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We address the problem of adaptive compression of natural language text, considering the case
where the receiver is much less powerful than the sender, as in mobile applications. Our techniques
achieve compression ratios around 32% and require very little effort from the receiver. Further-
more, the receiver is not only lighter, but it can also search the compressed text with less work
than the necessary to uncompress it. This is a novelty in two senses: it breaks the usual com-
pressor/decompressor symmetry typical of adaptive schemes, and it contradicts the long-standing
assumption that only semistatic codes could be searched more efficiently than the uncompressed
text. Our novel compression methods are in several aspects preferable over the existing adaptive
and semistatic compressors for natural language texts.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data Compaction
and Compression; H.3.3 [Information Storage and Retrieval]: Information Search and Re-
trieval-—search process

General Terms: Text Compression, Searching Compressed Texts
Additional Key Words and Phrases: Adaptive natural language text compression, Real time
transmission, Compressed pattern matching

1. INTRODUCTION

Research in the last decade has shown that text compression and retrieval are
intimately related. Text compression not only serves to save space, processing, and
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transmission time, but is also an extremely effective device to speed up search and
retrieval operations in natural language text collections [Ziviani et al. 2000; Navarro
et al. 2000].

Text compression is also extremely useful in data transmission. When all the data
to be sent can be compressed before the beginning of the transmission, statistical
two-pass techniques, also called semistatic, can be used. These techniques perform
a first pass over the text to gather the list of source symbols and their frequency.
This information is used to construct a model® of the text, which is used by the
encoder to compute the codeword corresponding to each source symbol. Then, in a
second pass over the original text, source symbols are replaced by their codewords.
The sender must transmit the model along with the compressed text to inform the
receiver about the correspondence between source symbols and codewords.

This approach is not suitable for real-time transmission scenarios, where the
sender should be able to start the transmission of the compressed text without
preprocessing the whole text, and the receiver should be able to start the decom-
pression as soon as it starts to receive the compressed text.

Dynamic or adaptive compression techniques are designed to deal with the real-
time transmission scenario. These techniques perform only one pass over the text
(so they are also called one-pass) and are able to start the compression and trans-
mission as they read the text. In this case, the model is not sent, as the receiver
can infer it during the decompression of the received data.

Recently, statistical semistatic compression techniques especially designed for
natural language text have shown that it is possible to search the compressed text
much faster (up to 8 times) than the original text, obtaining at the same time very
appealing compression ratios?, around 25%-35%. The key idea of these techniques
is to regard the text to be compressed as a sequence of words instead of charac-
ters [Bentley et al. 1986]. A Huffman-based compressor using this approach was
presented in [Moffat 1989]. In the same line, Moura et al. [2000] introduced two
coding methods called Plain Huffman (PH) and Tagged Huffman (TH). The byte-
oriented Plain Huffman achieves compression ratios close to 30%, as opposed to the
25% that is achieved by using bit-oriented codes [Turpin and Moffat 1997b]. In ex-
change, decompression is much faster because bit manipulations are not necessary.
Tagged Huffman provides an improved self-synchronization ability that allows fast
direct search of the compressed text and local decompression of text passages. This
improvement has a penalty in compression ratio, which worsens to around 34%.

The newly proposed family of coding methods called dense codes has been shown
to be preferable in most aspects to Huffman coding for natural language [Brisaboa
et al. 2007]. Dense codes are simpler and faster to build than Huffman codes, and
they permit the same fast direct searchability of Tagged Huffman, yet with better
compression ratios. The simplest compressor based on dense codes, which is called
End-Tagged Dense Code (ETDC), achieves compression ratios around 31% using a
semistatic zero-order word-based model. An improved variant, (s,c)-Dense Code
(SCDC), reaches less than 0.3 percentage points over PH compression ratio. An-

1n this paper, we consider zero-order models, which provide the probability of each source symbol
without taking into account the previous symbols in the source stream.
2The size of the compressed text as a percentage of its original size.
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other competitive semistatic proposal is the Restricted Prefix Byte Code [Culpepper
and Moffat 2005], which compresses natural text about 1% better than SCDC, in
exchange for usually slower searching and no self-synchronization.

