
Noname manuscript No.
(will be inserted by the editor)

Evaluating Regular Path Queries
on Compressed Adjacency Matrices

Diego Arroyuelo · Adrián Gómez-Brandón · Gonzalo Navarro

Received: date / Accepted: date

Abstract Regular Path Queries (RPQs), which are
essentially regular expressions to be matched against
the labels of paths in labeled graphs, are at the core
of graph database query languages like SPARQL and
GQL. A way to solve RPQs is to translate them into
a sequence of operations on the adjacency matrices
of each label. We design and implement a Boolean
algebra on sparse matrix representations and, as an
application, use them to handle RPQs. Our baseline
representation uses the same space and time as the
previously most compact index for RPQs, outper-
forming it on the hardest types of queries—those
where both RPQ endpoints are unspecified. Our more
succinct structure, based on k2-trees, is 4 times smaller
than any existing representation that handles RPQs.
While slower, it still solves complex RPQs in a few
seconds and slightly outperforms the smallest previous
structure on the hardest RPQs. Our new sparse-
matrix-based solutions dominate a good portion of the

This work was supported by ANID – Millennium Science Ini-
tiative Program – Code ICN17 002, and Fondecyt Grant 1-
230755; CITIC is funded by Xunta de Galicia and CIGUS;
GAIN/Xunta de Galicia Grant ED431C 2021/53 (GRC); Xunta
de Galicia/FEDER-UE Grant IN852D 2021/3; MCIN/AEI
and NextGenerationEU/PRTR Grants [PID2020-114635RB-I00,
TED2021-129245B-C21]. A preliminary version of this paper
appears in Proc. SPIRE 2023.

D. Arroyuelo
IMFD & DCC, Escuela de Ingenierı́a, Pontificia Universidad
Católica de Chile, Santiago, Chile
E-mail: diego.arroyuelo@uc.cl

A. Gómez-Brandón
IMFD & CITIC, Universidade da Coruña, A Coruña, Spain
E-mail: adrian.gbrandon@udc.es

B G. Navarro
IMFD & DCC, University of Chile, Santiago, Chile
E-mail: gnavarro@dcc.uchile.cl

space/time tradeoff map, being outperformed only by
representations that use much more space. They also
implement an algebra of Boolean matrices that is of
independent interest beyond solving RPQs.

Keywords Regular path queries on graph databases ·
Compact data structures for adjacency matrices ·
Sparse matrices · Sparse Boolean matrices

1 Introduction and Related Work

Graph databases have emerged as a crucial tool in
several applications such as web and social network
analysis, the semantic web, and modeling knowledge,
among others. We are interested in labeled graph
databases, where the graph edges have labels. One par-
ticular way of querying graph databases is by means
of basic graph patterns (BGPs, for short), which are
small subgraphs with constant or variable nodes and
edge labels that are to be matched homomorphically
in the graph database. BGPs are strongly related to
relational database joins [46]. Another important kind
of queries that are more exclusive of graph databases
are the regular path queries (RPQs, for short), which
search for paths of arbitrary length matching a regular
expression on their edge labels [7]. For example, in
the simple RDF model [54], one can represent points
of interest in New York City as nodes in a graph,
and have edges such as x walk−−→ y indicating that x
is within a short walking distance of y, as well as
edges of the form x L−→ y if subway stations x and y
are connected directly by subway line L. Then the
RPQ ‘Central Park walk/(O|R)+/walk ?y’, asks for
all sites ?y of interest that are reachable from Central
Park by using subway lines One (“O”) or R, through

one or more stations and allowing a short walk before
and after using the subway.

RPQs are at the core of current graph database
query languages, extending their expressiveness. In
particular, the SPARQL 1.1 standard includes the
support for property paths, that is, RPQs extended
with inverse paths (known as two-way RPQs, or
2RPQs for short) and negated label sets. As SPARQL
has been adopted by several systems, RPQs have
become a popular feature [7]: out of 208 million
SPARQL queries in the public logs from the Wikidata
Query Service [53], about 24% use at least one RPQ
feature [24]. Further developments like PGQL [66],
Cypher [41], G-CORE [8], TigerGraph [33], and
GQL [34], to name some of the most popular ones,
also support RPQ-like features.

This paper focuses on the problem of, given a
2RPQ on a labeled directed graph, returning all the
pairs of nodes connected by a path whose labels form
a string matching the 2RPQ. We assume the graph is
indexed beforehand to solve this query, and focus on
indexed representations that use little space.

Solving (2)RPQs can be computationally expen-
sive as they usually involve a large number of paths
[55], mostly for regular expressions using Kleene stars.
There are two main algorithmic approaches to support
them [79]: (1) to represent the regular expression of the
2RPQ using a finite automaton, which is then used to
search over the so-called product between the automa-
ton and the database graph [56]; and (2) to extend the
relational algebra to support computing the transitive
closure of binary relations in order to evaluate regular
expressions having Kleene stars [1, 52]. Although most
theoretical results on 2RPQs have followed the first ap-
proach, property path evaluation in SPARQL has fol-
lowed the second one [79].

Recent research introduced not only time- but also
space-efficient solutions for evaluating graph joins [13,
26, 15]. With the big graphs available today, this is an
important step towards in-memory processing of graph
queries. In particular, the Ring data structure [15] is
able to represent a labeled graph in space close to its
plain representation, while supporting worst-case opti-
mal joins (used, as we said, for BGP queries). More-
over, by using little extra space the Ring can be used
to support 2RPQs efficiently [16], using the product-
graph approach [56].

Our contribution. In this paper, we introduce space-
efficient approaches for evaluating 2RPQs that,
essentially, represent the subgraph corresponding to
each graph label p using a sparse representation of its
Boolean adjacency matrix Mp. We evaluate 2RPQs by
translating them into classic operations on Boolean

matrices [52]. While this is in the line of mapping
the syntax tree of the regular expression into another
algebra [1], the use of the Boolean algebra as the
target is typically disregarded because matrix sizes are
quadratic on the number of graph nodes. We exploit,
however, the sparsity of those matrices to represent
them efficiently with two approaches:

1. We use k2-trees [27] to represent each RDF pred-
icate in compressed form. Although k2-trees have
been already used to handle triple matching and
binary joins [5] and full BGPs [13], their use for
supporting 2RPQs is new and requires novel algo-
rithms. We show how to translate 2RPQs into ma-
trix operations, particularly to Boolean sums, mul-
tiplications, and transitive closures, among other
particularities of 2RPQs. We improve and extend
known algorithms for the Boolean sum on k2-trees
[65], and develop new ones for sparse matrix mul-
tiplication (following a natural recursive strategy)
and transitive closure (for which we develop a non-
trivial strategy with the same time complexity as
matrix multiplication).

2. We also adapt and implement an uncompressed
baseline for sparse Boolean matrices based on the
CSR and CSC formats [67, Sec. 3.4]. Our baseline
implements state-of-the-art algorithms for sparse
matrices, like Schoor’s multiplication [69] adapted
to the Boolean case, and an algorithm based on
finding strongly connected components [64, 72]
for the transitive closure. We implement those
algorithms with special care on minimizing the
working space.

Our main results can be summarized as follows:

– Our k2-tree based representation (item 1 above)
is the most space-efficient graph database repre-
sentation so far. It uses nearly 4 bytes per graph
edge on a Wikidata graph, which is 4 times less
than the previously most compact representation—
the Ring [16]—, 6.5 times less than RingAB—a
larger and faster Ring variant—, and 14–22 times
smaller than classical systems. In exchange, our
structure is about 3 times slower than the Ring and
8 times slower than RingAB, though it still solves
most 2RPQs within a few seconds. On the harder
queries, however—those featuring both variable
extremes—, our structure is slightly faster than the
Ring and just about 3 times slower than RingAB.
This implementation should be preferred when
saving space is at premium.

– Our baseline (item 2 above) uses about 4 times
the space of our k2-tree based structure and is
considerably faster. Its space matches that of the

2

Ring (the smallest previously existing structure),
being slower than it by a factor of 1.6 on the
simpler 2RPQs but outperforming it by a factor
of 2.3 on the harder ones—on which it is still 1.5
times slower than RingAB. It should be preferred
over the Ring when one expects to handle complex
queries, as those drive the highest response times.

In general, our matrix-based implementations
dominate the space/time tradeoff map of structures
solving RPQs, yielding only to RingAB (which uses
6.5 times more space than k2-trees and 1.7 times more
than our baseline). A byproduct of our work yields a
third relevant contribution:

– Both sparse Boolean matrix algebra implementa-
tions—from items 1 and 2 above—are of inde-
pendent interest, and can be used in many other
applications where operations like Boolean sums
(and others like conjunction, difference, exclusive-
or, etc.), multiplications, and transitive closures are
of use. The matrices that result from operations use
the same format of the input, and thus the system
is compositional (i.e., the results can be further
operated like the original matrices). We provide
public implementations of both [17].

Some limitations of our solution follow. We discuss
workouts for all of them in the Conclusions.

– Both data structures are static, that is, we can create
new matrices as outputs of operations but cannot
directly modify the matrices efficiently.

– The data structures are designed for use in main
memory. The main point of the k2-tree is to allow
representing larger datasets in main memory, but it
would not perform well on disk if that was neces-
sary. The baseline solution, instead, would be disk-
friendly with its current deployment.

– We do not support matrix complementation, which
is useful to support negated label sets in property
path queries. We left those negations aside because
they are seldom used [25].

Compared to an early conference version of this
paper [14], the present article includes improved al-
gorithms for sum-like operations, multiplications, and
especially transitive closures, on both the baseline and
the k2-tree based representations, a multithreaded im-
plementation of the k2-tree based algorithms, complete
time complexity analyses of all the algorithms, and im-
proved and extended experimental results.

2 Basic Concepts

2.1 Labeled Graphs and Regular Path Queries (RPQs)

Let U be a totally ordered, countably infinite set of
symbols or constants, which we call the universe. A
directed edge-labeled graph G ⊆ U 3 is a finite set of
triples (s, p,o) ∈ U 3 encoding the graph edges s

p−→ o
from vertex s to vertex o with edge label p. In the RDF
model [54] (which has gained popularity in represent-
ing directed edge-labeled graphs), s is called a subject,
p a predicate, and o an object.

For a graph G, we define its set of edge labels as
P = {p | ∃ s,o such that (s, p,o) ∈ G}. Similarly, let
V = {x | ∃y,z such that (x,y,z) ∈ G∨ (z,y,x) ∈ G} be
the set of graph nodes. We assume that the graph nodes
have been mapped to integers in the range [1 . . |V |]. A
path ρ from a node x0 to node xn in a graph G is a string
x0 p1x1 · · ·xn−1 pnxn such that (xi−1, pi,xi) ∈ G for 1 ≤
i≤ n. Given a path ρ , we denote by word(ρ)= p1 · · · pn
the string labeling path ρ . Two-way RPQs (2RPQs) al-
low traversing reversed edges. Hence, we define the set
of inverse labels as ˆP = {ˆp | p ∈ P}, and P↔ = P∪ˆP
the set of predicates and their inverses. We define the
inverse graph as ˆG = {(y,ˆp,x) | (x, p,y) ∈ G}, and
its completion as G↔ = G∪ˆG. A two-way regular ex-
pression (2RE) is then formed from the rules:

1. ε is a 2RE.
2. If c ∈ P↔, then c is a 2RE.
3. If E, E1 and E2 are 2REs, so are E∗ (Kleene star),

E1/E2 (concatenation), and E1 | E2 (disjunction).

We also abbreviate E∗/E as E+ and ε|E as E?.
The language L(E) of E is defined as that of the

regular expressions over the alphabet P↔ of termi-
nals, and we say that a path ρ matches a 2RE E iff
word(ρ) ∈ L(E).

Let φ denote a set of variables, µ : φ →U denote
a partial mapping from variables to constants in U ,
and dom(µ) denote the set of variables for which µ is
defined. If E is a 2RE, s ∈ φ ∪U and o ∈ φ ∪U , then
(s,E,o) is a two-way regular path query, or 2RPQ. Let
xµ be defined as µ(x) if x ∈ dom(µ), or x otherwise.
We define the evaluation of (s,E,o) on G↔ as

(s,E,o)(G↔) =
{

µ | dom(µ) = {s,o} ∩ φ and

there exists a path ρ from sµ to oµ in G↔ matching E
}
.

In other words, the result of evaluating a
2RPQ (s,E,o) on G↔ is the set of all pairs of
constants (sµ ,oµ) for which there exists a path
ρ = sµ p1 · · · pnoµ in G↔ such that word(ρ) ∈
L(E). Figure 1 illustrates our example RPQ on
a small graph; the result of its evaluation is

3

Central Park59st-Columbus Circle walk

50 St

O 57 St-7 Ave

walk

Times Sq-42 St

N

O

Times Square

walk

Empire State

34 St-Herald Sq

walk

R

Fig. 1 Graph with points of interest and subway line connections across New York City. Red edges represent the paths that hold RPQ
‘Central Park walk/(O|R)+/walk ?y’ and the red nodes are its solutions.

{(Central Park,Times Square),(Central Park,Central
Park),(CentralPark,EmpireState)}.

2.2 Solving RPQs on Graph Databases

The most popular algorithmic approach to solve RPQs
(s,E,o) on labeled directed graphs G is to traverse the
so-called product graph [56, 20, 79], whose nodes are
the cross-product between the automaton of the regular
expression E and the nodes of the graph G. There is an
edge labeled a from node (q,u) to node (p,v) in the
product graph iff (1) one can go from state q to state p
in the automaton by consuming an a, and (2) there is
an edge labeled a from node u to node v in G.

The product graph is not built explicitly, but tra-
versed in virtual form. If s is a constant node and o is a
variable, the traversal starts from the node (q0,s) of the
product graph, where q0 is the initial automaton state.
One recursively visits all the neighbors of that node,
avoiding to fall in loops of the product graph, and re-
porting every pair (sµ ,oµ) = (s,v) where we reach a
node (f ,v) in the product graph such that f is a final
automaton state. If s is a variable and o is a graph node,
we proceed analogously on the reversed edges. If both
are graph nodes, we start from (q0,s) and only report
(s,o), stopping as soon as we find it. Finally, if both
s and o are variables, we start from (q0,s) for every
possible node s in G.

Many real systems opt for other alternatives to
solve RPQs [79], such as extending the relational
algebra with transitive closures of binary relations so
as to evaluate Kleene stars [1, 52]. The syntax tree of
the expression E is then translated into the syntax tree
of an expression in this extended relational algebra,
for which various techniques of query optimization
and query plan generation are developed. In this paper
we follow a path closer to this line, using the Boolean
instead of the Relational algebra to translate RPQs.

2.3 An Algebra on Boolean Matrices

Let A = (ai, j)1≤i, j≤n and B = (bi, j)1≤i, j≤n be square
n×n Boolean matrices. We define the following oper-
ations of interest for our work:

– Transpose: AT , where aT
i, j = a j,i.

– Sum: A+B =C = (ci, j), where ci, j = ai, j ∨bi, j.
– Other sum-like operations like A ∩ B (where ∨

above is replaced by ∧), A− B (where ∨ is re-
placed by ∧¬), and A⊕B (where ∨ is replaced by
exclusive-or).

– Product: A×B =C, for ci, j =
∨

1≤k≤n ai,k ∧bk, j.

