
Experimental Analysis of a ParallelQuicksort-Based Algorithm for Su�x ArrayGenerationAutran Macêdo1, Marco Antônio Cristo1, Elaine Spinola Silva1, DenilsonMoura Barbosa1, Jo~ao Paulo Kitajima1, Berthier Ribeiro1, Gonzalo Navarro2,and Nivio Ziviani11 Departamento de Ciência da Computa�c~aoUniversidade Federal de Minas GeraisBelo Horizonte, MG - BRAZILlatin@dcc.ufmg.br2 Departamento de Ciencias de la Computaci�onUniversidad de ChileSantiago - CHILEgnavarro@dcc.uchile.clAbstract. This paper presents experiments performed with an imple-mentation of a quicksort-based parallel indexing algorithm. Besides theexpected reduction in execution time, it was observed that the wordfrequency distribution of the input textual database has a strong in
u-ence on performance. Communication and computational load balancesare achieved by processing the same quantity of text on each proces-sor. This e�ectively occurs due to the auto-similar feature of texts, ver-i�ed experimentally in this work. Also, as seen by the experiments, theauto-similarity of the word frequency distribution implies that this dis-tribution is independent of the text size. In terms of implementation,the knowledge a priori of this word frequency may improve the indexingtime by eliminating certain parts of the algorithm.Keywords: Parallel Processing, Information Retrieval, Index Generation,Auto-Similarity, Message Passing.1 IntroductionInformation retrieval is a research area of growing interest by the scienti�c com-munity. One of the most relevant research �eld in that area is the string searchin textual databases. This string search involves not only the database query,but also the database indexing and the user interface [1]. In the case of infor-mation retrieval in Internet homepages, the search process may involve also theautomatic scan of World Wide Web (WWW) sites and the download of thesehomepages for further indexing.Index generation time is critical. It has at least the sequential complexityin the order of the database size, since all the words may be indexed. In this



sense, parallel strategies can be devised in order to reduce the index generationtime. The algorithm proposed in [2] is based on a quicksort approach, wherethe textual database is partitioned through processors interconnected by a fastnetwork [3]. The index structure is based on a su�x array [1].The goal of this paper is to present some experimental results of the �rst ver-sion of the algorithm implementation. It was observed that the word frequencydistribution in textual databases plays an important role on the program perfor-mance. The following Section describes the parallel index generation algorithm.Next, experiments on index generation are presented. The in
uence of text char-acteristics is discussed and followed by some conclusions.2 The Parallel Generation of Su�x ArraysSearching a large full text for user speci�ed patterns is a time consuming taskwhich requires special indexing schemas. A su�x array (or pat array) [1] is alinear structure composed of pointers to every su�x in the text (since the usernormally is allowed to query on words, it is customary to index only word begin-nings). These index pointers are sorted according to a lexicographical orderingof their respective su�xes and each index pointer can be viewed simply as theo�set (counted from the beginning of the text) of its corresponding su�x in thetext. To �nd the user patterns, binary search is performed on the array.The central idea of the parallel algorithm is as follows, considering a fastnetwork of independent computers [3]. Imagine the �nal result of the process:the global sorted su�x array. If that array is cut in b similarly-sized portions(which is called slices), what the algorithm does is to assign a slice to eachprocessor and make it sort that slice. Originally, each processor contains someelements of each slice.An �-percentile is the value at position �n in the global sorted su�x array.For example, the 1=r-percentile is the element at position b. Our algorithm par-titions the data to be worked on by each processor by �nding the percentiles1=r, 2=r, . . . , (r � 1)=r (r is the number of processors). An alternative de�ni-tion for slice is: the portion of the global su�x array between two consecutive(i=r)-percentiles.The algorithm proceeds in four steps:{ Step 1 - One master processor splits the text into pieces of same size anddistributes them among slave processors;{ Step 2 - Each processor builds internally its local su�x array and determinesits local percentiles;{ Step 3 - The processors cooperate to �nd the r global percentiles. Thisde�nes the part of each slice stored at each processor;{ Step 4 - The processors engage in a distribution process so that every pro-cessor gets the part of its slice stored on any other processor;{ Step 5 - Each processor completes internally the sorting of its slice.



