 1 1 1 1 1

Our LOUDS representation:

00001

1 1 1 1 01

1 1 1 1 00001 0001

u

w

Fig. 4: The LOUDS representation of the trie SPO of Fig. 2. Besides each node, with d children, we show its encoding 0d1.
On the bottom left, the levelwise concatenation of the encodings. The LOUDS representation concatenates all the levels. The
bottom right shows our shorter representation, which uses 0d−11 instead of 0d1 and removes the leaves.

Lemma 1 Our representation uses n− 1 bits on a trie of n
nodes.

Proof An internal node with d children is encoded as 0d−11

and leaves are not encoded; therefore we store exactly as
many bits as edges in the trie, that is, n− 1 bits. ⊓⊔

Our encoding also simplifies the traversal compared to
the original LOUDS [18]. We will use the position preceding
the encoding of a node as its trie identifier v (e.g., v = 0 for
the root). The navigation to children makes use of the primi-
tive select(T, j), which is the position of the jth occurrence
of bit 1 in T . This primitive can be supported in O(1) time
using just o(n) additional bits of space on top of T [11, 28]
(see Appendix A for a description of this algorithm). With
this primitive, we can navigate our representation as follows.

Lemma 2 For every v ≥ 0 and i ≥ 1, it holds

child(v, i) = select(T, v + i).

Proof Bitvector T lists, in levelwise order, all the trie nodes,
using one 1-terminated code per node. Since the code con-
sists of exactly one bit per child, T also lists all the trie
edges, in levelwise order, using one bit per edge. The tar-
gets of those edges also form a levelwise enumeration of the
nodes, just missing the root. It follows that the edge leading
to the ith child of v is at position T [v + i], and its target is
the (v+i+1)th node in levelwise order (since the first is the
root). The identifier of that node is the position preceding its
code in T , which is the position of the (v + i)th 1 in T . ⊓⊔

Example 8 The bottom-right of Fig. 4 shows our more com-
pact representation. For the trie SPO, we have:

T = 00001 111101 1111000010001.

For example, the identifier of the root is v = 0 and that of
its fifth child is u = child(0, 5) = select(T, 0+ 5) = 9. The
encoding of node u = 9 is at T [u + 1 . . u + degree(u)] =
T [10 . . 11] = 01. See v and u in Fig. 4. ⊓⊔

In order to implement leap(), we also need to determine
the number of children of a node v. This is the distance from
v to the next 1 in T :

degree(v) = selectnext(T, v + 1)− v,

where the primitive selectnext(T, k) gives the position of
the leftmost occurrence of 1 in T [k . .]. This primitive can
also be computed in O(1) time using o(n) additional bits of
space; see again Appendix A.

Example 9 Continuing with Ex. 8, the first child of u = 9

is w = child(9, 1) = select(T, 9 + 1) = 15. Node w = 15

has degree(15) = selectnext(15 + 1) − 15 = 20 − 15 = 5

children. See w in Fig. 4. ⊓⊔

3.2 Node identifiers

The node identifiers are stored in a compact array L, each
one using ⌈lgU⌉ bits. The identifiers in L are deployed in

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 9

the same levelwise order of the edges T , so the identifiers of
the children of node v are all consecutive, in L[v + 1 . . v +

degree(v)]. This yields

access(v, i) = L[v + i]

and allows implementing leap() efficiently by using expo-
nential search from the current position. In our represen-
tation, we define leap([i, j], c) as the smallest k ∈ [i . . j]

such that L[k] ≥ c, or j + 1 if no such k exists. With this
convenient notation, the children of node v are searched as
leap([v + 1, v + degree(v)], c).

Example 10 For our trie SPO in Fig. 4, the index would store

T = 00001 111101 1111000010001

L = 13456 777789 3251123451234

where, for example, the fifth (i = 5) child of the root (v = 0)
descends by L[0 + 5] = 6 (to u = 9, as shown before).
The first child of u, by L[9 + 1] = 8, leads to w = 15. The
children of w have labels L[16 . . 20] = 12345. It then holds,
for example, that leap([16, 20], 4) = 19. ⊓⊔

3.3 xCompactLTJ: Using partial tries

We implement trie switching as follows. Consider the tries
SPO and SOP in Fig. 2. Per trie switching, we choose to rep-
resent only SPO and SO (see Fig. 3); from the second we can
switch to trie OSP if we need to access predicates from SO.

Example 11 Fig. 4 shows how the three levels of trie SPO

are represented. The first level, corresponding to S, is rep-
resented with bits 00001 and identifiers 13456, exactly as
the first level of SO (and SOP, which is not represented). To
represent SO, then, we reuse the first level of SPO, and store
only the second level, O, of the trie:

T ′ = 00001 111100001

L′ = 13456 325112345

where the gray nodes are not represented (see Fig. 2 again,
or the red nodes at the top of Fig. 3). ⊓⊔

As explained, in case we want to descend from a leaf of
SO to the predicates, we reenter the trie OSP with the current
values of o and s, respectively. This is the case where the use
of partial tries may entail some time overhead.

In total, we represent 12 trie levels instead of 18. We call
xCompactLTJ the CompactLTJ version using partial tries.

3.4 UnCompactLTJ: A non-compact variant

As a baseline to determine the slowdown incurred with
compact representations like LOUDS, compared to clas-
sical ones, we introduce a version called unCompactLTJ,
which is a minimal non-compact trie representation.

The unCompactLTJ index stores an array P of point-
ers, one per internal node, deployed in the same order of
LOUDS. For each internal node v we store P [v + 1] =

child(v, 1), that is, a pointer to its first child, knowing that
the others are consecutive, that is, child(v, i) = P [v + i].
Each pointer uses ⌈lg n⌉ bits, as it is a position within an
array of n elements. The number of children of node v is
simply degree(v) = P [v + 1]− P [v], assuming P [0] = 0

if needed. Its array L of edge labels is identical to that of
CompactLTJ , so access(v, i) = L[v + i] still holds.

Example 12 For our same Ex. 8 we have

P = ⟨5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 20, 24⟩

(where 24 = |T | is a terminator). The root 0 has P [1] −
P [0] = 5 children, at positions P [1 . . 5]. Its fifth child de-
scends by label L[0 + 5] = 6 to node P [0 + 5] = 9, which
has two children, since L[6] − L[5] = 2. Its first child de-
scends by label L[P [5] + 1] = L[9 + 1] = 8 to node
P [9 + 1] = 15. Node 15 has P [11]−P [10] = 5 children, at
L[16 . . 20] = 12345. ⊓⊔

In exchange for nearly doubling the space of Com-
pactLTJ, unCompactLTJ has explicit pointers just like
classical data structures, and does not spend time in
computing addresses. As we show in the experiments,
unCompactLTJ is only marginally faster than CompactLTJ,
so the slowdown due to using compact data structures
is mild. Still, unCompactLTJ uses half the space of Jena
LTJ [17], a classic index that supports LTJ using the six
tries (implemented as B+-trees).

3.5 Adaptive VEOs

Our orthogonal contribution is the study of improved VEOs
on our compact LTJ tries, which deviate from the VEO de-
fined in Section 2.3. The first improvement is the use of
adaptive VEOs; the second is on the wij estimator used.

In previous work using the VEO described in Sec-
tion 2.3, the VEO is fixed before running LTJ. The
selectivity of each variable xj is estimated beforehand, by
assuming it will be the first variable to eliminate. In this
case, Eq. (1) takes the minimum of the number of children
in all the trie nodes we must intersect, as an estimation of
the size of the resulting intersection. The estimation is much
looser on the variables that will be eliminated later, because
the children to intersect can differ a lot for each value of xj .

10 Arroyuelo et al.

We then consider an adaptive version of the heuristic: we
use the described technique to determine only the first vari-
able to eliminate. Say we choose xj . Then, for each distinct
binding xj := c, the corresponding branch of LTJ will run
the VEO algorithm again in order to determine the second
variable to eliminate, now considering that xj has been re-
placed by c in all the triples ti where it appears. This should
produce a more accurate estimation of the intersection sizes.

In the adaptive setting, we do not check anymore that
the new variable shares a triple with a previously eliminated
one; this aimed to capture the fact that those triples would be
more selective when some of their positions were bound, but
now we know exactly the size of those progressively bound
triples. The lonely variables are still processed at the end.

3.6 CompactLTJ*: Better VEO predictors

The CompactLTJ index uses the original estimator based on
the number of children of v, which is easily computed in
constant time as wij = degree(v). We now define an al-
ternative version, CompactLTJ*, which computes wij as the
number of leaf descendants of v. This is wi,j = N if v is
in the first level (i.e., the root), and wi,j = degree(v) if v is
in the third level (i.e., just above the leaves). For the second
level, we compute in constant time

wij = child(v + degree(v), 1)− child(v, 1).

We argue that the number of descendants may be a more
accurate estimation of the total work that is ahead if we bind
xj in ti, as opposed to the children, which yield the number
of distinct values xj will take without looking further.

