
Proximal Nodes:A Model to Query Document Databasesby Contents and StructureGONZALO NAVARRO and RICARDO BAEZA-YATESUniversity of ChileA model to query document databases by both their content and structure is presented. Thegoal is to obtain a query language which is expressive in practice while being e�ciently imple-mentable, features not present at the same time in previous work. The key ideas of the model area set-oriented query language based on operations on nearby structure elements of one or morehierarchies, together with content and structural indexing and bottom-up evaluation. The modelis evaluated regarding expressiveness and e�ciency, showing that it provides a good trade-o� be-tween both goals. Finally, it is shown how to include in the model other media di�erent fromtext.Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems| Human information processing; H.2.1 [Database Management]: Logical Design | Datamodels; H.2.2 [Database Management]: Physical Design | Access methods; H.2.3 [DatabaseManagement]: Languages | Query languages; H.2.4 [Database Management]: Systems| Query processing; H.3 [Information Storage and Retrieval]; I.7.2 [Text Processing]:Document Preparation | Format and notation; Languages and systems; Standards; I.7.3 [TextProcessing]: Index GenerationGeneral Terms: Algorithms, Design, Human Factors, Languages, PerformanceAdditional Key Words and Phrases: Structured text, hierarchical documents, expressivity ande�ciency of query languages, text algebras1. INTRODUCTIONDocument databases are deserving more and more attention, due to their multipleapplications: digital libraries, o�ce automation, software engineering, automateddictionaries and encyclopedias, etc. [Frakes and Baeza-Yates 1992]The purpose of a document database is to store documents, structured or not.A document database is composed of two parts: content and (if present) structure.The content is the data itself, while the structure relates di�erent parts of thedatabase by some criterion.Any information model for a document database should comprise three parts:data, structure, and query language. It must specify how is the data seen (i.e.image formats, character set, etc.), the structuring mechanism (i.e. markup, indexstructure, etc.), and the query language (i.e. what things can be asked, what theAuthor's address: Depto. de Ciencias de la Computaci�on, Universidad de Chile, Blanco Encalada2120, Santiago, Chile. Email: fgnavarro,rbaezag@dcc.uchile.cl.This work has been supported in part by grants FONDECYT (Chile) 1940271 and 1950622.A preliminary partial version of this work appeared in the Proceedings of SIGIR'95.



2 � Gonzalo Navarro and Ricardo Baeza-Yatesanswers are, etc.).The problem of retrieving information from document databases is normally con-centrated on the text part. Text is not a relational table [Codd 1983], in which theinformation is already formatted and meant to be retrieved by a \key". The in-formation is there, but there is no easy way to extract it. The user must specifywhat he/she wants, see the results, then reformulate the query, and so on, untilsatis�ed with the answer. Anything that helps users to �nd what they want isworth considering.Traditionally, textual databases are searched by their contents (words, phrases,etc.) or by their structure (e.g. by navigating through a table of contents), but notboth at the same time. Recently, many models have appeared that allow mixingboth types of queries.Mixing contents and structure allows posing very powerful queries, being muchmore expressive than each mechanism by itself. By using a language that integratesboth types of queries, the retrieval quality of document databases can be improved.Suppose, for example, a software development environment with a syntax-directed editor that allows users to search all procedures that use a given globalvariable without assigning it, or all points where a given variable is assigned, orprocedures that invoke a function de�ned in a given module, etc. Another exampleis to search in a digital library books with population statistics graphs, or wherethere are many illustrations regarding birds, or where an oil company is mentionedin a historical context. These queries mix content and structure of the database,and only new models can handle it.Because of this, we see these models as an evolution from the classical ones.These new models are not fully satisfactory, though. They are not in general asmature as the classical ones. Not only they lack the long process of testing andmaturing that traditional models have enjoyed, but also many of them are primitiveas software systems, having been implemented mainly as research prototypes.There are a number of challenges to be faced. On one hand, the \content" ofthe database is not formatted, but in natural language form. This means that notraditional model relying on formatted data (e.g. the relational model) or assuminguninterpreted data objects and relying only on their (formatted) attributes (e.g.classical multimedia databases [Bertino et al. 1988]) is powerful enough to representthe wealth of information contained in text. The information has to be extractedfrom the text, but not in a rigid way (Sacks-Davis, Arnold-Moore, and Zobel [1994]also argue in the same lines).On the other hand, there is no consensus on how the structuring model of adatabase should be. There are a number of possible models, ranging from nostructuring at all to complex interrelation networks. Deciding to use a structuringmodel involves choosing also what kind of queries about structure can be posed.Finally, there is no consensus on how powerful a model should be. The morepowerful the model, the less e�ciently it can be implemented. We pay specialattention to this expressiveness/e�ciency trade-o�, since being weak in either ofthese two aspects makes the model impractical for many applications.The aim of this paper is to present a model to structure and query documentdatabases, following the new trend of mixing content and structure in queries. Themodel is shown to be expressive and e�ciently implementable. There is not at



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 3this time, to the best of our knowledge, any approach satisfying both goals (see,however, a recent work [Dao et al. 1996]). We �rst concentrate on text and latershow how to integrate other types of data (e.g. audio, images, etc.). These mediaare becoming more and more common in document databases.It has been argued that is better to put a layer integrating a traditional databasesystem with a textual one, than trying to design a language comprising all thefeatures [Sacks-Davis et al. 1994]. Each subsystem focuses on a di�erent part ofthe query (e.g. integration of an object-oriented database with a structured textengine [Consens and Milo 1994]).We rely on this approach. We design a language which is focused on exploitingstructure- and content-related features. Other features, such as tuples and joins,should be added by integrating this language with another one oriented to thatkind of operations, e.g. a relational database.We point out what are we not covering in this work.First, we do not cover languages to describe document structure, such as SGML[International Standards Organization 1986], DSSSL [International Standards Or-ganization 1994], SPDL [International Standards Organization 1991], HyTime [In-ternational Standards Organization 1992], etc. We cover structuring models (e.g.hierarchical). A given structuring model may or may not be expressed using a givenlanguage to describe structure.Second, we concentrate more on querying than on indexing. Although we describedi�erent implementation alternatives for the index, we consider updates much lessfrequent than queries. The e�ciency comparison against other models is centeredon querying.Third, we do not describe a �xed query language, but a model into which weshow that a number of operations can be expressed. These include widely acceptedprimitives as well as new ones. The syntax we use for the query operations is notnecessarily intended for �nal users, rather it is an operational algebra onto whichone can map a more user-oriented query language.Fourth, for several reasons, we do not make an experimental performance com-parison between our model and previous work. The main problems are that formost cases the code is not available, that the performance depends heavily on theimplementation (we would be comparing algorithms instead of models), that themodels impose di�erent structures on the text and retrieve di�erent types of ele-ments, and that such study needs a theoretical framework that does not exist (still)for structured text databases.Finally, we do not address the important issue of merging structural queries withthose involving operations such as relevance ranking (e.g. the sections or titleswhere the word \computer" is relevant). The reason is that even the simple problemwith no relevance considerations is not yet well solved, and an integration betweenstructuring and relevance ranking must be seen as the next goal (see [Sacks-Daviset al. 1994] and [Arnold-Moore et al. 1995] for some ideas on this problem).This paper is organized as follows. In section 2, related work is reviewed. Insection 3, our model is presented, in terms of the data model and the operationsallowed for queries. In section 4 the resulting expressiveness is evaluated. In sec-tion 5 we outline the most relevant implementation aspects, and formally analyzee�ciency. In section 6 we present a software architecture based on our model. In