Adaptive compression methods based on the Ziv-Lempel family [Ziv and Lempel
1977; 1978] (used in zip, gzip, arj, winzip, etc.) obtain reasonable but not spectac-
ular compression ratios on natural language text (around 40%), yet they are very
fast at decompression. Among the adaptive compressors, dynamic arithmetic cod-
ing over PPM-like modelling [Cleary and Witten 1984] obtains compression ratios
around 24%, but it requires significant computational effort by both the sender and
the receiver, being quite slow at both ends.

A seemingly easy way to achieve better compression ratios for natural language
texts in real-time scenarios is to process the input by chunks, and use semi-static
compression for each chunk. This, however, does not work well, because it is
necessary to use chunks of at least 5-10 Mbytes to compensate for the extra space
used by the model (the vocabulary of words) [Moura et al. 2000; Brisaboa et al.
2008]. The burden of sending many vocabularies could be alleviated by sending
only the differences with respect to the previous one (that is, the swaps to make
in the list of words sorted by frequency). Still, using chunks of 5-10 Mbytes is
unapplicable in several real-time applications, such as in those where two parties
exchange many short messages along a session, so that the overall exchanged text is
large enough to allow for compression, but transmission of short messages must be
carried out immediately (e.g. chats, transactions, browsing scenarios, broadcasting
of news, etc.). To cope with those cases, one could use a much smaller chunk size,
profiting from the cheaper differential vocabulary transmission.

Improving upon this idea, Brisaboa et al. [2008] introduce two truly adaptive
compressors based on dense codes, called Dynamic ETDC (DETDC) and Dynamic
SCDC (DSCDC). As in general adaptive compression, no model information is
transmitted at all. Both DETDC and DSCDC turn out to be interesting alter-
natives: with compression ratios around 31-34%, they are as fast as the fastest
Ziv-Lempel compressors (which achieve only 40% compression ratio) and about 10
times faster than dynamic PPM. In decompression, dynamic dense codes have a
performance similar to that of Ziv-Lempel compressors and are 25 times faster than
dynamic PPM. Finally, searches performed over text compressed with DETDC ob-
tain better results than those obtained by LZgrep [Navarro and Tarhio 2005], yet far
from searching texts compressed with semistatic methods. Hence, dynamic dense
codes present several advantages over state-of-the-art adaptive compressors.

However, this adaptive compression retains some important drawbacks. In statis-
tical adaptive compression, the model changes each time a text word is processed.
This has two important consequences. First, the receiver has to keep track of all
these changes in order to maintain its model updated, implying a significative com-
putational effort. This is especially unfortunate in cases where the receiver has
limited computational power, such as in mobile applications. Second, these fre-
quent changes of the model make it difficult to carry out direct searches, as the
search pattern looks different in different points of the compressed text.

It is not difficult to find adaptive compression scenarios where a direct search
on the compressed text (i.e., without decompressing it) can be a valuable tool.
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For example, consider mobile environments where stations broadcast information
(like traffic, places of interest, etc.) continuously to devices in their cells. It is
likely that receivers are not interested in decompressing all of the information they
receive. So they would search the arriving compressed text for some keywords that
describe topics of interest. When some of the keywords are found, the information
is decompressed, and then stored or redirected to specific targets. Therefore, it is
useful to have an adaptive compression method with direct search capabilities, that
is, permitting direct search of the compressed text with a performance close to that
achieved by the semistatic techniques.

Our first contribution in this paper is a variant of DETDC, which we call Dy-
namic Lightweight ETDC (DLETDC). DLETDC has almost the same compression
ratio as ETDC and DETDC, but it requires much less processing effort from the
receiver than DETDC. As a result, decompression time is now better than that
of Ziv-Lempel methods. The key idea is to relieve the receiver of maintaining the
model updated as decompression progresses, thus breaking the usual symmetry
of statistical adaptive compression. The sender must notify the receiver all the
changes on the model. For this to be useful, we design DLETDC so as to maintain
its compression ratio while minimizing the required updates to the model.