4 Dynamic CompactLTJ

A pitfall of most compact indices that support wco query
times on BGPs [3, 5, 4] is that they are static, that is, they
do not support insertions or deletions of triples in the graph.
There is a good reason for this: while basic bitvector oper-
ations like select and selectnext can be supported in con-
stant time in the static case [18, 28, 11], a lower bound
of Ω(lg n/ lg lg n) when bit flips are allowed [14] imposes
a significant gap between static and dynamic solutions. A
gap of 10x does show up in practice [41, 12] and permeates
through all the compact data structures, as bitvectors are ba-
sic components in most of them.

A recent development called adaptive dynamic bitvec-
tors [30] offers a new tradeoff on this gap, however, that is
especially relevant in our application: if a bitvector receives,
on average, one bit insertion or deletion per q query opera-
tions (like select or selectnext), then all the operations run
in O(lg(n/q)) amortized time. Significant time improve-
ments are shown over a classic dynamic implementation for

q ≥ 1,000 or so, and times very close to those of static im-
plementations for about q ≥ 10,000.

Now consider our bitvector T . A graph query Q running
in time Õ(Q∗) implies, essentially, that T will receive
Õ(Q∗) bitvector queries, which is typically a massive
amount: in our benchmark, we carry out about a billion
select operations per query limited to 1,000 results, and
nearly 40 billion without limiting the results. This implies
that, even if T received one update after every graph query
Q, q would be between 109 and 1011, and thus we could ex-
pect a performance very close to that of the static scenario.
Further, we expect much fewer updates per graph query in
practical applications. For example, Wikidata receives about
6,000–15,000 queries and 200–500 updates per minute1,
which corresponds roughly to 0.1 to 0.01 updates per graph
query.

We now describe how the solution for bitvectors [30] is
applied on T and integrated with an analogous solution for
arrays, which is applied on L. The solution is adapted to
the queries we need in order to obtain a dynamic version of
CompactLTJ that performs almost as well as the static one.
We will show that our solution is robust even under much
more demanding conditions, where it receives up to 1,000
updates per graph query.

4.1 Insertions and deletion of triples

The insertion/deletion of a triple (s, p, o) in/from G requires
updating the six tries.

Example 13 Assume we want to add to the graph of Fig 1
the fact that Thomson also advised Rutheford. This is ex-
pressed in a new triple (Rutheford, adv,Thomson) we add
to G. Let us assign Rutheford the integer identifier 10, so
the triple we wish to add is (s, p, o) = (10, 7, 3). This triple,
reading its components in the 6 possible orders, must be in-
serted in the six tries. In particular, we must insert (3, 10, 7)
in the trie OSP. ⊓⊔

For insertion, we traverse the trie from the root. We first
descend in the trie as much as possible with the elements of
the triple t to insert, using leap() to find the correct child.
Once leap() indicates that the child to follow does not ex-
ist, we must start inserting it, until we insert the whole triple
t. Algorithm 2 shows the details, which we explain by fol-
lowing the insertion of our example tuple. It makes use of
the primitive insert(A, c, i) on T and L, which inserts c at
position i in A; we describe its implementation later.

1 See https://grafana.wikimedia.org/d/000000170/wikidata
-edits?from=now-7d&orgId=1&to=now&viewPanel=1 and https://

grafana.wikimedia.org/d/000000489/wikidata-query-service?

orgId=1&refresh=1m&viewPanel=44&from=now-7d&to=now for on-
the-fly statistics.

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 11

osp

1

5

7

6

8 9

2

3

7

6

8 9

3

1

7

6

8 9

10

7

4

6

8 9

5

4

7

6

8

Fig. 5: The OSP trie of Fig. 2 after inserting triple (3, 10, 7).

Example 14 The representation of trie OSP from Fig. 2 is as
follows

T = 00001 010101101 1011011010111

L = 12345 563616646 7897897898978

We will insert tuple t = (3, 10, 7) in this trie. Variable
exists in Alg. 2 indicates that the node to follow (initially
v = 0, the root) exists. We take the first element of t,
c = 3. Line 5 computes v′ = leap([1, 5], c) = 3, where
access(0, 3) = c, meaning that the child with identifier c

exists. Line 7 descends to that child, v = child(0, 3) = 9.
The second tuple component, c = 10, is sought again in line
5 with v′ = leap([10, 11], c) = ⊥, meaning that c is larger
than every child of v. Line 10 establishes its insertion point,
v′ = 12. It then adds the new child c to the existing node
v: it inserts a 0 at position v′ − 1 = 11 of T and c = 10 at
position v′ = 12 of L, obtaining

T = 00001 0101001101 1011011010111

L = 12345 563616
1
0646 7897897898978

where we have underlined the insertions. Note that in case
the insertion point v′ is within the children of v, we instead
insert the 0 at position T [v′] in line 12. Line 14 descends
to the (still nonexistent) child of the newly created node,
v ← child(9, 3) = 24, and exists is set to false.

Once the desired node does not exist, the third tuple
component, c = 7, is inserted, in lines 17 and 18, at po-
sitions v + 1 = 25 in T . We create a leaf by inserting a 1 in
T and a c in L. Line 19 descends by that inserted position to
keep inserting the elements of t, though in our example we
have finished. The final result is

T = 00001 0101001101 10110110110111

L = 12345 563616
1
0646 78978978978978

Fig. 5 highlights the path inserted on the OSP trie. ⊓⊔

We proceed in reverse order to delete a triple t: we en-
ter the trie recursively, looking for each component c using
leap(), until reaching the leaf v corresponding to t. Then we
remove nodes as we return from the recursion. To remove

Algorithm 2 Inserting tuple t in trie τ .

trieInsert(τ, t)

1: v ← root of τ
2: exists← true
3: for c ∈ t do
4: if exists then
5: v′ ← leap([v + 1, v + degree(v)], c)
6: if v′ ̸= ⊥ and access(v, v′ − v) = c then
7: v ← child(v, v′ − v)
8: else
9: if v′ = ⊥ then

10: v′ ← v + degree(v) + 1
11: insert(T, 0, v′ − 1)
12: else insert(T, 0, v′)

13: insert(L, c, v′)
14: v ← child(v, v′ − v)
15: exists← false
16: else
17: insert(T, 1, v + 1)
18: insert(L, c, v + 1)
19: v ← child(v, 1)

the leaf we use the primitive delete(T, v) and delete(L, v),
which removes the given element from a bitvector or ar-
ray and will be described later. There are three cases: (i)
T [v] = 0, (ii) T [v − 1, v] = 01, (iii) T [v] = 1 and (v = 1

or T [v − 1] = 1). In case (i), the encoding of the parent
node is 0d1 with d > 0, so we are not removing its only
child. To obtain the new correct encoding, 0d−11, we per-
form delete(T, v) and delete(L, v), and the deletion process
terminates. Case (ii) is similar, but there is a 1 at T [v], so
to obtain 0d−11 we must do delete(T, v − 1) instead of
delete(T, v) (plus delete(L, v)). In case (iii), the signature
of the parent is just 1, so we are deleting its only child. We
then perform delete(T, v) and delete(L, v), and must keep
removing the current node v as we return from the recursion.

4.2 Updates with partial tries

Partial tries may not require updates upon insertions and
deletions in the graph. For example, if we inserted the triple
(p, o, s) in the full trie POS and Alg. 2 did not create a new
node in the second level for (p, o), then we do not need to
insert the pair (o, p) in the partial trie OP. In case we do need
to insert (o, p), we reuse the work done when inserting in the
full trie OSP and found the insertion point v′ in the first level.

Example 15 The trie OP in Fig. 3 is represented with just the
sequences T ′ and L′ corresponding to the red edges, which
are complementary to those for OSP shown in Ex. 14.

T ′ = 00001 0010010010101

L′ = 12345 7897897898978

where the elements in gray are not represented. In Ex. 14 we
had obtained position v′ = 3 for the node in first level. To

12 Arroyuelo et al.

insert in OP, we would continue the insertion in T ′ and L′ at
position v = child(0, 3) = 11. In this case, the insertion is
not necessary because the pair (p, o) = (7, 3) already exists
in POS (see Fig. 2). Indeed, if we tried to insert the pair here,
we would compute v′ = leap([12, 14], 7) = 12, and since
access(v, 1) = L[12] = 7, we would not insert it.

If, instead, o (and thus (o, p) and (p, o)) did not exist,
o would be inserted in the first level of OSP. We would
then simply insert in the second level of OP at position
child(0, v′) + 1, inserting 1 in T ′ and p in L′ of OP. ⊓⊔

Deletions are analogous. We determine that we must
delete (o, p) from OP if the deletion of (p, o, s) from POS

deleted the node representing (p, o).

4.3 Dynamic representation of T and L

Adaptive dynamic bitvectors [30] represent a bit sequence
as a balanced binary tree with three kinds of nodes:

– dynamic leaf : allocates space for b elements (for a pa-
rameter b) and supports updates. Queries on the leaf are
solved by sequential scanning.