– Exponentiation: Ak = ∏
k
i=1 A, that is, A×·· ·×A,

writing A k times.
– Transitive closure: A+ = A+A2 + · · ·+An.
– Reflexive-transitive closure: A∗ = I +A+, where

I is the identity matrix.
– Row restriction: ⟨r⟩A, a matrix whose row r

equals row r of A, the remaining cells are 0.
– Column restriction: A⟨c⟩, a matrix whose column

c equals column c of A, the remaining cells are 0.
– Cell restriction: ⟨r⟩A⟨c⟩, a matrix whose cell (r,c)

equals entry A[r][c]; the other cells are 0.

The implementation of these operations on sparse
matrix representations is relatively straightforward, ex-
cept for the multiplication and transitive closures. We
review those algorithms next.

2.4 Boolean Matrix Multiplication and Transitive
Closure

The multiplication of two n×n Boolean matrices A and
B, of a and b non-zero entries, respectively, is one of
the most important operations of the Boolean-matrix
algebra, because of its applications in context-free
parsing [75], context-free path queries on labeled
graphs [18], triangle detection in graphs [48, 81],
and on computing the transitive closure of Boolean
matrices [40, 58, 43]. To illustrate its importance in
the context of directed graphs, if A is a Boolean matrix

4

representing the adjacency matrix of the graph, then
A2 = A×A is such that A2[i][j] = 1 iff there is a path
of length exactly 2 between nodes i and j. Also, by
computing (I + A)2 one obtains the Boolean matrix
indicating the pairs of nodes (i, j) such that there is a
path of length at most 2 between them. This can be
generalized to any positive k-th power [80].

The most efficient algorithms for matrix multipli-
cation work on algebraic rings, whereas (0,1,∨,∧),
the Boolean case, is just a semiring as there is no ad-
ditive inverse. For instance, Strassen’s algorithm [71]
needs subtraction. A natural solution for the Boolean
case is, however, to take the two values as integers,
to then apply some fast multiplication algorithm. The
result is then translated back to a Boolean matrix
by replacing any non-zero value by a 1, whereas 0s
remain unchanged. The fastest known matrix multi-
plication algorithm, by Coppersmith and Winograd,
runs in time O(n2.373) [30, 78]. Very recent advances
[39] suggest that this exponent can be further pushed
towards the lower bound Ω(n2). Another approach
is that of combinatorial algorithms, which use com-
binatorial properties of Boolean matrices to improve
computation time. A typical example of this line is
the (original) Four-Russians approach by Arlazarov et
al. [10], which runs in time O(n3/ log2 n) on a word
RAM of Θ(logn) bits [81]. After several progressive
improvements, Yu [81] introduced an algorithm that
runs in time O(n3poly(log logn)/ log4 n).

For sparse matrices, Yuster and Zwick [82] intro-
duce an algorithm that carries out O(m0.7n1.2+n2+o(1))

algebraic operations, where m = max(a,b). As noticed
by Yuster and Zwick, their algorithm runs in almost
optimal O(n2+o(1)) time when m≤ n1.14, and it outper-
forms Coppersmith and Winograd’s algorithm when
m≤ n1.68. These algorithms are impractical in general
because of big constants hidden in the asymptotic no-
tation. A more practical one, by Amossen and Pagh
[6], has output-sensitive time complexity O(n2/3z2/3 +

n0.862z0.408), where z is the number of 1s in the output
matrix. In our baseline, we implement the algorithm
of Schoor [69], which seems to be the most practical
one. It takes O(ab/n) time on average if the 1s are uni-
formly distributed, using O(a+ b) space to represent
the matrices. It intersects the nonempty columns of A
with the nonempty rows of B, and adds to the result
the Cartesian product of all the cells in the matching
columns and rows.

Regarding the transitive closure A+ of a Boolean
matrix A (again, with a non-zero entries), a classic re-
sult by Warshall [77] achieves O(n3) time, just like a
naive matrix multiplication. Although A+ = A+A2 +

· · ·+An, Furman [43] showed that only O(logn) steps

of the following process are needed. First, define A1 =

A, and then A2k = Ak+A2
k , for k = 1,2, . . . ,⌈log2 n⌉. By

embedding the Boolean matrix into a ring, one can then
achieve time O(nω logn), where ω ≥ 2 is the small-
est value for which there exists a O(nω)-time matrix
multiplication algorithm. Munro [58] and Fischer and
Meyer [40] showed that Boolean matrix multiplication
and transitive closure have essentially the same com-
plexity, meaning that only one matrix multiplication is
enough to compute the transitive closure. Hence, all
running times we gave for matrix multiplication are
also valid for transitive closure.

A key idea for sparse matrices, which we imple-
ment in our baseline, is to detect the strongly connected
components (scc) of the graph represented by the ma-
trix, which can be done in O(a) time [3, 70, 72, 35].
Every node can reach every other within each compo-
nent, and the graph of the components (where we col-
lapse all the vertices of each component into one) is
acyclic, so reachability is easily computed on it. Pur-
dom [64] introduced such an algorithm based on com-
puting the scc, which runs in O(a+µn) time, where µ

is the number of scc. Munro’s algorithm [58] also com-
putes the scc, yet it uses matrix multiplication to com-
pute the transitive closure on the scc adjacency matrix.
Nuutila [61] introduces an improved algorithm based
on the same approach, which has good practical perfor-
mance. Penn [63] introduces a sparse-matrix represen-
tation called Zero-Counting by Quadrants (ZCQ) and
then shows how to use it to carry out matrix multipli-
cation to compute the transitive closure, as in Munro’s
algorithm. The approach is shown to be competitive in
practice [63]. The particular matrix multiplication al-
gorithm used by Penn mimics the one that we will later
see in Eq. (3), and we use it as inspiration to develop a
novel transitive closure algorithm on k2-trees.

Regarding its application to database management
systems, several practical ideas have been proposed,
such as the least-fixed point approach by Aho and
Ullman [2] (and further improvements, see the ex-
cellent description by Nuutila [62, Ch. 2]), graph
traversals [80, 73], and hybrid approaches [49] mixing
several of the above approaches. Amossen and Pagh
[6] use Boolean matrix multiplication to efficiently
handle join-project queries, outperforming classical
approaches in most cases.

2.5 K2-trees

A k2-tree [27] is a data structure able to space-
efficiently represent binary relations, point grids, and
graphs. For k = 2 it is, indeed, a compact represen-
tation of MX-Quadtrees [68, Sec. 1.4.2.1], a variant

5

of classical Quadtrees [57]. We will use it in this
paper with k = 2 to represent Boolean matrices, as
follows. Let A be a v× v Boolean matrix, assuming
v is a power of k = 2.1 The root node of the k2-tree
represents the whole matrix A. Then, A is divided
into 4 equally-sized quadrants, A =

(A0 A1
A2 A3

)
, such that

submatrix A0 is represented recursively by the first
child of the root, A1 by the second child, and so on.
The process stops as soon as one gets into an empty
submatrix, which is represented by a leaf node, or else
when the submatrix is a single cell. Each node in this
tree has k2 = 4 children. Figure 2 shows the k2-tree
representation of a sample Boolean matrix. Nodes
representing a non-empty submatrix are marked with
a 1, otherwise the mark is a 0. This order in which
quadrants are represented (i.e., top-left, top-right,
bottom-left, and bottom-right) is known as z-order.
The resulting tree height is log4 v2 = log2 v, and the
leaves list the 1s of A in a left-to-right order imposed
by the z-order. Concretely, the positions A[i, j] = 1
are listed by increasing value of z-order(i, j), which
is defined as follows: since i and j are integers of
log2 v bits each, z-order(i, j) is the (2log2 v)-bit integer
number obtained by interleaving the bits of the binary
encodings of i and j.

To represent this tree space-efficiently, we traverse
it in level order. At each node, we write its 4-bit sig-
nature (which represents the node) indicating whether
each of the 4 children represents an empty submatrix
or not. For instance, the signature 0110 indicates that
quadrants 0 and 3 of the submatrix represented by the
current node are empty, whereas A1 and A2 (second and
third children) are non-empty. The result is a bitvector
L[1 . .4n], where n is the number of internal nodes in the
tree. Each tree node is represented by the position of
the first bit of its signature. Given a node i, its j-th child
(1≤ j≤ 4) is represented at position 4 · rank1(L, i)+1,
where rank(L, i) counts the number of 1s in L[1 . . i] in
O(1) time using o(n) additional bits of space [28, 59].
Figure 2 (below) illustrates the bitvector representation
of a k2-tree. For clarity, the three levels of bitvector L
are shown separately; the actual representation is the
concatenation of these bitvectors.

The k2-tree representation is especially useful for
sparse matrices. Let matrix A have a 1s. Then, in the
worst case every 1 induces a node (i.e., a 4-bit signa-
ture) in every level of the k2-tree, for a total of 4a log2 v
bits. Not all those induced nodes can be different, how-
ever: in the worst case all the k2-tree nodes up to level
⌊log4 a⌋ exist, and from there on each 1 of A has its own

1 If v is not a power of 2 we round it up to the next power,
leaving the extended cells empty. This imposes almost no extra
overhead on the k2-tree representation.

path; this adds up to 4a log4(v
2/a)+4a/3+O(1) bits.

The figures further improve when the 1s are clustered
in A [22].

We note that constant-time rank is possible in
the so-called transdichotomous word RAM model
of computation, where we assume that the computer
word holds Θ(logv) bits in order to represent log2 v-bit
coordinates in O(1) words (and thus handle them in
O(1) time [42]). We assume this computation model
as well.

Other compact graph representations. The worst-case
entropy of directed graphs is high enough to make stan-
dard representations using adjacency arrays close to
optimal in the worst case [60]; therefore representa-
tions like CSR and CSC [67, Sec. 3.4], which list the
nonempty cells in row-wise or column-wise order, are
acceptable for sparse graphs (our baseline representa-
tion builds on those). Different representations have
been proposed to exploit further regularities the graphs
may exhibit in applications like Web graphs and social
networks. For example, while k2-trees exploit cluster-
ing as explained; others exploit locality [9], similarity
of adjacency lists [23], bicliques [44], and many others.

3 Evaluating RPQs using Boolean Matrix Algebra

For a given directed edge-labeled graph G of n edges,
let P be the corresponding set of graph labels as
defined in Section 2.1. In our approach, for every
p ∈ P we define a |V | × |V | Boolean matrix Mp, such
that Mp[x][y] = 1 iff (x, p,y) ∈G. We translate an RPQ
into operations on those matrices, so that the resulting
Boolean matrix contains all pairs (x,y) that match the
regular expression. We define next the recursive for-
mulas M to translate 2RPQs into matrix operations,
following Losemann and Martens’ work [52]. We start
with the base cases:

– M (ε) = I, the identity matrix.
– M (p) = Mp, for p ∈ P.
– M (ˆp) = MT

p , for p ∈ P.

Next, let E1 and E2 be 2RPQs. We define the following
recursive rules:

– M (E1 | E2) = M (E1)+M (E2)

– M (E1/E2) = M (E1)×M (E2)

– M (E+
1) = M (E1)

+

– M (E∗1) = I+M (E1)
+, where I is the correspond-

ing identity matrix.

Then, given a 2RPQ R = (x,E,y), we extend M to
evaluate it as follows:

1. If x and y are both variables, M (R) = M (E)

6

1

1

1

1

1 1

11 1 1

11

1

1

1

0 0 0 1

0 0 0

1

1

1 0 0 1

0 1

0 0 0 1

0

1

1

0 0 0 1

1

0 0 1 0

1

0 1 0 0

1

1 0 0 0

1

0 0 0 1

1 1 1 1

1 1 1 1

1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1

0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1

Fig. 2 A Boolean matrix (above, left), its corresponding k2-tree representation (above, right), and the corresponding level-wise bitvec-
tor representation of the tree (below).

2. If x is a variable and y is a constant, M (R) =
M (E)⟨y⟩

3. If x is a constant and y is a variable, M (R) =
⟨x⟩M (E)

4. If x and y are both constant, M (R) = ⟨x⟩M (E)⟨y⟩

4 Implementation of the Boolean Matrix Algebra

We now describe how the Boolean-matrix operations
are carried out. To analyze the corresponding algo-
rithms, we use |Mp| as the number of 1s in the matrix,
which is the number of edges with label p in graph
G. We represent each matrix Mp using a k2-tree of
log2 |V | levels, and each 1 in Mp induces at most
log2 |V | 1s in its k2-tree representation. As explained,
per this representation we will assume |V | is a power
of 2. We will also use v = |V |, as well as a = |A| and
b = |B| for the number of 1s in matrices A and B.

We implement k2-trees, and thus bitvectors with
rank support, in C. We store the bitvector as consec-
utive bits packed in a 64-bit-words array. To support
rank we define a parameter s that allows us to trade
space for time (and whose value we fix to s = 4 in our
implementation). We then store the cumulative sum of
1s up to every sth cell. To save space, full 64-bit inte-
gers store the full sum only every 216 bits, and the oth-
ers are stored in relative form using 16-bit integers. To
compute rank we make use of the primitive popcount,
which counts the number of 1s in a word. This prim-
itive can be implemented in constant time on 64-bit
words [51, Sec. 7.1.3]. We start from the last recorded
sum and use popcount on the full words until reaching
the desired one, and a partial popcount on the desired
word. As a result, we use n/1024+ n/(4s) additional
bits of space for storing a bitvector B[1 . .n], and com-
pute rank in time O(s).

In the sequel we describe how the different opera-
tions of the Boolean algebra are implemented on this
representation. Transpositions are described immedi-
ately because they are incorporated to the data struc-
ture rather than executed as an operation; later we de-
scribe how the operations handle matrices marked as
transposed. For every operation we also consider two
aspects: (1) how to incorporate parallelism and (2) how
to handle restrictions.

Parallelism will be implemented with multithread-
ing, but for simplicity it will be analyzed in the PRAM
model of computation, assuming that the 1s are uni-
formly distributed on the matrices.2 We will also as-
sume that the number p of processors is small com-
pared to the number of the 1s and to the side of the
matrices, which is realistic in multicore architectures.

Restrictions indicate that we only want to retrieve
a column or a row of the matrix after the operations, or
even just a cell. A naive way to implement them is to
first obtain the full matrix M and then traverse the de-
sired row or column. Yet, restrictions give an important
opportunity of optimizing all the other operations.

We show next how we extend k2-trees to implement
transpositions. Then, in Sections 5 through 7 we im-
plement and analyze the main operations, namely sum
(and relatives), multiplication, and transitive closure,
respectively, on the extended format.

Table 1 shows the simplified time complexities we
will obtain, and compares them with those of the base-
line we describe in Section 9 (which uses considerably
more space). As explained in the caption, the baseline
time complexities are always smaller (or equal).