Our second contribution focuses on the case where the receiver does not need to
recover the original text, but just to detect the presence of some keywords in it.
We show how DLETDC compressed text can be searched without decompressing
it. The search algorithm is even lighter than the decompression algorithm. It needs
very little memory and can perform efficient Boyer-Moore-type searching [Boyer
and Moore 1977] on the compressed text. We show that searching the compressed
text for a set of keywords is much faster (usually twice, and up to 7 times) over
the compressed text than over the uncompressed text. This breaks another long-
standing assumption that states that only semistatic models permit efficient Boyer-
Moore searching on the compressed text. In particular, this is the first adaptive
compression scheme that permits searching the compressed text faster than the
uncompressed text (and indeed close to searching under semistatic compression).

Our third contribution is the lightweight version of DSCDC, called Dynamic
Lightweight SCDC (DLSCDC). As DLETDC, this new technique frees the receiver
from the effort of maintaining an updated version of the model. Moreover, being a
variant of DSCDC, the sender also deals with all the effort of maintaining param-
eters (s,c) tuned according to the text that is being compressed [Brisaboa et al.
2008]. The price is that compression time worsens 10% with respect to DLETDC
and 5% with respect to DSCDC. However, thanks to its better compression ratio,
decompression in DLSCDC is even faster than that of DLETDC, and searches can
also be performed very efficiently.

We describe both DLETDC and DLSCDC with sufficient detail to be useful for a
practitioner. We also present exhaustive experimental results comparing our meth-
ods against the most popular compressors, in terms of compression ratio and com-
pression/decompression speed. Finally, we compare the search speed of DLETDC
and DLSCDC against searches in text compressed with semistatic, adaptive, and
dictionary-based compressors, as well as in uncompressed text.

Compared to the preliminary version of this work [Brisaboa et al. 2005b], in this
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paper we introduce the more complex variant DLSCDC, we give analytical results
that explain the performance of our methods, and we present more exhaustive
experiments, in particular regarding search times.

Open-source implementations of dynamic lightweight dense code compressors, de-
compressors, and searchers, are available at http://rosalia.dc.fi.udc.es/codes/.
As a guide to follow the rest of the paper, Figure 1 presents a dictionary with the
acronyms of the different variants of dense codes.

) ) ETDC End Tagged Dense Code
Semistatic 1 gcpC (s,c)-Dense Code
) DETDC Dynamic End Tagged Dense Code
Dynamic 3 pgcpc Dynamic (s, ¢)-Dense Code

DLETDC Dynamic Lightweight End Tagged Dense Code
Dynamic lightweight DLSCDC Dynamic Lightweight (s, c)-Dense Code
DLSCDCT?  Trivial Dynamic Lightweight (s, c)-Dense Code

Fig. 1. Acronyms of the different variants of dense codes.

2. RELATED WORK

We briefly describe the semistatic and dynamic compressors based on dense codes.
The reader is referred to [Brisaboa et al. 2007], in the case of the semistatic com-
pressors, and to [Brisaboa et al. 2008], in the case of the dynamic versions, for a
complete description, as well as for a complete suite of empirical results.

2.1 End Tagged Dense Codes

To compute the codeword of each source word, ETDC uses a semistatic model
that is simply the vocabulary (list of source symbols) ordered by frequency. The
encoding process is as follows:

—One-byte codewords from 128 to 255 are given to the first 128 words in the
vocabulary.

—Words in positions® 128 to 128 + 1282 — 1 are sequentially assigned two-byte
codewords. The first byte of each codeword has a value in the range [0, 127] and
the second in range [128, 255].

—Words from 128 + 1282 to 128 + 1282 + 1282 — 1 are given tree-byte codewords,
ete.