– static leaf : stores subsequences with more than b el-
ements and does not support updates. It precomputes
some extra information to speed up queries, for exam-
ple to solve select in constant time.

– internal node: stores pointers to both children and vari-
ous statistics about the subtree rooted at the node. For ex-
ample, size records the number of elements represented
in the subtree and ones records the number of 1s.

To insert or delete a bit at a given position, the algorithm
descends from the root of the binary tree guided by the size
of the nodes, until reaching a leaf. If the leaf is dynamic,
the update is applied. Otherwise, the leaf is static and the
update is not possible. By a procedure called split, the leaf
is recursively halved until the update reaches a dynamic leaf
and then can be applied on it.

Queries proceed analogously. For example, select pro-
ceeds from the root to a leaf guided by the number of ones
in the subtrees. When reaching a leaf, it completes the query
by scanning if the leaf is dynamic, or using the precomputed
structures if it is static; see Alg. 3. When a high amount of
queries traverse an internal node, it is flattened into a static
leaf, so as to speed up further queries.

We will use adaptive dynamic bitvectors to represent our
bitvector T of Section 3. In the implementation, they also
provide a version to handle arrays of values, which we use to
represent our array of identifiers L. In our compact tries, in-
serting/deleting a trie node boils down to updating the same
positions in T and L. We then modify their implementation
so as to store T and L aligned together in the leaves of the
same binary tree. This is advantageous because we typically

Algorithm 3 Running select(j), selectnext(i), and
leap([b, e], c) on a binary tree representing a dynamic
bitvector, rooted at v.

dynSelect(v, j)

1: if v is an internal node then
2: if v.left.ones ≥ j then return dynSelect(v.left, j)
3: else return dynSelect(v.right, j − v.left.ones)

4: if v is a static leaf then
5: return select(j) on the O(1)-time structure of v
6: else return select(j) by sequentially scanning v’s sequence

dynSelectNext(v, i)

1: if v is an internal node then
2: if v.left.size < i then
3: return dynSelectNext(v.right, i− v.left.size)

4: pos← dynSelect(v.left, i)
5: if pos ̸= ⊥ then return pos
6: else return dynSelectNext(v.right, 1)

7: if v is a static leaf then
8: return selectnext(i) on the O(1)-time structure of v
9: else return selectnext(i) by sequentially scanning v’s sequence

dynLeap(v, b, e, c)

1: if b = 1 and e = v.size and c > v.last then return ⊥
2: if v is an internal node then
3: s← v.left.size
4: if s ≥ e then return dynLeap(v.left, b, e, c)

5: if s < b then return dynLeap(v.right, b− s, e− s, c)

6: if c ≤ v.left.last then return dynLeap(v.left, b, s, c)

7: return dynLeap(v.right, 1, e− s, c)

8: return leap([b, e], c) using exponential search on v’s sequence

need to descend by the binary trees only once, and also save
some space.

The implementation of dynamic bitvectors [30] already
provides the query select, which we use to implement child,
but we had to incorporate support for selectnext and leap.
See Alg. 3 again.

– selectnext(v, i) is solved by running a top-down traver-
sal, where in each internal node we go right if i is on the
right child. If i is on the left child, we first try to find the
answer on the left child, and if it is not there, we search
the right child from the first position. If the recursion
ends in a dynamic leaf, selectnext is solved by a sequen-
tial scan; if it ends on a static leaf, it is solved in constant
time with its precomputed structures.

– leap([b, e], c) is invoked only when L[b . . e] is increas-
ing. To compute it efficiently, we maintain in each inter-
nal node v the field last, which stores the last value of
L in the subtree rooted at v. We descend from the root,
left or right as long as [b . . e] is completely included in
one child. If we arrive at an internal node v whose chil-
dren split [b . . e], then we continue to the left child if

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 13

c ≤ v.left.last, otherwise we continue to the right child.
Further, we immediately return from v without an an-
swer if its subtree is completely contained in [b . . e] and
v.last < c. In the leaves (both static and dynamic), the
answer is found by running an exponential search.

5 Experimental Results

We compare our compact indexing schemes with various
state-of-the-art alternatives, in terms of space usage and time
for evaluating various types of BGPs.

Our experiments ran on an Intel(R) Xeon(R) CPU E5-
2630 at 2.30GHz, with 6 cores, 15 MB cache, 378 GB RAM.

5.1 Datasets and queries

We run a benchmark over the Wikidata graph [46], which
we chose for its scale, diversity, prominence, data model
(i.e., labeled edges) and real-world query logs [23, 10]. For
now we assume that node and label identifiers are integers
in a contiguous range, which can be obtained after a suit-
able preprocessing of the graph; we consider later how to
deal with the actual strings. Our Wikidata graph features
N = 958,844,164 triples, which take 10.7 GB if stored in
plain form using 32 bits for the identifiers.

We consider a real-world query log [23]. In search of
challenging examples, we downloaded queries that gave
timeouts, and selected queries with a single BGP, obtain-
ing 1,295 unique queries. Those are classified into three
categories: (I) 520 BGPs formed by a single triple pattern,
which mostly measure the retrieval performance of the
index; (II) 580 BGPs with more than one triple but only one
variable appearing in more than one triple, which measure
the performance of joins but do not distinguish good from
bad VEOs (as long as the join variable is eliminated first, of
course); (III) 195 complex BGPs, where the performance of
different VEOs can be compared.

Example 16 Query Q1 from Ex. 2 is of type I, whereas
query Q2 is of type III. An example of a query of type II is
Q = {(6, 9, x), (x, 7, y)}, which finds Nobel prize winners
and their advisors. ⊓⊔

All queries were run with a timeout of 10 minutes
and a limit of 1000 results (as originally proposed for
WGPB [17]). This measures the time the systems need to
display a reasonable number of results. We also compare
the systems without the limit of results, which measures
throughput in cases where we need all the results. The space
of the indices is measured in bytes per triple (bpt); a plain
32-bit storage requires 12 bpt.

System Space Average (msec) Median (msec)
(bpt) Global Adaptive Global Adaptive

xCLTJ 27.56 489 415 0.9 1.5
xCLTJ∗ 27.56 246 78 1.4 1.3
CLTJ 39.58 421 394 0.6 0.6
CLTJ∗ 39.58 187 52 0.6 0.6
UnCLTJ 56.34 454 375 0.6 0.5
UnCLTJ∗ 56.34 204 46 0.6 0.5

Table 1: Space and query times of the compact LTJ variants,
limiting results to 1000, with global and adaptive VEOs.

We leave the experiments on dynamic representations
to the end of the section. Our dynamic CLTJ variants per-
form identically to the static ones when there are no up-
dates, thanks to the use of dynamic adaptive bitvectors and
sequences.

5.2 Compact LTJ variants

Table 1 compares the indices CompactLTJ, xCompactLTJ,
and unCompactLTJ described in Section 3, calling them re-
spectively CLTJ, xCLTJ, and UnCLTJ. The versions CLTJ∗,
xCLTJ∗, and UnCLTJ∗, in turn, use the VEO predictor de-
scribed in Section 3.6. All of them compute the VEO in
traditional form (“global VEO”) and in adaptive form (Sec-
tion 3.5). No variant gave any timeout in this experiment.

The space of the CLTJ index is just 3.3 times the size
of the raw data encoded as a set of n 32-bit triples, whereas
UnCLTJ uses 4.7 times the size (i.e., 42% more than CLTJ).
The reward for using that 42% extra space is not significant,
which shows that the space reduction obtained with CLTJ

comes at essentially no loss in time performance. On the
other hand, xCLTJ uses just 2.3 times the size of the raw
data, which is a 30% space reduction over the space of CLTJ.
This space reduction comes at a price in time, however: the
adaptive variant of xCLTJ∗ is 50% slower than that of CLTJ∗
on the average, and over twice as slow in the median. The
extra time owes to the need of switching tries.

While the medians of all the different variants are in the
range of 0.5–1.5 milliseconds per query, the averages show
that some query strategies yield much more stable times, and
thus a lower average. The large difference between average
and median query times shows that, although many queries
are solved fast, there are others that take much longer, and it
is important to better deal with them. In particular, combin-
ing adaptive VEOs with the modified VEO predictor (Sec-
tion 3.6) reduces the average query times by almost an order
of magnitude, to around 40–80 milliseconds. Using adap-
tive VEOs alone produces a very modest improvement, and
using the modified VEO predictor with global VEOs only
halves the time. The sharp improvement is obtained with the
combination of both techniques.

14 Arroyuelo et al.

In the sequel we will use only the variants xCLTJ∗,
CLTJ∗, and UnCLTJ∗ with adaptive VEOs.

5.3 Comparison with other systems

We now put our results in context by comparing our compact
LTJ indices with various graph database systems:

Wco systems: Systems that guarantee the AGM bound.
– Ring [5], a recent compressed in-memory represen-

tation that simulates all the 6 tries in a single data
structure. Ring-large and Ring-small correspond to
the versions called Ring and C-Ring, respectively, in
their paper.