4 � Gonzalo Navarro and Ricardo Baeza-Yatessection 7 we show an experimental evaluation. In section 8 we extend our model toinclude other types of data. In section 9, our conclusions and future work directionsare outlined. A formal syntactic and semantic de�nition of the model is presentedin Appendix A.Partial earlier versions of this work can be found in [Navarro and Baeza-Yates1995b; Navarro 1995].2. RELATED WORKIn this section we brie
y review previous approaches to the problem of structuringand querying a textual database. We �rst mention the traditional ones, and thencover novel ideas. For a complete survey, see [Baeza-Yates and Navarro 1996].2.1 Traditional ApproachesThere are many classical approaches to the problem of querying a textual database.Some of them are: attempts to adapt the relational model [Codd 1983] to includetext management [Stonebraker et al. 1983; Desai et al. 1986]; the many traditionalmodels of information retrieval (e.g. the boolean model, the probabilistic model,the bit-vector model, the full-text model, etc.) [Salton and McGill 1983; Frakesand Baeza-Yates 1992]; hypertext [Conklin 1987] and semantic networks [Hull andKing 1987; Tague et al. 1991]; and object-oriented databases [Kim and Lochovski1989; Cattell 1991] adapted to manage text [Christophides et al. 1994].None of these approaches satisfy our goals of mixing structure and content inqueries (see, e.g. [Sacks-Davis et al. 1992]). The relational model does not adaptwell to manage text, since it clearly separates a structure and a content inside thestructure, and this is not the case of structured text. Classical information retrievalallows little structuring (normally only plain records and �elds). Hypertexts aremostly navigational and oriented to the (network) structure. Semantic networksmodel the unformatted data (text, images, etc.) as a set of attributes and factsderivable from them, which is reasonable good for images but very poor for text,which brings a lot of information in its content. Finally, object-oriented databasescan express the structure in a natural way, but their facilities to handle text arelimited and must be implemented ad-hoc. Moreover, path expressions (which areto be used to extract structural components) are more general than the structureof documents, and therefore are less amenable of optimization (see, e.g. [Consensand Milo 1994] for an example of optimizing path expressions for the particularcase of inclusion semantics). Finally, object-oriented databases are record-orientedrather that set-oriented, which is a drawback (since it forces more operational datamanipulation, reminiscent of earlier navigational systems) [Date 1995].Although those models are not powerful enough to extract the information wewant from document databases, they address di�erent problems that pure modelsoriented to structure do not address in general (e.g. tuples and joins, attributes,relevance ranking, etc.). We do not compare our model to those, because theyaddress di�erent goals.2.2 Novel ApproachesThese approaches are characterized by generally imposing a hierarchical structureon the database, and by mixing queries on content and structure. Although this



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 5structuring is simpler than, for example, hypertext, even in this simpler case theproblem of mixing content and structure is not satisfactorily solved.We present a sample of novel models, which cover many di�erent approaches.The Hybrid Model [Baeza-Yates 1996]: models a textual database as a set of doc-uments, which may have �elds (named areas inside records). Those �elds neednot to cover all the text of the document, and can nest and overlap. The querylanguage is an algebra over pairs (D;M ), where D is a set of documents and Mis a set of match points (a text position that matches the searched word or pat-tern) in those documents. There is a number of operations for obtaining matchpoints: pre�x search, proximity, etc. There are operations for set manipulationof both documents and match points; for restricting matches to only some �elds;and for retrieving �elds owning some match point. Inclusion relationships can onlybe queried with respect to a �eld and a match point, thus the language is notfully compositional. This model can be implemented very e�ciently. The originalproposal for this model can be found in [Baeza-Yates 1994].PAT Expressions [Salminen and Tompa 1992]: sees only match points, which areused to de�ne regions. Regions are de�ned by pattern-matching expressions thatspecify how their endpoints look like. Each region represents a set of disjoint seg-ments. A segment is a contiguous portion of the text. This allows dynamic de�nitionof regions, and to translate all queries on regions to queries on matches. The needto avoid overlapping segments in regions causes a lot of trouble and lack of orthog-onality in the model. This model, has been implemented very e�ciently [Fawcett1989]. The cost of this e�ciency is its restrictions, which for some applications arereasonable.Overlapped Lists [Clarke et al. 1995]: solves the problem of PAT expressions in anelegant way, by allowing overlaps, but not nesting. Each region is a list of (pos-sibly overlapping) segments, originated by textual searches or by named regions(like chapters, for example). The idea is to unify both searches by using an exten-sion of inverted lists, where regions and words are indexed in the same way. Theimplementation of this model can be as e�cient as that of PAT expressions.Lists of References [MacLeod 1991]: is a general model to structure and query tex-tual databases, including also hypertext-like linkages, attribute management andexternal procedures. The structure of documents is hierarchical (no overlaps), butanswers to queries cannot nest (only the top-level elements qualify), and all elementsmust be from the same type (e.g. only sections, or only paragraphs). Answers toqueries are seen as lists of \references" (i.e. pointers to the database). This allowsintegration in an elegant way of answers to queries and hypertext links, since all areseen as lists of references. This model is very powerful, and because of this, hard toimplement e�ciently. To make the model suitable for comparison, we consider onlythe portion related to querying structures (even this portion is quite powerful).Parsed Strings [Gonnet and Tompa 1987]: is in fact a structure manipulation lan-guage. A context-free grammar is used to express database schemas, that is, thedatabase is structured by giving a grammar to parse its text. The fundamentaldata structure is the p-string, or parsed string, which is composed of a derivationtree plus the underlying text. The manipulation is carried out via a number of op-erations to transform trees. This approach is extremely powerful, and it is shown to



6 � Gonzalo Navarro and Ricardo Baeza-Yatesbe relationally complete. However, it is hard to implement e�ciently [Blake et al.1992].Tree Matching [Kilpel�ainen and Mannila 1993]: is a query model relying on a sin-gle primitive: tree inclusion. The idea is to model both the structure of the databaseand the query (a pattern on structure) as trees, to �nd an embedding of the patterninto the database which respects the hierarchical relationships between nodes of thepattern. The language is enriched by Prolog-like variables, which can be used toexpress requirements on equality between parts of the matched substructure, andto retrieve another part of the matching subtree, not only the root. The complexityof the algorithms is studied, showing that the only case in which the problem isof polynomial complexity is when no logical variables are used and the matcheshave to satisfy the left-to-right ordering in the nodes of the pattern. Even in thepolynomial case, the operations have to traverse the whole database structure to�nd the answers.3. A NEW MODEL TO QUERY STRUCTURED DOCUMENTSWe describe now our model. We �rst expose the main concepts, then the datamodel and �nally the query language.3.1 Main ConceptsIn this section we expose our general ideas on how a structuring model and aquery language can be de�ned to achieve the goals of e�ciency and expressivenesssimultaneously. Later, we draw the model following these lines.Our main goal is to de�ne powerful operations that allow matching on the struc-ture of the database, but avoiding algorithms that match \all-against-all", searchingacross the whole structure tree (e.g. [Kilpel�ainen and Mannila 1992]).A �rst point is that we want a set-oriented language, because they have beenfound successful in other areas (such as the relational model), and because if wehave to extract the whole set of answers, it is possible to �nd algorithms thatretrieve the elements at a very low cost per processed element.Since we want to de�ne a fully compositional query language, we consider queryexpressions as syntax trees, where the nodes represent operations to perform (i.e.operators) and the subtrees their operands.To obtain the set of answers we avoid a \top-down" approach, where the answersare searched in the whole structure tree. We rather prefer a \bottom-up" strategy.The idea is to quickly �nd a small set of candidates for the answers, and theneliminate those not meeting the search criterion.Our solution is an algebra over sets of structure nodes. These nodes refer tothose of the structure tree of the database, each one is a structural element, e.g. aparticular chapter or �gure. If they cannot be confused with other types of nodes,we refer to structure nodes simply by nodes.The operators take sets of nodes and return a set of nodes. These sets of nodesare subsets of the set of all nodes of the structure tree. The only place in whichwe pose a text matching query or name a structural component is at the leaves ofthe query syntax tree. Those leaves must be solved with some sort of index, andconverted to a set of structure nodes. Thereafter, all operators deal with those setsof nodes and produce new sets. Figure 1 shows the main concept, which is re�ned



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 7later to detail the query language and to draw a general software architecture forthis model.
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Text indexFig. 1. Initial diagram of how our model operates.With this approach, we use indices to retrieve the nodes that satisfy a textmatching query, or that represent a node type (e.g. the chapters). Those nodesmust be obtained without traversing the whole database.Once we have converted the leaves of the query syntax tree into sets of structurenodes, all the other operators take sets of nodes and operate them. Normally, oneset will hold the candidates for the result of the operation. Note that we never haveto traverse the complete structure when searching.We need still another piece to complete the picture, since at this point the oper-ations between sets can be as time-consuming as matching against the database.This piece is the coupling between structure nodes and segments. The segmentof a node represents the text it owns, e.g. the segment of a chapter includes allits text. This coupling allows to use e�cient data structures to arrange the nodesby looking at their segments (for example, forming a tree). In other approaches[Kilpel�ainen and Mannila 1993; Gonnet and Tompa 1987], there is a weak bindingbetween nodes and the segment they own in the text, and thus they need to searchin the whole tree to �nd what they need.In order for this arrangement to be e�cient, the operators should only need toaccess nodes from both sets that are more or less proximal. When this happens,we can obtain the result by traversing both sets of nodes in synchronization.If we can e�ciently convert text matching expressions and node types into well-arranged sets of nodes, and all operations can e�ciently work with the arrangedsets and produce arranged sets, then we will have an e�cient implementation.We also show later that many interesting operators are in fact of the kind weneed, i.e. they operate on nearby nodes and all what they use is the identity of thenodes and their corresponding segment.



