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A model to query document databases by both their content and structure is presented. The
goal is to obtain a query language which is expressive in practice while being efficiently imple-
mentable, features not present at the same time in previous work. The key ideas of the model are
a set-oriented query language based on operations on nearby structure elements of one or more
hierarchies, together with content and structural indexing and bottom-up evaluation. The model
is evaluated regarding expressiveness and efficiency, showing that it provides a good trade-off be-
tween both goals. Finally, it is shown how to include in the model other media different from
text.
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1. INTRODUCTION

Document databases are deserving more and more attention, due to their multiple
applications: digital libraries, office automation, software engineering, automated
dictionaries and encyclopedias, ete. [Frakes and Baeza-Yates 1992]

The purpose of a document database is to store documents, structured or not.
A document database is composed of two parts: content and (if present) structure.
The content is the data itself, while the structure relates different parts of the
database by some criterion.

Any information model for a document database should comprise three parts:
data, structure, and query language. It must specify how is the data seen (i.e.
image formats, character set, etc.), the structuring mechanism (i.e. markup, index
structure, etc.), and the query language (i.e. what things can be asked, what the

Author’s address: Depto. de Ciencias de la Computacién, Universidad de Chile, Blanco Encalada
2120, Santiago, Chile. Email: {gnavarro,rbaeza}@dcc.uchile.cl.

This work has been supported in part by grants FONDECYT (Chile) 1940271 and 1950622.

A preliminary partial version of this work appeared in the Proceedings of SIGIR’95.



2 . Gonzalo Navarro and Ricardo Baeza-Yates

answers are, etc.).

The problem of retrieving information from document databases is normally con-
centrated on the text part. Text is not a relational table [Codd 1983], in which the
information is already formatted and meant to be retrieved by a “key”. The in-
formation is there, but there is no easy way to extract it. The user must specify
what he/she wants, see the results, then reformulate the query, and so on, until
satisfied with the answer. Anything that helps users to find what they want is
worth considering.

Traditionally, textual databases are searched by their contents (words, phrases,
etc.) or by their structure (e.g. by navigating through a table of contents), but not
both at the same time. Recently, many models have appeared that allow mixing
both types of queries.

Mixing contents and structure allows posing very powerful queries, being much
more expressive than each mechanism by itself. By using a language that integrates
both types of queries, the retrieval quality of document databases can be improved.

Suppose, for example, a software development environment with a syntax-
directed editor that allows users to search all procedures that use a given global
variable without assigning it, or all points where a given variable is assigned, or
procedures that invoke a function defined in a given module, etc. Another example
is to search in a digital library books with population statistics graphs, or where
there are many illustrations regarding birds, or where an oil company is mentioned
in a historical context. These queries mix content and structure of the database,
and only new models can handle 1t.

Because of this, we see these models as an evolution from the classical ones.
These new models are not fully satisfactory, though. They are not in general as
mature as the classical ones. Not only they lack the long process of testing and
maturing that traditional models have enjoyed, but also many of them are primitive
as software systems, having been implemented mainly as research prototypes.

There are a number of challenges to be faced. On one hand, the “content” of
the database is not formatted, but in natural language form. This means that no
traditional model relying on formatted data (e.g. the relational model) or assuming
uninterpreted data objects and relying only on their (formatted) attributes (e.g.
classical multimedia databases [Bertino et al. 1988]) is powerful enough to represent
the wealth of information contained in text. The information has to be extracted
from the text, but not in a rigid way (Sacks-Davis, Arnold-Moore, and Zobel [1994]
also argue in the same lines).

On the other hand, there is no consensus on how the structuring model of a
database should be. There are a number of possible models, ranging from no
structuring at all to complex interrelation networks. Deciding to use a structuring
model involves choosing also what kind of queries about structure can be posed.

Finally, there is no consensus on how powerful a model should be. The more
powerful the model, the less efficiently it can be implemented. We pay special
attention to this expressiveness/efficiency trade-off, since being weak in either of
these two aspects makes the model impractical for many applications.

The aim of this paper is to present a model to structure and query document
databases, following the new trend of mixing content and structure in queries. The
model is shown to be expressive and efficiently implementable. There is not at
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this time, to the best of our knowledge, any approach satisfying both goals (see,
however, a recent work [Dao et al. 1996]). We first concentrate on text and later
show how to integrate other types of data (e.g. audio, images, etc.). These media
are becoming more and more common in document databases.

It has been argued that is better to put a layer integrating a traditional database
system with a textual one, than trying to design a language comprising all the
features [Sacks-Davis et al. 1994]. FEach subsystem focuses on a different part of
the query (e.g. integration of an object-oriented database with a structured text
engine [Consens and Milo 1994]).

We rely on this approach. We design a language which is focused on exploiting
structure- and content-related features. Other features, such as tuples and joins,
should be added by integrating this language with another one oriented to that
kind of operations, e.g. a relational database.

We point out what are we not covering in this work.

First, we do not cover languages to describe document structure, such as SGML
[International Standards Organization 1986], DSSSL [International Standards Or-
ganization 1994], SPDL [International Standards Organization 1991], HyTime [In-
ternational Standards Organization 1992], etc. We cover structuring models (e.g.
hierarchical). A given structuring model may or may not be expressed using a given
language to describe structure.

Second, we concentrate more on querying than on indexing. Although we describe
different implementation alternatives for the index, we consider updates much less
frequent than queries. The efficiency comparison against other models is centered
on querying.

Third, we do not describe a fixed query language, but a model into which we
show that a number of operations can be expressed. These include widely accepted
primitives as well as new ones. The syntax we use for the query operations is not
necessarily intended for final users, rather it is an operational algebra onto which
one can map a more user-oriented query language.

Fourth, for several reasons, we do not make an experimental performance com-
parison between our model and previous work. The main problems are that for
most cases the code is not available, that the performance depends heavily on the
implementation (we would be comparing algorithms instead of models), that the
models impose different structures on the text and retrieve different types of ele-
ments, and that such study needs a theoretical framework that does not exist (still)
for structured text databases.

Finally, we do not address the important issue of merging structural queries with
those involving operations such as relevance ranking (e.g. the sections or titles
where the word “computer” is relevant). The reason is that even the simple problem
with no relevance considerations is not yet well solved, and an integration between
structuring and relevance ranking must be seen as the next goal (see [Sacks-Davis
et al. 1994] and [Arnold-Moore et al. 1995] for some ideas on this problem).

This paper is organized as follows. In section 2, related work is reviewed. In
section 3, our model is presented, in terms of the data model and the operations
allowed for queries. In section 4 the resulting expressiveness is evaluated. In sec-
tion 5 we outline the most relevant implementation aspects, and formally analyze
efficiency. In section 6 we present a software architecture based on our model. In
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section 7 we show an experimental evaluation. In section 8 we extend our model to
include other types of data. In section 9, our conclusions and future work directions
are outlined. A formal syntactic and semantic definition of the model is presented
in Appendix A.

Partial earlier versions of this work can be found in [Navarro and Baeza-Yates

1995b; Navarro 1995].

2. RELATED WORK

In this section we briefly review previous approaches to the problem of structuring
and querying a textual database. We first mention the traditional ones; and then
cover novel ideas. For a complete survey, see [Baeza-Yates and Navarro 1996].

2.1 Traditional Approaches

There are many classical approaches to the problem of querying a textual database.
Some of them are: attempts to adapt the relational model [Codd 1983] to include
text management [Stonebraker et al. 1983; Desai et al. 1986]; the many traditional
models of information retrieval (e.g. the boolean model, the probabilistic model,
the bit-vector model, the full-text model, etc.) [Salton and McGill 1983; Frakes
and Baeza-Yates 1992]; hypertext [Conklin 1987] and semantic networks [Hull and
King 1987; Tague et al. 1991]; and object-oriented databases [Kim and Lochovski
1989; Cattell 1991] adapted to manage text [Christophides et al. 1994].

None of these approaches satisfy our goals of mixing structure and content in
queries (see, e.g. [Sacks-Davis et al. 1992]). The relational model does not adapt
well to manage text, since it clearly separates a structure and a content inside the
structure, and this is not the case of structured text. Classical information retrieval
allows little structuring (normally only plain records and fields). Hypertexts are
mostly navigational and oriented to the (network) structure. Semantic networks
model the unformatted data (text, images, etc.) as a set of attributes and facts
derivable from them, which is reasonable good for images but very poor for text,
which brings a lot of information in its content. Finally, object-oriented databases
can express the structure in a natural way, but their facilities to handle text are
limited and must be implemented ad-hoc. Moreover, path expressions (which are
to be used to extract structural components) are more general than the structure
of documents, and therefore are less amenable of optimization (see, e.g. [Consens
and Milo 1994] for an example of optimizing path expressions for the particular
case of inclusion semantics). Finally, object-oriented databases are record-oriented
rather that set-oriented, which is a drawback (since it forces more operational data
manipulation, reminiscent of earlier navigational systems) [Date 1995].