– MillDB [47]: A recently developed open-source
graph database. We use here a specialized version
that stores six tries in the form of B+-trees and
supports full LTJ, with a sophisticated (yet global)
VEO. We run MillDB over a RAM disk to avoid
using external memory.

– Jena LTJ [17]: An implementation of LTJ on top of
Apache Jena TDB. All six different orders on triples
are indexed in B+-trees, so the search is always wco.

Non-wco systems: Older systems not reaching the AGM
bound, yet well established and optimized.
– RDF-3X [34]: Indexes a single table of triples in

a compressed clustered B+-tree. The triples are
sorted and those in each tree leaf are differentially
encoded. It handles triple patterns by scanning
ranges of triples and uses a query optimizer over
pair-wise joins.

– Virtuoso [13]: The graph database hosting the public
DBpedia endpoint, among others. It provides a
column-wise index of quads with an additional
graph (g) attribute, with two full orders (PSOG,
POSG) and three partial indices (SO, OP, GS) op-
timized for patterns with constant predicates. It
supports nested loop joins and hash joins.

– Blazegraph [44]: The graph database system host-
ing the official Wikidata Query Service [23]. We run
the system in triples mode, with B+-trees indexing
orders SPO, POS, and OSP. It supports nested-loop
joins and hash joins.

Beyond-wco systems: Recent systems combining wco and
non-wco strategies. We could run only one at this scale.
– UmbraDB [33]: A system based on relational tables

whose query plans use binary joins but may intro-
duce wco plans for some sub-queries. Those plans
are executed with LTJ using hash-based tries that are
built on the fly as needed. Queries are compiled into
executable multithreaded code. Because this system
builds most indexes at query time, we measured the
memory usage of the process.

We exclude Graphflow [26], Kùzu [19], DuckDB [42],
ADOPT [48], and EmptyHeaded [1] because our server does
not have enough memory to build or run them (they did not
even run on another server with 768 GB of RAM). Most of
those are beyond-wco systems. Section 5.5 compares them
on harder queries and a smaller graph, where their stronger
join strategies can be put in action.

In all systems, the code was compiled with g++ with
flags -std=c++11 and -O3; some alternatives have extra flags
to enable third party libraries. Systems are configured per
vendor recommendations.

Table 2 shows the resulting time, space, and timeouts. A
first observation is that, while the Ring variants use consid-
erably less space than our smaller variant, xCLTJ (2.3–3.8
times less space, even less than the raw data), this comes
at a considerable price in time performance: the Ring vari-
ants are 30–40 times slower than xCLTJ∗ on average, and
6–18 times slower in the median. While the small space of
the Ring variants can be crucial to operate in main memory
where other representations do not fit, xCLTJ∗ (and CLTJ∗)
are much faster alternatives when they fit main memory.
This is in part because the compressed representation of the
Ring takes O(lg n) time to access any value, whereas CLTJ
variants access them in constant time, and in part because
the Ring’s simulation of trie traversal operations is consid-
erably more complex.

Interestingly, the CLTJ∗ variants are faster than non-
compact wco systems that use 6 tries represented in classic
form: MillDB and Jena LTJ. The faster one, MillDB, uses
4 times the space of CLTJ∗ and is twice as slow on average
and 50 times slower in the median. The classic non-wco
systems are somewhat smaller, but still 2–3 times larger
than xCLTJ∗ and 60–120 times slower on average. Um-
braDB outperformed the non-wco systems and Jena LTJ in
time, but it is dominated in time and space by MillDB.

Table 3 shows how the times distribute across the three
query types. It is interesting that MillDB is much slower
than the CLTJ∗ variants only for query types I and II, which
are the easy ones, whereas the average times on the hardest
queries, of type III, are closer (and MillDB outperforms
xCLTJ∗). This observation, and the consistently larger
median times, suggest that MillDB performs some internal
setup per query that requires several tens of milliseconds.
We return to this point next.

On the other hand, some non-wco indices are com-
petitive with MillDB (and outperform Jena-LTJ) on type I
queries, but worsen on type II, and worsen much more on
type III, as expected from theory. Similarly, UmbraDB is
outperformed by the best non-wco systems by a factor of
2 on type I queries, matches them on type II queries, and
sharply outperforms them on type III queries, showing that
it handles complex queries well. Still, it is 2–5 times slower
than MillDB for all query types (4 times slower in total).

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 15

System Space Average Median Timeouts
(bpt) (msec) (msec) (> 10 min)

Ring-small 7.30 3056 24 5
Ring-large 12.15 2256 8 3

xCLTJ∗ 27.56 78 1.3 0
CLTJ∗ 39.58 52 0.6 0
UnCLTJ∗ 56.34 46 0.6 0

Virtuoso 60.07 4880 50 8
RDF-3X 85.73 8230 126 13
Blazegraph 90.79 9220 54 14

MillDB 156.78 96 27 0
Jena LTJ 168.84 1930 162 1

UmbraDB 199.67 402 224 0

 10

 100

 1000

 10000

 0 50 100 150 200

 Ring-small
 Ring-large

xCLTJ*
CLTJ* UnCLTJ*

 MillDB

 Jena LTJ

 Virtuoso
RDF-3X Blazegraph

UmbraDB

Av
er

ag
e

qu
er

y
tim

e
(m

ill
is

ec
on

ds
)

Index size (bytes/triple)

Table 2: Space and average query times of various systems,
limiting results to 1000.

System Space Type I Type II Type III
(bpt) Avg Med Avg Med Avg Med

Ring-small 7.30 12 8.0 380 36 6620 88
Ring-large 12.15 3.7 4.0 97 8.0 2448 28

xCLTJ∗ 27.56 3.1 0.4 16 1.7 466 5.0
CLTJ∗ 39.58 2.3 0.3 15 0.9 299 3.1
UnCLTJ∗ 56.34 1.9 0.2 13 0.8 259 2.5

MillDB 156.78 50 20 79 27 267 73
Jena LTJ 168.84 449 65 691 175 9418 1059

Virtuoso 60.07 51 27 374 58 24769 126
RDF-3X 85.73 359 62 390 94 53144 1827
Blazegraph 90.79 44 27 6451 110 68011 310

UmbraDB 199.67 97 99 353 259 1363 543

Table 3: The best performing indices, separated by query
type, limiting outputs to 1000 results. Times are in msec.

5.4 Not limiting the number of results

The case without limits in the number of answers is shown
in Table 4. The times are much higher and thus the scale
measures seconds. An important difference is that adaptive-

System Space Average Median Timeouts
(bpt) Gl Ad Gl Ad Gl Ad

xCLTJ 27.56 15.7 15.7 0.08 0.11 21 20
xCLTJ∗ 27.56 18.5 16.2 0.11 0.11 26 20
CLTJ 39.58 13.6 14.2 0.05 0.06 18 18
CLTJ∗ 39.58 15.4 13.9 0.06 0.06 19 18
UnCLTJ 56.34 13.1 13.7 0.05 0.06 16 18
UnCLTJ∗ 56.34 16.0 14.3 0.06 0.07 22 19

Table 4: Space and query times (in sec) of compact LTJ vari-
ants, with Gl(obal) and Ad(aptive) VEOs, not limiting the
results. Timeouts count queries exceeding 10 min.

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228 230 232

Results

0

100

200

300

400

500

600

Av
er

ag
ed

 ti
m

e
(s

ec
.)

Adaptive
Global

20 24 28 212
0

10

20

30

Fig. 6: Average time per type-III query as a function of the
output size, for both variants of CLTJ∗.

ness has almost no impact on the times. One reason for this
is that now the cost to report so many results dominates the
overall query time, thereby reducing the relative impact of
using better or worse techniques to produce them.

To confirm this intuition, Fig. 6 shows the average query
times as a function of their output size, for CLTJ∗ with
global and adaptive VEOs. As it can be seen, the adaptive
variant is much more robust than the global one. When
the result is so large that the time to output it blurs the
time taken to obtain it, both lines become similar. This is
typically the case of queries with several lonely variables,
whose binding is (wisely) left to the end and the query must
output their Cartesian product. When we average over all
the queries, as in Table 4, the average time is dominated by
those queries with massive outputs.

The fact that a much larger fraction of the time is spent
in outputting results also makes xCLTJ∗ similar in average
query times to CLTJ∗, while still being 30% smaller. Its me-
dian times are still twice as large, though.

Tables 5 and 6 show the results of the best perform-
ing variants (in time or space), globally and by query type.
MillDB fares better than with the limit, becoming similar
to the CLTJ∗ variants and outperforming them on queries of
type I and II, arguably because of the better locality of ref-
erence of the B+-trees to report many results. On queries of

16 Arroyuelo et al.

System Space Average Median Timeouts
(bpt) (sec) (sec) (> 10 min)

Ring-small 7.30 83.6 2.9 101
Ring-large 12.15 46.8 0.9 59

xCLTJ∗ 27.56 16.2 0.11 20
CLTJ∗ 39.58 13.9 0.06 18
UnCLTJ∗ 56.34 14.3 0.07 19

MillDB 156.78 12.0 0.05 16

Table 5: Space and query times of the best performing in-
dices, not limiting the results.