8 � Gonzalo Navarro and Ricardo Baeza-YatesOur point is then twofold: �rst, we must show that a language in which alloperations work on nearby nodes can be e�ciently implemented; and second, wemust show that it is possible to obtain a quite expressive query language by usingonly this kind of operations.This scheme allows to have more than one structure hierarchy, if they are inde-pendent. We show later that it also allows integration of other media in a naturalway.3.2 Data ModelWe explain now how we model the database. In pass, we rede�ne more preciselysome terms we have been using informally.A text database is composed of two parts:|Text, which is seen as a (long) sequence of symbols (characters, words, etc).Whether this text is stored as it is seen, or it is �ltered to hide markup oruninteresting components, is not important for the model, since we use the logicalview of the text.|Structure, which is organized as a set of independent hierarchies (i.e. disjointsets of nodes). Each hierarchy has its own types of nodes, and the areas coveredby the nodes of di�erent hierarchies can overlap, although this cannot happeninside the same hierarchy. They do not need to cover the whole text. Again, it isnot important for the model how the structure is expressed in or extracted fromthe text.Filtering out the markup is important, though. The user should not be aware ofdetails about how the structure of the document is internally represented, or if itis obtained by parsing, etc. He/she should be able to query the document as it isseen in the output device. If two words are contiguous in the logical view, the usershould not be aware about that there may be markup between them if, for example,is asking for proximity. It may be argued that including the markup in the textallows the user to query on the markup by text matching. However, we believe thatthis work must be carried out by the implementation. Any query about markup isprobably about structure, and we have a query language for that. The user shouldnot query the structure in such a low-level fashion, he/she should use the contentquery language to query on content and the structure query language to query onstructure.The text is considered as static, and the structure built on it quite static also.That is, although we allow building new hierarchies, deleting and modifying them,our aim is not to make heavy and continued use of those operations. We are notstriving for e�ciency in those aspects, our model of usage is: the text is static, thehierarchies are built on it once (or sparingly), and querying is frequent. The wayin which the structure is obtained from the text is not part of the model. It can beobtained by parsing the text, by following markup information, etc.Each hierarchy is a tree of structure nodes or simply nodes, and represents anindependent way to see the text (e.g. chapters / sections / paragraphs and pages/ lines). The root of each hierarchy is a special node considered to comprise thewhole database.



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 9Each hierarchy has a set of node types (or \structural components") for its cor-responding tree. Examples of node types are page, chapter and section. The setsof node types of di�erent hierarchies are disjoint.Each node of a hierarchy belongs to a node type of the hierarchy, and has anassociated a segment, which is a pair of numbers representing a contiguous portionof the underlying text. The segment of a node must include the segments of itschildren in the tree (this inclusion does not need to be strict).We point out that this numbering scheme does not need to be noted by a high-level user, but it can be used to represent more logical-oriented constructions, suchas collections of documents.Any set of disjoint segments can be seen as belonging to a special text hierarchy,where the nodes belong to a text node type. Thus, the text hierarchy has one nodefor each possible segment of the text. This is an idealized view which never reallyappears (only disjoint subsets of nodes can be obtained each time, via pattern-matching queries). Observe that there is no hierarchical relationship between anytwo nodes of such sets. We say that those sets are 
at.The disjointness restriction is in fact not essential, since pattern-matching expres-sions could perfectly well generate a nested structure. However this is not normallythe case of text pattern-matching languages.In the Appendix we give a formal de�nition of the model, and the query syntaxand semantics.3.3 Query LanguageIn this section we de�ne a query language to operate on the structure de�nedpreviously, including also queries on content.We do not intend to de�ne a monolithic, comprehensive query language, sincethe requirements vary greatly for each application. Including all alternatives in asingle query language would make it too complex. Instead, we point out a numberof operations that follow our lines (and hence can be e�ciently implemented).Each set produced by evaluating a query is a subset of some hierarchy. Thosesubsets are composed of nodes, not subtrees. Although we normally treat themsimply as sets, we can consider that the subsets still keep the hierarchical structurethey inherit from the complete hierarchy, therefore forming an ordered forest oftrees.We decided not to merge nodes from di�erent hierarchies in a single result fortwo reasons: �rst, it is not clear, hierarchies being di�erent and independent waysto see the same text, whether this could make sense (e.g. pages or chapters witha �gure); second, the implementation is much more e�cient if every set is a stricthierarchy. In [Clarke et al. 1995], the other choice is selected, i.e. overlaps areallowed in answers, but not nested components.Although it is not possible to retrieve subtrees (only nodes), the algebra allowsto select nodes regarding their \context" in the structure tree (i.e. what is aroundthem), much like in [Kilpel�ainen and Mannila 1993].This language is an operational algebra, not necessarily intended to be accessedby the �nal user, as the relational algebra is not seen by the users of a relationaldatabase. It serves as an intermediate representation of the operations.



10 � Gonzalo Navarro and Ricardo Baeza-Yates3.3.1 Operations. We list here the operations we consider su�cient for a largeset of applications, and suitable to be e�ciently implemented. As we said before,this set is not exclusive nor essential.
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ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 11As an example, we propose M collapse M 0, which superimposes both sets ofmatches, merging them when an overlap results.|Basic structure operators: Are the other kind of leaves of the query syntax tree,which refer to basic structural components.|Name of structural component: (\Struct" queries). Is the set of all nodes ofthe given type. For example, chapter retrieves all chapters in a book.|Name of hierarchy: (\Hierarchy" queries). Is the set of all nodes of the givenhierarchy. For example, Formatting retrieves the whole hierarchy related toformatting aspects. The same e�ect can be obtained by summing up (\+"operator) all the node types of the hierarchy.|Included-In operators: Select elements from the �rst operand which are in somesense included in one of the second.|Free inclusion: Select any included element.|P in Q: Is the set of nodes of P which are included in a node of Q. Forexample, citation in table selects all citations made from inside a table.|P beginin/endin Q: Is the set of nodes of P whose initial/�nal position isincluded in a node of Q. For example, page beginin formula are the pagesthat cut the display of a formula (something that we may want to avoid).|Positional inclusion: Select only those elements included at a given position. Inorder to de�ne position, only the top-level included elements for each includingnode are considered.|[s] P in Q: The same as in, but only qualifying the nodes which descendfrom a Q-node in a position (from left to right) considered in s. In order tolinearize the position, for each node of Q only the top-level nodes of P notdisjoint with the Q-node are considered, and those which overlap are dis-carded, along with their descendants. The language for expressing positions(i.e. values for s) is also independent. We consider that �nite unions of i..j,last� i..last�j, and i..last�j would su�ce for most purposes. The range ofpossible values is 1..last. For example, [3..5] paragraph in page retrievesthe 3rd, 4th and 5th paragraphs from all pages. If paragraphs included otherparagraphs, only the top-level ones would be considered, and those partiallyincluded in a page would be discarded (along with their subparagraphs).|[s] P beginin/endin Q: The same as beginin/ endin, but using s asabove. For example, [last] page beginin chapter selects the last pagesof all chapters (which normally are not wholly included in the chapter).|Including operators: Select from the �rst operand the elements including in somesense elements from the second one.|P with(k) Q: Is the set of nodes of P which include at least k nodes of Q. If(k) is not present, we assume 1. For example, section with(5) "computer"selects the sections in which the word \computer" appears �ve or more times.|P withbegin/withend(k) Q: Is the set of nodes of P which include at leastk start/end points of nodes of Q. If (k) is not present, we assume 1. Forexample, chapter withbegin(10) page selects chapters with a length of tenor more pages (assuming each chapter begins at a new page).|Direct structure operators: Select elements from the �rst operand based on directstructural criteria, i.e. by direct parentship in the structure tree corresponding