Due to the simplicity of ETDC, fast and simple encode and decode procedures are
available. We denote encode the function that obtains the codeword C; = encode(i)
for a word at the ¢-th position in the ordered vocabulary; decode computes the
position ¢ = decode(C;) in the rank, for a codeword C;. The procedure encode
requires just 6 lines of source code, whereas decode requires 11 lines.

Although its origins are unclear, the coding scheme used in ETDC is not new. It
has been used for more than one decade to compress document identifiers in inverted

3Note that our word positions start at zero.
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indexes. It can be found in the literature as byte-codes (bc) or variable-byte coding
(Vbyte) [Williams and Zobel 1999; Culpepper and Moffat 2005].

2.2 Dynamic End-Tagged Dense Code (DETDC)

DETDC works as a traditional dynamic compressor. Both sender and receiver
maintain the model (in this case, the array of source symbols sorted by frequency).
During the compression, if the sender processes a word that is in the i*" position
of the ordered vocabulary, then it sends C; = encode(i). Next, the receiver com-
putes decode(C;) to obtain the position in the ordered vocabulary of the original
word. Both ends perform the same process to keep the vocabulary ordered after
the occurrence of the last processed word.

When the sender reads a word that is not in the vocabulary yet, it informs the
receiver about it by sending a special code (from now on Cleronode) followed by
the source word in plain form. Next, such a word is added in the last position of
the vocabulary at both ends.

2.3 (s,c)-Dense Codes

End-Tagged Dense Code uses 128 target symbols for the bytes that do not end a

codeword (continuers), and the other 128 target symbols for the last byte of the

codeword (stoppers). In order to improve the compression ratio, (s, ¢)-Dense Code

adapts the number of stoppers and continuers to the word frequency distribution of

the text, so that s values are used as stoppers and ¢ = 256 — s values as continuers.
The encoding process is similar to that of ETDC:

—One-byte codewords from 0 to s — 1 are assigned to the first s words in the
vocabulary.

—Words in positions s to s+ sc— 1 are sequentially given two-byte codewords. The
first byte of each codeword has a value in the range [s, s + ¢ — 1] and the second
in range [0, s — 1].

—1In general, words from W;_; to W7 — 1 are assigned k-byte codewords, where
Wi = s

-1
c—1"

In [Brisaboa et al. 2007; Farina 2005] a discussion on how to obtain the s and ¢
values that minimize the size of the compressed text for a specific word frequency
distribution can be found.

The coding and decoding algorithms are the same as those of ETDC, changing
the 128 values of stoppers and continuers by s and ¢ where appropriate. Thus
on-the-fly encode and decode algorithms are also available.

2.4 Dynamic (s,c)-Dense Codes (DSCDC)

The dynamic version of SCDC works just like DETDC except that at each step
of the compression/decompression processes, DSCDC has to check whether the
current value of s (and ¢) remains well tuned or if it should change. To keep s and
¢ tuned as compression/decompression progresses, DSCDC compares the size of the
compressed text assuming that the values s — 1, s, and s + 1 were used for coding
up to current word w;. If the compressed text becomes smaller by using either s —1
or s + 1 instead of s, then s is changed properly from now on. Therefore, during
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the coding/decoding of a word/codeword, the value of s changes at most by one.
Other heuristics are described in [Farina 2005].

3. DYNAMIC LIGHTWEIGHT END TAGGED DENSE CODE

Dynamic Lightweight End Tagged Dense Code (DLETDC) is based on DETDC, but
it avoids the overhead of keeping the model up-to-date in the side of the receiver.
This makes it extremely convenient in scenarios where the bandwidth is low and
the receiver has little processing power, such as in mobile applications. The price
to pay is a very slight increase in the processing cost of the sender and a negligible
loss of compression ratio.