System Space Type I Type II Type III
(bpt) Avg Med Avg Med Avg Med

Ring-small 7.30 25.9 0.112 106.7 7.93 157.1 21.79
Ring-large 12.15 10.5 0.044 53.1 2.57 107.7 7.53

xCLTJ∗ 27.56 1.9 0.003 16.6 0.39 52.8 0.91
CLTJ∗ 39.58 1.3 0.001 15.1 0.24 45.9 0.60
UnCLTJ∗ 56.34 1.3 0.001 14.8 0.23 47.8 0.71

MillDB 156.78 0.3 0.013 9.7 0.17 50.0 0.65

Table 6: The best performing indices, separated by query
type, without limiting the results. Times are in seconds.

type III, where the query plan matters most, they all perform
similarly.

5.5 Harder queries

We have compared the systems on real-life queries and at
large scale. We now study more in depth the ability of var-
ious systems to handle particular query shapes that can be
difficult to handle, on a smaller dataset. From our previous
systems, we include the best wco systems and the beyond-
wco system UmbraDB. We also include new systems that
could not be run at full scale:

– DuckDB [42]: A non-wco relational query engine that
stores the tables in columnar form on disk. It uses vec-
torized and pipelined models to implement optimized bi-
nary join plans.

– Kùzu [19]: A graph query engine that indexes property
graphs using unsorted adjacency lists. It uses a cost-
based dynamic programming to produce plans that mix
wco and pairwise joins. For the joins, hash tables are
created on the fly from the unsorted lists.

– Graphflow [26]: The predecessor of Kùzu, which uses
instead in-memory sorted adjacency lists.

– ADOPT [48]: The first wco algorithm using adaptive
VEOs on LTJ. It uses exploratory search and reinforce-
ment learning to find near-optimal orders, using actual
execution times as feedback on the suitability of orders.
We include variants using one and 70 threads.

– EmptyHeaded [1]: An implementation of a more general
algorithm than LTJ, which applies a generalized hyper-
tree decomposition [15] on the queries and uses a com-
bination of wco algorithms [36] and Yannakakis’ algo-
rithm [51]. It offers worst-case time guarantees that are
stronger than the AGM bound. Triples are stored in 6
tries (all orders) in main memory.

Those systems use too much memory on our Wikidata
graph. For example, Graphflow stores one structure per
predicate, which makes it usable with few predicates only:
on a subset containing < 10% of our Wikidata graph [5], it
failed to build even in a machine with 730 GB of Java heap
space. ADOPT did not build correctly either. EmptyHeaded
runs but it uses 1810 bpt, over 10 times more than Jena LTJ.
DuckDB and Kùzu exceeded the main memory space at
query time, even on a machine with 768 GB of RAM.

In this section we compare them over a smaller
graph used in previous work [39], soc-LiveJournal1,
the largest from the Stanford Large Network Dataset
Collection [22], with 68,993,773 unlabeled edges. We
test different query shapes (see previous work for a de-
tailed description [39]) including trees (1-tree, 2-tree,
2-comb), paths (3-path, 4-path), paths connecting cliques
(2-3-lollipop, 3-4-lollipop), cliques (3-cliques, 4-cliques),
and cycles (3-cycles, 4-cycles). We include 10 queries for
each tree, path, and lollipop, and 1 for each clique and cycle.
This is the same benchmark used for ADOPT [48], except
that we do not force the clique and cycle variables to be
different, and we choose for the constant any random value
such that the query has occurrences. We set a 30-minute
timeout and do not limit the number of results.

Since there are no labels, the Ring variants need not store
the data for predicates, and the compact LTJ solutions store
only two orders, PSO and POS (PS and POS with partial tries).
Graphflow is tested on the cliques and cycles only because
the implementation does not support constants in the BGPs.

Table 7 shows spaces and times. Interestingly, CLTJ∗
and UnCLTJ∗ get close to the space of the compressed Ring
solutions, and xCLTJ∗ uses significantly less. Graphflow,
ADOPT/Kùzu and EmptyHeaded/DuckDB use 2, 3, and
over 4 times more space, respectively, than CLTJ∗. MillDB
uses 5.5 and UmbraDB uses over 8 times more space.

The tree and path queries are solved in around a mil-
lisecond (and in many cases a tenth of a millisecond) by the
CLTJ∗ variants. The largest version, UnCLTJ∗, is only 5%–
15% faster than xCLTJ∗ (with only one exception where it is
45% faster) and almost twice as large. The next best systems
(the larger Ring, ADOPT, and MillDB, all of them wco), are
many times slower than the CLTJ∗ variants in all cases.

More in detail, the slower Ring is 7 to 130 times slower
than xCLTJ∗, and the faster Ring is 2.5 to 11 times slower.
DuckDB, the non-wco system, takes stably from half to one
second for all these queries, which is 3–4 orders of mag-

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 17

System Space 1-tree 2-tree 2-comb 3-path 4-path 2-3-lolli 3-4-lolli 3-clique 4-clique 3-cycle 4-cycle
Ring-small 5.52 0.071 0.030 54.6E–4 90.7E–5 0.037 5.89 535 timeout timeout timeout timeout
Ring-large 7.59 28.6E–5 66.4E–4 15.2E–4 30.1E–5 0.010 1.61 135 timeout timeout timeout timeout
xCLTJ∗ 3.42 5.45E–5 9.98E–4 3.15E–4 12.4E–5 12.9E–4 0.144 14.5 741 timeout 656 timeout
CLTJ∗ 6.46 5.66E–5 8.83E–4 2.32E–4 12.8E–5 10.9E–4 0.136 13.5 735 timeout 569 timeout
UnCLTJ∗ 6.55 4.70E–5 8.78E–4 2.17E–4 9.64E–5 10.0E–4 0.134 12.9 697 timeout 561 timeout
Graphflow 13.54 83.3 975 80.9 timeout
Kùzu 18.83 0.062 4, 61 0.170 0.137 timeout 8.88 out-mem timeout timeout timeout timeout
ADOPT-1 20.09 0.817 1.67 1.03 1.28 1.15 6.52 timeout 1337 timeout 885 timeout
ADOPT-70 20.09 0.837 1.75 1.21 1.12 1.56 3.60 105 105 timeout 106 timeout
EmptyHeaded 28.65 5.76E–5 1.32 9.68E–4 45.5E–5 0.506 11.0 315 14.0 326 13.1 1006
DuckDB 31.13 0.609 0.750 0.640 0.595 0.699 0.948 out-mem timeout timeout timeout timeout
MillDB 35.30 131 E–5 98.8 E–4 32.0 E–4 148 E–5 0.015 0.357 38.0 timeout timeout 1434 timeout
UmbraDB 52.86 0.028 0.085 0.046 0.041 0.058 0.240 102 416 timeout timeout timeout

Table 7: Space in bpt and median time in seconds (timeout is 1800) for various systems on graph soc-LiveJournal1.

nitude slower than xCLTJ∗. MillDB, the best wco system
from previous experiments, is much faster than DuckDB,
but still 1–2 orders of magnitude slower than xCLTJ∗.
ADOPT, the remaining wco system, is 3–4 orders of mag-
nitude slower than xCLTJ∗ in these queries (parallelization
does not help in this case). The performance of beyond-wco
systems is varied. The most stable one is UmbraDB, which
takes 28–85 milliseconds on those queries, being 2–3 orders
of magnitude slower than xCLTJ∗. Kùzu also fares well
(though not as well as UmbraDB) on some queries, but
much worse in others, being 3–4 orders of magnitude slower
than xCLTJ∗. Only EmptyHeaded shows times comparable
to those of xCLTJ∗ (at most 4 times slower) on the smaller
queries, but it is still up to 3 orders of magnitude slower on
the larger ones.

The lollipop shapes are harder to solve, but the CLTJ∗
variants still handle the larger one in less than 15 seconds,
and are an order of magnitude faster than all the other al-
ternatives, except UmbraDB, which is only 1.7 times slower
than xCLTJ∗ on the smaller shape, and MillDB, which is
about 2.5 times slower in both shapes. The next best per-
forming systems are the large Ring and the parallel ADOPT.

EmptyHeaded finally takes over on the hardest shapes,
cliques and cycles, where it is 3–6 times faster than Graph-
flow, 7–8 times faster than the parallel ADOPT, 30 times
faster than UmbraDB, 50 times faster than the CLTJ∗ vari-
ants, and 110 times faster than MillDB, when those other
systems do not timeout. We note that the CLTJ∗ variants are
still faster than sequential ADOPT in these shapes.