12 � Gonzalo Navarro and Ricardo Baeza-Yatesto its hierarchy. Both operands must be from the same hierarchy, which cannotbe the text hierarchy.|[s] P child Q: Is the set of nodes of P which are children (in the hierarchy) ofsome node of Q, at a position considered in s (that is, the s-th children). If [s]is not present, we assume 1::last. For example, title child chapter retrievesthe titles of all chapters (and not titles of sections inside chapters).|P parent(k)Q: Is the set of nodes of P which are parents (in the hierarchy) ofat least k nodes of Q. If (k) is not present, we assume 1. For example, chapterparent(3) section selects chapters with three or more top-level sections.|Distance operators: Select from the �rst operand elements which are at a givendistance of some element of the second operand, under certain additional condi-tions.|P after/before Q (C): Is the set of nodes of P whose segments begin/endafter/before the end/beginning of a segment in Q. If there is more than oneP -candidate for a node of Q, the nearest one to the Q-node is considered (ifthey are at the same distance, then one of them includes the other and weselect the including one). In order for a P -node to be considered a candidatefor a Q-node, the minimal node of C containing them must be the same, ormust not exist in both cases. For example, table after figure (chapter)retrieves the nearest tables following �gures, inside the same chapter.|P after/before(k) Q (C): Is the set of all nodes of P whose segments be-gin/end after/before the end/beginning of a segment in Q, at a distance ofat most k text symbols (not only nearest ones). C plays the same role asabove. For example, "computer" before (10) "architecture" (paragraph)selects the words \computer" that are followed by \architecture" at a distanceof at most 10 symbols, inside the same paragraph. Recall that this distance ismeasured in the �ltered �le (e.g. with markup removed).|Set manipulation operators: Manipulate both operands as sets, implementingunion, di�erence, and intersection under di�erent criteria. Except for same,both operands must be from the same hierarchy (which must not be the texthierarchy).|P + Q: Is the union of P and Q. For example, small + medium + large isthe set of all size-changing commands. To make a union on text segments, usecollapse.|P � Q: Is the set di�erence of P and Q. For example, chapter � (chapterwith figure) are the chapters with no �gures. To subtract text segments, weresort to operations on matches.|P is Q: Is the intersection of P and Q. For example, ([1] section in chapter)is ([3] section in page) selects the sections which are �rst (top-level) sectionsof a chapter and at the same time third (top-level) section of a page. Tointersect text segments use same.|P same Q: Is the set of nodes of P whose segments are the same segment ofa node in Q. P and Q can be from di�erent hierarchies. For example, titlesame "Introduction" gets the titles that say (exactly) \Introduction".Observe that all operations related with beginnings and endings make sense onlyif the operands are from di�erent hierarchies, since otherwise they are the same as



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 13their full-segment counterparts.3.3.2 Examples. We present some examples of the use of the language, to givean idea of what kind of queries can be posed.Suppose we have a hierarchy V with main structural component book. A bookhas an introduction, a number of chapters, a bibliography and an appendix.Each of themmay have sections (which may have more sections inside), as well asformulas, figures and tables. A table is divided in rows, and these in columns. Anumber of paragraphs may appear in chapters, sections, introduction and theappendix. The following elements have always a title: book, chapter, section,figure and table. Finally, we have citations which references other books, listedunder bibliography.We have another hierarchy V 0 with volume, page and line, and a hierarchy VPfor presentation aspects, e.g. italics, emphasize, etc.Suppose also that we have a simple word matching language for text.|chapter parent (title same "Architecture"), is the set of all chapters ofall books titled \Architecture". Here, "Architecture" is an expression of thepattern-matching sublanguage.|[last] figure in (chapter with (section with (title with "early"))), isthe last �gure of chapters in which some section (or subsection, use parent toselect top-level sections) has a title which includes the word \early". This queryis illustrated in Figure 3.|paragraph before (paragraph with ("Computer" before (10) "Science"(paragraph))) (page), is the paragraph preceding another paragraph wherethe word \Computer" appears before (at 10 symbols or less) the word \Science".Both paragraphs must be in the same page.|[3] column in ([2] row in (table with (title same "Results"))), ex-tracts the text in position (2; 3) of tables titled \Results".|(citations in ([2..4] chapter in book)) with "Knu*", selects referencesto Knuth's books in chapters 2-4.|(section with formula)�(section in appendix), selects sections withmathematical formulas that are not appendices.|introduction + (chapter parent (title with "Conclusions")) +bibliography, can be a good abstract of books.4. EXPRESSIVENESSWe �rst compare formally our model against the other similar models surveyed(except p-strings, since it is a structure manipulation model). Although this point-to-point comparison is useful, no formal categorization of expressiveness featuresexists. Therefore, we appeal to informal methods. We show that our model �ts thequality criteria exposed in [Sacks-Davis et al. 1994]. We also develop an informalframework to situate models of this kind.4.1 A Formal ComparisonIn the Appendix we formally de�ne the semantics of our operations. That de�nitionis used to compare our model against each of the novel models, to determine which
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Fig. 3. Illustration of the e�ect of the query [last] figure in (chapter with (section with(title with "early"))). The circles indicate selected nodes.features from ours can be represented in others and vice versa. A brief abstractof the results follows, omitting the representation mapping performed between themodels (see [Navarro 1995] for details).The Hybrid Model [Baeza-Yates 1996]: our model can completely represent it,while the converse is weak. Although it can represent a structure de�ned in ourmodel, little can be queried about it (e.g. ancestorship).PAT Expressions [Salminen and Tompa 1992]: our model can almost completelyrepresent it, disregarding some undesirable complications of the language that onereally would not want to represent (mainly regarding conversions between regionsand match points). The converse is again weak, since this model cannot representrecursive structures, which prevents it from representing almost all the operationsof our language.Overlapped Lists [Clarke et al. 1995]: the comparison is di�cult because the mod-els are almost orthogonal. Ours can represent hierarchies but not overlaps, whilethis one does the inverse. Disregarding the fact that each model cannot representthe most important structure of the other one, most operations can be translatedbetween both models.Lists of References [MacLeod 1991]: our model can completely represent thismodel (recall that we consider the part of the model related to querying struc-tures). On the other hand, a good portion of our model can be represented in thisone, being the most important omissions the unability to have multiple hierarchiesand to return nested components.Tree Matching [Kilpel�ainen and Mannila 1993]: we can represent part of thismodel. The most important omissions are of course logical variables (which make



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 15the model implementation NP-complete), and the inclusion semantics. These aredi�erent in both models: in this one, an inclusion relationship must hold in the textif and only if it holds in the query, while in ours it must hold in the text if it holdsin the query (but more relations can hold in the text). This prevents each modelrepresenting the other in this aspect, although we show that we can represent somerestricted cases.This is related to what in [Consens and Milo 1995] is called the both-includedproblem, namely the ability to express \a containing (b followed by c)". In [Con-sens and Milo 1995], a simpli�cation of PAT expressions is used to formally analyzeits expressive power, �nding that both-included cannot be represented without in-troducing tuples and join capabilities into the language (ala relational). The sameholds for our model. Observe that the source of this problem is that it is not pos-sible to express that a name appearing in two parts of an expression should denotethe same node, and that is exactly what a relational equijoin would do.By using logical variables, this model can represent almost all of ours, being itsweak part the integration between text and structure.4.2 Quality CriteriaIn [Sacks-Davis et al. 1994], a number of queries that this kind of language shouldbe able to answer are pointed out. We summarize them here to show that we canexpress all in the areas we are interested in (i.e. we exclude the features related torelevance ranking and connection to relational databases, which we do not addressin this work).|Word-by-word access, e.g. \�nd hdocis containing `parallel' and (`computing'or `processing')" can be expressed as (doc with \parallel") with (\computing"collapse \processing").|Query scope restricted to sub-documents, e.g. \�nd hdocis with htitlei contain-ing `parallel' and `processing' " can be expressed as doc parent ((title with\parallel") with \processing"). The other example in the paper is \�nd hdociswith 1st hparai containing `parallel' and `processing' ", that can be expressed asdoc with ((([1] para in doc) with \parallel") with \processing").|Retrieval of sub-documents, e.g. \�nd hsectionis with hparais containing `paral-lel' and `processing' " can be expressed as sectionwith ((para with \parallel")with \processing").|Access by structure of documents. Many examples are presented here:|\Find elements with parent of type harticlei" can be expressed as All childarticle, where All is the name of the hierarchy.|\Find elements with children" can be expressed as All parent All.|\Find elements where the �rst child is htitlei" can be expressed as All parent([1] title child All).|\Find elements within a hsectioni" can be expressed as All in section.|\Find hdocis that contain a hcorresi can be expressed as doc with corres.|\Find hsectionis that contain a hsectioni" can be expressed as section withsection.|Access to di�erent types of document, e.g. \Find articles, papers and books with`parallel' and `computing' in the title" can be expressed as (article + paper



16 � Gonzalo Navarro and Ricardo Baeza-YatesModel Type of Implicit or Static or Bound to Answersstructure explicit dynamicOurs Hierarchy Explicit Static Intermediate Nested(multiple)Hybrid Model Flat Implicit Static Text FlatPAT Hierarchy Implicit Dynamic Text FlatExpressions (not recursive)Overlapped Hierarchy Implicit Dynamic Text OverlappedLists (with overlaps)Lists of Hierarchy Explicit Static Structure Flat (and ofReferences (and network) (single) the same type)Tree Hierarchy Explicit Static Structure NestedMatching (single)p-strings Hierarchy Explicit Dynamic Intermediate Nested(multiple)Table 1. Analysis of structuring power.+ book) with ((title with \parallel") with \computer"). This issue is moreconcerned with the problem of having the di�erent names standing for \title" ineach type of document, but this is also easily handled: (book with booktitle...) + (article with articletitle...) + ...|Access by attributes, e.g. \�nd hcorresis with attribute `con�dential' = yes".If we have those attributes as node types children of the node and their valuesin the text, we can answer simple queries, in this case we express it as corresparent (confidential same \yes").4.3 An Informal FrameworkWe use the experience gained in the formal comparison to de�ne an informal frame-work to situate the models regarding their important features [Baeza-Yates andNavarro 1996; Navarro and Baeza-Yates 1995a]. This framework divides the analy-sis into two main areas:|Structuring power (i.e. how the database is structured). See Table 1.|Type of structure (
at, hierarchical or network)|Implicit or explicit structure (i.e. using embedded markup or an explicit struc-ture index)|Static or dynamic structure (i.e. ability to reindex)|Link between content and structure (strongly text-bound, intermediate, orstrongly structure-bound)|Structure of answers (
at, overlapped or nested)|Query language (i.e. what can be asked). See Table 2.|Text matching (i.e. querying content)|Set manipulation (i.e. handling sets of answers)|Inclusion relationships (i.e. selecting nodes included in or including others)|Distances (i.e. selecting nodes at a given distance to others)There is a third area regarding how the content is seen, but we do not considerthat part in this work.