Although those models are not powerful enough to extract the information we
want from document databases, they address different problems that pure models
oriented to structure do not address in general (e.g. tuples and joins, attributes,
relevance ranking, etc.). We do not compare our model to those, because they
address different goals.

2.2 Novel Approaches

These approaches are characterized by generally imposing a hierarchical structure
on the database, and by mixing queries on content and structure. Although this
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structuring 1s simpler than, for example, hypertext, even in this simpler case the
problem of mixing content and structure is not satisfactorily solved.
We present a sample of novel models, which cover many different approaches.

The Hybrid Model [Baeza-Yates 1996]: models a textual database as a set of doc-
uments, which may have fields (named areas inside records). Those fields need
not to cover all the text of the document, and can nest and overlap. The query
language is an algebra over pairs (D, M), where D is a set of documents and M
is a set of match points (a text position that matches the searched word or pat-
tern) in those documents. There is a number of operations for obtaining match
points: prefix search, proximity, etc. There are operations for set manipulation
of both documents and match points; for restricting matches to only some fields;
and for retrieving fields owning some match point. Inclusion relationships can only
be queried with respect to a field and a match point, thus the language is not
fully compositional. This model can be implemented very efficiently. The original
proposal for this model can be found in [Baeza-Yates 1994].

PAT Expressions [Salminen and Tompa 1992]: sees only match points, which are
used to define regions. Regions are defined by pattern-matching expressions that
specify how their endpoints look like. Each region represents a set of disjoint seg-
ments. A segmentis a contiguous portion of the text. This allows dynamic definition
of regions, and to translate all queries on regions to queries on matches. The need
to avoid overlapping segments in regions causes a lot of trouble and lack of orthog-
onality in the model. This model, has been implemented very efficiently [Fawcett
1989]. The cost of this efficiency is its restrictions, which for some applications are
reasonable.

Overlapped Lists [Clarke et al. 1995]: solves the problem of PAT expressions in an
elegant way, by allowing overlaps, but not nesting. Each region is a list of (pos-
sibly overlapping) segments, originated by textual searches or by named regions
(like chapters, for example). The idea is to unify both searches by using an exten-
sion of inverted lists, where regions and words are indexed in the same way. The
implementation of this model can be as efficient as that of PAT expressions.

Lists of References [MacLeod 1991]: is a general model to structure and query tex-
tual databases, including also hypertext-like linkages, attribute management and
external procedures. The structure of documents is hierarchical (no overlaps), but
answers to queries cannot nest (only the top-level elements qualify), and all elements
must be from the same type (e.g. only sections, or only paragraphs). Answers to
queries are seen as lists of “references” (i.e. pointers to the database). This allows
integration in an elegant way of answers to queries and hypertext links, since all are
seen as lists of references. This model is very powerful, and because of this, hard to
implement efficiently. To make the model suitable for comparison, we consider only
the portion related to querying structures (even this portion is quite powerful).

Parsed Strings [Gonnet and Tompa 1987]: is in fact a structure manipulation lan-
guage. A context-free grammar is used to express database schemas, that is, the
database is structured by giving a grammar to parse its text. The fundamental
data structure is the p-string, or parsed string, which is composed of a derivation
tree plus the underlying text. The manipulation is carried out via a number of op-
erations to transform trees. This approach is extremely powerful, and it is shown to
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be relationally complete. However, it is hard to implement efficiently [Blake et al.
1992].

Tree Matching [Kilpeldinen and Mannila 1993]: is a query model relying on a sin-
gle primitive: tree inclusion. The idea is to model both the structure of the database
and the query (a pattern on structure) as trees, to find an embedding of the pattern
into the database which respects the hierarchical relationships between nodes of the
pattern. The language is enriched by Prolog-like variables, which can be used to
express requirements on equality between parts of the matched substructure, and
to retrieve another part of the matching subtree, not only the root. The complexity
of the algorithms is studied, showing that the only case in which the problem is
of polynomial complexity is when no logical variables are used and the matches
have to satisfy the left-to-right ordering in the nodes of the pattern. Even in the
polynomial case, the operations have to traverse the whole database structure to
find the answers.

3. A NEW MODEL TO QUERY STRUCTURED DOCUMENTS

We describe now our model. We first expose the main concepts, then the data
model and finally the query language.

3.1 Main Concepts

In this section we expose our general ideas on how a structuring model and a
query language can be defined to achieve the goals of efficiency and expressiveness
simultaneously. Later, we draw the model following these lines.

Our main goal is to define powerful operations that allow matching on the struc-
ture of the database, but avoiding algorithms that match “all-against-all” | searching
across the whole structure tree (e.g. [Kilpeldinen and Mannila 1992]).

A first point is that we want a set-oriented language, because they have been
found successful in other areas (such as the relational model), and because if we
have to extract the whole set of answers, it is possible to find algorithms that
retrieve the elements at a very low cost per processed element.

Since we want to define a fully compositional query language, we consider query
expressions as syntax trees, where the nodes represent operations to perform (i.e.
operators) and the subtrees their operands.

To obtain the set of answers we avoid a “top-down” approach, where the answers
are searched in the whole structure tree. We rather prefer a “bottom-up” strategy.
The idea is to quickly find a small set of candidates for the answers, and then
eliminate those not meeting the search criterion.

Our solution is an algebra over sets of structure nodes. These nodes refer to
those of the structure tree of the database, each one is a structural element, e.g. a
particular chapter or figure. If they cannot be confused with other types of nodes,
we refer to structure nodes simply by nodes.

The operators take sets of nodes and return a set of nodes. These sets of nodes
are subsets of the set of all nodes of the structure tree. The only place in which
we pose a text matching query or name a structural component is at the leaves of
the query syntax tree. Those leaves must be solved with some sort of index, and
converted to a set of structure nodes. Thereafter, all operators deal with those sets
of nodes and produce new sets. Figure 1 shows the main concept, which is refined
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later to detail the query language and to draw a general software architecture for
this model.

Query

Composition Language

Operators

Basic Structure
Operators

Structure index

Fig. 1. Initial diagram of how our model operates.

Basic Text
Operators

Text index

With this approach, we use indices to retrieve the nodes that satisfy a text
matching query, or that represent a node type (e.g. the chapters). Those nodes
must be obtained without traversing the whole database.

Once we have converted the leaves of the query syntax tree into sets of structure
nodes, all the other operators take sets of nodes and operate them. Normally, one
set will hold the candidates for the result of the operation. Note that we never have
to traverse the complete structure when searching.

We need still another piece to complete the picture, since at this point the oper-
ations between sets can be as time-consuming as matching against the database.

This piece is the coupling between structure nodes and segments. The segment
of a node represents the text it owns, e.g. the segment of a chapter includes all
its text. This coupling allows to use efficient data structures to arrange the nodes
by looking at their segments (for example, forming a tree). In other approaches
[Kilpeldinen and Mannila 1993; Gonnet and Tompa 1987], there is a weak binding
between nodes and the segment they own in the text, and thus they need to search
in the whole tree to find what they need.

In order for this arrangement to be efficient, the operators should only need to
access nodes from both sets that are more or less proximal. When this happens,
we can obtain the result by traversing both sets of nodes in synchronization.

If we can efficiently convert text matching expressions and node types into well-
arranged sets of nodes, and all operations can efficiently work with the arranged
sets and produce arranged sets, then we will have an efficient implementation.

We also show later that many interesting operators are in fact of the kind we
need, 1.e. they operate on nearby nodes and all what they use is the identity of the
nodes and their corresponding segment.
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Our point is then twofold: first, we must show that a language in which all
operations work on nearby nodes can be efficiently implemented; and second, we
must show that it is possible to obtain a quite expressive query language by using
only this kind of operations.

This scheme allows to have more than one structure hierarchy, if they are inde-
pendent. We show later that it also allows integration of other media in a natural
way.

3.2 Data Model

We explain now how we model the database. In pass, we redefine more precisely
some terms we have been using informally.
A text database is composed of two parts:

—Text, which is seen as a (long) sequence of symbols (characters, words, etc).
Whether this text is stored as it is seen, or it is filtered to hide markup or
uninteresting components, is not important for the model, since we use the logical
view of the text.

—Structure, which is organized as a set of independent hierarchies (i.e. disjoint
sets of nodes). Each hierarchy has its own types of nodes, and the areas covered
by the nodes of different hierarchies can overlap, although this cannot happen
inside the same hierarchy. They do not need to cover the whole text. Again, it is
not important for the model how the structure is expressed in or extracted from
the text.