5.6 The dynamic case

We now show how efficient are our update algorithms and,
more importantly, how enabling dynamism affects the query
time performance of our compact representations. We build
the indices on a randomly chosen 80% of the Wikidata
graph, and the remaining 20% is used for insertions. On
those indices, we compute the 1,295 queries from the Wiki-

System Insertion Deletion

xCLTJ∗ 11.42 11.45
MillDB 3.73 3.03
Virtuoso 22.85 14.30

Table 8: Average time in milliseconds for each type of up-
date in different systems.

0 0.001 0.01 0.1 1 10 100 1000
Updates per query

15

20

25

30

xCLTJ *
Virtuoso
MillDB

Ti
m

e
(s

ec
.)

Fig. 7: Average time performance of some indices with dif-
ferent number of updates per query, without limiting the
number of results (x < 1 means 1/x queries per update).
The configuration with 0 updates is run on the static data
structure; the others on the dynamic one.

data query log in different scenarios, without limiting the
number of results. The scenarios are set depending on the
number of updates per query: from 1000 queries between
each pair of updates to 1000 updates between each pair of
queries. Each update can be an insertion or deletion of a
triple; the type of operation and triple are chosen at random.

Table 8 shows the individual insertion and deletion times
for some systems, which are averaged from the updates
performed under the scenario of 1000 updates per query.
We compare xCLTJ∗ with MillDB and Virtuoso; the other
systems have considerably higher update times. The update
times of xCLTJ∗ are around 10 milliseconds, outperforming
those of Virtuoso; MillDB is instead three times faster.

Fig. 7 illustrates the query time performance obtained
when queries are mixed with updates. For xCLTJ∗, the ver-

18 Arroyuelo et al.

sion without updates (i.e., the static case) yields an average
time of 11.3 seconds per query. The performance worsens as
the number of updates increases, but only mildly, up to 14.4

seconds with 1000 updates per query. Hence, even in highly
dynamic scenarios, with huge amounts of updates, the aver-
age query times worsen by less than 30%. The times of Vir-
tuoso, which uses fully dynamic data structures (not adap-
tive ones, like xCLTJ∗), stay over 30 seconds per query. The
times of MillDB, which also uses a fully dynamic data struc-
ture (a B+-tree), increase at about the same pace of those
of xCLTJ∗, probably due to progressively more fragmented
B+-tree leaves (the structure built on 80% of the triples with
bulk-loading produces full leaves).

We also measure the space per triple of the dynamic ver-
sion after all the updates and queries are performed. Notice
that the cases are not fully comparable because the repre-
sented triples are not the same. In general, the dynamic ver-
sion uses around 10% more space than the static one. As the
number of updates increases to 1000, however, this overhead
rises to 18%. Even in such an extreme scenario, the space of
xCLTJ∗ on the whole Wikidata graph would increase to 33
bpt. The conclusions we have drawn over the static version
remain essentially unaltered in the dynamic case.

6 A Complete System

There is a gap between a proof-of-concept research proto-
type and a system that can be readily used by practitioners.
Although we do not aim for full-fledged software, we have
invested in closing this gap.

6.1 String identifiers

An important aspect that prototypes neglect is that the node
and label identifiers in RDF are strings (IRIs and literals).
Assuming that both are integers in a contiguous range
greatly simplifies developments and lets researchers focus
on the most important aspects of complex query processing.
A real system, however, must map the query strings into
those integer identifiers, and the identifiers of the resulting
triples into their corresponding strings. While translating
the query strings to identifiers is not time-critical because
they are short, the efficiency of translating the resulting
triples is relevant in queries that output many results. From
the systems we have compared with, MillDB, Jena LTJ,
RDF-3X, Virtuoso, Blazegraph, UmbraDB, Kùzu, and
DuckDB do handle strings, while the Ring, Graphflow,
ADOPT, and EmptyHeaded do not.

Storing the string identifiers is challenging when we aim
at compact representations, because the strings may add
up to a significant size if stored in uncompressed form. In
our dataset of Section 5.1, the strings in plain form occupy

12.4 GB, more than the triples in integer-encoded form. In a
static scenario, it has been shown [5] that compressed string
dictionaries [25] can represent those strings in just 3.68
additional bytes per triple. The translation of each output
triple takes 7–14 microseconds (the effect would be hardly
noticeable in Table 2, for example, as times would grow
by 7–14 milliseconds). While their static dictionary can be
plugged directly into CompactLTJ, the dynamic version of
CompactLTJ requires a dynamic compact dictionary where
strings can be inserted and deleted. This is challenging be-
cause most of the compact static dictionary representations
[25] cannot be maintained upon updates.

Static dictionaries may store the strings in some conve-
nient order (typically lexicographic) and let the string iden-
tifiers be their position in that order. This is not possible in
a dynamic dictionary, as one would need to update a mas-
sive amount of identifiers in the collection when a string is
inserted or deleted. For this reason, we store both the strings
si and their identifiers ki. Using Front Coding, we represent
a dictionaryD = {⟨s0, k0⟩, ⟨s1, k1⟩, . . . , ⟨sn, kn⟩}, listed in
lexicographic order, as follows:

FC [0] = k0 · s0,
FC [i] = k1 · lcp(si−1, si) · suffix(si, lcp(si−1, si)),

where · represents byte concatenation, lcp(si, sj) is the
longest common prefix between strings si and sj , and
suffix(si, j) is the suffix of si starting after position j.
The integers for the identifiers ki and lcp are encoded with
VByte [50], while suffix is stored in plain form.

To retrieve the string si we need to read all the previous
ones. To reduce that cost, we split D into buckets of max-
imum length σmax, which is then the maximum cost to re-
trieve a string by starting from the first string s0 of its bucket
(note that, to scan a bucket, we must iteratively obtain all its
strings si, but the time spent is σmax ≤

∑
i |si|).

To easily find the identifier of a string s ∈ D, a binary
search tree is maintained with one bucket per leaf, in left-to-
right order. Each internal node stores a pointer to the bucket
stored at the leftmost leaf of its right child; note that the
string s0 of the bucket is stored in plain form. By comparing
s with the strings s0 of the pointed buckets, we descend from
the root of the tree to the leaf storing the bucket where s

should be stored, and then scan the bucket. The total search
time to obtain the identifier k of s (or determine that s ̸∈ D)
is then O(|s| lg n+ σmax).

The most pressing operation on dictionaries, however, is
the opposite: mapping an identifier k to its corresponding
string s (this has to be done for each result). To optimize
that operation, we store an array A[1 . . n], where A[k] stores
a pointer to the bucket that contains ⟨s, k⟩. In that way, s is
reconstructed by just scanning one bucket until finding the
identifier ki = k, and then retrieving si, in time O(σmax).

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 19

 10

 100

 1000

 10000

 0 50 100 150 200

xCLTJ*
CLTJ*

 MillDB

 Jena LTJ

 Virtuoso

RDF-3X

 Blazegraph

UmbraDB

A
v
e
ra
g
e

q
u
e
ry

ti
m
e

(m
ill
is
e
c
o
n
d
s
)

Index size (bytes/triple)

Fig. 8: Space/time trade-off in complete systems handling
strings, limiting results to 1000. To emulate a realistic dy-
namic scenario for the CLTJ variants, we use their query
times when there are 0.1 updates per query, as in Wikidata.

The dictionary supports string deletions and insertions.
Deleting the string s with identifier k implies removing its
pair ⟨si, ki⟩ = ⟨s, k⟩ from the bucket pointed to by A[k]. Af-
ter the removal we must reencode si+1, now with respect to
si−1. The bucket is essentially rewritten, in time O(σmax).
The entry A[k] is now obsolete and the identifier k is free to
be used by another insertion. A linked list of those free iden-
tifiers is maintained using the same obsolete entries A[k] to
store the “next” pointers. Hence, after the removal of k, A[k]

becomes the first element of that list. For simplicity we do
not enforce policies of minimum bucket sizes, except that
we remove the leaf corresponding to an empty bucket (and
remove an internal node too). Deletion costs O(σmax) time.

To insert a new string s we first find an identifier k for
it. This is the first element of the linked list (which is then
removed from the list), or the value n+1 if the list is empty
(and now n+ 1 is the number of strings). We use the binary
tree to find the bucket where to insert s, and make A[k] point
to it. We scan the bucket up to the insertion point, and rewrite
it from there. Concretely, if s falls between si−1 and si, we
insert ⟨s, k⟩ after si−1, encoding s with respect to si−1, and
reencode si with respect to s. In case the bucket overflows,
we split it by half and create a new internal node as the par-
ent of both halves. The insertion cost is O(|s| lg n+ σmax).

In our experimental setup, the dynamic dictionary adds
an extra space of 6.81 bpt, and transforms the identifiers of
each output triple to strings in around 8.6 microseconds.