2 The actual multithreading adapts better to nonuniform dis-
tributions than our analysis under the PRAM model.

7

+

1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

3 50 St 7 Empire State1 Times Sq-42 St 5 59 St-Columbus Circle

4 57 St-7 Ave2 34 St-Herald Sq 6 Central Park 8 Times Square

1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

+(O R)
+(O R)

1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

1 2 3 4 5 6 87 1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

1
1

1 1

1

1

1

1

1
1

1 1

1

1

1

1

1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

1
1

1 1

1

1

1

1

1 2 3 4 5 6 87

6
7
8

2
1

3

5
4

1
1

1 1

1

1

1

1
1 11 1

1 11 1

1 11 1

1 11 1

1 11

1 11

1 11

xx =

+

walkwalk O R

walk walk walk/ /walk

x(6
7
8

2
1

3

5
4

1

1

1

1

1

1

x)

Fig. 3 Example of transforming the 2RPQ R = (Central Park,walk/(O|R)+/walk,?y) into matrix operations. For readability we
depict each node (station or point of interest) as an integer. On top, we can see the matrices and operations used to solve E =
walk/(O|R)+/walk. Below, the second matrix represents M ((O|R)+), which was obtained by computing the transitive closure on
the sum of M (O) and M (R). The fourth matrix below is M (E). In order to solve R, as x is the node Central Park, we restrict to the
sixth row of M (E) and the solutions are Central Park (6), Empire State (7) and Times Square (8).

Table 1 Simplified average time complexities for the main operations on v×v matrices with m uniformly distributed 1s. The transitive
closure assumes the result has m+ 1s. The PRAM time uses p ≤ m processors. Note that, because m ≤ v2, the baseline complexities
are always smaller (or equal) than those of the k2-tree.

Operation Baseline time k2-tree time k2-tree parallel time
Transposition 1 1 1
Sum and relatives m m logv (1/p)m logv+m+ logv log p
Multiplication (m2/v) logv m3/2 logv (1/p)m3/2 logv+m2/v+ logv log p
Transitive closure (m+) logv (m+)3/2 logv (1/p)(m+)3/2 logv+(m+)2/v+ logv2 log p

4.1 Transposition

Transposition is used to implement reversed edges, as
seen in Section 3. Instead of materializing the trans-
posed matrix as a k2-tree, we note that

AT =

(
AT

0 AT
2

AT
1 AT

3

)
.

So, the k2-tree for AT can be obtained by interchanging
the roles of the second and third children of every node.
We do not materialize this interchange, but associate a
transposed flag to every matrix, so we simply have to
toggle it in order to transpose the matrix in O(1) time.

5 Boolean Sum and Relatives

In this section we address the set-like Boolean op-
erations, with special emphasis on the Boolean sum
(or disjunction) for its impact on later operations like
multiplication. We start from known techniques [65],

and then improve the algorithms and adapt them to
handle transpositions, parallelism, and restrictions. We
also provide improved time complexity analyses.

If neither A or B is transposed, we can compute the
sum A+B with a simple sequential pass over both k2-
tree bitvectors [65], merging their corresponding nodes
levelwise without need of any rank operation. We im-
plement this traversal with a queue of tasks, which are
of two types. (1) A copy task indicates to copy the next
node from A or B; and (2) a merge task indicates merg-
ing the next nodes of A and B. The queue is initialized
with a merge task on both root nodes, the read-pointers
(which indicate the next k2-tree node to be read) at the
beginning of the bitvectors of A and B, and the write-
pointer at the beginning of the output k2-tree bitvector.

To process a copy task, we append the next sig-
nature pointed by the read-pointer (of A or B) to the
output, and enqueue its (up to) 4 children as copy tasks
for A or B, respectively. To process a merge task, we
append to the output the bitwise-or of the next 4-bit
signatures pointed by the read-pointers of A and B, and
enqueue up to 4 new elements, as follows. For i from

8

1 to 4, if the ith bit of the signatures of both A and B
are 1, we append a merge task. If only one of them is
1, we append a copy task for the corresponding ma-
trix. If none is 1, we do not append any task. We do
not append new tasks when the corresponding nodes
are k2-tree leaves. The process finishes when the queue
becomes empty. Figure 4 illustrates the algorithm.

The total time is proportional to the sum of the
number of nodes of both k2-trees, O(a log(v2/a) +
b log(v2/b)) ⊆ O((a + b) logv). We introduce a
speedup that does not change the complexity but has
a significant impact in practice: we do not append
consecutive copy tasks for A or for B in the queue,
but rather merge them into a single task that copies
several signatures together, using a constant number of
operations on computer words.

5.1 Handling transpositions

If both A and B are transposed, we just merge them
as described and mark the result as transposed. When
one is transposed and the other is not, we cannot any-
more resort to a sequential traversal of both bitvectors.
Instead, we handle the sum as any other set-like opera-
tion, see next.

5.2 Set-like operations

Several other operations of the Boolean algebra have
the same structure of the sum A + B = A ∪ B (i.e.,
Boolean “or” of the 1s): intersection A∩B (Boolean
“and” of the 1s), difference A−B (Boolean “and not”
of the 1s), and symmetric difference A⊕B (Boolean
“exclusive or” of the 1s). In general, those cannot be
solved with the merge-like algorithm we described
for the sum because they lack the key property that
the signature of the resulting k2-tree root is a function
of the signatures of the k2-tree roots of the operands
(in the case of the sum, it is the bitwise-or of the
signatures). Further, they may require skipping large
submatrices of the operands. Instead, we must first
operate the submatrices and only then define the
signature of the result based on which are nonempty.
We then resort to a recursive algorithm of the form

A◦B =

(
A0 ◦B0 A1 ◦B1

A2 ◦B2 A3 ◦B3

)
, (1)

where A =
(A0 A1

A2 A3

)
and B =

(B0 B1
B2 B3

)
are the submatri-

ces into which the k2-tree representation splits A and
B, and ◦ ∈ {∪,∩,−,⊕}. That is, we recursively oper-
ate the submatrices Ai and Bi, for 0 ≤ i < 4, obtaining

up to 4 submatrices Ai ◦Bi represented as k2-trees. In-
stead of producing the k2-trees and later concatenate
them levelwise, we prepare the memory space for the
output separated by levels, so that the recursive calls
directly append their results in the corresponding lev-
els [65]. This works because a recursive tree traver-
sal corresponds to a left-to-right traversal within each
level. Figure 5 illustrates the algorithm for the sum
(or union), to allow contrasting with the previous al-
gorithm in Figure 4.

An important improvement we make on top of the
basic recursive algorithms [65] is that, when one of the
two arguments is an empty submatrix, we may have
to copy the other argument to the output. This occurs
for both A and B in A ∪ B and A⊕ B, and for A in
A−B. Instead of carrying out this copy node by node
of the k2-trees, we perform a levelwise copy. In this
copy we work O(1) time per computed word copied,
which in the transdichotomous RAM model of compu-
tation stores Θ(logv) nodes of the k2-tree. For exam-
ple, copying a whole k2-tree of a leaves (and O(a logv)
nodes) takes time O(a+ logv), not O(a logv) (the sec-
ond additive term stands for the O(1)-time overheads
at each level). The impact of this improvement is made
clear soon in the analysis and later in the experimental
results.

Transpositions. When solving operations in this way,
transpositions are handled easily by exchanging the
meaning of M1 and M2 in every node of the k2-tree
bitvector, if M =

(M0 M1
M2 M3

)
is transposed. As explained

before, we use this technique for the sum when one
matrix is transposed and the other is not. Otherwise,
both the merge-like and the recursive algorithm can be
used. The next analysis and later the experiments shed
light on which algorithm is to be preferred depending
on the case.

Analysis. Just as for the merge-like algorithm for A+

B, the time complexity of the recursive algorithms is in
O(a log(v2/a)+b log(v2/b))⊆O((a+b) logv), for all
the operations, as we work at most O(1) time per node
of the input and output k2-trees. This analysis can be
refined, however.

Let us start with the intersection, C = A ∩ B. A
first refinement is that there are at most min(a,b)
elements carried to the output, not a + b, thus its
time complexity is in O(min(a,b) logv) because the
algorithm traverses only the k2-tree nodes below which
both A and B have leaves. We can prove even more
refined adaptive bounds by relating this problem to
the adaptive intersection of integer sets [19, 32], in
particular with the trie approach by Arroyuelo and
Castillo [11]. Let c = |C| ≤ min(a,b) be the output

9

1

1

1

1

1 1

11 1 1

11

1 1

2 3 34 45 5

6

1

2 3 4 5

6

7 7

7

8

8

9

9

10 10

10

11 11

11

12 12

12

13 13

13

14 14

14

+ =

1

11

111

1

11 1

1

1

1

1 1

11 1 1

11

1

1

1

11

1

0001 1001 0001 0001 0010 0100 1000 1111

1 1

A+BA B

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1111

1000 1010 1111 0001A

0111

1100 1111 0001B

1111

0001 1001 0110 0001 1001 0110 0110 1001 1111

1000 1110 1111 0001A+B

0001 0110 1000 0100 0010 0001 1111

6 7 8

9

141312

10 11

MAMMMAMBAMMMMM

Fig. 4 Our sequential algorithm when summing matrices A and B shown on the top left. The k2-tree representations of A, B, and A+B
are shown below the matrices, artificially separating the three levels in three lines. On the bottom left, the elements inserted in the
queue along time, using M for “merge” and A/B for “copy A/B”. The algorithm runs along 14 steps, one per element in the queue.
Each such number in the queue has forward arcs towards the elements its step inserts; for example step 1, which corresponds to the
whole matrix, inserts the elements 2 to 5 corresponding to the four quadrants. The scheme on the top right shows to which 2× 2
submatrices do the steps 6–14 correspond. The diagonal arrows in the k2-tree representations of A and B show the position of the
read-pointers at each step, and those on A+B show the corresponding write-pointers. For example, in step 1, we read 1111 from A
and 0111 from B, thus we insert a “copy A” and three “merge” elements in the queue. Step 2 reads “copy A” from the queue and thus
copies 1000 from the sequence of A and appends it to that of A+B. Step 3 reads “merge” and thus merges 1010 from A, 1100 from
B, and writes 1110 to A+B. And so on.

B

B

B

B

0

1

2

3

A

A

A

A

0

1

2

3

1010 1001 0001

1111 0001 0010 0100 1000

0001 1111

1000 0001

3A+B 0001 1111

−

1100 0001 0110

1111 1000 0100 0010 0001

0001 1111

A+B 1000 0001

1A+B 1110 1001 0110 0001

1111

1000 1110 1111 0001

0001 1001 0110 0001 1001 0110 0110 1001 1111

A+B

2A+B 1111 1001 0110 0110 1001

0

Fig. 5 The recursive algorithm to solve the same sum A+B as in Figure 4. We set up the output space (bottom right of the figure)
and then the k2-tree bitvectors resulting from each quadrant are written directly to the corresponding levels as they are generated. The
arrows show how this works for the quadrants 0 and 1. Because no quadrant is empty, the signature of the root of A+B is 1111.

size. We define conceptual integer sets SA and SB,
which represent the set of positions with 1s in the
matrices A and B, respectively. Therefore, the set
SA ∩ SB represents the set of 1s in the matrix A∩ B.
The sets SA and SB are subsets of the universe [0..v2),
concretely SA = {z-order(i, j) | A[i, j] = 1}, and anal-
ogously for SB (recall the definition of z-order(i, j)
from Section 2.5). As a consequence, the order of the
elements in SA corresponds to a left-to-right traversal
of the corresponding k2-tree leaves, and therefore the
algorithm we propose to compute A∩ B mimics the
set intersection algorithm proposed by Arroyuelo and
Castillo [11]. The only difference is that this time
the sets are represented as 4-ary tries (i.e., k2-trees)
rather than binary tries, but the properties needed

to prove their adaptive bound still hold. Then, the
time for computing A ∩ B is O(δ log(v2/δ)), where
δ is the alternation measure of SA and SB defined by
Barbay and Kenyon [19], which in particular satisfies
c ≤ δ ≤ min(a,b). To this time, which measures the
number of k2-tree nodes traversed, we should add the
O(c log(v2/c)) ⊆ O(c logv) cost to copy the nodes
in the paths toward the c resulting points, but this is
subsumed by O(δ log(v2/δ))⊆ O(δ logv).

Measure δ enables a finer analysis of the intersec-
tion time. It measures the number of times we need to
switch between SA and SB in order to collect all the
SA ∪ SB integers, along a left-to-right traversal of both
ordered sequences. For example, if all the a 1s of A
are in the first quadrant, and all the b 1s of B are in

10

the third quadrant, then their corresponding measure is
δ = O(1) because all the values in SA precede those in
SB, and thus we need O(1) switches to collect them all.
This yields an upper bound of O(logv) for our inter-
section. In this case the bound is pessimistic because
our algorithm actually runs in O(1) time. It would be
tight if the two clusters would split only in the same
subgrid of depth Θ(logv) of A and B.

For the set difference, C = A−B, we note that c≤
a, thus the time is in O(a log(v2/a))⊆ O(a logv). Fur-
ther, since A−B = A∩B, we can reuse the analysis of
the intersection to obtain a finer measure. Let |B|= b=
v2−b denote the number of elements in B. The analy-
sis proceeds as before, obtaining time O(δ log(v2/δ)),
where δ is the alternation measure of SA and SB, which
satisfies c≤ δ ≤min{a,b}.

Thanks to our improved algorithm to copy whole
submatrices, we can also use the alternation measure
to refine the time complexity O((a + b) logv) of the
union and symmetric difference. Returning to our ex-
ample where all the 1s of A are in the first quadrant and
all those of B are in the third, our algorithms run in time
O(a+b+ logv). In general, all the s integers of SA and
SB that lie between two consecutive switches between
SA and SB can be copied computer-word-wise, in time
O(s/ logv+1). As we have to traverse O(δ log(v2/δ))

nodes and to copy O(c log(v2/c)) nodes (where this
time δ can be smaller than c ≤ a+b), we have a total
time of O(δ log(v2/δ) + c log(v2/c)/ logv) ⊆ O(a +

b+δ logv) for the whole process.
We expect our refined analysis to show up in prac-

tice when the matrix densities are very different or they
distribute non-uniformly.

5.3 Parallelism

Our basic merge-based summation algorithm de-
scribed at the beginning of the section is difficult to
parallelize, because we do not know where to start
copying each of the summands at each level. The
standard parallel merging algorithms, which first use
a parallel-prefix scheme to find the cumulative sums
of the arrays to merge and then copy each array inde-
pendently, cannot be used here because our merge is
not disjoint: there are some 1s at the same positions in
A and B. In order to determine where to copy the next
subtrees, we must actually merge the current ones, and
thus must proceed in sequence.

The generic recursive algorithm for operation ◦ of
Eq. (1) is more amenable to parallelization. We can
proceed in parallel for each Ai ◦Bi, this time writing
each result as an independent k2-tree, and then concate-
nate them sequentially at the end. Writing the results

directly to the output is not possible in the parallel con-
text because, again, we do not know in advance where
to write. We speed up the concatenations by maintain-
ing, for each k2-tree bitvector, O(logv) counters of the
sizes of the k2-tree levels. Figure 6 illustrates the algo-
rithm we parallelize.

For all the operators, when one of the submatrices
is zero, the result is either zero or the other submatrix,
which helps speed up the computation. In particular,
we share the submatrix in the second case instead of
generating a new copy of it. We also do not need to
build the rank data structures until the end of the whole
operation, because the concatenation operates sequen-
tially over the matrices.

We implement a multithreaded version of this al-
gorithm, where the recursive calls keep opening new
threads for a few levels to avoid saturating the system
with many more processes than processors.