Filtering out the markup is important, though. The user should not be aware of
details about how the structure of the document is internally represented, or if it
is obtained by parsing, etc. He/she should be able to query the document as it is
seen in the output device. If two words are contiguous in the logical view, the user
should not be aware about that there may be markup between them if, for example,
is asking for proximity. It may be argued that including the markup in the text
allows the user to query on the markup by text matching. However, we believe that
this work must be carried out by the implementation. Any query about markup is
probably about structure, and we have a query language for that. The user should
not query the structure in such a low-level fashion, he/she should use the content
query language to query on content and the structure query language to query on
structure.

The text is considered as static, and the structure built on it quite static also.
That is, although we allow building new hierarchies, deleting and modifying them,
our aim is not to make heavy and continued use of those operations. We are not
striving for efficiency in those aspects, our model of usage is: the text is static, the
hierarchies are built on it once (or sparingly), and querying is frequent. The way
in which the structure is obtained from the text is not part of the model. It can be
obtained by parsing the text, by following markup information, etc.

Each hierarchy is a tree of structure nodes or simply nodes, and represents an
independent way to see the text (e.g. chapters / sections / paragraphs and pages
/ lines). The root of each hierarchy is a special node considered to comprise the
whole database.
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Fach hierarchy has a set of node types (or “structural components”) for its cor-
responding tree. Examples of node types are page, chapter and section. The sets
of node types of different hierarchies are disjoint.

Each node of a hierarchy belongs to a node type of the hierarchy, and has an
associated a segment, which is a pair of numbers representing a contiguous portion
of the underlying text. The segment of a node must include the segments of its
children in the tree (this inclusion does not need to be strict).

We point out that this numbering scheme does not need to be noted by a high-
level user, but i1t can be used to represent more logical-oriented constructions, such
as collections of documents.

Any set of disgjoint segments can be seen as belonging to a special text hierarchy,
where the nodes belong to a text node type. Thus, the text hierarchy has one node
for each possible segment of the text. This is an idealized view which never really
appears (only disjoint subsets of nodes can be obtained each time, via pattern-
matching queries). Observe that there is no hierarchical relationship between any
two nodes of such sets. We say that those sets are flat.

The disjointness restriction is in fact not essential, since pattern-matching expres-
sions could perfectly well generate a nested structure. However this is not normally
the case of text pattern-matching languages.

In the Appendix we give a formal definition of the model, and the query syntax
and semantics.

3.3 Query Language

In this section we define a query language to operate on the structure defined
previously, including also queries on content.

We do not intend to define a monolithic, comprehensive query language, since
the requirements vary greatly for each application. Including all alternatives in a
single query language would make 1t too complex. Instead, we point out a number
of operations that follow our lines (and hence can be efficiently implemented).

Each set produced by evaluating a query is a subset of some hierarchy. Those
subsets are composed of nodes, not subtrees. Although we normally treat them
simply as sets, we can consider that the subsets still keep the hierarchical structure
they inherit from the complete hierarchy, therefore forming an ordered forest of
trees.

We decided not to merge nodes from different hierarchies in a single result for
two reasons: first, it is not clear, hierarchies being different and independent ways
to see the same text, whether this could make sense (e.g. pages or chapters with
a figure); second, the implementation is much more efficient if every set is a strict
hierarchy. In [Clarke et al. 1995], the other choice is selected, i.e. overlaps are
allowed in answers, but not nested components.

Although it is not possible to retrieve subtrees (only nodes), the algebra allows
to select nodes regarding their “context” in the structure tree (i.e. what is around
them), much like in [Kilpelainen and Mannila 1993].

This language is an operational algebra, not necessarily intended to be accessed
by the final user, as the relational algebra is not seen by the users of a relational
database. It serves as an intermediate representation of the operations.
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3.3.1 Operations. We list here the operations we consider sufficient for a large
set of applications, and suitable to be efficiently implemented. As we said before,
this set is not exclusive nor essential.

By including
elements

Composition
Operations

after, after(k)
before, before(k)

By included elements

with(k)
withbegin(k)
withend (k)

in

beginin

Set manipulation

Direct structural

[s] beginin
[s] endin

parent(k)
[s] child

collapse, subtract...
on matches

View

Structure
Basis

Constructor

Fig. 2. Possible operations for our model, classified by type.

Figure 2 shows the schema of the operations. There are basic extraction operators
(forming the basis of querying on structure and on contents), and operators to
combine results from others, which are classified in a number of groups: those which
operate by considering included elements, including elements, nearby elements, by
manipulating sets and by direct structural relationships.

—Matching sublanguage: Is the only one which accesses the text content of the
database, and is orthogonal to the rest of the language.

—Matches: The matching language generates a set of disjoint segments, which
are introduced in the model as belonging to the text hierarchy, as explained
before. For example, "computer" generates the flat set of all segments of eight
letters where that word appears in the text. Note that the matching language
could allow much more complex expressions (e.g. regular expressions).

—Operations on matches: Are applicable only to subsets of the text hierarchy,
and make transformations to the segments. We see this point and the previous
one as the mechanism for generating match queries, and we do not restrict our
language to any sublanguage for this. See [Navarro 1995] for some alternatives.
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As an example, we propose M collapse M’ which superimposes both sets of
matches, merging them when an overlap results.

—Basic structure operators: Are the other kind of leaves of the query syntax tree,

which refer to basic structural components.

—Name of structural component: (“Struct” queries). Is the set of all nodes of
the given type. For example, chapter retrieves all chapters in a book.

—Name of hierarchy: (“Hierarchy” queries). Is the set of all nodes of the given
hierarchy. For example, Formatting retrieves the whole hierarchy related to
formatting aspects. The same effect can be obtained by summing up (“+”
operator) all the node types of the hierarchy.

—Included-In operators: Select elements from the first operand which are in some
sense included in one of the second.
—Free inclusion: Select any included element.

—P in Q: Is the set of nodes of P which are included in a node of (). For
example, citation in table selects all citations made from inside a table.

—P beginin/endin @: Is the set of nodes of P whose initial/final position is
included in a node of ). For example, page beginin formula are the pages
that cut the display of a formula (something that we may want to avoid).

—Positional inclusion: Select only those elements included at a given position. In
order to define position, only the top-level included elements for each including
node are considered.

—I[s] P in @: The same as in, but only qualifying the nodes which descend
from a @-node in a position (from left to right) considered in s. In order to
linearize the position, for each node of ) only the top-level nodes of P not
disjoint with the @-node are considered, and those which overlap are dis-
carded, along with their descendants. The language for expressing positions
(i.e. values for s) is also independent. We consider that finite unions of i..j,
last —i..last—j, and ¢..last—j would suffice for most purposes. The range of
possible values is 1..last. For example, [3..5] paragraph in page retrieves
the 3rd, 4th and bth paragraphs from all pages. If paragraphs included other
paragraphs, only the top-level ones would be considered, and those partially
included in a page would be discarded (along with their subparagraphs).

—I[s] P beginin/endin @: The same as beginin/ endin, but using s as
above. For example, [1ast] page beginin chapter selects the last pages
of all chapters (which normally are not wholly included in the chapter).

—Including operators: Select from the first operand the elements including in some
sense elements from the second one.

—P with(k) @Q: Ts the set of nodes of P which include at least & nodes of Q. If
(k) is not present, we assume 1. For example, section with(5) "computer"
selects the sections in which the word “computer” appears five or more times.

—P withbegin/withend(k) Q: Ts the set of nodes of P which include at least
k start/end points of nodes of @. If (k) is not present, we assume 1. For
example, chapter withbegin(10) page selects chapters with a length of ten
or more pages (assuming each chapter begins at a new page).

—Direct structure operators: Select elements from the first operand based on direct
structural criteria, i.e. by direct parentship in the structure tree corresponding
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to 1ts hierarchy. Both operands must be from the same hierarchy, which cannot

be the text hierarchy.

—][s] P child Q: Ts the set of nodes of P which are children (in the hierarchy) of
some node of (), at a position considered in s (that is, the s-th children). If [s]
is not present, we assume 1..last. For example, title child chapter retrieves
the titles of all chapters (and not titles of sections inside chapters).

—P parent(k) Q: Is the set of nodes of P which are parents (in the hierarchy) of
at least k nodes of Q). If (k) is not present, we assume 1. For example, chapter
parent(3) section selects chapters with three or more top-level sections.

—Distance operators: Select from the first operand elements which are at a given
distance of some element of the second operand, under certain additional condi-
tions.

—P after/before @) (C): Is the set of nodes of P whose segments begin/end
after /before the end/beginning of a segment in Q. If there is more than one
P-candidate for a node of @, the nearest one to the @-node is considered (if
they are at the same distance, then one of them includes the other and we
select the including one). In order for a P-node to be considered a candidate
for a @-node, the minimal node of C' containing them must be the same, or
must not exist in both cases. For example, table after figure (chapter)
retrieves the nearest tables following figures, inside the same chapter.