Fig. 8 compares the systems that handle strings, mea-
suring query times of the CLTJ variants under a realistic
dynamic scenario of 0.1 updates per query, as in Wikidata
(recall Section 4). The space usage of xCLTJ∗ rises to 37.13

bpt, which is still about 2/3 of the space used by Virtuoso,
the smallest system handling strings, and 4 times less than
the space of MillDB. It is still 53 times faster than Virtuoso
and 5% faster than MillDB. Our slightly larger alternative,

CLTJ∗, now uses 53.51 bpt, which is still 19% less than Vir-
tuoso and 3 times less than MillDB. In exchange, it is 40%
faster than xCLTJ∗, 75 times faster than Virtuoso, and 48%
faster than MillDB.

6.2 Public software

The code is publicly available at this Github repository:
https://github.com/adriangbrandon/cltj.
The software includes the benchmarks of our experimental
evaluation. For each query, the benchmark outputs the iden-
tifier of the query, the number of results, and the elapsed
time in nanoseconds. All of this information is limited by a
semicolon. We provide the bash scripts utilized to build the
indices and execute the benchmark queries.

In addition, we developed an API to simplify the usage
of our software. To demonstrate how to use the API there
are one example of a command line where you can interact
directly with its interface, and others that show how to use
the API from C++ code. More information about how to use
the API is available in the Readme.md file of the reposi-
tory. The datasets used in the experiments are available at
https://zenodo.org/records/15117967.

7 Conclusions

We have shown that it is possible to implement the Leapfrog
Triejoin (LTJ) algorithm, which solves Basic Graph Patterns
on graph databases in worst-case-optimal (wco) time, within
affordable space usage and without giving up on time per-
formance. Precisely, we introduced a representation we call
CompactLTJ, which uses one bit per trie edge instead of
one pointer, while supporting trie navigation functionality
in time similar to a classic pointer-based representation. Fur-
ther, we implemented trie switching, which allows us store
partial tries that retain the same CompactLTJ functionality
and good performance, while slashing its space usage.

The fastest classic LTJ implementation we are aware of,
MillenniumDB [47], uses about 14 times the space needed
to represent the graph triples in plain form (i.e., each as three
32-bit integers). Our smallest CompactLTJ variant reduces
this factor to 2.3—a 5.5-fold space reduction—while retain-
ing MillenniumDB’s time performance, and surpassing it in
many cases. Other classic representations, many of which
are non-wco, use 2–3 times the space used by CompactLTJ
and are 30–40 times slower.

We also implemented a dynamic version of Com-
pactLTJ, which enables efficient insertion and deletion of
triples with little overhead on top of the space and time
of the static implementation. This breaks a long-standing
limitation of compact representations and puts CompactLTJ
on par with the functionality needed in real scenarios.

https://github.com/adriangbrandon/cltj
https://zenodo.org/records/15117967

20 Arroyuelo et al.

These results can change the landscape of indices for
graph databases, as they show that it is feasible to imple-
ment the wco LTJ algorithm in memory within little space—
much less than what is used by popular non-wco systems, in
both static and dynamic scenarios. We have also explored
some techniques—adaptive variable elimination orders and
new predictors of the cost of choosing a variable—that make
CompactLTJ considerably more robust on the bad cases of
the standard solution.

Finally, we enabled CompactLTJ to handle string iden-
tifiers, not just integers, which is what most RDF systems
can handle. We left a public implementation that allows re-
searchers and practitioners use our best static and dynamic
variants, handling integer or string identifiers, under various
convenient modes of operation. We expect this to be useful
for benchmarking, for research, and for using CompactLTJ
on actual deployments.

7.1 Future work

Our experiments showed that more sophisticated “beyond-
wco” indices, like Graphflow [26], ADOPT [48], and Emp-
tyHeaded [1], were faster than CompactLTJ on some query
shapes that are very hard to handle. A promising future work
direction is to implement those query strategies on top of
compact data structures, which could lead to even stronger
indices that are space-affordable (recall that those stronger
systems exceeded a generous amount of main memory when
run over our dataset, so reducing their space usage is very
valuable). An analogous challenge is to use compact data
structures to represent factorized databases [40], using wco
or non-wco strategies.

We remark that CompactLTJ runs in main memory and
would not be disk-friendly. While its compactness makes it
fit in memory for larger datasets, a relevant future work di-
rection is to design compact representation formats for disk
or distributed memory, where compactness translates into
fewer I/Os or communication at query resolution time.

Finally, we plan to extend CompactLTJ to handle prop-
erty graphs, where nodes have attributes of various types,
with their own query operators. Extending the supported
functionality to regular path queries (RPQs) is another sig-
nificant step. While this has already been done using com-
pact data structures [6, 7, 32], the integration with BGPs into
conjunctive RPQs (CRPQs) is a significant challenge.

Funding
Supported by ANID – Millennium Science Initiative Pro-
gram – Code ICN17 002, Chile. A.G. is funded in part
by MCIN/AEI/10.13039/5011000-11033: grant PID2020-
114635RB-I00 (EXTRACompact); by MCIN/AEI/10.130-
39/501100011033 and “Next-GenerationEU”/ PRTR: grant

TED2021-129245B-C21 (PLAGEMIS); by MCIN/A-
EI/10.13039/501100011033 and EU/ERDF ”A way of
making Europe”: PID2022-141027NB-C21 (EARTHDL);
and CITIC receives subsidies from Xunta de Galicia and
FEDER Galicia (Ref. ED431G 2023/01). G.N. is funded in
part by Fondecyt Grant 1-230755, Chile.

Competing interests
The authors declare no competing interests.

References

1. C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré.
Emptyheaded: A relational engine for graph processing. ACM
Transactions on Database Systems, 42(4), 2017.

2. M. Abo Khamis, H. Q. Ngo, and D. Suciu. What do Shannon-type
inequalities, submodular width, and disjunctive datalog have to do
with one another? In Proc. 36th ACM Symposium on Principles of
Database Systems (PODS), pages 429–444, 2017.

3. D. Arroyuelo, G. Navarro, J. L. Reutter, and J. Rojas-Ledesma.
Optimal joins using compressed quadtrees. ACM Transactions on
Database Systems, 47(2):article 8, 2022.

4. D. Arroyuelo, D. Campos, A. Gómez-Brandón, G. Navarro,
C. Rojas, and D. Vrgoc. Space & time efficient leapfrog triejoin.
In Proc. 7th Joint Workshop on Graph Data Management Experi-
ences & Systems (GRADES) and Network Data Analytics (NDA),
page article 2, 2024.

5. D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, J. L.
Reutter, J. Rojas-Ledesma, and A. Soto. The Ring: Worst-case
optimal joins in graph databases using (almost) no extra space.
ACM Transactions on Database Systems, 29(2):article 5, 2024.

6. D. Arroyuelo, A. Gómez-Brandón, A. Hogan, G. Navarro, and
J. Rojas-Ledesma. Optimizing RPQs over a compact graph repre-
sentation. The Very Large Databases Journal, 33:349–374, 2024.

7. D. Arroyuelo, A. Gómez-Brandón, and G. Navarro. Evaluating
regular path queries on compressed adjacency matrices. The Very
Large Databases Journal, 34:article 2, 2025.

8. A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans
for relational joins. SIAM Journal on Computing, 42(4):1737–
1767, 2013.

9. J. Barbay and C. Kenyon. Alternation and redundancy analysis of
the intersection problem. ACM Trans. Alg., 4(1):1–18, 2008.

10. A. Bonifati, W. Martens, and T. Timm. Navigating the maze
of Wikidata query logs. In Proc. World Wide Web Conference
(WWW), pages 127–138, 2019.

11. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
1996.

12. S. Dönges, S. Puglisi, and R. Raman. On dynamic bitvector imple-
mentations. In Proc. 32nd Data Compression Conference (DCC),
pages 252–261, 2022.

13. O. Erling. Virtuoso, a hybrid RDBMS/graph column store. Data
Engineering Bulletin, 35(1):3–8, 2012.

14. M. Fredman and M. Saks. The cell probe complexity of dynamic
data structures. In Proc. 21st Annual ACM Symposium on Theory
of Computing (STOC), pages 345–354, 1989.

15. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decomposi-
tions and tractable queries. In Proc. 18th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS),
pages 21–32, 1999.

16. S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL
1.1 Query Language. W3C Recommendation, 2013.
https://www.w3.org/TR/sparql11-query/.

CompactLTJ: Space & Time Efficient Leapfrog Triejoin on Graph Databases 21

17. A. Hogan, C. Riveros, C. Rojas, and A. Soto. A worst-case optimal
join algorithm for SPARQL. In Proc. 18th International Semantic
Web Conference (ISWC), pages 258–275, 2019.

18. G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th
IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989.

19. G. Jin, X. Feng, Z. Chen, C. Liu, and S. Salihoglu. Kùzu graph
database management system. In Proc. 13th Conference on Inno-
vative Data Systems Research (CIDR), 2023.

20. O. Kalinsky, Y. Etsion, and B. Kimelfeld. Flexible caching in
trie joins. In Proc. 20th International Conference on Extending
Database Technology (EDBT), pages 282–293, 2017.