Analysis. Let us first analyze the sequential cost of this
algorithm. In general, the concatenation time is propor-
tional to the number of nodes of the operated k2-trees,
which as explained add up to O((a+ b) logv). How-
ever, we do not concatenate the bitvectors bit by bit,
but rather by whole computer words. Because of bit
alignment issues, copying a computer word requires
up to two read and two write operations, which in the
transdichotomous RAM model contains Θ(logv) bits.
As a result, the total copying time is O(a+ b+ logv),
the last term accounting again for a constant additive
penalty per k2-tree level copied.

Consider now the whole operation time. In the
worst case, there are a+b points across all submatrices
in each level of the recurrence, thus the a + b term
above adds up to O((a+ b) logv) across the O(logv)
levels of the recursion. The terms logv, instead, add up
to O((a+b) log2 v) in the worst case, in which each of
the a + b points are isolated and copied individually
across all the levels.

In order to avoid the additive penalties leading
the cost, we will use a special concatenation method
that is O(a) time when we merge one submatrix of
a points with other three empty submatrices. Note
that the resulting k2-tree is identical to that of the
nonempty submatrix preceded with a signature for the
new root. We first write the new root signature, which
marks the nonempty submatrix, and then concatenate
the bitvector of that submatrix. The submatrix has
O(a logv) bits but, as explained, we copy it by chunks
of Θ(logv) bits, so the total time is O(a). Further, the
O(logv) level counters of the nonempty submatrix
are not copied, but shared and extended with one
further entry. We call this a trivial concatenation,
and say that it poses an additive penalty of O(1) (as

11

B

B

B

B

0

1

2

3

A

A

A

A

0

1

2

3

1010 1001 0001

1111 0001 0010 0100 1000

0001 1111

1000 0001 1000 0001

1110 1001 0110 0001

1111 1001 0110 0110 1001

0001 1111

−

1100 0001 0110

1111 1000 0100 0010 0001

0001 1111

0

1

2

3A+B

A+B

A+B

A+B

1111

1000 1110 1111 0001
level 2

A+B

0001 1001 0110 0001 1001 0110 0110 1001 1111
level 3

Fig. 6 The parallelizable recursive algorithm to solve the same sum A+B as in Figure 4. We show the k2-tree bitvectors of all the
intervening quadrants as single sequences, and that of the result with one level per line. The recursive calls were called in parallel and
have already produced the four quadrants of the result, (A+B) j for 0 ≤ j < 4. Because the four are nonempty, the signature of the
root of A+B is 1111. Now we copy the first levels of (A+B) j into the second level of the result, 1000 1110 1111 0001. Finally, we
copy the second levels of (A+B) j into the third level of the result.

opposed to the O(logv) penalty posed by the nontrivial
concatenations).

As said, we can have O((a+ b) logv) concatena-
tions along the process, but only O(a + b) of those
are nontrivial (those can be regarded as the branching
nodes of a 4-ary tree with a+b leaves). Nontrivial con-
catenations pose the O(logv) additive penalty, but that
of trivial ones is only O(1). Overall, the total time spent
on additive penalties is O((a+b) logv), and this is also
the total time complexity of the operations.

We now give a PRAM-based analysis assuming
that p ≤ min(a,b) and that the a 1s in A and the b
1s in B distribute uniformly. Let S(v2,a+ b, p) be the
parallel time on v× v matrices, a+ b points in total,
and p processors. Assuming we assign p/4 processors
to build each submatrix Ai ◦Bi, the recurrence for the
parallel time is

S(v2,a+b, p) =

S(v2/4,(a+b)/4, p/4)+(a+b+ log4(v
2)),

where the second term (using convenient constants)
stands for the cost to sequentially concatenate the 4
resulting submatrices. The recursion continues up to
the level ℓ′ = log4 p, where 4ℓ

′ ≥ p. At this level, the
a/p and b/p points in each pair of submatrices are
sequentially merged, in time S(v2/p,(a + b)/p,1) =
O(1

p (a+b) logv). The whole recurrence then solves as
follows:3

S(v2,a+b, p) = (2)

S(v2/p,(a+b)/p,1)+
log4 p−1

∑
ℓ=0

(
a+b

4ℓ
+ log4

v2

4ℓ

)
= O

(
1
p
(a+b) logv+(a+b)+ logv log p)

)
.

Although the analysis is simplified, it suggests we
can expect a nearly perfect speedup, at least for small
enough p = O(logv), and disregarding the small
O(logv log p) additive penalty.

3 Note that all the concatenations up to level log4 p are non-
trivial, per our assumptions on the number of points in the sub-
matrices.

5.4 Restrictions

For ⟨r⟩(A + B)⟨c⟩ (where it may be that only ⟨r⟩ or
only ⟨c⟩ are present), we restrict the traversal of both
matrices, acting as if the submatrices not intersecting
the desired row and/or columm were empty. That is,
we implement the restricted sum as ⟨r⟩A⟨c⟩+ ⟨r⟩B⟨c⟩.
The merge-like algorithm for the sum cannot be used,
however, because just as it happened for the generic
operations ◦, we do not know beforehand whether a
submatrix (or the merge of two) will be nonempty after
restricting it to some row/column, even if it intersects
the row/column.

We then implement all the restricted operations, in-
cluding the sum, using the recursive algorithms. The
only difference is that, when the row and/or column
are restricted, only two of the four submatrices will be
nonempty, and when both are restricted, only one sub-
matrix will be nonempty.

6 Boolean Multiplication

For the multiplication A×B we use the following clas-
sic divide-and-conquer recursive procedure. Letting
A =

(A0 A1
A2 A3

)
and B =

(B0 B1
B2 B3

)
as before, we recursively

compute 8 products of those submatrices in order to
produce

A×B = (3)(
A0×B0 +A1×B2 A0×B1 +A1×B3

A2×B0 +A3×B2 A2×B1 +A3×B3

)
.

A fortunate consequence of the k2-tree representation
is that, if any of those submatrices is empty (i.e., there
is a 0 in the signature of the root of A or B), then we
know that its product with any other submatrix is also
zero. Further, summing a product Ai×B j with a zero
matrix does not even need to copy the product; we just
reference it as the final result, as explained.

Once the k2-tree bitvectors of the four submatri-
ces are recursively obtained, we concatenate them lev-

12

elwise, as for our improved recursive sum operation.
There is no need to build the rank data structures for
this concatenation because it proceeds left-to-right in
each level. We also maintain the O(logv) level coun-
ters in each k2-tree to speed up concatenations.

Transpositions are again handled by exchanging
the meaning of M1 and M2 in every node of the
transposed matrices M =

(M0 M1
M2 M3

)
.

6.1 Complexity

One part of the multiplication cost is given by the num-
ber of recursive calls. We distinguish three stages to
analyze a scenario with sparse matrices.

1. In the first stage, all the submatrices are nonempty.
Since there are 4ℓ submatrices in level ℓ, the worst
case arises when every submatrix has points up to
the level ℓ where we have 4ℓ ≥ min(a,b) subma-
trices, that is, up to level ℓ1 = log4 min(a,b). In
this stage the cost follows the recurrence T (v2) =

8 ·T (v2/4), therefore the cost up to level ℓ1 is 8ℓ1 =

min(a,b)3/2.
2. In the second stage, the worst case is that the

emptier matrix has only one point in its subma-
trices while the fuller has max(a,b)/min(a,b)
evenly distributed points. This continues for
ℓ2 = log4

max(a,b)
min(a,b) further levels, in which the

recurrence becomes T ′(v2) = 2 · T ′(v2/4) be-
cause the single point in the emptier submatrix
can make us enter into at most two submatrices
of the other. From each of the 8ℓ1 submatrices
where stage 1 ends, we have then a cost of
2ℓ2 =

√
max(a,b)/min(a,b), which multiplied by

8ℓ1 yields the cost min(a,b)
√

max(a,b) up to the
end of stage 2.

3. In the third stage, we have just one point in each of
the submatrices, so the cost is log2 v− ℓ1 − ℓ2 =

log4(v
2/max(a,b)) to track a single point along

both submatrices. This is done from each of the
8ℓ12ℓ2 = min(a,b)

√
max(a,b) submatrices where

stage 2 ends, leading to the final cost

O(min(a,b)
√

max(a,b) log(v2/max(a,b))). (4)

The second part of the multiplication cost is that of
summing pairs of partial submatrices, recall Eq. (3). In
the worst case, those matrices may add up to a ·b points
at across every level of the recursion. Just as in Sec-
tion 5.2, where we had a+ b points in every level, the
total merging cost of the partial results is O(ab log2 v).
With the technique of the trivial concatenations, this
can be reduced to O(ab logv), where we pay O(logv)
time only on the branching nodes of the resulting k2-
tree, which has ab leaves at most.

Note that this term dominates the cost of the first
part. We can show that the average time, on matrices
with uniformly distributed 1s, is better. We multiply
8ℓ pairs of v/2ℓ × v/2ℓ submatrices in level ℓ. On
average, each has a/4ℓ 1s in A and b/4ℓ 1s in B. Every
such aik = 1 will pair with every such bk′ j = 1 iff
k = k′, which occurs with probability 1/(v/2ℓ), so on
average there will be 8ℓ(a/4ℓ)(b/4ℓ)(2ℓ/v) = ab/v.
This leads to a total average time of O((ab/v) logv) for
the second part. Since ab/v = min(a,b)max(a,b)/v≤
min(a,b)

√
max(a,b) because max(a,b) ≤ v2, the

bound O(min(a,b)
√

max(a,b) logv) of the first part
of the cost dominates on the average.

6.2 Parallelism

A further advantage of Eq. (3) is that it is easily par-
allelized, as it features 8 independent multiplications
and 4 sums, each sum depending only on the result of
two multiplications. A multithreaded version assigns a
thread to each of the 8 multiplications and to each of
the 4 sums, forcing sequential execution of each sum
after its two corresponding multiplications. The recur-
sive calls are further parallelized for a few levels to
avoid having many more processes than processors, as
explained.

We give a PRAM-based analysis of this process.
Let T (v2, p) be the time of the algorithm on a v× v
matrix and p processors, where we assume that p ≤
min(a,b) and that the 1s distribute uniformly across the
matrices. This implies that, with respect to the number
of recursive calls, the parallelism is confined inside the
stage 1 of the analysis in Section 6.1.

We allocate p/8 processors to each of the 8 mul-
tiplications. Then we will have more than one avail-
able processor per recursive call up to level ℓ0 = log8 p.
From that level, each of the 8ℓ0 = p parallel calls start
to run sequentially, for ℓ1−ℓ0 further levels. Each pro-
cessor then runs ℓ1− ℓ0 levels of stage 1, then ℓ2 lev-
els of the stage 2, and then the rest of the levels of
stage 3. The total time spent by each processor is then
8ℓ1−ℓ02ℓ2 log(v2/max(a,b)), which is exactly the se-
quential cost of the recursive calls (Eq. (4)) divided by
8ℓ0 = p. In addition, we have the O(ℓ0)=O(log p) time
spent in the first ℓ0 levels.

13

To anayze the 4 sums we can use Eq. (2), replacing
a+b by ab/v. The total parallel time is then

T (v2, p) = (5)

O
(

1
p

min(a,b)
√

max(a,b) logv+
1
p

ab
v

logv

+
ab
v
+ logv log p

)
=

O
(

1
p

min(a,b)
√

max(a,b) logv+
ab
v
+ logv log p

)
which, compared to the sequential time, again
suggests we can expect a nearly perfect speedup
in our multithreaded implementation. If p =

O((v logv)/
√

max(a,b)), in particular, the speedup
is perfect except for the small additive term
O(logv log p).

6.3 Restrictions

A restricted product ⟨r⟩(A × B)⟨c⟩ is handled as
(⟨r⟩A)× (B⟨c⟩), where again only one of the restric-
tions may be present. We consider the column or row
restrictions along the whole recursion, pretending that
the submatrices that do not intersect the desired row or
column are empty.

Having one restriction (row or column) ensures
that at most 6 or the 8 multiplications in Eq. (3) are
nonzero, thereby modifying the recurrence of the num-
ber of multiplications to T (v2) = 6 · T (v2/4), which
solves to T (v2)=O((min(a,b)log4 6). Multiplied by the
2ℓ2 log4(v

2/max(a,b)) cost of stages 2 and 3 (where
the restrictions yield no better upper bounds) we obtain
the final bound, O(min(a,b)log4 3

√
max(a,b) logv);

log4 3 < 0.8.
For the sums, we note that on average only one out

of v of the a 1s in A or the b 1s in B satisfy the row
or column restriction, so the average number of points
to sum per level is ab/v2. The time of the second part
then becomes O((ab/v2) logv).

Having both row and column restrictions yields
T (v2) = 4 · T (v2/4), which solves to T (v2) =

O(min(a,b)) and to O(
√

ab logv) for the three
stages, plus just O(log2 v) time for the sums.

7 Transitive Closure

A simple positive transitive closure algorithm obtains
A+ by iteratively computing A← A+A×A until no
change occurs in A [43]. This occurs at most after log2 v
iterations, so the time complexity is O(logv) times that
of multiplying A by itself. The reflexive-transitive clo-
sure is computed as A∗ = I+A+, where I is the identity

matrix. Transposed matrices can be operated as is and
the result would be transposed as well.

Since the number a of 1s in A grows in ev-
ery iteration until reaching a+ = |A+|, we can use
Eq. (4) with a = b = a+ to obtain an average time of
O((a+)3/2 log2 v) along the O(logv) matrix multipli-
cations, assuming a uniform distribution of the 1s. The
non-positive closure adds O((a+ + v) logv) further
time for the final sum.

We now introduce a more efficient algorithm,
which obtains A+ at the cost of O(1) multiplications.
Inspired by Warshall’s algorithm [77] (and, in a way,
in the ZCQ decomposition [63]), we compute A+ in
two steps. Let A =

(A0 A1
A2 A3

)
be a v× v matrix. In the

first step we obtain the matrix A′, where a′i, j = 1 iff
we can go from node i to node j through a single edge
or using only intermediate nodes in [1 . .v/2]. This is
computed as

A′ =

(
A′0 A′1
A′2 A′3

)
= (6)

(
A+

0 A1 +A′0×A1

A2 +A2×A′0 A3 +A2×A′1

)
.

(where A′3 can also be computed as A3 +A′2×A1). So
we first compute A′0 = A+

0 recursively, then A′1 and A′2
(which depend on A′0), and finally A′3 (which depends
on A′1, or on A′2 in its alternative formulation).

In the second step, we also permit the paths to go
through nodes in [v/2+1 . .v], thereby completing the
closure. The resulting matrix is computed as

A+ = A′′ =

(
A′′0 A′′1
A′′2 A′′3

)
= (7)

(
A′0 +A′1×A′′2 A′1 +A′1×A′′3
A′2 +A′′3×A′2 (A′3)

+

)
.

(where A′′0 can also be computed as A′0+A′′1×A′2). This
time we start by computing A′′3 = (A′3)

+ recursively,
then compute A′′2 and A′′1 (which depend on A′′3), and
finally A′′0 (which depends on A′′2 or on A′′1).