—P after/before(k) Q (C): TIs the set of all nodes of P whose segments be-
gin/end after/before the end/beginning of a segment in @, at a distance of
at most k text symbols (not only nearest ones). C plays the same role as
above. For example, "computer" before (10) "architecture" (paragraph)
selects the words “computer” that are followed by “architecture” at a distance
of at most 10 symbols, inside the same paragraph. Recall that this distance is
measured in the filtered file (e.g. with markup removed).

—Set manipulation operators: Manipulate both operands as sets, implementing
union, difference, and intersection under different criteria. Except for same,
both operands must be from the same hierarchy (which must not be the text
hierarchy).

—P 4+ @: Is the union of P and Q. For example, small 4+ medium + large is
the set of all size-changing commands. To make a union on text segments, use
collapse.

—P — @Q: Is the set difference of P and (. For example, chapter — (chapter
with figure) are the chapters with no figures. To subtract text segments, we
resort to operations on matches.

—P is @: Is the intersection of P and Q. For example, ([1] section in chapter)
is ([3] section in page) selects the sections which are first (top-level) sections
of a chapter and at the same time third (top-level) section of a page. To
intersect text segments use same.

—P same : Is the set of nodes of P whose segments are the same segment of
a node in Q. P and @ can be from different hierarchies. For example, title
same "Introduction' gets the titles that say (exactly) “Introduction”.

Observe that all operations related with beginnings and endings make sense only
if the operands are from different hierarchies, since otherwise they are the same as
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their full-segment counterparts.

3.3.2 Ezamples. We present some examples of the use of the language, to give
an idea of what kind of queries can be posed.

Suppose we have a hierarchy V with main structural component book. A book
has an introduction, a number of chapters, a bibliography and an appendix.
Fach of them may have sections (which may have more sectionsinside), as well as
formulas, figures and tables. A tableis divided in rows, and these in columns. A
number of paragraphs may appear in chapters, sections, introduction and the
appendix. The following elements have always a title: book, chapter, section,
figure and table. Finally, we have citations which references other books, listed
under bibliography.

We have another hierarchy ¥V’ with volume, page and line, and a hierarchy VP
for presentation aspects, e.g. italics, emphasize, etc.

Suppose also that we have a simple word matching language for text.

—chapter parent (title same "Architecture"), is the set of all chapters of
all books titled “Architecture”. Here, "Architecture" is an expression of the
pattern-matching sublanguage.

—[last] figure in (chapter with (section with (title with "early"))),is
the last figure of chapters in which some section (or subsection, use parent to
select top-level sections) has a title which includes the word “early”. This query
is illustrated in Figure 3.

—paragraph before (paragraph with ("Computer" before (10) "Science"
(paragraph))) (page), is the paragraph preceding another paragraph where
the word “Computer” appears before (at 10 symbols or less) the word “Science”.
Both paragraphs must be in the same page.

—[3] column in ([2] row in (table with (title same "Results"))), ex-
tracts the text in position (2, 3) of tables titled “Results”.

—(citations in ([2..4] chapter in book)) with "Knu#*", selects references
to Knuth’s books in chapters 2-4.

—(section with formula)—(section in appendix), selects sections with
mathematical formulas that are not appendices.

—introduction + (chapter parent (title with "Conclusions")) +
bibliography, can be a good abstract of books.

4. EXPRESSIVENESS

We first compare formally our model against the other similar models surveyed
(except p-strings, since it is a structure manipulation model). Although this point-
to-point comparison is useful, no formal categorization of expressiveness features
exists. Therefore, we appeal to informal methods. We show that our model fits the
quality criteria exposed in [Sacks-Davis et al. 1994]. We also develop an informal
framework to situate models of this kind.

4.1 A Formal Comparison

In the Appendix we formally define the semantics of our operations. That definition
is used to compare our model against each of the novel models, to determine which
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Fig. 3. Illustration of the effect of the query [last] figure in (chapter with (section with
(title with "early"))). The circles indicate selected nodes.

features from ours can be represented in others and vice versa. A brief abstract
of the results follows, omitting the representation mapping performed between the
models (see [Navarro 1995] for details).

The Hybrid Model [Baeza-Yates 1996]: our model can completely represent it,
while the converse is weak. Although it can represent a structure defined in our
model, little can be queried about it (e.g. ancestorship).

PAT Expressions [Salminen and Tompa 1992]: our model can almost completely
represent it, disregarding some undesirable complications of the language that one
really would not want to represent (mainly regarding conversions between regions
and match points). The converse is again weak, since this model cannot represent
recursive structures, which prevents it from representing almost all the operations
of our language.

Overlapped Lists [Clarke et al. 1995]: the comparison is difficult because the mod-
els are almost orthogonal. Ours can represent hierarchies but not overlaps, while
this one does the inverse. Disregarding the fact that each model cannot represent
the most important structure of the other one, most operations can be translated
between both models.

Lists of References [MacLeod 1991]: our model can completely represent this
model (recall that we consider the part of the model related to querying struc-
tures). On the other hand, a good portion of our model can be represented in this
one, being the most important omissions the unability to have multiple hierarchies
and to return nested components.

Tree Matching [Kilpeldinen and Mannila 1993]: we can represent part of this
model. The most important omissions are of course logical variables (which make



Proximal Nodes: A Model to Query Document Databases by Contents and Structure . 15

the model implementation NP-complete), and the inclusion semantics. These are
different in both models: in this one, an inclusion relationship must hold in the text
if and only if 1t holds in the query, while in ours it must hold in the text if it holds
in the query (but more relations can hold in the text). This prevents each model
representing the other in this aspect, although we show that we can represent some
restricted cases.

This is related to what in [Consens and Milo 1995] is called the both-included
problem, namely the ability to express “a containing (b followed by ¢)”. In [Con-
sens and Milo 1995], a simplification of PAT expressions is used to formally analyze
its expressive power, finding that both-included cannot be represented without in-
troducing tuples and join capabilities into the language (ala relational). The same
holds for our model. Observe that the source of this problem is that it is not pos-
sible to express that a name appearing in two parts of an expression should denote
the same node, and that is exactly what a relational equijoin would do.

By using logical variables, this model can represent almost all of ours, being its
weak part the integration between text and structure.

4.2 Quality Criteria

In [Sacks-Davis et al. 1994], a number of queries that this kind of language should
be able to answer are pointed out. We summarize them here to show that we can
express all in the areas we are interested in (i.e. we exclude the features related to
relevance ranking and connection to relational databases, which we do not address
in this work).

—Word-by-word access, e.g. “find (doc)s containing ‘parallel” and (‘computing’
or ‘processing’)” can be expressed as (doc with “parallel”) with (“computing”
collapse “processing”).

—Query scope restricted to sub-documents, e.g. “find (doc)s with (title) contain-
ing ‘parallel” and ‘processing’ ” can be expressed as doc parent ((title with
“parallel”) with “processing”). The other example in the paper is “find {(doc)s
with 1st (para) containing ‘parallel’ and ‘processing’ ”, that can be expressed as
doc with ((([1] para in doc) with “parallel”) with “processing”).

—Retrieval of sub-documents, e.g. “find (section)s with (para)s containing ‘paral-
lel” and ‘processing’” can be expressed as section with ((para with “parallel”)
with “processing”).

—Access by structure of documents. Many examples are presented here:

—“Find elements with parent of type {(article)” can be expressed as 411 child
article, where 411 is the name of the hierarchy.

—“Find elements with children” can be expressed as A1l parent All.

—“Find elements where the first child is (tétle)” can be expressed as A1l parent
([1] title child A11).

—“Find elements within a (section)” can be expressed as A1l in section.

—“Find {doc)s that contain a {corres) can be expressed as doc with corres.

—“Find (section)s that contain a (section)” can be expressed as section with
section.

—Access to different types of document, e.g. “Find articles, papers and books with
‘parallel” and ‘computing’ in the title” can be expressed as (article + paper
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Model Type of Implicit or | Static or Bound to Answers
structure explicit dynamic
Ours Hierarchy Explicit Static Intermediate Nested
(multiple)
Hybrid Model Flat Implicit Static Text Flat
PAT Hierarchy Implicit Dynamic Text Flat
Expressions (not recursive)
Overlapped Hierarchy Implicit Dynamic Text Overlapped
Lists (with overlaps)
Lists of Hierarchy Explicit Static Structure Flat (and of
References (and network) (single) the same type)
Tree Hierarchy Explicit Static Structure Nested
Matching (single)
p-5trings Hierarchy Explicit Dynamic | Intermediate Nested
(multiple)
Table 1. Analysis of structuring power.

+ book) with ((title with “parallel”) with “computer”). This issue is more
concerned with the problem of having the different names standing for “title” in
each type of document, but this is also easily handled: (book with booktitle
..) + (article with articletitle...) + ...