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 17Model Set Inclusion Distancesmanipulation relationshipsYes (same hierarchy). Including n and Both distance-Ours A di�erent set for included. Direct and bound and minimal.nodes and for text positional inclusion Inside a given nodeHybrid Separate for text and Restricted to Only in matchesModel documents. Complement �eldsPAT Yes. Also negation Including n Yes, distance-Expressions of operations and included boundOverlapped Union and Including and included, CombinationLists combination plus negations and \n words"Lists of Yes, but only for nodes Including n and inc- NoneReferences of the same type luded. Restricted directTree Yes, via logical Tree patterns NoneMatching connectives + variablesTable 2. Analysis of query languages.Figure 4 presents a simpli�ed graphical version of this comparison. We identifythe main points about expressiveness, and represent each model as a set containingthe aspects it reasonably supports.
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Fig. 4. A graphical representation of the expressiveness comparison.From the �gure, we can see that the main features our model lacks are tuples,semijoin by content (i.e. retrieve all chapters whose titles appear in this paragraph)and the possibility of having overlaps and combine nodes in the result set of a query.



18 � Gonzalo Navarro and Ricardo Baeza-YatesWe believe that none of them can be included without signi�cantly degrading theperformance. The features we support are enough for a large class of applications.Some of the lacking features are better included by integrating this model withanother one.5. IMPLEMENTATION ISSUESIn this section we cover the main aspects related to the implementationof the model,regarding indexing and querying. Later we depict a suitable software architectureand a prototype we implemented to test the model. More details can be found in[Navarro 1995].We represent each hierarchy as a tree of nodes. Those trees form our structureindex. From that index, the Struct and Hierarchy queries obtain other types oftrees (rootless) that represent sets of nodes (the algebra on which the rest of thelanguage operates). The same does the processing of content retrieval, by using itsown index. As well as in the model, the implementation of the content retrieval isindependent of the rest and is not studied here.Thus, there are two very di�erent operations: the leaves of the query syntax treemust be solved with an index, while the internal nodes operate and produce sets ofnodes. We �rst explain how to process the internal nodes of the query syntax tree,then the leaves (this includes the indexing scheme) and then the whole evaluationplan. Finally, we formally analyze the e�ciency of this implementation.It is important to observe that we are not proposing any new implementationtechnique. For example, those can be found in [Mackie and Zobel 1992]. Rather,we use well-known techniques to e�ciently implement the model. The key of thee�ciency achieved is in the de�nition of the model, which allows an e�cient imple-mentation with classical tools.5.1 Evaluating the Internal Query Nodes: Traversal AlgorithmsSince the language is compositional, all the operations except Struct and Hier-archy receive and deliver sets of nodes. These sets are also arranged into trees,attending to their ancestorship in the corresponding hierarchy (text queries return
at sets, implemented as rootless trees with all their nodes in the �rst level).Since only proximal nodes are related in the operations, all the algorithms tra-verse both trees in synchronization. The idea is much like list merging, but in thiscase each node has a next sibling and a list of children. Each operation traversesthe trees in a slightly di�erent way and performs slightly di�erent operations, butthe central idea is the same.Two implementations are possible: a full-evaluation scheme computes the wholeset of answers at once; while a lazy-evaluation scheme computes only the result,and nodes from inner operands of the query syntax tree are obtained only if theyare necessary to compute the �nal result.The lazy mechanism works as follows: from the syntax tree of the query werequire the �rst level of answers. This triggers new requirements to the children ofthe root of the syntax tree, which in turn expand the �rst level of their answers,and so on.Hopefully, not all the sets involved in the expression need to be fully evaluated.This mechanism is not new, for example is of widespread use in lazy functional



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 19languages and object-oriented query languages.The lazy version forces an order of evaluation that is not always optimal, since itis given by the requirements of operators higher in the query syntax tree. Becauseof this, it has higher complexity. Since, on the other hand, it may compute onlypart of the result, it is not immediate which one is better. Experimental results (seelater) show that lazy evaluation is normally better. Lazy evaluation is also suitablefor interactive environments in which the user wants to see a top-level answer andthen navigates only into some subtrees, thus avoiding the need to evaluate the rest.5.2 Evaluating the Leaves of the Query Tree: Indexing SchemesWhat is left to consider is how to e�ciently solve Struct and Hierarchy queries.These are handled by accessing an index. The requirements for this index are(a) Given a structural component id, retrieve the tree of all nodes of that type.(b) Given a hierarchy, retrieve the tree of all its nodes.For lazy evaluation, instead, we keep a pointer to a node in the disk, and ask to(c) Given a node, retrieve all its top-level descendents of the same type.(d) Given a node, retrieve all its childrenThose operations must be preferably linear (in the size of the answer), countingboth CPU processing, number of disk accesses, and total seek time. Observe thatthe total seek time may be of higher order than number of disk accesses, for exampleO(n) random accesses to a �le take O(n2) seek time on average.There are many alternatives to handle the trees of the structure index on disk.Each one leads to a di�erent indexing scheme.5.2.1 A Full Index. A full index stores the hierarchy tree in a breath-�rst layouton disk. For each node, enough pointers are kept to perform (a) and (b) in linearexpected time with respect to the size of the output (although the seek time for (a)is proportional to the size of the whole hierarchy).The index is split in one �le per level of the tree, to ease the reindexing process.With the same purpose, the endpoints of the segments of each node are computedrelative to their parent segment. This does not pose any implementation problem,since a node is only accessed via its parent. The bene�t is that complete subtreescan be inserted or deleted without modifying the numbers in the rest of the index.When the results of Struct and Hierarchy queries are extracted from the index,the positions are rewritten to be absolute.Although in most cases it su�ces to retrieve the node id and the segment of eachnode in order to further process the query, sometimes the node id of the parent isalso needed (for parent and child queries). It is possible to syntactically determinefrom the query when this is needed, to avoid any further access to the disk.If there is enough memory, it is more e�cient to read, in a single pass, all theStruct nodes needed for all the leaves of the query syntax tree.Observe that this index is not very well suited for lazy evaluation, since it cannote�ciently implement (c). This is because the top-level descendents of a node of thesame type can be spread across the �le, even unordered, so the seek time may belarge. Another drawback of this index is its large space requirement (7 words pernode).



20 � Gonzalo Navarro and Ricardo Baeza-Yates5.2.2 A Partial Index. It is possible to reduce the space requirement to just 2words per node, at the cost of not allowing parent/child queries, nor two di�er-ent nodes having the same segment (this last restriction is easily overcome at noexpressiveness cost).In this case, two �les are kept for each node type, one with the sorted start pointsand the other with the sorted end points. See Figure 5.
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5 - 6 6 - 7Fig. 5. An example of a partial index and its associated hierarchy.It is easy to implement (a) in linear time and in a single pass over the index, butfor (b), the Hierarchy query must be solved as the union of its node types (thistakes � kn=2 time, being n the size of the hierarchy and k the number of di�erentnode types). Finally, the index must be wholly rewritten upon reindexing, and thisscheme is worse than the previous one for (c).5.2.3 An Index Suitable for Lazy Evaluation. With 3 words per node, a versionof the partial index suitable for lazy evaluation can be designed. This can beextended to a full index of 4 words per node (by adding the parent of each node),that, however, still cannot handle di�erent nodes with the same segment.In this case, a �le for each node type is kept, with a layout similar to the fullindex. This allows to implement (a) and (c) in linear time, but (b) and (d) mustbe solved as before. This is not a big problem with lazy evaluation, since mostprobably the whole hierarchy is never computed. The problem of di�erent nodeshaving the same segment can be solved by the parser, with arti�cial intermediatepoints.5.3 The Whole Query Evaluation: Query PlanGiven a query syntax tree, any evaluation order that respects the dependencies isallowed. We prefer the one that minimizes the total amount of memory needed forthe whole evaluation. The sequence of operations to perform to solve the query iscalled a query plan.The problem of generating minimum-memory query plans is solved, althoughsimpli�ed, in [Aho et al. 1986]: one has to obtain �rst the larger operand, then theother operand, and then operate them. Since in [Aho et al. 1986] the problem isusing registers to compile an expression tree, the weight of a tree is de�ned as thenumber of its nodes. We should instead estimate the size of our sets. In absence ofgood estimators, using the number of nodes seems a reasonable choice. Thus thealgorithm would be as simple as solving the tree by evaluating the bigger subtree�rst.