7.1 Correctness

We call X = [1 . .v/2] and Y = [v/2+1 . .v] and use the
notation [M]i, j = mi, j for any matrix M. In A′, we must
show that [A′]i, j = 1 iff there exists a (nonempty) path
from node i to node j whose sequence of intermediate
nodes is in X∗ (the Kleene closure of X). It is easily

14

seen that A′0 = A+
0 , because the allowed intermediate

nodes are precisely all those in A0. We inductively as-
sume that A′0 = A+

0 is computed correctly.
The cells [A′]i, j that fall in A′1 satisfy that i ∈ X and

j ∈Y . Every path from i to j whose intermediate nodes
are in X corresponds to a path of zero or more edges
starting at i and ending in some k ∈ X , plus a final edge
from k to j. Therefore, either [A]i, j = 1 (i.e., k = i), or
[A′]i,k = 1 and [A]k, j = 1. This is equivalent to [A1 +

A′0×A1]i, j−n/2 = 1. The case of A′2 is analogous: any
path from i∈Y to j ∈X through a sequence of nodes in
X∗ starts with an edge from i to some k∈X and follows
with a path (of length zero or more) from k to j, thus it
corresponds to [A2 +A2×A′0]i−n/2, j = 1.

Finally, a path from i ∈ Y to j ∈ Y that can have a
sequence of intermediate nodes in X∗ can be either a
direct edge from i to j with no intermediate nodes (for
which we must have [A3]i−n/2, j−n/2 = 1), or it can be
formed by an edge from i to some k ∈ X followed by a
path from k ∈ X to j ∈ Y using intermediate nodes in
X (for which we must have [A2×A′1]i−n/2, j−n/2 = 1).
Thus we obtain A′3 =A3+A2×A′1. We can analogously
derive the equivalent formula A′3 = A3 +A′2×A1.

For the second step, we start by computing A′′3 =

(A′3)
+ recursively, and inductively assume its compu-

tation is correct. This corresponds to a concatenation
of paths that start and end in Y , going through zero or
more nodes of X between each pair of nodes in Y , and
where the final node in Y of each path is the initial node
of the next. The intermediate nodes then form a se-
quence x1y1x2y2 . . .ymxm+1, where yr ∈ Y and xr ∈ X∗.
The set of all those sequences is then (X∗Y)∗X∗. There-
fore, [(A′3)

+]i−n/2, j−n/2 = 1 whenever there is a path
between i and j whose intermediate sequence of nodes
is in (X∗Y)∗X∗. But then, note that (X∗Y)∗X∗=(X |Y)∗
is an easy to prove equality between regular languages.
Thus, the path between i and j can use any number of
intermediate nodes in [1 . .n], and then (A′3)

+ = A′′3 =

(A+)3.
Let us now consider the computation of A′′2 . It

should hold [A′′2]i−n/2, j = 1 iff there is a path from
i∈Y to j∈X going through a sequence of zero or more
intermediate nodes in X or Y . If there are no nodes of Y
in such sequence, then it belongs to X∗ and it must hold
that [A′2]i−n/2, j = 1. Otherwise, let y be the last node
belonging to Y in the sequence. The sequence is then
of the form zyx, where z ∈ (X |Y)∗ and x ∈ X∗. Then it
must hold that [A′′3]i−n/2,y−n/2 = 1 and [A′2]y−n/2, j = 1,
and consequently [A′′3 × A′2]i−n/2, j−n/2 = 1. The for-
mula A′′2 = A′2 + A′′3 × A′2 is then proved. The case
A′′1 = A′1 +A′1×A′′3 is analogous.

The final case, A′′0 , is also analogous. It must hold
that [A′′0]i, j = 1 iff there is a path from i to j with in-

termediate nodes in X or Y . If this sequence has only
nodes in X , then it belongs to X∗ and it must hold that
[A′0]i, j = 1. Otherwise, we can partition the sequence
as xyz, where x ∈ X∗ and y is now the first occurrence
of an element in Y . Then it must be that [A′1]i,y−n/2 = 1
and [A′′2]y−n/2, j = 1, and as a consequence it must hold
that [A′1×A′′3]i, j = 1.

7.2 Complexity

Let C(v2) be the number of recursive calls to compute
the closure of a v× v matrix, and T (v) the number of
recursive calls to multiply two v×v matrices. Our com-
putation in Eqs. (6) and (7) follows the recurrence

C(v2) = 2 ·C(v2/4)+6 ·T (v2/4).

Note that, if we replace C(v2) by T (v2), we obtain
the same recurrence of Section 6.1. Therefore, we can
prove by induction on v that C(v2) = T (v2), and thus
the number of calls in our closure algorithms is the
same as in a multiplication. The number of elements
in the matrices we multiply, however, can be as high
as a+. Using Eq. (4) we obtain O((a+)3/2 log(v2/a+))
recursive calls.

For the cost of the sums (both the ones done inside
the multiplications and those of Eqs. (6) and (7)), we
again assume that there are (a+)2/v elements on aver-
age in every level. Since a+ ≤ v2, the total average cost
of our transitive closure algorithm is

O
(
(a+)3/2 logv

)
. (8)

This is logv times less than the cost of the stan-
dard technique, and corresponds to multiplying two
uniformly distributed matrices with a+ 1s.

7.3 Parallelism

It can be seen in Eqs. (6) and (7) that the computation
of A′2 can be carried out in parallel with those of A′1
and A′3, though A′3 must be computed after A′1 (and all
must be computed after A′0). Analogously, A′′1 can be
computed in parallel with A′′2 and A′′0 , all after A′′3 . In
addition, we can use parallelism to perform each iso-
lated multiplication.

To analyze this process, let us call T (v2,a+, p) the
time for multiplying two random matrices with a+ 1s
on a v× v submatrix with p processors. Combining
Eqs. (5) and (8) and ignoring big-O notation, we get

T (v2,a+, p) =
1
p
(a+)3/2 logv+(a+)2/v+ logv log p.

15

Similarly, let C(v2,a+, p) be the time to compute the
closure on a v× v matrix A, assuming that there are al-
ready a+ = |A+| uniformly distributed 1s in A, and with
p processors. Since we perform, on v/2× v/2 subma-
trices having on average a+/4 elements, a sequence of
two recursive calls and two multiplications, plus other
two pairs of multiplications in parallel (i.e., those of A′1
with A′2 and those of A′′1 with A′′2), the recurrence for C
is

C(v2,a+, p) =

2 ·C(v2/4,a+/4, p)+2 ·T (v2/4,a+/4, p)+

2 ·T (v2/4,a+/4, p/2) ≤

2 ·C(v2/4,a+/4, p)+
3
4
· 1

p
(a+)3/2 logv+

1
2
(a+)2/v+4logv log p ≤

1
p
(a+)3/2 logv+

2
3
· (a+)2/v+O(log2 v log p),

where the first two terms are obtained by unrolling the
recurrence into exponentially decreasing terms, and the
latter one is obtained by noting that the recursion ends
at the level ℓ where a+/4ℓ = 1, and bounding loga+ =

O(logv). The result is O(T (v2,a+, p) + log2 v log p),
with the same constant in the leading term. This sug-
gests that we can expect a parallel time proportional
to that of multiplying the resulting matrix, though this
time the additive penalty may become noticeable.

7.4 Restrictions

Operation A+⟨c⟩ is implemented as S← (E +A)⟨c⟩,
where E is the empty matrix, and then repeatedly doing
P← A×S and S← S+P until S does not change. Note
that the only nonzero column of P and S is c. To imple-
ment A∗⟨c⟩ we start with S = (I+A)⟨c⟩ instead. A row
restriction ⟨r⟩A+ is handled analogously, starting with
S = ⟨r⟩(A+E) and then iterating over P← S×A and
S← S+P, or using the initial step S← ⟨r⟩(I +A) for
⟨r⟩A∗.

Note that, unlike the standard algorithm [43], this
iteration does not make the path lengths grow exponen-
tially for the transitive closure, but linearly. Therefore,
we could need up to v iterations to compute the closure.
In practice, the closure is reached much sooner and the
operations are significantly faster, leading to a solution
that is much faster than our new transitive closure al-
gorithm.

When both row and column are restricted, we only
want a cell of the transitive closure. We then choose
the row/column with fewer elements in A and run a
row-restricted or column-restricted closure, whichever

is emptier. At each step, we check if the desired cell is
full, stopping immediately if so.

8 Query Plan

We first build the syntax tree of the 2RE E of the 2RPQ
(x,E,y). In principle, we can simply traverse the syntax
tree and solve it in postorder in the standard way, inter-
preting each leaf p as the matrix Mp, ˆp as MT

p , and ε as
I, and interpreting the internal nodes as the correspond-
ing operations on the matrices resulting from their chil-
dren, according to the translations of Section 3. Our
particular application, however, enables some relevant
optimizations.

Let us first assume that both x and y are variables.
A first simple optimization is that the closures are
idempotent, so a sequence of closures is reduced to
one. More precisely, (A∗)∗ = (A∗)+ = (A+)∗ = A∗ and
(A+)+ = A+. Sums and products yield more important
optimizations, though.

Sums. We exploit the fact that the Boolean sum is
commutative and associative to carry out a sequence
of consecutive sums, E1 | . . . | Em, in the best pos-
sible order. Since the cost of computing A + B is
proportional to |A| + |B|, if it were the case that
|A + B| = |A| + |B|, the best possible order would
be given by building the Huffman tree [47] of the
matrices Ai = M (Ei) using |Ai| as their weight (see
Section 3 for the definition of M (Ei)). Since, instead,
it holds that max(|A|, |B|) ≤ |A + B| ≤ |A|+ |B|, we
opt for a heuristic that simulates Huffman’s algorithm
on the actual size of the matrices as they are produced.
Concretely, we start with {A1, . . . ,Am} and iteratively
remove from the set the two matrices Ai and A j with
the smallest sizes, sum them, and return Ai +A j to the
set, until it has a single matrix.

Products. Matrix multiplication is not commutative
but still associative, so we can decide the order in
which the sequence of multiplications to compute the
concatenation E1 / · · ·/ Em is carried out. We cannot
apply the well-known optimal algorithm to choose the
order for dense matrices [31, Sec. 15.2] because the
time complexity of our sparse matrix multiplications
depends on the number of 1s in the matrices. Further,
this number of 1s can increase or decrease after a
multiplication. We then opt for a heuristic analogous
to the one we use for sums: we start from the sequence
A1, . . . ,Am = M (E1), . . . ,M (Em) and iteratively
choose the consecutive pair Ai, Ai+1 that minimizes
|Ai|+ |Ai+1|, multiply them, and replace the pair by
Ai×Ai+1, until the sequence has a single element.

16

S N

walk
x

x

x

8

8

2 3

9

4
x

S

x

walk

State
Empire

walk*

/

(2)

/

(1)

(2)

(3) (4)

(5)

(6)

/

?x walk/S/walk* Empire State?x walk/S/N/walk ?y

(1)

(5)

(6)

(4)(3)

//

walk

S

N walk

walk

S *

walk

walk

Fig. 7 Two examples for our query plan algorithm. For each query, the left part represents the syntax tree of the regular expression. The
gray nodes depict delayed operations. The full- and partial-filled rectangles mean non-restricted and restricted operations, respectively.
The tree pointed by the root represents the order of operations that the root has to compute, where the edges denote the size of the matrix
representation. In ?x walk/S/N/walk ?y, the query is transformed into a sequence of multiplications on the matrices of the predicates
without restrictions. Therefore, those multiplications are delayed until the root. In the root, we firstly choose the multiplication M (S)×
M (N) because the sum of their sizes is 5, smaller than the sum of the first (10) and last pair (11). Then M (S) and M (N) are replaced
by their product, of size 4, and the procedure continues recursively. Regarding ?x walk/S/walk∗ Empire State, we can restrict
the column of our root. The complete right branch of the tree inherits that restriction, except the node walk due to the Kleene star
operator. Once M (walk∗) is computed, we restrict it to the corresponding column. Since the previous operations are multiplications,
M (S)×M (walk∗)⟨Empire State⟩ is delayed until the root. In contrast to the previous example, since the last matrix is restricted by
a column, the algorithm computes the multiplication right to left.

Handling restrictions. When x (resp., y) is a constant
we are restricting a row (resp., column) of the matrix
after the operations. For efficiency, then, we apply the
restricted operations as described. Regarding the sums,
because ⟨r⟩(A+B)⟨c⟩= ⟨r⟩A⟨c⟩+ ⟨r⟩B⟨c⟩, we can re-
strict all the involved matrices at the same time. Con-
sequently, the sum can be computed in any order, and
the plan still focuses on looking for the best order as
described above.

In the restriction on products, we obtain a sequence
⟨r⟩A1×·· ·×Am⟨c⟩ (where it could be that only ⟨r⟩ or
only ⟨c⟩ is present). Consider the case ⟨r⟩A1×·· ·×Am.
The number of 1s reduces faster when multiplying the
pair that contains the restricted matrix, so we compute
A′ = ⟨r⟩A1×A2. The matrix A′ already has all zeros
except in row r, so we continue left-to-right in the se-
quence with normal matrix multiplications, A′ × A3,
and so on. Alternatively, once A′ is obtained, we could
proceed as with an unrestricted multiplication. While
this broadens the optimization space, it is more com-
plex, and still most likely to always choose the left-to-
right order anyway, because the leftmost matrix (ini-
tially A′) is likely to be much sparser than the others.

The case A1 × ·· · × Am⟨c⟩ is analogous, starting
with A′ = Am−1 × Am⟨c⟩ and then completing the
multiplications right to left. When both restrictions are
present, we choose an end and proceed as explained
until the final multiplication, ⟨r⟩A′ × A′′⟨c⟩, which is
done with the multiplication algorithm that enforces
the restriction on the other end.

Some restrictions can be inherited by the operands
of a node, which speeds up processing. Since
⟨r⟩(A + B)⟨c⟩ = ⟨r⟩A⟨c⟩ + ⟨r⟩B⟨c⟩, both children
of a sum inherit the same restrictions. Instead, the
product satisfies ⟨r⟩(A×B)⟨c⟩= (⟨r⟩A)× (B⟨c⟩), thus
only the left child inherits a row restriction and only the
right child inherits a column restriction. Closures do
not inherit their restrictions to their operand, because
⟨r⟩A∗⟨c⟩ ≠ (⟨r⟩A⟨c⟩)∗ and ⟨r⟩A+⟨c⟩ ≠ (⟨r⟩A⟨c⟩)+.
Restrictions are not inherited to leaves of the syntax
tree, however, because internal operands handle them
more efficiently than leaves. On the other hand, they
are removed from parents when inherited to children
because the nonrestricted operands run faster when
their operands have already been restricted.

Finally, we create a special implementation for the
case A+×B⟨c⟩ that avoids computing the full closure
A+, as a kind of restricted positive closure that starts
instead with S ← A× B⟨c⟩. To handle A∗ × B⟨c⟩ we
start with S ← (E + B)⟨c⟩. The cases ⟨r⟩A× B∗ and
⟨r⟩A×B+ are handled analogously, as well as the cases
with both restrictions. The parser is enhanced to detect
those cases.

Figure 7 illustrates two relevant cases.

9 A Baseline

We could not find an established software for compu-
tations with sparse Boolean matrices, for example to

17

implement transitive closures. We then implemented a
baseline representation of sparse matrices, which com-
bines (and adapts to the Boolean case) the well-known
CSR and CSC formats [67, Sec. 3.4] in order to speed
up multiplications. We store a vector of nonempty row
numbers and a similar vector of their starting positions
in a third, larger, vector. This third vector stores, for
each nonempty row, the increasing sequence of the
columns of its nonempty cells. Similar (redundant)
vectors are stored for the column-wise view.