—Access by attributes, e.g. “find (corres)s with attribute ‘confidential’ = yes”.
If we have those attributes as node types children of the node and their values
in the text, we can answer simple queries, in this case we express it as corres
parent (confidential same “yes”).

4.3 An Informal Framework

We use the experience gained in the formal comparison to define an informal frame-
work to situate the models regarding their important features [Baeza-Yates and
Navarro 1996; Navarro and Baeza-Yates 1995a]. This framework divides the analy-
sis into two main areas:

—Structuring power (i.e. how the database is structured). See Table 1.

—Type of structure (flat, hierarchical or network)

—TImplicit or explicit structure (i.e. using embedded markup or an explicit struc-

ture index)

—Static or dynamic structure (i.e. ability to reindex)
—Link between content and structure (strongly text-bound, intermediate, or
strongly structure-bound)

—Structure of answers (flat, overlapped or nested)

—Query language (i.e. what can be asked). See Table 2.

—Text matching (i.e. querying content)
—Set manipulation (i.e. handling sets of answers)

—Inclusion relationships (i.e. selecting nodes included in or including others)
—Distances (i.e. selecting nodes at a given distance to others)

There is a third area regarding how the content is seen, but we do not consider
that part in this work.
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Model Set Inclusion Distances
manipulation relationships
Yes (same hierarchy). Including n and Both distance-
Ours A different set for included. Direct and bound and minimal.
nodes and for text positional inclusion Inside a given node
Hybrid Separate for text and Restricted to Only in matches
Model documents. Complement fields
PAT Yes. Also negation Including n Yes, distance-
Expressions of operations and included bound
Overlapped Union and Including and included, Combination
Lists combination plus negations and “n words”
Lists of Yes, but only for nodes Including n and inc- None
References of the same type luded. Restricted direct
Tree Yes, via logical Tree patterns None
Matching connectives + variables
Table 2.  Analysis of query languages.

Figure 4 presents a simplified graphical version of this comparison. We identify
the main points about expressiveness, and represent each model as a set containing

the aspects 1t reasonably supports.

:-----------’-:-—-‘ ---------------------- :' --------------------- : Overlapped
Our i -7 "5 o 8 lists
model 7/ Positional N L. . .
F inclusion \ = o .
v \],.-*" Overlapsin . i
I Direct .',a structure % H
: ! ancestorship  .* \\\ F-=-- .E. _______ -
. o N Distancesi Text is first- 1
b R class object 1
R < 1 H BRI e
H \ o 1 H N 1
4 ‘\ .* Recursive : Set g N 1
: 3 -'... structures ; manipulation + Mo Qverlaps
1 \ Seel :+ Compositional 1| y ¢ N results
! \\ ‘~..__ I Inclusion * language ,’_ A4
H S k.. ! relations ¢ oo < 1
§ <. 1. 5 oo . '
H ) Ssq el -r o7 H
{ Hierarchy B S L == ¢ Combination
: on results T ~ * ofnodes
Leccccscscscccccscsssscscsccchoecccccccccccccccccscscscscscccccccsss eee’
Tuples Semijoin
and join by contents
Tree .
matching - = = PAT expressions
------ Hybrid model
fffff Lists of references
Fig. 4. A graphical representation of the expressiveness comparison.

From the figure,

we can see that the main features our model lacks are tuples,

semijoin by content (i.e. retrieve all chapters whose titles appear in this paragraph)
and the possibility of having overlaps and combine nodes in the result set of a query.
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We believe that none of them can be included without significantly degrading the
performance. The features we support are enough for a large class of applications.
Some of the lacking features are better included by integrating this model with
another one.

5. IMPLEMENTATION ISSUES

In this section we cover the main aspects related to the implementation of the model,
regarding indexing and querying. Later we depict a suitable software architecture
and a prototype we implemented to test the model. More details can be found in
[Navarro 1995].

We represent each hierarchy as a tree of nodes. Those trees form our structure
index. From that index, the Struct and Hierarchy queries obtain other types of
trees (rootless) that represent sets of nodes (the algebra on which the rest of the
language operates). The same does the processing of content retrieval, by using its
own index. As well as in the model, the implementation of the content retrieval is
independent of the rest and is not studied here.

Thus, there are two very different operations: the leaves of the query syntax tree
must be solved with an index, while the internal nodes operate and produce sets of
nodes. We first explain how to process the internal nodes of the query syntax tree,
then the leaves (this includes the indexing scheme) and then the whole evaluation
plan. Finally, we formally analyze the efficiency of this implementation.

It is important to observe that we are not proposing any new implementation
technique. For example, those can be found in [Mackie and Zobel 1992]. Rather,
we use well-known techniques to efficiently implement the model. The key of the
efficiency achieved is in the definition of the model, which allows an efficient imple-
mentation with classical tools.

5.1 Evaluating the Internal Query Nodes: Traversal Algorithms

Since the language is compositional, all the operations except Struct and Hier-
archy receive and deliver sets of nodes. These sets are also arranged into trees,
attending to their ancestorship in the corresponding hierarchy (text queries return
flat sets, implemented as rootless trees with all their nodes in the first level).

Since only proximal nodes are related in the operations, all the algorithms tra-
verse both trees in synchronization. The idea is much like list merging, but in this
case each node has a next sibling and a list of children. Each operation traverses
the trees in a slightly different way and performs slightly different operations, but
the central idea is the same.

Two implementations are possible: a full-evaluation scheme computes the whole
set of answers at once; while a lazy-evaluation scheme computes only the result,
and nodes from inner operands of the query syntax tree are obtained only if they
are necessary to compute the final result.

The lazy mechanism works as follows: from the syntax tree of the query we
require the first level of answers. This triggers new requirements to the children of
the root of the syntax tree, which in turn expand the first level of their answers,
and so on.

Hopefully, not all the sets involved in the expression need to be fully evaluated.
This mechanism 1s not new, for example is of widespread use in lazy functional
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languages and object-oriented query languages.

The lazy version forces an order of evaluation that is not always optimal, since it
is given by the requirements of operators higher in the query syntax tree. Because
of this, it has higher complexity. Since, on the other hand, it may compute only
part of the result, it is not immediate which one is better. Experimental results (see
later) show that lazy evaluation is normally better. Lazy evaluation is also suitable
for interactive environments in which the user wants to see a top-level answer and
then navigates only into some subtrees; thus avoiding the need to evaluate the rest.

5.2 Evaluating the Leaves of the Query Tree: Indexing Schemes

What is left to consider is how to efficiently solve Struct and Hierarchy queries.
These are handled by accessing an index. The requirements for this index are

(a) Given a structural component id, retrieve the tree of all nodes of that type.

(b) Given a hierarchy, retrieve the tree of all its nodes.
For lazy evaluation, instead, we keep a pointer to a node in the disk, and ask to

(¢) Given a node, retrieve all its top-level descendents of the same type.

(d) Given a node, retrieve all its children

Those operations must be preferably linear (in the size of the answer), counting
both CPU processing, number of disk accesses, and total seek time. Observe that
the total seek time may be of higher order than number of disk accesses, for example
O(n) random accesses to a file take O(n?) seek time on average.

There are many alternatives to handle the trees of the structure index on disk.
Each one leads to a different indexing scheme.

5.2.1 A Full Indez. A full index stores the hierarchy tree in a breath-first layout
on disk. For each node, enough pointers are kept to perform (a) and (b) in linear
expected time with respect to the size of the output (although the seek time for (a)
is proportional to the size of the whole hierarchy).

The index is split in one file per level of the tree, to ease the reindexing process.
With the same purpose, the endpoints of the segments of each node are computed
relative to their parent segment. This does not pose any implementation problem,
since a node is only accessed via its parent. The benefit 1s that complete subtrees
can be inserted or deleted without modifying the numbers in the rest of the index.
When the results of Struct and Hierarchy queries are extracted from the index,
the positions are rewritten to be absolute.

Although in most cases it suffices to retrieve the node id and the segment of each
node in order to further process the query, sometimes the node id of the parent is
also needed (for parent and child queries). Tt is possible to syntactically determine
from the query when this is needed, to avoid any further access to the disk.

If there 1s enough memory, it is more efficient to read, in a single pass, all the
Struct nodes needed for all the leaves of the query syntax tree.

Observe that this index is not very well suited for lazy evaluation, since 1t cannot
efficiently implement (¢). This is because the top-level descendents of a node of the
same type can be spread across the file, even unordered, so the seek time may be
large. Another drawback of this index is its large space requirement (7 words per

node).
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5.2.2 A Partial Indez. 1t is possible to reduce the space requirement to just 2
words per node, at the cost of not allowing parent/child queries, nor two differ-
ent nodes having the same segment (this last restriction is easily overcome at no
expressiveness cost).

In this case, two files are kept for each node type, one with the sorted start points
and the other with the sorted end points. See Figure 5.