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 21Operation Full Lazy+,� n nmin(d;h)is/same n nin min(n; d2h) min(n;d2h)beginin/endin min(n; d2h) min(n+ dh; d2h)[s]*in nmin(d; h) nmin(d;h)with*(k) k = 1 ? n : nh nmin(n; k + dh)[s]child n nparent(k) n nmin(d;h)after/before(C) C = ; ? n : nmin(n; dh)Table 3. Time complexities of the algorithms (n is the size of the operands, h the maximumheight of their tree representation and d the maximum arity of those trees.)A useful alternative to a syntax tree to represent the query is to have a directedacyclic graph (DAG), to avoid re-evaluating common subexpressions. In that case,the problem of �nding an optimal evaluation order becomes muchmore complicated,being similar to the problem of evaluating the DAG of an expression minimizingregisters, which is known to be NP-Complete [Garey and Johnson 1979]. Someheuristics for this case are presented in [Aho et al. 1986].These policies to evaluate a query in a given order are only applicable to fullevaluation. Lazy evaluation expands the nodes in an unpredictable way, which foreach node of the syntax tree is dictated by the requirements posed by its parent.Another important point is that we can write our algorithms to operate by mod-ifying one of the operands to produce the answer, or to generate a new set. If theoperand is to be used only once, it is better to modify it, otherwise we should gen-erate a new set. The query plan generator must implement the appropriate policyto avoid keeping unnecessary copies in memory, deleting or replacing operands thelast time they are used.Another interesting point is the optimization of the query, but we do not addressthat issue here, since it is complex enough to constitute a whole separate problem.If, despite the clever algorithms to avoid it, the operands are too large to �t inmemory, a swapping policy must be implemented. The problem can be solved bya virtual-memory-like approach, keeping part of the intermediate results swappedout to disk. In this case, we must select the operand which will be used later toswap it out (that information is available from the query plan). An interestingoption to store those internal results is to use the same layout as the one we use forthe indices of node types. This idea together with a good swapping policy providesa uniform and elegant solution to the problem.5.4 AnalysisWe analyzed the e�ciency of our algorithms both theoretically and experimen-tally. Table 3 abstracts the complexity analysis. Observe that the lazy version,as expected, has higher complexity than the full one. See [Navarro 1995] for morealgorithmic details. The performance ofHierarchy and Struct queries depend onthe indexing scheme, and was explained in Section 5.2.



22 � Gonzalo Navarro and Ricardo Baeza-Yates6. A SOFTWARE ARCHITECTUREIn this section we outline a possible software architecture for a system based on ourmodel.Users should interact with the system via an interface, in which they de�ne whatthey want in a friendly language (e.g. [Kuikka and Salminen 1995; Kilpel�ainen andMannila 1993]). That interface should convert that query into a query syntax tree,i.e. the language we present here. This tree is then submitted to the query engine.The query engine optimizes the query and generates a smart query plan to eval-uate it (i.e. converts the tree into a sequence of operations to perform). The leavesof the query tree involve extracting components of the hierarchy by name (nodetypes), and text matching subexpressions. The �rst ones are solved by accessingthe index on structure to extract the whole set of nodes of that type (i.e. a set ofnode ids and their segments). The second ones are submitted to the text searchengine, which returns a list of segments corresponding to matched portions of thetext. Thereafter, the rest of the operations are performed internally, until the �nalresult (a set of nodes) is delivered back to the interface.The interface is in charge of visualizing the results. To accomplish that, it mustaccess the contents of the database, at the portions given by the retrieved segments.This is also done via a request to the text engine, since only that engine knows howto access the text.The text engine is in charge of o�ering a text pattern-matching language, keepingthe indices it needs for searching, and presenting a �ltered version of the text �leto upper layers. The �rst service accepts a query and returns a list of matchingsegments. The third one accepts a segment and retrieves its text contents.If the text engine is a completely separate subsystem, two separate indexingprocesses may exist. One of them indexes the text to answer text pattern-matchingqueries (this indexing is performed by the text engine). The other extracts thestructure in some way from the text (parsing, recognizing markup, etc.), and createsthe structure index, which is later accessed by the query engine. This is the onlytime when the text can be accessed directly from outside the text engine.Indeed, both indexers must collaborate, since the markup used by the structureindexer should be �ltered out by the text indexer when presenting the text to upperlayers.See Figures 6 and 7 for a diagram of how a complete system based on thisscheme could be organized. The \document layer" is intended to support moresophisticated document management, such as collections of documents.7. EXPERIMENTAL RESULTSWe implemented a prototype following the proposed software architecture, to testaverage time and space measures, as well as to evaluate heuristics. Our aim is notto compare our model against other systems, which is very di�cult in practice, butto test the suitability of our model for implementation.For the matching sublanguage, we use the API of SearchCity [Ars Innovandi1992], which is based on the use of PAT or su�x arrays [Manber and Myers 1990;Frakes and Baeza-Yates 1992]. The matching sublanguage supported by this APIincludes: whole words, ranges, wildcards, proximity search, boolean operators, sub-
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Fig. 6. The architecture of a system following our model, regarding querying.traction and fuzzy search. The API allows �ltering of the raw text, by applying aformat �lter, character normalization �lter, and a synonyms and stopwords �lter.The �rst �lter allows to use �les in other formats di�erent from ASCII, withoutcopying their �ltered form into a new �le. All format-related (i.e. non-searchable)portions of the �le are �ltered out, so that queries can only see the true contentsof the �le.We use that �ltering facility to incorporate texts whose structure is embedded intheir content, this way allowing only the contents to be searchable, and using themarking to parse the structure and generate a structure index. Hence, we have anindex for matches and a separate index per hierarchy. The PAT array can be seenas a generic index for the text hierarchy.We have implemented �lters for DDIF [Digital Equipment Corporation 1991],SGML [International Standards Organization 1986], LATEX[Lamport 1986] and Ccode [Kernighan and Ritchie 1978]. The query plan generation is still very simple,no query optimization is performed.Currently, the structure index is kept in memory, although in the future it willbe kept on disk. Both the text and the text index are kept on disk. This is not aserious limit as it could appear, since the structure index tends to be far smallerthan the text. For example, one megabyte of texts and articles generates near1000 nodes, i.e. an index of 28 kilobytes using the most space-demanding indexingscheme. With only 8 megabytes of RAM devoted to the index we can handle adatabase of 300 megabytes of text. There are of course other types of documentsthat pose more serious problems. For example, one megabyte of C code indexed via
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FilterParseFig. 7. The architecture of a system following our model, regarding indexing.a �ne-grain parsing can generate an index of 300,000 nodes, i.e. up to 10 megabytesfor the full index.We conducted a set of tests running our prototype implementation on a SunSparcClassic, with 16 Mb of RAM, running SunOS 4.1.3 U1. The CPU speed ofthis machine is approximately SpecMark 26.From these results we conclude that, in the full version, the time to process aquery is proportional to the total number of nodes of all internal results, being theconstant near 50,000 nodes per second for our machine. A rough approximation is(2q � 1) � (average operand size), where q is the number of nodes of the querysyntax tree. The lazy version is normally better than the full one, especially forcomplex queries, although its running times are very unstable. The running timesare between 25% and 90% of the full version, and between 40% and 100% of thenodes are computed. Figure 8 shows typical times for a single operation.These good results are possible thanks to our approach of operating proximalnodes, which allows to compute the results by a one-pass traversal through theoperands. The ideas of a set-oriented query language, a data structure to e�cientlyarrange segments, and the reduction of all queries to operations on proximal nodeslead to an implementation where the amortized cost per processed element is, inmost cases, constant.8. EXTENDING THE MODEL TO MULTIMEDIA DOCUMENTSWe study in this section how to extend the model to handle other types of data.We are interested in documents containing not only text, but also audio, images,video, etc. being queried [Subrahmanian and Jajodia 1996].
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Fig. 8. Typical times for a single operation query. Note that the scale is logarithmic in bothaxes.Multimedia documents have normally a structure that relates their components,be them text, images, etc. We call that structure the \external structure". However,not only the text but also the multimedia objects can have internal structure. Forexample, it is possible to structure an audio segment corresponding to a symphony.Although text has been normally queried by content, in classical multimediadatabases multimedia objects were not queried truly by content [Bertino et al.1988]. Rather, a textual or formatted data description (which is created by hand)was attached to each object, and that was the only information queries could ask onthem. Multimedia data was in this way introduced into the classical formatted datamodel, leaving unresolved only performance and security considerations [Elmasriand Navathe 1994].Recently, advances in signal processing and arti�cial intelligence techniques haveallowed the possibility of searching by content into objects such as audio and images(e.g. [Christodulakis and Faloutsos 1986; Wu et al. 1994]). Our purpose is toshow how those capabilities can be included in a data model to smoothly integratethe new facilities into existing capabilities. Moreover, we show how the structureinherent to multimedia documents, both external to the multimedia objects andinternal to each one, can be exploited to improve the retrieval capabilities of adatabase.For our fundamental ideas to remain applicable, we assume that it is still pos-sible to impose a hierarchical structuring on the data. This assumption is quitegeneral, although simpler than hypermedia or spatial structuring. Hypermediastructuring could be supported by di�erentiating between \structure" links (whichare hierarchical) and \pointer" links (which are to be queried by other means, e.g.a Graphlog-like language [Consens and Mendelzon 1993].For technical reasons (i.e. to represent structure by containment of segments),we assume that the di�erent elements inside each structure can be linearly ordered.