In DLETDC, only the sender keeps track of the frequency of each symbol and
maintains the vocabulary sorted by frequency. The receiver, instead, only stores an
array of words indexed by their codewords, with no frequency information. When
a codeword arrives, the receiver decodes it using the standard decode procedure
and obtains the corresponding word position. The receiver does not update the
model at all. Therefore, the sender should inform the receiver of any change in the
words«>codewords mapping. Note that changes in the codeword assignments upon
frequency changes are necessary to maintain good compression ratios. However, the
number of exchanges in the vocabulary is large enough to affect the compression
ratio if all of them have to be informed to the receiver, where they also require
some effort to be processed. Hence, we seek at minimizing the number of exchanges
without affecting the compression ratio.

Our basic idea is to carry out the changes in the words«»codewords mapping only
when the increment in the frequency of a word w; makes it necessary to encode it
with a codeword shorter than its current codeword C;. There is no correspondence
between the word rank (position in the vocabulary sorted by frequency of the
sender) and its codeword anymore, because words may vary their positions without
changing their codewords. That is, changes in the rank of a word do not produce
changes in its codeword except when the codeword must be shorter. Thus, the
sender must maintain an explicit words«scodewords mapping, to encode the words.

When the codeword C}, corresponding to the word w;, must be shortened, we look
for the last word w; such that |C;| < |C;|, and swap C; and C;. Thus, DLETDC
needs two special codewords, C.cronode a0d Csyap. CreroNode Works as in DETDC.
Cswap specifies that the receiver should swap the words at the positions given by
the two codewords that follow Csyap. That is, (Cswap,Ci,C;) indicates that from
now on w; is represented by C;, and w; by C;. This is done in the receiver by a
simple swap of words at positions ¢ and j of the vocabulary array.

Codewords Ceronode and Cigyap can be any unused values, for example the first
two unused codewords. Another choice is to give them fixed values during the
whole process. In our real implementation, we used the last two codewords of 3
bytes, since 3 bytes are by far more than enough in all our experimental corpora.
This choice favors the search speed, as we will see later, although we lose some
compression, because if the next free codewords were used, the length would be
1, 2, or 3. Yet this has few consequences: using the Calgary corpus (described
in Section 5), which has a size of 2 Mbytes, the 3-byte version obtains a file of
1,068,937 bytes (50.16% of compression ratio), whereas the first free codewords
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version produces a file of 1,051,868 bytes (49.35%). In a larger file (ZIFF) of 176
Mbytes, the effect is hardly noticeable, obtaining 62,754,382 bytes (33.88%) and
62,737,208 bytes (33.87%) respectively.

ExaMPLE 3.1. Figure 2 shows an example of the process carried out by the
sender. Assume that, after compressing some text, word "step" is at position 127
in the sorted vocabulary, "many" is at 128, and "bit" at 129, all of them with
frequency 19. The text to be compressed next is "by step bit by bit".

After reading "by", we check that such a word is not in the vocabulary, thus
we add it at the last position (130) and give it the codeword C39. We inform the
receiver of this addition by sending C.cronode and word "by" in plain form. The
next word ("step") is already in the vocabulary and increases its frequency by 1.
Next, we reorder the vocabulary. Assume that "step" remains at position 127.
Then we send codeword Co7.

The first occurrence of "bit" increases its frequency to 20 and then, after the
reorganization, "bit" is relocated at position 128 by swapping it with "many".
However, since Clog (the codeword representing "many") and Ciag (the code for
"bit") have the same size (2 bytes), we continue using Ciog for "many" and Ciag
for "bit". Therefore, C1o9 is sent. For the next word ("by") we send Ci3p.

The next occurrence of "bit" places it at position 127, whose codeword has 1
byte. Then, since in this case Cia27 and Ciao9 have different sizes, we swap those
codewords, associating "step" with Cie9 and "bit" with Cia7. To inform the
receiver of this change, we send the tuple (Cswap, C129, C127). Cspap warns the
receiver to expect two codewords that should be exchanged. The receiver also
understands that the codeword after the Cy,qp indicates the word actually read.