Consider a text T. T is split into pieces of the same size according withthe number of processors involved in the generation of the index, so that eachprocessor has a part of the text (step 1). Each processor generates its localsu�x array (step 2). In order to generate the global su�x array, the processors�nd the percentiles of its local su�x array and broadcast them to the others todetermine the global percentiles (step 3). After that, each processor is able toknow which part of its su�x array belongs to itself and which parts belongs totheir partners. The global all-to-all communication is performed (step 4). Finally,each processor sorts its local su�xes (step 5). The concatenation of local su�xarray (of all processors) leads to the global index su�x array.It can be noticed that the steps 4 and 5 are time dominant, due to su�xarrays broadcast and the need of I/O operations. Figures 1 and 2 show this fact.Figure 1 presents two turning points (phases 1 and 5 at 8 processors) due tocontention of disk. It can be argued why not just parallelize only these steps.The answer is the availability of primary memory. The aim of this study is theindex generation of very large �les (order of GigaBytes). A single computer toperform steps 1, 2 and 3 could not support all text in primary memory, withoutavoiding page faults.In this way, the complexity of the algorithm (see [2] for details), in the averagecase, is O(b logn)I+O(r2 log b+ b)C = O(b logn)I+O(b)Cwhere n is the text size and b is the slice size. I is the computation unit cost andC is the communication cost.3 Experimental AnalysisThe following Sections present the experimental environment and measures con-cerning execution time and load balancing. Parallel quicksort is typically a scal-able strategy: a reduction of the execution time is expected. However, for parallelindexing, the characteristics of the input textual database also in
uence stronglythe program performance.3.1 ExperimentsTwo message passing parallel machines are being used in the implementationof the algorithm. One machine is in the CENAPAD - MG/CO, a brasilian su-percomputer center, located at UFMG (Federal University at Minas Gerais);the other one is in the LMC (Laboratory of Modeling and Calculus), locatedat IMAG (Mathematics Institute of Grenoble) in France. The computer of CE-NAPAD - MG/CO is an IBM SP with 41 nodes and 48 processors at 120 MHzwith memory ranging from 256 MegaBytes (MB) to 1 GigaBytes (GB) of pri-mary memory. The network is a switch at 155 MB/s and all processors share asingle disk system. The computer in LMC is an IBM SP with 32 processors at



0

20

40

60

80

100

4 8 16

P
E

R
C

E
N

T
A

G
E

NUMBER of PROCESSORS

PERCENTAGE of TIME SPENT by the ALGORITHM in EACH PHASE with 100 MB FILE

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5

Fig. 1. Percentage of time spent by each step of the program, when it was submmitedto a network of workstations in CENAPAD - MG/CO with a text input �le of 100 MB.66 MHz and 64 MB of main memory. The network has a switch at 40 MB ofunidirectional bandwidth and a local disk for each processor.The parallel program is written in ANSI C using MPI (Message Passing Inter-face) [4] as communication library. The benchmark textual database is composedof �le texts of 100 MB and 200 MB, extracted from the Wall Street Journal ofTREC-3 collection [5].The experiment results presented in this article were obtained by executingthe program in CENAPAD - MG/CO considering 1, 4, 8, and 16 processors.Some details should be stated:{ only 54 MB of main memory were used by the processors of CENAPAD -MG/CO. This limitation was set because it is the maximum portion of mainmemory used by the LMC processors, when experiments are performed inFrance. This memory size compatibility have to be kept because memory isimportant in this study;{ experiments with 2 processors were not performed due to the politic of mem-ory utilization adopted by the program. By this politic, 23 of main memory



0

20

40

60

80

100

4 8 16

P
E

R
C

E
N

T
A

G
E

NUMBER of PROCESSORS

PERCENTAGE of TIME SPENT by the ALGORITHM in EACH PHASE with 200 MB FILE

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5

Fig. 2. Percentage of time spent by each step of the program, when it was submmitedto a network of workstations in CENAPAD - MG/CO with a text input �le of 200 MB.is left to the pat array and the other 13 is left to the text. Two processorwould have too many I/O disk operations, what would be a similar case ofthe sequential algorithm implementation.Figures 3 and 4 present the performance of the program, considering text �lesof 100 MB and 200 MB. The speedup was measured considering an sequentialimplementation of the algorithm presented in [6].It can be noticed (�gure 4) that with 4 processors speedup is super-linear(5.12 and 5.76 with �les of 100 MB and 200 MB, respectively) and with 16processors speedup is bad. Super-linear speedup is observed because the imple-mentation of the sequential algorithm has a quadratic behaviour due to I/Odisk operations, although its complexity is n logn [6]. Sub-linear speedup occursbecause of the single disk shared by every processors in CENAPAD - MG/CO.The more processors involved in the index generation, the greater is the num-ber of �les that each processor must deal with. These �les are created by theprocessors during the broadcast (step 4). The competition by I/O bus and seektime of the disk determine the low performance of the program, in this envi-



0

1000

2000

3000

4000

5000

6000

7000

8000

100 200

T
IM

E
 (

in
 s

e
c
o

n
d

s
)

SIZE of FILES (in MB)