Transpositions are carried out in O(1) time by just
exchanging the row-view and the column-view vec-
tors. The Boolean sum A + B merges the nonempty
rows, and when the same row appears in both matri-
ces it merges their nonempty columns. The column-
view is computed analogously, thus the sum takes time
O(a + b). The algorithm is also cache-friendly, as it
makes a single left-to-right pass over the input and out-
put arrays. Further, it uses native memory-copy opera-
tions when copying whole rows/columns that occur in
only one of the matrices, which is faster than merg-
ing (despite both operations being linear in the output
size). Figure 8 illustrates the sum operation.

For the Boolean multiplication A × B, we use
Schoor’s algorithm [69], whose average time is
O(ab/v) if the 1s are uniformly distributed. Schoor’s
algorithm intersects the nonempty columns ci of A
with the nonempty rows r j of B. For each pair ci = r j,
it creates the Cartesian product of all the rows asso-
ciated with ci in A with all the columns associated
with r j in B. The result is the union of the pairs in all
those Cartesian products. Our implementation, which
is more space-efficient, takes O(ab log(v)/v) time: we
first create the row-wise view of the matrix and at the
end use it to generate the column-wise view. To create
the row-wise view, we set up a priority queue of tasks
ci = r j, pointing to the associated rows and columns
of A and B and sorted by the smallest row associated
with ci. Once the set of all tasks is created, we extract
the smallest row from the queue and append to the
result all the columns associated with r j in B—we
may have to merge several column sequences if they
are paired with the same minimum row value, and use
another priority queue for that. The use of priority
queues yields the O(logv) additional term in the time
complexity. Figure 9 illustrates the algorithm.

Closures can be computed naively using O(logv)
multiplications. We implement instead an advanced
closure algorithm [64], which first computes the
strongly connected components (scc) of the graph
using Tarjan’s algorithm [72], then creates the reduced
and acyclic graph of the scc, computes reachability on
the reduced graph in topological order, and finally ex-

pands the scc to their node sets. Implemented with the
aim of using little working space, the whole algorithm
takes time O(|A+| logv).

Row and/or column restrictions are handled by
restricting the above algorithms to the given row/col-
umn; note that finding the desired rows/columns takes
just O(logv) time with the baseline format. Restricted
closure operations are performed as for the k2-tree
based representation. The parser and its optimizations
are also exactly the same.

10 Experimental Results

We implemented our scheme in C/C++11 and ran our
experiments on an Intel(R) Xeon(R) CPU E5-2630
at 2.30GHz, with 6 cores containing 24 processors
in total, 15 MB of cache, and 384 GB of RAM. We
compiled using g++ with flags -std=c++11, -O3, and
-msse4.2. We measure elapsed times. Our code is
publicly available [17].

We first study the performance of the individual
matrix operations, under various densities, for all our
implementations. We then test our implementations in
a real scenario where RPQs are solved.

10.1 Performance of Matrix Operations

In order to evaluate the performance of matrix oper-
ations, we created 80 squared matrices with v set to
1,000, where the 1s are uniformly distributed accord-
ing to different densities: 10−1, 10−2, 10−3, and 10−4.
Specifically, we generated 20 matrices for each den-
sity. We built those matrices with the k2-tree and our
baseline. On those systems, for each consecutive pair
of matrices of the same density, we ran the operations
sum, intersection, and multiplication without any kind
of restriction. In addition, the transitive closure is com-
puted on each matrix. Since we have sequential and
parallel algorithms for each operation, we denote them
as k2-tree and k2-tree-p, respectively. The averaged
times of each type operation, separated by density, are
shown in Figure 10. In Figure 11, instead, we operate
matrices of different densities against a dense matrix
(on top) and against a sparse matrix (on the bottom).

We test the sum (Boolean “or”) and intersection
(Boolean “and”) operations as representatives of the
other similar operations. For those, we include in
the comparison the existing work that supports set
operations [65] (called here Set-Ops), which also
uses k2-trees to represent the data. Supporting matrix
multiplications and transitive closures on k2-trees,
instead, is a novelty of our approach. We have not

18

6 87

7 8 7 82

column view

1 2 4 6 87

5 2 6 6 2 3 3 7 8 7 82

row view

2

2

3 5

1 46 7 6 7 2

1 2 5 7 8

8 6 7 1 4 7 8 1 4 7 8

row view

column view1 4 6 7 8

5 8 5 8 2 7 8 1 7 8

1 2

5 6

1 2 4

5

8765

8 2 6 7 6 1 4 2 3 2 3

3 4 5 6 column view

row view

7 8

7 88 2 7 6 7 5 8 1 2 4 2 8 17

7 1 4 7 88

1

1

1

1

1 1

11 1 1

11

+ =

1

11

111

1

11 1

1

1

1

1 1

11 1 1

11

1

1

1

11

1

1 1

A+BA B

A B A+B

Fig. 8 The baseline format and summation algorithm. In both the row and column views, we traverse both sets of rows/columns, copy
the unique rows/columns (as the dotted box corresponding to column 3 in A, whose rows 6 and 7 are copied to the output) and merge
the repeated ones (as the dashed boxes corresponding to row 2, whose sets of columns, {2,6} and {6,7}, are merged in the output).

1

4

7

8

1

4

7

8

1

1

2

2

3

3

4

4 4

5 5

4 5

6

7

6 87

7 8 7 82

column view2

2

3 5

1 46 7 6 7

52

A B

1 2 5 7 8

8 6 7 1 4 7 8 1 4 7

row view

7 8

8

1 7

8

7

8

1 2

1 4

row view

AxB

1 4 6 7

6

6 7 6 7 8

7 8

1 4 7 8

x

x

x
x x

2

6

7

Fig. 9 Our implementation of Schoor’s multiplication algorithm. The row view of A×B is produced from the column view of A and
the row view of B. On the bottom-left, the priority queue of 4 tasks created from the intersecting elements ci = r j ∈ {2,5,7,8}, for
each of which we store two pointers towards lists of rows in A and of columns in B. Their cartesian products are indicated explicitly on
the bottom for illustrative purposes. The diagonal arrows show the 5 steps along which we create the 5 rows of the results, by choosing
the smallest remaining row in each task. We first create row 1, with columns {1,4}, then row 2 with columns {6,7}, then row 6 with
colums {6,7}. The next row, 7, appears in tasks 2, 7, and 8, so we merge their sets of columns, {6,7}, {7,8}, and {1,4,7,8}. The last
row, 7, also requires merging from tasks 7 and 8.

found any other software to compare with, in particular
a non-compressed representation of sparse Boolean
matrices; this is why we created our baseline, which is
also included in the comparison. As a sanity check, we
introduce in the comparison a mature software for nu-
meric (not Boolean) computations on sparse matrices:
Octave [36], an open-source alternative to MatLab.
Octave is compared only for sums and multiplications,
whose complexities are similar for numeric versus
Boolean matrices. No equivalent to intersections and
transitive closures are supported in Octave.

K2-trees. Figure 10 shows that our sequential algo-
rithm described in Section 5 is consistently faster than
the recursive one, by a factor of 1.1–4.2, and than the
sequential algorithm implemented in Set-Ops, by a fac-
tor around 1.6–3.0. The former difference owes to the
fact that the sequential algorithm is simpler than the re-
cursive one; the latter difference owes to our improve-

ment when copying submatrices by whole computer
words. This is evident in Figure 11, where on top the
size of the output is still large (a dense matrix), but
its alternation measure δ decreases as the other ma-
trix becomes sparser (recall our fine-grained analysis
in Section 5). Both our sequential and recursive algo-
rithms are adaptive to δ (the recursive algorithm even
in terms of complexity) and consequently their times
decrease with the size of the sparser matrix; Set-Ops,
instead, stays proportional to the output size and inde-
pendent of δ . On the bottom plots, the output size also
decreases (as δ does) with the size of the denser matrix,
and thus all the times decrease accordingly. Here the
adaptiveness of our recursive algorithm makes it out-
perform our sequential algorithm when the difference
in densities is maximal, yet its more complex nature
makes it finally yield to Set-Ops’ sequential algorithm
as the difference in densities decreases.

19

10−1 10−2 10−3 10−4

Density

10−3

10−2

10−1

100

101

102
T
im
e
(m

se
c)

Sum

10−1 10−2 10−3 10−4

Density

10−3

10−2

10−1

100

101

102
Intersection

10−1 10−2 10−3 10−4

Density

10−3

10−2

10−1

100

101

102

103

104

105
Multiplication

10−1 10−2 10−3 10−4

Density

10−3

10−2

10−1

100

101

102

103

104

105
Transitive Closure

k2-tree k2-tree-p Baseline Octave Set-Ops

1

Fig. 10 Averaged times of k2-tree versions and baselines on matrices with different operations and decreasing density. The dashed
line denotes the recursive algorithm of the sum in the k2-tree.

10−1 10−2 10−3 10−4

Density

10−1

100

101

102

M
at
ri
x
10
−
1
−

T
im
e
(m

se
c)

Sum

10−1 10−2 10−3 10−4

Density

10−2

10−1

100

101

102
Intersection

10−1 10−2 10−3 10−4

Density

10−1

100

101

102

103

104
Multiplication

10−1 10−2 10−3 10−4

Density

10−2

10−1

100

101

102

M
at
ri
x
10
−
4
−

T
im
e
(m

se
c)

Sum

10−1 10−2 10−3 10−4

Density

10−3

10−2

10−1

100

101
Intersection

10−1 10−2 10−3 10−4

Density

10−3

10−2

10−1

100

101

102
Multiplication

k2-tree k2-tree-p Baseline Octave Set-Ops

1

Fig. 11 Average times of k2-tree versions and baselines on matrices with different densities: we compute A op B, where op ∈
{+,∩,×}, such that matrix A has density 10−1 on top and density 10−4 on the bottom, while the density of B varies on the x-
axis. The dashed line denotes the recursive algorithm of the sum in the k2-tree.

20

For the other sum-like operations, like the inter-
section, only a recursive version exists, as explained,
both for our algorithm and for Set-Ops’. As expected
from Table 1, the times are proportional to the number
m of 1s in the matrices (i.e., to the densities). This is
explained again by our fined-grained analysis in Sec-
tion 5, which shows a dependence on the output size
more than on the input size (in the case of the sum,
both input and output sizes are of the same order); this
can also be seen in Figure 11. Despite implementing
the same algorithm, our code is faster than Set-Ops’,
with the difference broadening as densities decrease.

Multiplications are in Figure 10 around 3 orders of
magnitude slower than sums on the denser matrices,
which corresponds to comparing time complexi-
ties m3/2 with m (see Table 1). As m decreases on
the sparser matrices, the gap shrinks to one order
of magnitude. Figure 11 shows a notable match
with our time complexity analysis of Section 6.1,
O(min(a,b)

√
max(a,b) logv): the slope on the top

plot, where the x axis is the size of min(a,b), is about
twice that of the bottom plot, where the x axis is the
size of max(a,b) (the plots use logarithmic scale).

Finally, transitive closures are about an order of
magnitude slower than multiplications, as their time
complexity is proportional to (m+)3/2, where m+ is the
size of the output. This output size reaches a saturation
point at density 10−2, so the time for density 10−1 is
not very different. The expected density of the transi-
tive closure of a random matrix with density d > 1/v
converges to around a constant close to 1 [50], that is,
m+ approaches v2. This is indeed the case of our den-
sities 10−1 and 10−2, but not of the sparser matrices.

Parallel k2-trees. Table 1 predicts perfect speedups for
k2-tree-p, except for two overheads: one is proportional
to the output size and the other is a polylog factor that
grows for the transitive closure operation. In the case
of the sum-like operations, the impact of the first over-
head is comparable to the parallel time; in addition, the
parallel algorithm must be recursive and cannot write
the results directly to the output (recall Section 5.3).
This combination makes parallelism achieve in Fig-
ure 10 only a moderate speedup of 1.8 over Set-Ops on
dense matrices, and to always lose to both implemen-
tations of the sequential k2-tree. The speedup vanishes,
and parallelism becomes actually counterproductive,
as densities decrease. This is related to an effect that
does not show up in the PRAM analysis: the system
overhead incurred when creating the threads reduces
the impact of parallelism on the easier operations. The
case of intersections is similar, though the k2-tree-p
outperforms the k2-tree (by a very slight margin) on the

densest matrices. The overhead incurred by paralleliza-
tion is more visible in the case of intersections, where
the resulting matrices are extremely sparse but k2-tree-
p is unable to reduce the times obtained for density
10−2. Figure 11 also shows that the k2-tree-p cannot
exploit the extremely low densities of the output.

On multiplications, the PRAM overheads are less
significant because they are of lower order than the
amount of work to do—O(m2/v) versus O(m3/2). Fig-
ure 10 shows that, on the denser matrices, the speedup
is near 10—making the parallel k2-tree approach our
baseline—, but it decreases up to becoming counter-
productive on densities below 10−3. Figure 11 con-
firms that the speedup is significative when the density
of the resulting matrix—which is vd1d2 on matrices
with side v and densities d1 and d2—is 10−1 or higher
(e.g., two matrices of density 10−2 in our case).

On transitive closures, perhaps due to the higher
polylog overhead, the best speedup obtained by the k2-
tree-p is around 3 and decreases as for multiplications.

Baselines. Octave is 1.3–3.9 times faster than our
baseline on sums. On multiplications, it is up to 6
times faster, but the gap decreases with lower densi-
ties, where the baseline finally catches up. In general,
we can see that our baseline implementation achieves
a reasonably competitive performance against much
more mature implementations of sparse matrix oper-
ations, thereby providing a relevant implementation
of Boolean operations on sparse matrices. Further,
the top of Figure 11 shows that, on sums, Octave is
not adaptive to the alternation complexity δ (which
decreases with the size of the sparser matrix), but is
instead proportional to the size of the input or the out-
put. As a consequence, our baseline does outperform
Octave—by a margin of up to 4.2—when the densities
are very different.4

In all the operations, our baseline is considerably
faster than the k2-tree, as we can expect from its bet-
ter time complexities in Table 1. For the sum-like op-
erations, where the gap is just O(logv), the baseline
is about 4–9 times faster than the recursive sum and
the intersection (they get close in the intersection when
there are very few points), and even 3–5 times faster
than our sequential implementation of the sum. Fig-
ure 11 shows that the baseline is also adaptive to the
lower densities, just as the k2-tree, because it also pro-
cesses faster the submatrices that must be copied di-
rectly to the output; recall Section 9.

4 Further, Octave’s times may differ significantly depending
on the order in which the two matrices are multiplied (A×B or
B×A), even when they are random and the result has about the
same cardinality. We chose the best of both times in the plots
(although in real cases one cannot choose).

21

On the heavier operations, where the time com-
plexities are farther apart (recall that m2/v is always
less than m3/2), the baseline is 14–53 times faster for
multiplications and 4–189 times faster for transitive
closures. An exception is the lowest density, where the
recursive algorithm we designed for the k2-tree outper-
forms the algorithm based in strongly connected com-
ponents we implemented for the baseline. This latter
algorithm has some basic setup costs that possibly off-
set its benefits when there are very few 1s in the matrix.

As shown in the next section, the baseline uses in
exchange about 4 times more space than the k2-trees.
The next section also shows that the large differences
exposed here shrink considerably on the real-life appli-
cation. The reason is that those matrices are far larger
and sparser than those we tried here, and as we have
seen the differences shrink as the density decreases.