[1T275 5 [ 6| initia positions \
[3]6 [ 77 [10] find positions |2_3 | |5_7 |

Fig. 5.  An example of a partial index and its associated hierarchy.

It is easy to implement (@) in linear time and in a single pass over the index, but
for (b), the Hierarchy query must be solved as the union of its node types (this
takes & kn/2 time, being n the size of the hierarchy and k the number of different
node types). Finally, the index must be wholly rewritten upon reindexing, and this
scheme is worse than the previous one for (c).

5.2.3 An Index Suitable for Lazy Fvaluation. With 3 words per node, a version
of the partial index suitable for lazy evaluation can be designed. This can be
extended to a full index of 4 words per node (by adding the parent of each node),
that, however, still cannot handle different nodes with the same segment.

In this case, a file for each node type 1s kept, with a layout similar to the full
index. This allows to implement (a) and (¢) in linear time, but (b) and (d) must
be solved as before. This is not a big problem with lazy evaluation, since most
probably the whole hierarchy is never computed. The problem of different nodes
having the same segment can be solved by the parser, with artificial intermediate
points.

5.3 The Whole Query Evaluation: Query Plan

Given a query syntax tree, any evaluation order that respects the dependencies is
allowed. We prefer the one that minimizes the total amount of memory needed for
the whole evaluation. The sequence of operations to perform to solve the query is
called a query plan.

The problem of generating minimum-memory query plans is solved, although
simplified, in [Aho et al. 1986]: one has to obtain first the larger operand, then the
other operand, and then operate them. Since in [Aho et al. 1986] the problem is
using registers to compile an expression tree, the weight of a tree is defined as the
number of its nodes. We should instead estimate the size of our sets. In absence of
good estimators, using the number of nodes seems a reasonable choice. Thus the
algorithm would be as simple as solving the tree by evaluating the bigger subtree
first.



Proximal Nodes: A Model to Query Document Databases by Contents and Structure . 21

| Operation | Full | Lazy |
+,— n nmin(d, h)
is/same n n
in min(n, d?h) min(n, d?h)
beginin/endin min(n, d?h) min(n + dh, d? h)
[s]*in nmin(d, k) nmin(d, h)
with*(k) k=17n : nh | nmin(n,k + dh)
[s]child n n
parent(k) n nmin(d, h)
after/before(C) C=07?n :nmin(n,dh)

Table 3. Time complexities of the algorithms (n is the size of the operands, & the maximum
height of their tree representation and d the maximum arity of those trees.)

A useful alternative to a syntax tree to represent the query is to have a directed
acyclic graph (DAG), to avoid re-evaluating common subexpressions. In that case,
the problem of finding an optimal evaluation order becomes much more complicated,
being similar to the problem of evaluating the DAG of an expression minimizing
registers, which is known to be NP-Complete [Garey and Johnson 1979]. Some
heuristics for this case are presented in [Aho et al. 1986].

These policies to evaluate a query in a given order are only applicable to full
evaluation. Lazy evaluation expands the nodes in an unpredictable way, which for
each node of the syntax tree is dictated by the requirements posed by its parent.

Another important point is that we can write our algorithms to operate by mod-
ifying one of the operands to produce the answer, or to generate a new set. If the
operand is to be used only once, it is better to modify it, otherwise we should gen-
erate a new set. The query plan generator must implement the appropriate policy
to avoid keeping unnecessary copies in memory, deleting or replacing operands the
last time they are used.

Another interesting point is the optimization of the query, but we do not address
that issue here, since it is complex enough to constitute a whole separate problem.

If, despite the clever algorithms to avoid it, the operands are too large to fit in
memory, a swapping policy must be implemented. The problem can be solved by
a virtual-memory-like approach, keeping part of the intermediate results swapped
out to disk. In this case, we must select the operand which will be used later to
swap it out (that information is available from the query plan). An interesting
option to store those internal results i1s to use the same layout as the one we use for
the indices of node types. This idea together with a good swapping policy provides
a uniform and elegant solution to the problem.

5.4 Analysis

We analyzed the efficiency of our algorithms both theoretically and experimen-
tally. Table 3 abstracts the complexity analysis. Observe that the lazy version,
as expected, has higher complexity than the full one. See [Navarro 1995] for more
algorithmic details. The performance of Hierarchy and Struct queries depend on
the indexing scheme, and was explained in Section 5.2.
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6. A SOFTWARE ARCHITECTURE

In this section we outline a possible software architecture for a system based on our
model.

Users should interact with the system via an interface, in which they define what
they want in a friendly language (e.g. [Kuikka and Salminen 1995; Kilpeldinen and
Mannila 1993]). That interface should convert that query into a query syntax tree,
i.e. the language we present here. This tree is then submitted to the query engine.

The query engine optimizes the query and generates a smart query plan to eval-
uate it (i.e. converts the tree into a sequence of operations to perform). The leaves
of the query tree involve extracting components of the hierarchy by name (node
types), and text matching subexpressions. The first ones are solved by accessing
the index on structure to extract the whole set of nodes of that type (i.e. a set of
node ids and their segments). The second ones are submitted to the text search
engine, which returns a list of segments corresponding to matched portions of the
text. Thereafter, the rest of the operations are performed internally, until the final
result (a set of nodes) is delivered back to the interface.

The interface is in charge of visualizing the results. To accomplish that, it must
access the contents of the database, at the portions given by the retrieved segments.
This is also done via a request to the text engine, since only that engine knows how
to access the text.

The text engine is in charge of offering a text pattern-matching language, keeping
the indices it needs for searching, and presenting a filtered version of the text file
to upper layers. The first service accepts a query and returns a list of matching
segments. The third one accepts a segment and retrieves its text contents.

If the text engine is a completely separate subsystem, two separate indexing
processes may exist. One of them indexes the text to answer text pattern-matching
queries (this indexing is performed by the text engine). The other extracts the
structure in some way from the text (parsing, recognizing markup, etc.), and creates
the structure index, which is later accessed by the query engine. This is the only
time when the text can be accessed directly from outside the text engine.

Indeed, both indexers must collaborate, since the markup used by the structure
indexer should be filtered out by the text indexer when presenting the text to upper
layers.

See Figures 6 and 7 for a diagram of how a complete system based on this
scheme could be organized. The “document layer” is intended to support more
sophisticated document management, such as collections of documents.

7. EXPERIMENTAL RESULTS

We implemented a prototype following the proposed software architecture, to test
average time and space measures, as well as to evaluate heuristics. Our aim is not
to compare our model against other systems, which 1s very difficult in practice, but
to test the suitability of our model for implementation.

For the matching sublanguage, we use the API of SearchCity [Ars Innovandi
1992], which is based on the use of PAT or sufflix arrays [Manber and Myers 1990;
Frakes and Baeza-Yates 1992]. The matching sublanguage supported by this API
includes: whole words, ranges, wildcards, proximity search, boolean operators, sub-
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Fig. 6. The architecture of a system following our model, regarding querying.

traction and fuzzy search. The API allows filtering of the raw text, by applying a
format filter, character normalization filter, and a synonyms and stopwords filter.
The first filter allows to use files in other formats different from ASCII, without
copying their filtered form into a new file. All format-related (i.e. non-searchable)
portions of the file are filtered out, so that queries can only see the true contents
of the file.

We use that filtering facility to incorporate texts whose structure 1s embedded in
their content, this way allowing only the contents to be searchable, and using the
marking to parse the structure and generate a structure index. Hence, we have an
index for matches and a separate index per hierarchy. The PAT array can be seen
as a generic index for the text hierarchy.

We have implemented filters for DDIF [Digital Equipment Corporation 1991],
SGML [International Standards Organization 1986], BTEX[Lamport 1986] and C
code [Kernighan and Ritchie 1978]. The query plan generation is still very simple,
no query optimization is performed.

Currently, the structure index is kept in memory, although in the future 1t will
be kept on disk. Both the text and the text index are kept on disk. This is not a
serious limit as it could appear, since the structure index tends to be far smaller
than the text. For example, one megabyte of texts and articles generates near
1000 nodes, i.e. an index of 28 kilobytes using the most space-demanding indexing
scheme. With only 8 megabytes of RAM devoted to the index we can handle a
database of 300 megabytes of text. There are of course other types of documents
that pose more serious problems. For example, one megabyte of C code indexed via
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Fig. 7. The architecture of a system following our model, regarding indexing.

a fine-grain parsing can generate an index of 300,000 nodes, i.e. up to 10 megabytes
for the full index.

We conducted a set of tests running our prototype implementation on a Sun
SparcClassic, with 16 Mb of RAM, running SunOS 4.1.3_.Ul. The CPU speed of
this machine is approximately SpecMark 26.