26 � Gonzalo Navarro and Ricardo Baeza-YatesThis is done internally and it is not visible to the user. Queries about distances arenot permitted to spread among di�erent type of objects (we return to this later).If the document does not have order between elements, positional queries can besimply not permitted, hiding the (arti�cial) ordering to the user.Thus, our database is now composed of|Data: a sequence of segments of heterogeneous types.|Structure: as before.Each relevant position of the data stream is assigned a number. Those numbersare in ascending order, but they no longer represent consecutive text symbols.They just indicate the ordering (and containment) between the elements. Becauseof this, our structural after/before operation no longer makes sense, and must bereplaced by a medium-speci�c after/before where applicable (e.g. positions mayrepresent words in the text and seconds in the audio). Distances make sense onlyinside a homogeneous data portion or containing complete data portions, where theinterpretation of their start/end points is speci�c to that medium.Instead of a single sublanguage for (text) content, we have such a language foreach medium. For example, the language for audio contents may consist of audiopattern-matching (by signal processing), the one for images may be oriented to(precomputed) semantic descriptions. The answers are regarded as segments froma speci�c hierarchy (one for each medium, not only the text hierarchy).Although each medium interprets the structure in its own way, we must keep theconsistent idea of containment. For example, it may represent a part-of relationon the objects appearing in an image, each node representing an object with anassociated \segment". Other queries (e.g. spatial proximity) are to be regarded asmedium-speci�c.This technique allows to consider the structure of a document as homogeneous,regardless of whether it is external or internal. All the queries about containment,etc. performed on the structure extend seamlessly to the structure de�ned insideimages, audio, etc.From the software point of view, there is a module responsible for handling eachtype of data. A general parser must recognize the external structure and each dataobject, passing the relevant segment to the corresponding indexer, who indexes itscontent and internal structure. An index for each medium is built with the content,while the internal structure is returned to the general indexer, that appends it to thehierarchy. At the moment of querying, subexpressions belonging to the content-retrieval sublanguage of each medium is assigned to a speci�c query processor,which uses its own index (be it for text retrieval, audio matching, image semantics,etc.) to retrieve a set of segments that represents the relevant portion of the object.The structural part of the query is solved as before, regardless of its external orinternal nature.To visualize the �nal result, the interface sends the segment to a module thatdetermines which medium it belongs to, and passes the request to the appropriatespeci�c module. This may end in the retrieval of a text portion, an image, acombination of text and audio, etc.Figure 9 shows an example document. A query such as Recital in (Phrasewith (Photo with (Paul near me))) retrieves the segment 10{12, visualized as
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SegmentsFig. 9. A document with multimedia elements, with its structure and contents indices.9. CONCLUSIONS AND FUTURE WORKThe problem of querying a document database on both its content and structurehas been analyzed. We found the existing approaches to be either not expressiveenough or ine�cient.Hence, we have de�ned a model for structuring and querying textual databasesthat is expressive enough and e�ciently implementable, and extended it to handleother types of data. The language is not meant to be accessed by �nal users, butto constitute the operational algebra.We have evaluated our model in expressiveness and e�ciency. We showed it to becompetitive in expressiveness, getting close to others that do not have an e�cientimplementation. On the other hand the algorithms show good performance, bothin their analysis and the experimental tests. That situates this model close ine�ciency to those much less expressive.See Figure 10 for a graphical (and informal) comparison of similar models whentaking into account both e�ciency and expressiveness. Note that we have includedp-strings in this drawing, assuming an expressiveness superior to all the languageswe have analyzed. Note also that only a part of the lists-of-references model isconsidered (and the e�ciency to implement only that part is considered). Observe



28 � Gonzalo Navarro and Ricardo Baeza-Yatesthat, as any quantization of concepts, this comparison is subjective. Nevertheless,it does give an idea of where our model lies.
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Fig. 10. A comparison between similar models, regarding both e�ciency and expressiveness.There are a number of research directions related with this work:|Further exploration of the possibilities o�ered by the model in order to �nd moreoperators which �t into our philosophy (being thus e�ciently implementable).|De�nition of a query language suitable for end users, possibly visual, to map ontoour operational algebra (see for example [Kuikka and Salminen 1995]).|Integration between this kind of model and others, such as the relational model orthe traditional ones of information retrieval. This issue has not been consideredhere, since we focus on the structure problem. An important issue is how toinclude relevance ranking in our model (see [Sacks-Davis et al. 1994] and [Arnold-Moore et al. 1995] for some ideas).|Generalization of the problem to manage non-hierarchical structures, such asa hypertext network, while keeping the desirable properties obtained for thissimpler case. A recent work [Dao et al. 1996] that extends Overlapped Lists tohandle nesting and overlapping at the same time shows a di�erent trend thatdeserves attention.|A formal framework in which to compare expressiveness is needed. The long-term goal is a formal and sound hierarchy like what can be found in the area offormal languages (see [Navarro and Baeza-Yates 1995a; Consens and Milo 1995]for some examples).|There are a number of implementation issues remaining, for example to design agood swapping policy for query evaluation, keeping the index on disk, handlingmultimedia documents, query optimization, etc.
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ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 31Stonebraker, M., Stettner, H., Lynn, N., Kalash, J., and Guttman, A. 1983. Docu-ment processing in a relational database system. ACM TOIS 1, 2 (April), 143{158.Subrahmanian, M. and Jajodia, S. Eds. 1996. Multimedia Database Systems. Springer-Verlag.Tague, J., Salminen, A., and McClellan, C. 1991. Complete formal model for informa-tion retrieval systems. In Proc. ACM SIGIR'91 (1991), pp. 14{20.Wu, J., Ang, Y., Lam, P., Loh, H., and Desai, A. 1994. Inference and retrieval of facialimages. ACM Multimedia Systems 2.APPENDIXA. FORMAL SYNTAX AND SEMANTICSWe �rst de�ne our formal model, then the syntax of the expressions we have stud-ied (Expr) by an annotated abstract syntax, and �nally the semantics of thoseoperations by a function I : Expr! }(N ) (i.e. from expressions to sets of nodes).A.1 Formal ModelA text database is a tuple (T ;V; C;N;R; Type; Segm), where|T : [1::T ]! � is the text array. T is the size of the database (number of symbols)and � is the alphabet of the text.|V is the �nite set of hierarchies over the text, with a distinguished element Vt 2 V(the text hierarchy).|C : V ! }(C) is the set of node types of each hierarchy, we also write C(V ) asCV . C is the �nite set of node types, with a distinguished element Ct 2 C (thetext node type). It holds 8V1 6= V2 2 V; CV1 \CV2 = ;. Also, CVt = fCtg.|N : V ! }(N ) is the set of nodes of each hierarchy, we also write N (V ) asNV . N is the �nite set of nodes, including special text nodes ta;b for each1 � a � b � T (the text nodes). It holds 8V1 6= V2 2 V; NV1 \ NV2 = ;.Also, NVt = fta;b=1 � a � b � Tg.|R : V ! }(N � N ) is the binary relationship which de�nes the tree of eachhierarchy, we also write R(V ) as RV . It holds 8V 2 V; RV � (NV � NV ). Also,R(Vt) = ;.|Type : N ! C is the type of each node. It holds 8V 2 V; 8x 2 NV ; T ype(x) 2 CV .This implies that 8a; b=1 � a � b � T; Type(ta;b) = Ct.|Segm : N ! [1::T ] � [1::T ] is the segment of each node. It holds 8x 2N ; Segm(x) = (a; b) ) a � b. We also de�ne From and To to satisfySegm(x) = (From(x); T o(x)). Finally, we de�ne Segm(ta;b) = (a; b), as ex-pected.We de�ne a binary relationship �! as the union of RV , for all V 2 V, that is�!= SV 2V RV . We impose the following conditions on �!:|8x; y 2 N ; x �!+ y ) :y �! x, that is, loops are not allowed. Here, �!+ isthe transitive closure of �!.|8V 2 V � fVtg; 9! rV 2 NV = 6 9x 2 NV =x �! rV , that is, each hierarchy exceptthe text hierarchy has a single root.|8x; y 2 N ; x �! y )6 9z 6= x=z �! y, that is, any node has at most one parent.