10.2 Performance on Real-Life RPQs

We now use our Boolean sparse matrix algebra im-
plementations to solve actual RPQs, from a query log
posed to a real-world graph database. Besides com-
paring our implementations with existing solutions
and recommending which one to use depending on the
case, our experiments aim to answer two fundamental
questions:

1. How the strategy of using Boolean matrices com-
pares with the most commonly used ones, with-
out necessarily reducing space. As we will see, the
baseline uses about the same amount of memory as
the Ring, which allows us comparing the strategies
under equal conditions of memory usage.

2. What is the price of reducing space, from that of
the baseline to a quarter of it, as used by k2-trees,
while employing the same strategy based on
Boolean matrices. While k2-trees will be slower
than the baseline, they can be used in main memory
on much larger datasets.

Systems. We compared our implementations with the
following systems:

– Ring: A compact data structure that supports RPQs
in labeled graphs [16]. The variant RingAB uses
more space but is much faster.

– Virtuoso: A popular graph database that hosts the
public DBpedia endpoint, among others [38].

– Blazegraph: The graph database system [74] host-
ing the official Wikidata Query Service [53].

– Jena: A reference implementation of the SPARQL
standard.

The Ring (and RingAB) are paradigmatic exam-
ples of the technique that solves RPQs based on the
product graph; recall Section 2.2. The RingAB variant
optimizes the search by splitting the regular expression
at a convenient edge, whose label is infrequent in the
database graph, and running two opposite searches
from those edges. Jena also relies on graph traversal in
BFS order to find shortest paths that match RPQs.

Virtuoso and Blazegraph, instead, extend the rela-
tional algebra. They reduce RPQs to joins and unions
as much as possible, and use different mechanisms to
handle the transitive closures (see, e.g., [4]).

Datasets and queries. We used a Wikidata graph [76]
of n= 958,844,164 edges, v= 348,945,080 nodes, and
5,419 predicates. Separating the edges by predicate
and representing the two nodes of each edge as 32-bit
integers, the data set requires 8.5 GB.

To evaluate complex real-world 2RPQs, we ex-
tracted all 2RPQs that were not simple labels, from
the code-500 (timeout) sections of the seven intervals
of the Wikidata Query Logs [53]. We then normalized
variable names and removed disrupting queries: du-
plicated queries and queries producing more than 106

results for compatibility with Virtuoso. The result was
1,567 unique queries.

We ran the queries in each system with a timeout
limit of 60 seconds. On the k2-tree, we ran the single-
and multi-threaded versions of our algorithms.

General results. Table 2 summarizes the space usage
and time performance of all the systems. Notably, our
k2-tree based approach yields the most compact struc-
ture, requiring only 4.33 bytes per triple (bpt). This is
nearly half the space of the described plain represen-
tation of the raw data, and about a fourth of the space
used by the next smallest representations that support
2RPQs (Ring and our baseline). Classical systems use
14–22 times more space than our k2-trees. Note also
that the k2-tree representation is 1–2 orders of magni-
tude faster to build than the others.

This reduced space is paid in terms of time per-
formance. Our sequential k2-tree is on average 2.6
times slower than our baseline, 2.7 times slower than
the Ring, 7.9 times slower than the fastest system
(RingAB), and 1.6 times slower than the fastest clas-
sical system (Virtuoso). RingAB and Virtuoso stand
out for their stability—just one timeout. Still, the
k2-tree solves those 2RPQs in less than 4 seconds on
average, and are competitive with established systems
like Blazegraph and Jena. The median k2-tree time is
1.7–11.7 times higher than the others (excluding the
baseline). Our k2-tree-p does not compete in general
with the sequential k2-tree, which is to be expected in

22

Table 2 Index space (in bytes per triple), indexing time (in hours), and some statistics on the query times (in seconds). Row “Timeouts”
counts queries that take over 60 seconds or are rejected by the planner as too costly. 2RPQs with some constant node are indicated by
c, and without by ¬c.

k2-tree k2-tree-p Baseline Ring RingAB Virtuoso Blazegraph Jena

Index space (bpt) 4.33 4.33 16.45 16.41 27.93 60.07 90.79 95.83
Indexing time (hs) 0.3 0.3 5.5 7.5 8.3 3.0 39.4 37.4

Average (sec) 3.25 3.46 1.27 1.19 0.41 2.08 3.23 4.51
Median (sec) 0.33 0.38 0.004 0.09 0.03 0.13 0.13 0.21
Timeouts 39 44 14 9 1 1 41 84

Average c (sec) 2.83 3.09 1.07 0.65 0.25 1.79 3.24 3.62
Median c (sec) 0.33 0.38 0.004 0.08 0.03 0.11 0.13 0.19
Timeouts c 30 33 12 2 0 1 39 58

Average ¬c (sec) 11.92 11.21 5.45 12.43 3.66 8.17 2.98 22.83
Median ¬c (sec) 0.87 0.79 0.01 2.09 0.93 3.89 0.14 1.57
Timeouts ¬c 9 11 2 7 1 0 6 26

principle because the matrices are very sparse in this
application (we show later a case where it does).

Our baseline, on the other hand, uses almost the
same space as the Ring, and it is on average 7% slower.
It is 2.6 times faster than k2-trees, and 3.1 times slower
than the RingAB (which uses 1.7 times more space,
however). While using 3.7 times less space than Vir-
tuoso, it is 1.6 times faster. While the baseline per-
forms similarly to the Ring in those aspects, it solves
many easy queries much faster than all the systems—
its median is an order of magnitude lower. Yet, it pro-
duces more timeouts than the Ring, RingAB, and Vir-
tuoso, thereby displaying less stability. The other sys-
tems time out on many more queries, though.

The situation turns more against our matrix-based
methods on the easier 2RPQs—those containing some
constant. On those, the single-threaded k2-tree is on av-
erage 4.4 times slower than the Ring, 11.3 times slower
than the RingAB, and 1.6 times slower than Virtuoso,
yet still outperforming Blazegraph and Jena. The base-
line is here 1.6 times slower than the Ring and 4.3
times slower than the RingAB, yet it is still 1.7 times
faster than Virtuoso, and it is still an order of magni-
tude faster on the median.

On the harder queries, with no constant extreme,
the relative performance of matrix-based methods is
much better: the k2-tree and k2-tree-p are 5% and
11% faster than the Ring, respectively, still using
4 times less space. This time the parallel version
reduces the median times, as most queries are hard
enough to benefit from parallelism. The baseline, still
using about the same space as the Ring, is 2.3 times
faster. In these queries, however, the fastest system is
Blazegraph, which is 1.8 times faster than our baseline
and 3.8 times faster than k2-tree-p. The RingAB, using

not as much space, is 1.5 times faster than our baseline
and 3.1 times faster than the k2-tree-p. Yet, this comes
at the expense of using 1.7 times more space than
the baseline and 6.5 times more space than k2-trees.
The baseline still has 1–2 orders of magnitude faster
median times.

Figure 12 shows the query time distributions using
violin plots [45] (these show a symmetric histogram of
values along the y axis) together with averages (higher
segments) and medians (lower segments). The violin
plots are placed, along the x coordinate, correspond-
ing approximately to the space usage of the different
structures—see Table 2 for the detailed space usage.
The left plot refers to all the queries, whereas the right
one considers only the harder 2RPQs (with both vari-
able extremes). To avoid cluttering, we leave out the
k2-tree-p, as it looks identical to the k2-tree.

In the general case, the k2-tree, the baseline, and
both Ring variants are the dominant representations.
The first one offers a decent solution with low space
(slightly over 4 bpt), solving 90% of the queries in less
than 5.3 seconds. Using 4 times that space (about 16
bpt), the Ring and the baseline distribute similarly and
are noticeably faster than k2-trees, though the baseline
has a much lower median. Finally, the RingAB uses
about twice that space (28 bpt) and is considerably
faster and more stable than the baseline and the Ring.
All classical systems are outperformed in general by
the RingAB in both time and space.

When it comes to handling the harder 2RPQs, the
right plot shows that the baseline becomes noticeably
faster than the Ring—which distributes even worse
than k2-trees and thus becomes not competitive. The
baseline’s distribution is only outperformed—by a dis-

23

0 10 20 30 40 50 60 70 80 90 100
Space (bpt)

0

2

4

6

8

10

T
im
e
(s
ec
s)

General

0 10 20 30 40 50 60 70 80 90 100
Space (bpt)

0

10

20

30

40

50

60

Variables

k2-tree Baseline Ring RingAB Virtuoso Blazegraph Jena

1Fig. 12 Space and query time distribution of the systems in general (left) and for the 2RPQs with no constants (right). The baseline
and the Ring use almost the same space, but we separate them for readability.

crete margin—by that of RingAB and Blazegraph, yet
using much more space (28 and 90 bpt, respectively).

Finally, beyond stating which systems perform bet-
ter depending on the case, let us return to our two gen-
eral questions:

1. When using the same amount of space (i.e., base-
line versus Ring), the technique of using Boolean
matrices makes little difference in the overall query
times, being slower than product-graph traversal on
the easy queries and faster on the harder ones (i.e.,
when both extremes of the query are variable). This
can be expected from the fact that, on the simpler
queries, the Ring starts the product graph traver-
sal from just one node, whereas the Boolean matrix
strategy computes a global result (even if it can re-
strict the operations to start from a specific row or
column). On the harder queries, the Ring loses that
advantage and yields to the baseline. Indeed, the
improved version RingAB recovers the possibility
of starting the traversals from a few selected edges,
and thus performs close to the baseline, yet it re-
quires almost twice its space to do so. In turn, using
much less space than classic solutions, RingAB out-
performs them in most cases (except Blazegraph on
the harder queries, which is only slightly better).

2. When the space usage is reduced to a quarter
within matrix-based strategies (i.e., baseline versus
k2-tree), average times increase uniformly by a
factor around 2.6. Still, the k2-tree handles most
queries within a few seconds and even slightly
outperforms the Ring on the harder queries. This
makes it convenient when there is no enough main
memory to hold the baseline data structure, or

when it is convenient to free main memory for
other data structures in a larger system.

Discussion by query types. Figure 13 showcases the
performance of the systems across different types of
queries. For instance, queries of form x (a|b)* y

with variable x and constant y are represented as
‘v (|)* c’: v indicates a variable, c indicates a
constant, and the middle section represents the pattern
of the regular expression. We show the most popular
query types that appear in the log.

We note that the baseline is in all cases the best or
close to the best, with the notable exception of v /* v,
where it is forced to compute a full transitive closure.

The k2-tree is in general much slower, which is the
price it pays for its compactness, but still has a perfor-
mance comparable with the classical systems (Virtu-
oso, Blazegraph, Jena) in various queries, and excells
in some like c * v, c /* v, v | v, and v + v. In
the first two cases, it optimizes the query by restrict-
ing a matrix to a row; for example the query c /* v,
corresponds to the case ⟨r⟩A×B∗, where we avoid to
compute the transitive closure of B. The difference be-
tween c * v and v * c lies in the number of results
reported, averaging 2,930 and 53,052, respectively; the
case of c /* v and v /* c is analogous. This shows
how much the actual data influences performance, de-
spite the symmetry of the queries. The query v | v

corresponds to the Boolean sum, which is particularly
fast to implement in our matrix algebra.

As expected from the discussion in Section 10.1,
our parallel version rarely outperforms the sequential
one in this application, because the matrices are ex-
tremely sparse. It is even counterproductive in very

24

0

1

2

3

4

5
T
im

e
(s
ec
s)

v * c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v + c

0

1

2

T
im

e
(s
ec
s)

v /? c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v */*/*/*/* c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v (|)* c

0

1

2

3

4

5
T
im

e
(s
ec
s)

v /* c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v */* c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v / c

0

0.1

T
im

e
(s
ec
s)

c * v

0

0.1

T
im

e
(s
ec
s)

c /* v

0

1

2

3

T
im

e
(s
ec
s)

v /+ c

0

0.1

0.2

0.3

0.4

0.5

T
im

e
(s
ec
s)

v | c

0

1

2

3

4

5

T
im

e
(s
ec
s)

v / v

0

1

2

3

4

5

T
im

e
(s
ec
s)

v | v

0

10

20

30

40

50

60

70

T
im

e
(s
ec
s)

v + v

0

10

20

30

40

50

60

70

T
im

e
(s
ec
s)

v /* v

k2-tree k2-tree-p Baseline Ring RingAB Virtuoso Blazegraph Jena

Fig. 13 Boxplots of the distribution of query times. Some boxplots are completely above the vertical limit.

easy queries like c * v and c /* v, where the cost
of creating the threads outweights the advantage of a
parallel execution. A relevant case where parallelism
helps is v / v, because it boils down to matrix
multiplication, which is the case where parallelism
obtains the best speedups. This shows that parallelism
could be beneficial in fixed path queries of the form
v /.../ v.

We note that some queries, like v / c and v / v,
are also basic graph patterns (BGPs), that is, fixed sub-

graphs to be found in the data. The Ring solves them
by resorting to existing algorithms for BGPs that run
on the same data structure it uses [15]. We could opti-
mize our k2-tree algorithms in the same way, as there
also exist efficient algorithms for BGPs that run on the
very same k2-tree structures [13]. A more complete in-
tegration of RPQs and BGPs is discussed in the Con-
clusions.

25

11 Conclusions

We have explored the use of a Boolean matrix algebra
to implement Regular Path Queries (RPQs) on graph
databases. This path is usually disregarded because
the matrix sizes are quadratic on the number of graph
nodes, but we exploit their sparsity to sidestep this
issue. Our experiments show that even our baseline
(i.e., uncompressed) sparse matrix representation uses
the same space of the most compact among previous
representations, and outperforms them on the most
difficult RPQs (i.e., those with no constant ends).
We also develop a more compressed sparse matrix
representation based on k2-trees, which is four times
smaller than the baseline and, although slower, it still
handles most RPQs within a few seconds and (slightly)
outperforms the most compact previous representa-
tions on the difficult queries. We have implemented
and adapted state-of-the-art algorithms for sparse
matrices to implement our baseline, and designed new
ones for the k2-trees.

Our implementations offer a full composable
Boolean matrix algebra, as the result of the operations
is given in the same representation of the arguments.
Such implementations, which are publicly available
[17], are of interest beyond solving RPQs, as their
use arises in other situations, such as ML applications
[37]. We additionally developed a multithreaded
version of the k2-tree implementation that is shown
to significantly outperform the sequential version for
matrix multiplications when the density of the result-
ing matrix is high enough. While graph databases are
much sparser, the multithreaded version can be useful
in other applications that handle denser matrices.

Future work. We first discuss how to address the limi-
tations discussed in the Introduction.

One extension to the current work is to implement
our algorithms over dynamic versions of the k2-tree
[12, 29] which would permit adding and removing
nodes and edges from the graphs in addition to cre-
ating new matrices via matrix algebra operations.
Experiments on those dynamic k2-trees show that,
while retaining essentially the same space usage of
the static version, updates can be performed in a few
microseconds, while static times to traverse the matrix
increase by at most 50%. Those update times are very
competitive: the construction time we reported for
k2-trees is 1.1 microseconds per edge, comparable to
the cost of building them via successive insertions
on the existing dynamic k2-tree representations. It
is also possible to support updates in the baseline
representation, by extending its current simple arrays
to lists of blocks of varying size.