TIME x FILE SIZES

Sequential
4 processors
8 processors

16 processors

Fig. 3. Measures of elapsed time for index generation using 1, 4, 8 and 16 processors,connected by fast network at CENAPAD - MG/CO, considering �les of di�erent sizes.ronment. The domination of I/O time in the performance of program can beobserved in �gures 5 and 6. The curves show the percentage of time spent instep 4 of the algorithm. It can be devised that the percentage of time in I/O op-erations is increasing, as increases the number of processors. There are 3 curves:communication, I/O operations, and others. This last curve re
ects activitieslike:{ su�x array compression;{ package of data to be transmitted;{ contention in the su�x array transmission.Figures 5 and 6 present also a turning point on curve \others", when thenumber of processors is 8. This turning point is caused by the competition ofthe processors for the disk. Besides, the graphics show the percentage of timespent by the algorithm when communication, I/O disk operations, and otherfactors are considered. Beyond 8 processors, the percentage of time of otherfactors (curve \others") decrease, on the hand the percentage of time of I/Odisk operations increase.



0

1

2

3

4

5

6

7

8

4 8 16

S
P

E
E

D
U

P

NUMBER of PROCESSORS

SPEEDUP x NUMBER of PROCESSORS

100 MB
200 MB

Fig. 4. Curves of speedup obtained in a network of workstations at CENAPAD -MG/CO.3.2 In
uence of Text CharacteristicsOne concern with the algorithm here presented is the load balance during steps4 and 5. More speci�cally, in the step 4, a non homogeneous communicationload occurs if exchanged parts of slices are of di�erent sizes. In step 5 also,the resulting slice to be sorted locally would have di�erent sizes for di�erentprocessors. This would imply a non balanced computational load. This happenswhen the word frequency distribution is not auto-similar.A structure is said strictly auto-similar [7] if it can be recursively decomposedin small pieces where each one is a replica of the original structure. It is importantto say that these parts are obtained through a scale transformation of the originalstructure. Those structures that can be decomposed in similar parts until a givenscale is said auto-similar.In order to detect auto-similarity, experiments were done over the follow-ing collections [5] AP (Associated Press) (1988), WSJ (1987), and Zi�-Davis(complete). The collection �les were split into pieces of 1; 000; 10; 000; 100; 000;



0

10

20

30

40

50

60

70

80

4 8 16

P
E

R
C

E
N

T
A

G
E

 o
f 

S
P

E
N

T
 T

IM
E

NUMBER of PROCESSORS

SPENT TIME of FASE 4 of the ALGORITHM (FILE=100 MB)

Communication
I/O Disk
Others

Fig. 5. Percentage of time spent in step 4 of the algorithm (which includes communi-cation, I/O operations on disk, compression of su�x arrays, packaging of data to betransmitted, contention in su�x array transmission), considering a �le of 100 MB.300; 000; 550; 000; 700; 000; 850; 000; and 1; 000; 000 words. These di�rente sizeswere to detect if the number of words in �les of di�erent sizes grows linearly.Figures 7 and 8 describe the number of words starting with a given letter ver-sus the alphabet letters, independently of the text �le size. Since these graphicshave the same shape, they are similar, from the geometric point of view. Thissimilarity occured in all �les collections experienced.Table 1 presents linear regression information concerning each alphabet letterfor the AP collection. The numbers in this table con�rm that the number of wordsstarting by a given letter ` grows linearly with the text �le size. The coe�cientof determination of the linear regression is close to 1 (see third column). Similarresults were obtained in Wall-Street Journal and Zi�-Davis Collection.The second column of Table 1 (times 100) can be also considered as thepercentage of words starting with a given letter ` in a text �le of size t. Ignoringround errors, the total sum of the numbers of the second column of this table is1.



0

10

20

30

40

50

60

70

80

4 8 16

P
E

R
C

E
N

T
A

G
E

 o
f 

S
P

E
N

T
 T

IM
E

NUMBER of PROCESSORS

SPENT TIME of FASE 4 of the ALGORITHM (FILE=200 MB)

Communication
I/O Disk
Others

Fig. 6. Percentage of time spent in step 4 of the algorithm (which includes communi-cation, I/O operations on disk, compression of su�x arrays, packaging of data to betransmitted, contention in su�x array transmission), considering a �le of 200 MB.
On a probabilistic point of view, Table 2 presents the distribution functionof the word frequency. Due to the auto-similarity, this function is independentof the text �le size. For example, the probability of choosing a word starting byletters A or B or . . . or K is around 50%, independent of the �le size.Experimentally, the text auto-similar feature shows that the computed globalpercentiles e�ectively generates a homogeneous distribution of su�x pointersamong the processors (step 4: communication load balance). The number ofbytes sent and received by each processor is almost the same for all processors.Consequently, the �nal local sort (step 4) will work with roughly the same num-ber of pointers, implying a computational load balance. The same conclusionwas obtained by simulation of the algorithm [2].