32 � Gonzalo Navarro and Ricardo Baeza-Yates|8x; y 2 N ; x �! y ) Segm(y) � Segm(x). When we operate segments assets we interpret Segm(x) = fn 2 Nat=From(x) � n � To(x)g. That is, thesegment of a node includes the segment of its descendants. Nat is the set ofnatural numbers.|8V 2 V � fVtg; 8x; y 2 NV ; Segm(x) � Segm(y) ) x �!+ y, that is, exceptin the text hierarchy, if two segments of the same tree are included one into theother, then the including one is ancestor of the included.|8V 2 V � fVtg; 8x; y 2 NV ; Segm(x) = Segm(y) ) x �!� y _ y �!� x, thatis, except in the text hierarchy, if two segments of the same tree are equal, thenthey are in a single path of the tree. Here, �!� is the Kleene (transitive andre
exive) closure of �!.|8V 2 V � fVtg; 8x; y 2 NV ; Segm(x) � Segm(y) _ Segm(y) � Segm(x) _Segm(x) \ Segm(y) = ;, that is, there is a strict hierarchy of segments (exceptin the text hierarchy).Finally, we de�ne a binary relation inN�N , called �, to mean that the �rst nodeincludes the other (do not confuse with segment inclusion). If both nodes are fromthe same hierarchy then the second must descend from the �rst one; otherwise wetest for segment inclusion. Thus, x � y , (9V 2 V � fVtg=fx; yg � NV ) ? y �!+x : Segm(x) � Segm(y). Observe that x � y ) Segm(x) � Segm(y), but thereciprocal is not true.A.2 Abstract Syntax and Formal SemanticsTable 4 shows the abstract syntax of the language. In this de�nition, we use Nat asthe set of natural numbers, Int as the integers, Mat as the set of pattern-matchingexpressions, Pos as the language for denoting positions, and E;E1; E2; E3 2 Expr.Some compositions are not allowed when the operands are from di�erent hier-archies. We indicate at the right side of each alternative, between brackets, theconditions on the intervening hierarchies for that production to be valid. The hier-archy to which the result belongs is expressed as a function � : Expr! V. Betweenthe brackets we also indicate as simply � which is the type to which the result ofthe production belongs.We are now in position to de�ne the semantics of the de�ned operations. We doso by de�ning a function I : Expr ! }(N ), which interprets each expression interms of a set of nodes.The function I is de�ned inductively as:|I(Hierarchy(V )) = NV .|I(Struct(c)) = fx 2 N=Type(x) = cg.|Let m be a pattern-matching expression, whose result is a set of segments(a1; b1)::(ak; bk). Then, I(m) = ftai;bi=i 2 [1::k]g.|I(P collapse Q) = fta1;bn=9ta1;b1:::tan;bn 2 I(P ) [ I(Q)=(8i; bi � ai+1) ^6 9tx;y 2 I(P ) [ I(Q)� fta1;b1 :::tan;bng=(x; y) \ (a1; bn) 6= ;g.|I(P + Q) = I(P ) [ I(Q).|I(P � Q) = I(P )� I(Q).|I(P is Q) = I(P )\ I(Q).



ProximalNodes: AModel to Query DocumentDatabases by Contents and Structure � 33Expr �! Hierarchy(V ) [V 2 V � fVtg; � = V ]j Struct(c) [c 2 C � fCtg; � = V=c 2 CV ]j Match(m) [m 2Mat; � = Vt]j (E1 collapse E2) [� = �(E1) = �(E2) = Vt]j ... (other operations to manipulate matches)j (E1 + E2) [� = �(E1) = �(E2) 6= Vt]j (E1 � E2) [� = �(E1) = �(E2) 6= Vt]j (E1 is E2) [� = �(E1) = �(E2) 6= Vt ]j (E1 same E2) [� = �(E1)]j (E1 with(k) E2) [k 2 Nat; � = �(E1)]j (E1 withbegin/withend(k) E2) [k 2 Nat; � = �(E1) 6= �(E2)]j (E1 in E2) [� = �(E1)]j (E1 beginin/endin E2) [� = �(E1) 6= �(E2)]j ([s] E1 in E2) [s 2 Pos; � = �(E1)]j ([s] E1 beginin/endin E2) [s 2 Pos; � = �(E1) 6= �(E2)]j (E1 parent(k) E2) [k 2 Nat; � = �(E1) = �(E2) 6= Vt]j ([s] E1 child E2) [s 2 Pos; � = �(E1) = �(E2) 6= Vt]j (E1 after/before E2 (E3)) [� = �(E1)]j (E1 after/before(k) E2 (E3)) [k 2 Nat; � = �(E1)]Table 4. Abstract syntax.|I(P same Q) = fx 2 I(P )=9y 2 I(Q)=Segm(x) = Segm(y)g.|I(P with(k) Q) = fx 2 I(P )=jfy 2 I(Q)=y � xgj � kg.|I(P withbegin(k) Q) = fx 2 I(P )=jfy 2 I(Q)=From(y) 2 Segm(x)gj � kg.|I(P withend(k) Q) = fx 2 I(P )=jfy 2 I(Q)=To(y) 2 Segm(x)gj � kg.|I(P in Q) = fx 2 I(P )=9y 2 I(Q)=x � yg.|I(P beginin Q) = fx 2 I(P )=9y 2 I(Q)=From(x) 2 Segm(y)g.|I(P endin Q) = fx 2 I(P )=9y 2 I(Q)=To(x) 2 Segm(y)g.|I([s] P in Q) = Sy2I(Q)fx 2 Zy=S(s; x;Zy)g. Here, S : S � N � }(N ) !ftrue; falseg is the interpretation of the position language S, which says whetherthe left-to-right position of a node in a set of nodes is acceptable by the speci�ca-tion of s. This position is only well de�ned when none of the segments includesanother, which is the case in Zy, that we de�ne as Zy = fx 2 I(P )=x � y ^ x 2maxim(z 2 I(P )=z � y _ y 6� z)g. maxim selects the maximal nodes of a set,i.e. maxim(X) = fx 2 X= 6 9y 2 X=x � yg.|I([s] P beginin Q) = Sy2I(Q)fx 2 Zy=S(s; x;Zy)g. Here, Zy = fx 2I(P )=From(x) 2 Segm(y) ^ x 2 maxim(z 2 I(P )=Segm(z) 6� Segm(y))g.|I([s] P endin Q) = Sy2I(Q)fx 2 Zy=S(s; x;Zy)g. Here, Zy = fx 2I(P )=To(x) 2 Segm(y) ^ x 2 maxim(z 2 I(P )=Segm(z) 6� Segm(y))g.|I(P parent(k) Q) = fx 2 I(P )=jfy 2 I(Q)=x �! ygj � kg.|I([s] P child Q) = fx 2 I(P )=9y 2 I(Q)=y �! x ^ S(s; x; fz 2 N=y �! zg)g.|I(P after(k) Q (C)) = fx 2 I(P )=9y 2 I(Q)=0 < From(x) � To(y) � k ^minim(fz 2 I(C)=x � zg) = minim(fz 2 I(C)=y � zg)g.|I(P after Q (C)) = Sy2I(Q) first(fx 2 I(P )=From(x) > To(y) ^ minim(fz 2I(C)=x � zg) = minim(fz 2 I(C)=y � zg)g). Here, first : }(N ) ! N selectsthe node in the set with lowest value of From, and if there are more than one,



34 � Gonzalo Navarro and Ricardo Baeza-Yatesthe maximal. If all the nodes are from the same hierarchy, this criterion givesexactly one node.|I(P before(k) Q (C)) = fx 2 I(P )=9y 2 I(Q)=0 < From(y) � To(x) �k ^ minim(fz 2 I(C)=x � zg) = minim(fz 2 I(C)=y � zg)g.|I(P beforeQ (C)) = Sy2I(Q) last(fx 2 I(P )=From(y) > To(x) ^ minim(fz 2I(C)=x � zg) = minim(fz 2 I(C)=y � z)g)g. last is analogous to first,selecting the highest value of To, or the maximal if they are the same.