An advantage of one of the k2-tree implementa-
tions that support dynamism [12] is that, in addition,
it features more locality of reference. It partitions the
tree into connected components, which are compactly
represented in contiguous blocks of memory, with ac-
tual pointers among them. Deploying those blocks onto
disk pages would yield a disk-friendly representation.
The baseline representation, instead, is naturally disk-
friendly, as all the operations boil down to sequential
traversals on its arrays.

Our third limitation is the support of negated
labels, which in the case of k2-trees require a non-
expensive way to represent and handle submatrices
full of 1s. Such extensions of k2-trees have been
proposed [21, 65], but they have not been adapted to
handle the most complex Boolean matrix operations
(multiplication and transitive closure). The baseline
can also be extended so as to mark matrices as negated
and simulating the complement of the represented
matrices when performing the operations.

We can also strenghten our RPQ optimizer in order
to detect common subexpressions and exploit a num-
ber of identities of the Boolean algebra we have disre-
garded for now, for example A+A, A× I, A+0, I∗, and
others that may arise naturally.

Another path of future work is to integrate RPQs
with BGPs, the other main segment of most graph
query languages. In those combined queries, some
triple patterns (x, p,y) refer to predicates p and others
may be 2RPQs of the form (x,E,y). We can then use
our matrix algebra to materialize those RPQs into a
resulting matrix, which acts as a new predicate pE .
The result is a simple BGP, which can then be solved
with Qdags [13], an existing solution BGPs that is
also based on representing each predicate as a k2-tree.
In this way we would not need any extra space, since
both indices use exactly the same data structures. A
particularly intriguing question is whether we can
extend the idea of Lazy Qdags [13] to RPQs, so as to
deliver the output gradually, as required, instead of
producing it eagerly in full.

Acknowledgements: The authors thank the reviewers
for their insightful comments.

Competing interests: The authors declare no compet-
ing interests.

References

1. Agrawal R (1988) Alpha: An extension of re-
lational algebra to express a class of recursive

26

queries. IEEE Transactions on Software Engineer-
ing 14(7):879––885

2. Aho AV, Ullman JD (1979) The universality of
data retrieval languages. In: Proc. 6th POPL, pp
110–120

3. Aho AV, Hopcroft JE, Ullman JD (1974) Data
Structures and Algorithms. Addison-Wesley

4. Aimonier-Davat J, Skaf-Molli H, Molli P, Dang M,
Nédelec B (2023) Join ordering of SPARQL prop-
erty path queries. In: Proc. 20th ESWC, pp 38––54

5. Álvarez-Garcı́a S, Brisaboa NR, Fernández J,
Martı́nez-Prieto M, Navarro G (2015) Com-
pressed vertical partitioning for efficient RDF
management. Knowledge and Information Sys-
tems 44(2):439–474

6. Amossen RR, Pagh R (2009) Faster join-projects
and sparse matrix multiplications. In: Proc. 12th
ICDT, pp 121–126

7. Angles R, Arenas M, Barceló P, Hogan A, Reutter
JL, Vrgoc D (2017) Foundations of modern query
languages for graph databases. ACM Computing
Surveys 50(5):68:1–68:40

8. Angles R, Arenas M, Barceló P, Boncz PA,
Fletcher GHL, Gutiérrez C, Lindaaker T, Paradies
M, Plantikow S, Sequeda JF, van Rest O, Voigt H
(2018) G-CORE: A core for future graph query
languages. In: Proc. SIGMOD, pp 1421–1432

9. Apostolico A, Drovandi G (2009) Graph compres-
sion by BFS. Algorithms 2(3):1031–1044

10. Arlazarov V, Dinic E, Kronrod M, Faradžev I
(1970) On economical construction of the transi-
tive closure of a directed graph. Dokl Akad Nauk
SSSR 194(11):487–488, in Russian. English trans-
lation in Soviet Math. Dokl. 11:5, 1209–1210

11. Arroyuelo D, Castillo JP (2023) Trie-compressed
adaptive set intersection. In: Proc. 34th CPM, pp
1:1–1:19

12. Arroyuelo D, de Bernardo G, Gagie T, Navarro
G (2019) Faster dynamic compressed d-ary rela-
tions. In: Proc. 26th SPIRE, LNCS 11811, pp 419–
433

13. Arroyuelo D, Navarro G, Reutter JL, Rojas-
Ledesma J (2022) Optimal joins using compressed
quadtrees. ACM Transactions on Database Sys-
tems 47(2):article 8

14. Arroyuelo D, Gómez-Brandón A, Navarro G
(2023) Evaluating regular path queries on com-
pressed adjacency matrices. In: Proc. 30th SPIRE,
pp 35–48

15. Arroyuelo D, Gómez-Brandón A, Hogan A,
Navarro G, Reutter JL, Rojas-Ledesma J, Soto
A (2024) The Ring: Worst-case optimal joins in
graph databases using (almost) no extra space.

ACM Transactions on Database Systems 49(2):ar-
ticle 5

16. Arroyuelo D, Gómez-Brandón A, Hogan A,
Navarro G, Rojas-Ledesma J (2024) Optimizing
RPQs over a compact graph representation. The
Very Large Databases Journal 33:349–374

17. Arroyuelo D, Gómez-Brandón A, Navarro
G (2024) Sparse Boolean Matrix Algebra.
https://github.com/adriangbrandon/rpq-matrix

18. Azimov R, Epelbaum I, Grigorev SV (2021)
Context-free path querying with all-path semantics
by matrix multiplication. In: Proc. 4th GRADES-
NDA, pp 4:1–4:7

19. Barbay J, Kenyon C (2008) Alternation and redun-
dancy analysis of the intersection problem. ACM
Transactions on Algorithms 4(1):4:1–4:18

20. Barceló P (2013) Querying graph databases. In:
Proc. 32nd PODS, pp 175–188

21. de Bernardo G, Álvarez-Garcı́a S, Brisaboa NR,
Navarro G, Pedreira O (2013) Compact querieable
representations of raster data. In: Proc. 20th
SPIRE, pp 96–108

22. de Bernardo G, Gagie T, Ladra S, Navarro G, Seco
D (2023) Faster compressed quadtrees. Journal of
Computer and System Sciences 131:86–104

23. Boldi P, Rosa M, Santini M, Vigna S (2011)
Layered label propagation: A multiresolution
coordinate-free ordering for compressing social
networks. In: Proc. 20th WWW, pp 587–596

24. Bonifati A, Martens W, Timm T (2019) Navigat-
ing the maze of Wikidata query logs. In: Proc.
WWW, pp 127–138

25. Bonifati A, Martens W, Timm T (2020) An an-
alytical study of large SPARQL query logs. The
VLDB Journal 2–3:655–679

26. Brisaboa N, Cerdeira-Pena A, de Bernardo G,
Fariña A, Navarro G (2023) Space/time-efficient
rdf stores based on circular suffix sorting. The
Journal of Supercomputing 79:5643–5683

27. Brisaboa NR, Ladra S, Navarro G (2014) Compact
representation of Web graphs with extended func-
tionality. Information Systems 39(1):152–174

28. Clark DR (1996) Compact PAT trees. PhD thesis,
University of Waterloo, Canada

29. Coimbra ME, Hrotkó J, Francisco AP, Russo
LMS, de Bernardo G, Ladra S, Navarro G (2022)
A practical succinct dynamic graph representa-
tion. Information and Computation 285B:article
104,862

30. Coppersmith D, Winograd S (1990) Matrix mul-
tiplication via arithmetic progressions. Journal of
Symbolic Computation 9(3):251–280

27

31. Cormen TH, Leiserson CE, Rivest RL, Stein C
(2009) Introduction to Algorithms, 3rd edn. MIT
Press

32. Demaine ED, López-Ortiz A, Munro JI (2000)
Adaptive set intersections, unions, and differences.
In: Proc. 11th SODA, pp 743–752

33. Deutsch A, Xu Y, Wu M, Lee VE (2020) Aggrega-
tion Support for Modern Graph Analytics in Tiger-
Graph. In: Proc. SIGMOD, pp 377–392

34. Deutsch A, Francis N, Green A, Hare K, Li B,
Libkin L, Lindaaker T, Marsault V, Martens W,
Michels J, Murlak F, Plantikow S, Selmer P, van
Rest O, Voigt H, Vrgoč D, Wu M, Zemke F (2022)
Graph pattern matching in GQL and SQL/PGQ.
In: Proc. SIGMOD, pp 2246–2258

35. Dijkstra E (1976) A Discipline of Programming.
Prentice Hall, chapter 25

36. Eaton JW, Bateman D, Hauberg S, Wehbring R
(2021) GNU Octave version 6.3.0 manual: a high-
level interactive language for numerical computa-
tions

37. Elgohary A, Boehm M, Haas PJ, Reiss FR, Rein-
wald B (2019) Compressed linear algebra for
declarative large-scale machine learning. Commu-
nications of the ACM 62(524):83–91

38. Erling O, Mikhailov I (2009) RDF support in
the Virtuoso DBMS. In: Networked Knowledge –
Networked Media, Springer, pp 7–24

39. Fawzi A, Balog M, Huang A, Hubert T, Romera-
Paredes B, Barekatain M, Novikov A, Ruiz FJR,
Schrittwieser J, Swirszcz G, Silver D, Hassabis D,
Kohli P (2022) Discovering faster matrix multi-
plication algorithms with reinforcement learning.
Nature 610:47–53

40. Fischer MJ, Meyer AR (1971) Boolean matrix
multiplication and transitive closure. In: Proc. 12th
SWAT, pp 129–131

41. Francis N, Green A, Guagliardo P, Libkin L, Lin-
daaker T, Marsault V, Plantikow S, Rydberg M,
Selmer P, Taylor A (2018) Cypher: An Evolving
Query Language for Property Graphs. In: Proc.
SIGMOD, pp 1433–1445

42. Fredman ML, Willard DE (1993) Surpassing
the information theoretic bound with fusion
trees. Journal of Computer and System Sciences
47(3):424–436

43. Furman ME (1970) Application of a method of
fast multiplication of matrices in the problem of
Finding the transitive closure of a graph. Soviet
Mathematical Doklady 11(5):1252

44. Hernández C, Navarro G (2014) Compressed rep-
resentations for Web and social graphs. Knowl-
edge and Information Systems 40(2):279–313

45. Hintze JL, Nelson RD (1998) Violin plots: A
box plot-density trace synergism. The American
Statistician 52(2):181––184

46. Hogan A, Riveros C, Rojas C, Soto A (2019) A
worst-case optimal join algorithm for SPARQL.
In: Proc. 18th ISWC, pp 258–275

47. Huffman DA (1952) A method for the construction
of minimum-redundancy codes. Proc Institute of
Electrical and Radio Engineers 40(9):1098–1101

48. Itai A, Rodeh M (1978) Finding a minimum circuit
in a graph. SIAM Journal of Computing 7(4):413–
423

49. Jakobsson H (1991) Mixed-approach algorithms
for transitive closure (extended abstract). In: Proc.
10th PODS, pp 199–205

50. Karp RM (1990) The transitive closure of a ran-
dom digraph. Random Structures and Algorithms
1(1):73–94

51. Knuth DE (2009) The Art of Computer Program-
ming, volume 4: Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams. Addison-
Wesley Professional

52. Losemann K, Martens W (2012) The complex-
ity of evaluating path expressions in SPARQL. In:
Proc. 31st PODS, pp 101–112

53. Malyshev S, Krötzsch M, González L, Gonsior J,
Bielefeldt A (2018) Getting the most out of Wiki-
data: Semantic technology usage in Wikipedia’s
knowledge graph. In: Proc. ISWC, pp 376–394

54. Manola F, Miller E (2004) RDF
Primer. W3C Recommendation,
http://www.w3.org/TR/rdf-primer/

55. Martens W, Niewerth M, Popp T, Rojas C, Van-
summeren S, Vrgoc D (2023) Representing paths
in graph database pattern matching. Proc VLDB
Endowment 16(7):1790–1803

56. Mendelzon AO, Wood PT (1995) Finding regular
simple paths in graph databases. SIAM Journal on
Computing 24(6):1235–1258

57. Morton GM (1966) A computer oriented geodetic
data base; and a new technique in file sequencing.
Tech. rep., IBM Ltd.

58. Munro JI (1971) Efficient determination of the
transitive closure of a directed graph. Information
Processing Letters 1(2):56–58

59. Munro JI (1996) Tables. In: Proc. 16th FSTTCS,
pp 37–42

60. Navarro G (2016) Compact Data Structures – A
practical approach. Cambridge University Press

61. Nuutila E (1994) An efficient transitive closure al-
gorithm for cyclic digraphs. Information Process-
ing Letters 52(4):207–213

28

62. Nuutila E (1995) Efficient transitive closure com-
putation in large digraphs. PhD thesis, Finnish
Academy of Technology, Finland

63. Penn G (2006) Efficient transitive closure of sparse
matrices over closed semirings. Theoretical Com-
puter Science 354(1):72–81

64. Purdom PW (1970) A transitive closure algorithm.
BIT 10:76–94

65. Quijada-Fuentes C, Penabad MR, Ladra S,
Gutiérrez G (2019) Set operations over com-
pressed binary relations. Information Systems
80:76–90

66. van Rest O, Hong S, Kim J, Meng X, Chafi H
(2016) PGQL: A property graph query language.
In: Proc. GRADES, p 7

67. Saad Y (2003) Iterative Methods for Sparse Linear
Systems. SIAM

68. Samet H (2006) Foundations of Multidimensional
and Metric Data Structures. Morgan Kaufmann

69. Schoor A (1982) Fast algorithm for sparse ma-
trix multiplication. Information Processing Letters
15(2):87–89

70. Sharir M (1981) A strong-connectivity algorithm
and its applications to data flow analysis. Comput-
ers and Mathematics with Applications 7(1):67–
72

71. Strassen V (1969) Gaussian elimination is not op-
timal. Numerische Mathematik 13:354––356

72. Tarjan RE (1972) Depth-first search and linear
graph algorithms. SIAM Journal on Computing
1(2):146–160

73. Tetzel F, Kasperovics R, Lehner W (2019) Graph
traversals for regular path queries. In: Proc. 2nd
GRADES-NDA, pp 5:1–5:8

74. Thompson BB, Personick M, Cutcher M (2014)
The Bigdata®RDF Graph Database. In: Linked
Data Management, Chapman and Hall/CRC, pp
193–237

75. Valiant LG (1975) General context-free recogni-
tion in less than cubic time. Journal of Computer
and Systems Sciences 10(2):308–315

76. Vrandecic D, Krötzsch M (2014) Wikidata: A free
collaborative knowledgebase. Communications of
the ACM 57(10):78–85

77. Warshall S (1962) A theorem on boolean matrices.
Journal of the ACM 9(1):11–12

78. Williams VV (2012) Multiplying matrices faster
than Coppersmith-Winograd. In: Proc. 44th
STOC, pp 887–898

79. Yakovets N, Godfrey P, Gryz J (2016) Query Plan-
ning for Evaluating SPARQL Property Paths. In:
Proc. SIGMOD, pp 1875–1889

80. Yannakakis M (1990) Graph-theoretic methods in
database theory. In: Proc. 9th PODS, pp 230–242

81. Yu H (2018) An improved combinatorial algo-
rithm for boolean matrix multiplication. Inf Com-
put 261:240–247

82. Yuster R, Zwick U (2005) Fast sparse matrix
multiplication. ACM Transactions on Algorithms
1(1):2–13

29