From these results we conclude that, in the full version, the time to process a
query is proportional to the total number of nodes of all internal results, being the
constant near 50,000 nodes per second for our machine. A rough approximation is
(2¢ — 1) x (average operand size), where ¢ is the number of nodes of the query
syntax tree. The lazy version is normally better than the full one, especially for
complex queries, although its running times are very unstable. The running times
are between 25% and 90% of the full version, and between 40% and 100% of the
nodes are computed. Figure 8 shows typical times for a single operation.

These good results are possible thanks to our approach of operating proximal
nodes, which allows to compute the results by a one-pass traversal through the
operands. The ideas of a set-oriented query language, a data structure to efficiently
arrange segments, and the reduction of all queries to operations on proximal nodes
lead to an implementation where the amortized cost per processed element is, in
most cases, constant.

8. EXTENDING THE MODEL TO MULTIMEDIA DOCUMENTS

We study in this section how to extend the model to handle other types of data.
We are interested in documents containing not only text, but also audio, images,
video, ete. being queried [Subrahmanian and Jajodia 1996].
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Fig. 8. Typical times for a single operation query. Note that the scale is logarithmic in both
axes.

Multimedia documents have normally a structure that relates their components,
be them text, images, etc. We call that structure the “external structure”. However,
not only the text but also the multimedia objects can have internal structure. For
example, it is possible to structure an audio segment corresponding to a symphony.

Although text has been normally queried by content, in classical multimedia
databases multimedia objects were not queried truly by content [Bertino et al.
1988]. Rather, a textual or formatted data description (which is created by hand)
was attached to each object, and that was the only information queries could ask on
them. Multimedia data was in this way introduced into the classical formatted data
model, leaving unresolved only performance and security considerations [Elmasri
and Navathe 1994].

Recently, advances in signal processing and artificial intelligence techniques have
allowed the possibility of searching by content into objects such as audio and images
(e.g. [Christodulakis and Faloutsos 1986; Wu et al. 1994]). Our purpose is to
show how those capabilities can be included in a data model to smoothly integrate
the new facilities into existing capabilities. Moreover, we show how the structure
inherent to multimedia documents, both external to the multimedia objects and
internal to each one, can be exploited to improve the retrieval capabilities of a
database.

For our fundamental ideas to remain applicable, we assume that it is still pos-
sible to impose a hierarchical structuring on the data. This assumption is quite
general, although simpler than hypermedia or spatial structuring. Hypermedia
structuring could be supported by differentiating between “structure” links (which
are hierarchical) and “pointer” links (which are to be queried by other means, e.g.
a Graphlog-like language [Consens and Mendelzon 1993].

For technical reasons (i.e. to represent structure by containment of segments),
we assume that the different elements inside each structure can be linearly ordered.
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This is done internally and it is not visible to the user. Queries about distances are
not permitted to spread among different type of objects (we return to this later).
If the document does not have order between elements, positional queries can be
simply not permitted, hiding the (artificial) ordering to the user.

Thus, our database is now composed of

—Data: a sequence of segments of heterogeneous types.

—Structure: as before.

Each relevant position of the data stream is assigned a number. Those numbers
are 1n ascending order, but they no longer represent consecutive text symbols.
They just indicate the ordering (and containment) between the elements. Because
of this, our structural after/before operation no longer makes sense, and must be
replaced by a medium-specific after/before where applicable (e.g. positions may
represent words in the text and seconds in the audio). Distances make sense only
inside a homogeneous data portion or containing complete data portions, where the
interpretation of their start/end points is specific to that medium.

Instead of a single sublanguage for (text) content, we have such a language for
each medium. For example, the language for audio contents may consist of audio
pattern-matching (by signal processing), the one for images may be oriented to
(precomputed) semantic descriptions. The answers are regarded as segments from
a specific hierarchy (one for each medium, not only the text hierarchy).

Although each medium interprets the structure in its own way, we must keep the
consistent idea of containment. For example, it may represent a part-of relation
on the objects appearing in an image, each node representing an object with an
associated “segment”. Other queries (e.g. spatial proximity) are to be regarded as
medium-specific.

This technique allows to consider the structure of a document as homogeneous,
regardless of whether it is external or internal. All the queries about containment,
etc. performed on the structure extend seamlessly to the structure defined inside
images, audio, etc.

From the software point of view, there is a module responsible for handling each
type of data. A general parser must recognize the external structure and each data
object, passing the relevant segment to the corresponding indexer, who indexes its
content and internal structure. An index for each medium is built with the content,
while the internal structure is returned to the general indexer, that appends it to the
hierarchy. At the moment of querying, subexpressions belonging to the content-
retrieval sublanguage of each medium is assigned to a specific query processor,
which uses its own index (be it for text retrieval, audio matching, image semantics,
etc.) to retrieve a set of segments that represents the relevant portion of the object.
The structural part of the query is solved as before, regardless of its external or
internal nature.

To visualize the final result, the interface sends the segment to a module that
determines which medium it belongs to, and passes the request to the appropriate
specific module. This may end in the retrieval of a text portion, an image, a
combination of text and audio, etc.

Figure 9 shows an example document. A query such as Recital in (Phrase
with (Photo with (Paul near me))) retrieves the segment 10-12; visualized as
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the sound recording of the recital.
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Fig. 9. A document with multimedia elements, with its structure and contents indices.

9. CONCLUSIONS AND FUTURE WORK

The problem of querying a document database on both its content and structure
has been analyzed. We found the existing approaches to be either not expressive
enough or inefficient.

Hence, we have defined a model for structuring and querying textual databases
that is expressive enough and efficiently implementable, and extended it to handle
other types of data. The language is not meant to be accessed by final users, but
to constitute the operational algebra.

We have evaluated our model in expressiveness and efficiency. We showed it to be
competitive in expressiveness, getting close to others that do not have an efficient
implementation. On the other hand the algorithms show good performance, both
in their analysis and the experimental tests. That situates this model close in
efficiency to those much less expressive.

See Figure 10 for a graphical (and informal) comparison of similar models when
taking into account both efficiency and expressiveness. Note that we have included
p-strings in this drawing, assuming an expressiveness superior to all the languages
we have analyzed. Note also that only a part of the lists-of-references model is
considered (and the efficiency to implement only that part is considered). Observe

27
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that, as any quantization of concepts, this comparison is subjective. Nevertheless,
it does give an idea of where our model lies.

Hybrid  Overlapped

model lists
) o 0o 0
8 AT Our model
0 expressions o
=
w [ J

Lists of references

p-strings
o

Tree matching

Expressivity

Fig. 10. A comparison between similar models, regarding both efficiency and expressiveness.

There are a number of research directions related with this work:

—Further exploration of the possibilities offered by the model in order to find more
operators which fit into our philosophy (being thus efficiently implementable).

—Definition of a query language suitable for end users, possibly visual, to map onto
our operational algebra (see for example [Kuikka and Salminen 1995]).

—Integration between this kind of model and others, such as the relational model or
the traditional ones of information retrieval. This issue has not been considered
here, since we focus on the structure problem. An important issue is how to
include relevance ranking in our model (see [Sacks-Davis et al. 1994] and [Arnold-
Moore et al. 1995] for some ideas).

—~Generalization of the problem to manage non-hierarchical structures, such as
a hypertext network, while keeping the desirable properties obtained for this
simpler case. A recent work [Dao et al. 1996] that extends Overlapped Lists to
handle nesting and overlapping at the same time shows a different trend that
deserves attention.

—A formal framework in which to compare expressiveness is needed. The long-
term goal is a formal and sound hierarchy like what can be found in the area of
formal languages (see [Navarro and Baeza-Yates 1995a; Consens and Milo 1995]
for some examples).

—There are a number of implementation issues remaining, for example to design a
good swapping policy for query evaluation, keeping the index on disk, handling
multimedia documents, query optimization, etc.
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APPENDIX
A. FORMAL SYNTAX AND SEMANTICS

We first define our formal model, then the syntax of the expressions we have stud-
ied (Ezpr) by an annotated abstract syntax, and finally the semantics of those
operations by a function Z : Fapr — p(N) (i.e. from expressions to sets of nodes).

A.1 Formal Model
A text database is a tuple (7,V,C, N, R, Type, Segm), where

—7T :[1..T] — X is the text array. T is the size of the database (number of symbols)
and X is the alphabet of the text.

—V 1is the finite set of hierarchies over the text, with a distinguished element V; € V
(the text hierarchy).

—C :V — p(C) is the set of node types of each hierarchy, we also write C(V') as
Cy. C is the finite set of node types, with a distinguished element Cy € C (the
text node type). It holds VV; # Vo € V,Cy, N Cy, = 0. Also, Cy, = {Cy}.

—N :V — p(N) is the set of nodes of each hierarchy, we also write N(V) as
Ny. AN is the finite set of nodes, including special text nodes tqp for each
1 < a < b <T (the text nodes). It holds VV} # Vo € V, Ny, N Ny, = 0.
Also, Ny, = {tap/1 <a<b<T}.