21. M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. Joins via geo-
metric resolutions: Worst case and beyond. ACM Transactions on
Database Systems, 41(4):22, 2016.

22. J. Leskovec. Stanford Large Network Dataset Collection:
LiveJournal social network. https://snap.stanford.edu/data/soc-
LiveJournal1.html.

23. S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Biele-
feldt. Getting the most out of Wikidata: Semantic technology us-
age in Wikipedia’s knowledge graph. In Proc. 17th International
Semantic Web Conference (ISWC), pages 376–394, 2018.

24. F. Manola and E. Miller. RDF Primer. W3C Recommendation.
2004. http://www.w3.org/TR/rdf-primer/.

25. M. A. Martı́nez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and
G. Navarro. Practical compressed string dictionaries. Information
Systems, 56:73–108, 2016.

26. A. Mhedhbi and S. Salihoglu. Optimizing subgraph queries by
combining binary and worst-case optimal joins. Proceedings of
the VLDB Endowment, 12(11):1692–1704, 2019.

27. A. Mhedhbi, A. Deshpande, and S. Salihoglu. Modern techniques
for querying graph-structured databases. Foundations and Trends
in Databases, 14(2):72–185, 2024.

28. I. Munro. Tables. In Proc. 16th Conference on Founda-
tions of Software Technology and Theoretical Computer Science
(FSTTCS), pages 37–42, 1996.

29. G. Navarro. Compact Data Structures — A practical approach.
Cambridge Univ. Press, 2016.

30. G. Navarro. Adaptive dynamic bitvectors. In Proc. 31st Inter-
national Symposium on String Processing and Information Re-
trieval (SPIRE), pages 204–217, 2024. Journal version to appear
in https://doi.org/10.1002/spe.3433.

31. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):article 2, 2007.

32. G. Navarro and J. Robert. Compressed graph representations for
evaluating regular path queries. In Proc. 31st International Sym-
posium on String Processing and Information Retrieval (SPIRE),
pages 218–232, 2024.

33. T. Neumann and M. J. Freitag. Umbra: A disk-based system with
in-memory performance. In Proc. 10th Conference on Innovative
Data Systems Research, (CIDR), 2020.

34. T. Neumann and G. Weikum. The RDF-3X engine for scalable
management of RDF data. VLDB Journal, 19:91–113, 2010.

35. H. Q. Ngo. Worst-case optimal join algorithms: Techniques, re-
sults, and open problems. In Proc. 37th Symposium on Principles
of Database Systems (PODS), pages 111–124, 2018.

36. H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join
algorithms. In Proc. 31st Symposium on Principles of Database
Systems (PODS), pages 37–48, 2012.

37. H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new develop-
ments in the theory of join algorithms. SIGMOD Record, 42(4):
5–16, 2013.

38. H. Q. Ngo, D. T. Nguyen, C. Re, and A. Rudra. Beyond
worst-case analysis for joins with Minesweeper. In Proc. 33rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 234–245, 2014.

39. D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré,
and A. Rudra. Join processing for graph patterns: An old dog with
new tricks. In Proc. 3rd International Workshop on Graph Data
Management Experiences and Systems (GRADES), pages 2:1–2:8,
2015.

40. D. Olteanu and M. Schleich. Factorized databases. SIGMOD
Record, 45(2):5–16, 2016.

41. N. Prezza. A framework of dynamic data structures for string pro-
cessing. In Proc. 16th International Symposium on Experimental
Algorithms (SEA), pages 11:1–11:15, 2017.

42. M. Raasveldt and H. Mühleisen. DuckDB: An embeddable ana-
lytical database. In Proc. ACM International Conference on Man-
agement of Data (SIGMOD), pages 1981–1984, 2019.

43. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In Proc. ACM International Conference on
Management of Data (SIGMOD), pages 23–34, 1979.

44. B. B. Thompson, M. Personick, and M. Cutcher. The Big-
data®RDF Graph Database. In Linked Data Management, pages
193–237. Chapman and Hall/CRC, 2014.

45. T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algo-
rithm. In Proc. 17th International Conference on Database Theory
(ICDT), pages 96–106, 2014.

46. D. Vrandecic and M. Krötzsch. Wikidata: A free collabora-
tive knowledgebase. Communications of the ACM, 57(10):78–85,
2014.

47. D. Vrgoc, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C. Buil-
Aranda, A. Hogan, G. Navarro, C. Riveros, and J. Romero. Mil-
lenniumDB: An open-source graph database system. Data Intelli-
gence, 5(3):560–610, 2023.

48. J. Wang, I. Trummer, A. Kara, and D. Olteanu. ADOPT: Adap-
tively optimizing attribute orders for worst-case optimal join al-
gorithms via reinforcement learning. Proceedings of the VLDB
Endowment, 16(11):2805–2817, 2023.

49. Y. R. Wang, M. Willsey, and D. Suciu. Free Join: Unifying
worst-case optimal and traditional joins. Proc. 49th ACM Inter-
national Conference on Management of Data (SIGMOD), 1(2):
150:1–150:23, 2023.

50. H. E. Williams and J. Zobel. Compressing integers for fast file
access. The Computer Journal, 42:193–201, 1999.

51. M. Yannakakis. Algorithms for acyclic database schemes. In Proc.
7th International Conference on Very Large Databases (VLDB),
pages 82–94, 1981.

A Constant-time Select on Bitvectors

For self-containedness, we describe how operation select on
a bitvector B[1 . . n] is implemented in constant time using
o(n) additional bits of space [11, 28]. The reader can also
consult surveys [31, Sec. 6.1] or books [29, Sec. 4.3.3].

In principle, we could offer constant-time select by pre-
computing and storing all the values S[j] = select(B, j) in
an array S[1 . . r], where r is the number of 1s in B. The total
required space, r lg n bits, can be way more than the desired
o(n), however.

Instead, we logically divide B into blocks of b 1s, for
some b = Θ(lg2 n). Given a query select(B, j), we know
that the argument j belongs to the block number ⌈j/b⌉. Note
that blocks may span areas of different lengths in B. We say
that a block is long if it spans more than lg4 n bits in B, and
short otherwise.

22 Arroyuelo et al.

Since there are at most n/ lg4 n long blocks in B, we can
afford storing all the select answers that fall in long blocks,
using b lg n = O(lg3 n) bits per block. This yields a total
of O(lg3 n) · n/ lg4 n = O(n/ lg n) = o(n) bits of space.
Queries that fall in long blocks are then solved in O(1) time.

On the other hand, there can be many short blocks,
so the same trick cannot be used. Instead, representing a
position inside them requires only lg(lg4 n) = O(lg lg n)

bits. We repeat the idea inside short blocks: we logically
divide them into miniblocks containing m 1s, for some
m = Θ((lg lg n)2). We say that miniblocks are long if they
span more than (lg lg n)4 bits in B, and short otherwise.

Analogously to long blocks, we can afford to store all
the answers to select queries inside long miniblocks, as there
are in total n/(lg lg n)4 of them and the answers inside each
miniblock require m · O(lg lg n) = O((lg lg n)3) bits of
space, which yields a total of O(n/ lg lg n) = o(n) bits. We
thus also answer in O(1) time the queries that fall in long
miniblocks of short blocks.

We are left with the short miniblocks inside short blocks.
Since these are of length O((lg lg n)4) ⊆ O(lg n), select
queries inside them can be solved by scanning their bits se-
quentially. This is done by reading chunks of (lg n)/2 bits
and using the chunk as a number to address a table T that,
for every possible chunk, tells how many 1s are there, and
their positions, in the chunk. Table T has 2(lgn)/2 =

√
n en-

tries, each using O(lg n lg lg n) bits, which is o(n) in total.
We then process the O(lg n) bits of short miniblocks with
O(1) accesses to T , which also yields constant time.

A.1 Solving selectnext

To solve selectnext(B, i), we cut B into blocks of fixed
length b = Θ(lg2 n). Each block stores the position of the
first 1 after it, which requires O(n/ lg n) bits of space.

Blocks are cut into miniblocks of fixed length
m = Θ(lg n). Each miniblock stores the position of
the first 1 after it, or zero if the position falls after the
block to which the miniblock belongs. Since such a po-
sition can be stored in O(lg lg n) bits, the total space is
O(lg lgn · n/ lg n) = o(n) bits.

To compute selectnext(B, i) in O(1) time, we first scan
the O(lg n) bits that follow i inside its miniblock, in con-
stant time using a table analogous to T where the first 1 in
each possible chunk is precomputed. If a 1 following i is
not found inside the miniblock of i, we access the position
stored in the miniblock. If the position is zero, we access the
position stored in the block. This completes the process.

	Introduction
	Preliminary Concepts
	CompactLTJ: Leapfrog Triejoin on Compact Tries
	Dynamic CompactLTJ
	Experimental Results
	A Complete System
	Conclusions
	Constant-time Select on Bitvectors