—R :V — p(N x N) is the binary relationship which defines the tree of each
hierarchy, we also write R(V') as Ry . It holds VV € V, Ry C (Ny x Ny). Also,
R(V;) =0.

—Type : N — Cis the type of each node. It holds VV' € V Vz € Ny, Type(z) € Cy.
This implies that Va,b/1 < a < b <T,Type(ts ) = Ct.

—Segm : N — [1.7] x [1..T] is the segment of each node. It holds V& €
N,Segm(z) = (a,b) = a < b. We also define From and To to satisfy
Segm(x) = (From(z),To(z)). Finally, we define Segm(t.s) = (a,b), as ex-
pected.

We define a binary relationship — as the union of Ry, for all V' € V, that is
—= Uy ey Rv. We impose the following conditions on —:

—Vr,y € N,z —1 y = -y — z, that is, loops are not allowed. Here, —7 is

the transitive closure of —.

—vVeV—{V,},3 ry € Ny/ Az € Nv /& — ry, that is, each hierarchy except
the text hierarchy has a single root.

—Vr,ye N,z — y = Az # /2 — y, that is, any node has at most one parent.
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—Vz,y € N,z — y = Segm(y) C Segm(z). When we operate segments as
sets we interpret Segm(z) = {n € Nat/From(z) < n < To(x)}. That is, the
segment of a node includes the segment of its descendants. Nat is the set of
natural numbers.

—VV €V — {V;},Vo,y € Ny, Segm(z) C Segm(y) = * —7 y, that is, except
in the text hierarchy, if two segments of the same tree are included one into the
other, then the including one is ancestor of the included.

—VV eV —{V;},Vae,y € Ny, Segm(x) = Segm(y) = » —*y V y —" z, that
18, except in the text hierarchy, if two segments of the same tree are equal, then
they are in a single path of the tree. Here, —* is the Kleene (transitive and
reflexive) closure of —.

—VV € V- {W},Vo,y € Ny, Segm(z) C Segm(y) V Segm(y) C Segm(z) V
Segm(z) N Segm(y) = 0, that is, there is a strict hierarchy of segments (except
in the text hierarchy).

Finally, we define a binary relation in A" x A, called C, to mean that the first node
includes the other (do not confuse with segment inclusion). If both nodes are from
the same hierarchy then the second must descend from the first one; otherwise we
test for segment inclusion. Thus, z C y < (3V € V — {V;}/{z,y} C Ny) 7y —*+
z : Segm(x) C Segm(y). Observe that © C y = Segm(z) C Segm(y), but the
reciprocal 1s not true.

A.2 Abstract Syntax and Formal Semantics

Table 4 shows the abstract syntax of the language. In this definition, we use Nat as
the set of natural numbers, Int as the integers, Mat as the set of pattern-matching
expressions, Pos as the language for denoting positions, and F, Ey, Ey, Fs € Fxpr.

Some compositions are not allowed when the operands are from different hier-
archies. We indicate at the right side of each alternative, between brackets, the
conditions on the intervening hierarchies for that production to be valid. The hier-
archy to which the result belongs is expressed as a function 7 : Ezpr — V. Between
the brackets we also indicate as simply 7 which is the type to which the result of
the production belongs.

We are now in position to define the semantics of the defined operations. We do
so by defining a function Z : Fapr — @(N'), which interprets each expression in
terms of a set of nodes.

The function 7 1s defined inductively as:

—TI(Hierarchy(V)) = Ny.

—Z(Struct(c)) = {z € N/Type(z) = c}.

—Let m be a pattern-matching expression, whose result is a set of segments
(a1,b1)..(ag, by). Then, Z(m) = {ta,s,/7 € [1..k]}.

—Z(P collapse Q) = {ta, 5, /Ftarp,--tan s, € Z(P) U Z(Q)/(Vi,b; < a;p1) A
Btey EL(P) U Z(Q) — {ta, by --ta, b, }/ (2, y) N (a1, by) # 0}.

(P + Q) =T(P)UT(Q)

—I(P - Q) =T(P)-T(Q)

—I(Pis Q) =Z(P)NZ(Q).
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Ezpr — Hierarchy(V) [V eV —{V;},7=V]
| Struct(c) [c € C — {Ci}, 7= V/ce Cy]

| Match(m) [m € Mat, 7 = V4]

| (E1 collapse E;) [r = 7(E1) = 7(E2) = Vi
| ... (other operations to manipulate matches)
| (E1 4+ E2) [r=71(E1) = 7(E2) # V4]

| (B1 — E2) [r=71(E1) = 7(E2) # V4]

| (Bnis Ep) [v = 7(E1) = 7(E2) # Vi ]

| (E1 same E») [r = 7(E1)]

| (E1 with(k) E3) [k € Nat, 7 = 7(E1)]

| (E1 w1thbeg1n/w1thend(k) Ey) [k € Nat, 7 = 7(E1) # 7(E2)]
| (E1in E) [r = 7(E1)]

| (E1 beginin/endin E) [r = 7(E1) # 7(E2)]

| ([s] E1 in E») [s € Pos, 7 = 7(E1)]

| ([s] E1 beginin/endin E5) [s € Pos, T = 7(E1) # 7(E2)]

| (E1 parent(k) Eg) [k € Nat, 7 = T(El) = T(EQ) #* Vt]

| ([s] E1 child E3) [s € Pos,7 = 7(E1) = 7(E2) # Vi)

| (E1 after/before E» (E3)) [t = 7(E1)]

| (E1 after/before(k) E2 (E3)) [k € Nat, 7 = 7(E1)]

Table 4. Abstract syntax.

—7I(P same Q) = {x € I(P)/y € Z(Q)/Segm(x) = Segm(y)}.
(P with(k) @) = {x € T(P)/{y € T(Q)/y C #}| > k}.
—7I(P withbegin(k) Q) = {x € Z(P)/{y € Z(Q)/ From(y) € Segm(x)}| > k}.
(P withend(k) Q) = {x € Z(P)/|{y € 1(Q)/To(y) € Segm(x)}| > k}.
—I(Pin Q) = {r € T(P)/3y € T(Q)/x C y}.
—7I(P beginin Q) = {x € I(P)/3y € Z(Q)/From(x) € Segm(y)}.
—Z(P endin Q) = {z € Z(P)/Jy € I(Q)/To(x) € Segm(y)}.
—I([s] P in Q) = Uyezig){r € 2,/S(s,2,2,)}. Here, §: 5 x N x p(N) —
{true, false} is the interpretation of the position language S, which says whether
the left-to-right position of a node in a set of nodes 1s acceptable by the specifica-
tion of s. This position is only well defined when none of the segments includes
another, which is the case in Z,, that we define as Z, = {z € I(P)/z Cy A z €
maxim(z € Z(P)/zCy V y ¢ z)}. mawxim selects the maximal nodes of a set,
ie. mazim(X) ={z € X/ Ay € X/x C y}.
—Z([s] P beginin Q) = Uyezglr € 2,/8(s,x,2y)}. Here, 2, = {z €
/From(z) € Segm(y) A x € maxim(z € Z(P)/Segm(z) 7 Segm(y))}.

1(P)
—Z([s] P endin Q) = UyeI(Q){x € Z,/8(s,z,2,)}. Here, 2, = {2 €
I(P)/To(x) € Segm(y) A « € mawim(z € Z(P)/Segm(z) p Segm(y))}.

—ZI([s] Pchild Q) ={z € Z(P)/Fy € Z(Q)/y — v A S(s,x,{z e N Jy — z})}.
P after(k) @ (C)) = {z € Z(P)/Ty € T(Q)/0 < From(x) —To(y) < k A
minim({z € Z(C)/x C z}) = minim({z € T(C)/y C z})}.
—Z(P after Q (C') = Uyez(q) first{z € Z(P)/From(x) > To(y) A minim({z €
I(C)/xz C z}) = minim({z € Z(C)/y C z})}). Here, first : p(N) — N selects

the node in the set with lowest value of F'rom, and if there are more than one,

(
(
(
—ZI(P parent(k) Q) = {z € Z(P)/[{y € T(Q) /v — y}| > k}.
(
—I(
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the maximal. If all the nodes are from the same hierarchy, this criterion gives
exactly one node.

—Z(P before(k) Q (C)) = {z € Z(P)/Fy € Z(Q)/0 < From(y) — To(z) <
kA minim({z € Z(C)/x C z}) = minim({z € Z(C)/y C z})}.

—7I(P before @ (C)) = UyeI(Q) last({x € Z(P)/From(y) > To(x) A minim({z €

I(CY/x C z}) = minim({z € T(C)/y C z)})}. last is analogous to first,
selecting the highest value of To, or the maximal if they are the same.