Word parsed by step bit by bit
In vocabulary? no yes yes yes yes
Data sent CC@)y @ Cix Cixn Ci2Ci29Crr
Posgmdepos;\cwepos;cmepos;owepos;@depos;cme
Vot 127] step ™ Cror | 127] step | Cror [ 127] stepACrpl 127] step] Cuor | 127] sten? Crar | 127] it 7| Cor
‘ocabulary
state 128| many" Crog | 128| meny'*\Cras | 128| meny'™ Cuzg | 128| bit FCi0} 128| bit | Crao | 128| sten™] Cino
120 bit | Cioo|129] bit | Cize|129] bit | Cize|129] many’} Crze] 129] meny™ Crzs | 129] meny Cs
130 - |Co|130| by (Ci)130| by '[Cixo[130| by '|Cia[130| by *|Cis|130| by 2| Ciso
Fig. 2. Transmission of "... by step bit by bit".

We can find some similar ideas in a previous adaptive coder [Turpin and Moffat
1997a]. In order to improve the throughput of the process, the code only changes
when the “approximate frequency” of a source symbol varies after a new occurrence.
As DLETDC, which avoids changing the codeword assignment unless compression
ratio would suffer, the use of this approximate frequency results in fewer codeword
changes than in the case of using the actual frequency. This approximate cod-
ing assumes a controlled loss in compression ratio due to this delayed update of
codewords. Yet, DLETDC does not lose compression due to its deferred codeword
assignments, as it assigns shorter codewords to source symbols as soon as the ETDC
compression scheme can take advantage of such a new codeword assignment.
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3.1 Data structures

The main requirement to design the data structures for the sender is the need to
identify blocks of words with the same frequency, and to be able to promote a word
to the next block fastly when its frequency increases.

The data structures used by the sender and their functionality are shown in
Figure 3. The hash table permits fast searching for any source word w; to obtain its
current position ¢ in the rank (ordered vocabulary), as well as its current frequency
and codeword. It keeps in word the source word, in posinVoc the position of the
word in the rank, in freq its frequency, and in codeword its codeword.

posInHT is a vector where the i*" entry points to the position in the hash table
that stores the ** most frequent word in the vocabulary. Finally, vector top keeps
a pointer to the entry in posInHT that points to the first (top) word with each
frequency. If there are no words of frequency f; then top[f;] points to the position
of the first word j in the ordered vocabulary such that f; < f;. A variable last
storing the first unused vocabulary position is also needed.

ABABBCC ABABBCCC

2 word C A B 2 word C A B

Q o

£) posinVoc 2 1 0 &) posinVoc 1 2 0

@ freq 2 2 3 § freq 3 2 3

< |codeword Cy Co Cy < | codeword C, Co Cy
5/6 7 1.2 3 4 5 6 7 8

g g

£ o o % wp[I3[2]0]0]

| 4 S 0 1 2 3 4

12} 172}

g{ posInHT | ] g{ posinHT[ 7 [3[5] [ ]| |last=3

2 4 H 0o 1 2 3 4

Fig. 3. Data structures of the sender.

When the sender reads a word w;, it uses the hash function to obtain its posi-
tion p in the hash table. If w; is a new word, the algorithm sets word[p] = w;,
freglp] = 1, posInVoc[p] = last, codeword[p] = Ciast (Ciast = encode(last)), and
posInHT[last] = p. Then, the variable last is increased and finally the codeword
CleroNode 18 sent followed by the word in plain form.

If w; is already in the hash table, word[p] = w;. After reading f = freqp),
freg[p] is incremented. The position of w; in the vocabulary array is obtained as
i = posInVoc[p] and its codeword as C; = codeword[p]. Now, word w; must be
promoted to the next block (the one containing words with frequency f + 1). For
this sake, the sender algorithm finds the word that is the head of its block j = top|[f],
and the corresponding position & of such a word in the hash table h = posInHT[j].
Now, it is necessary to swap words ¢ and j in vector posInHT. This requires
exchanging posInHT][j] = h with posInHT[i] = p, setting posInVoc[p] = j and
posInVoclh] = i. Once the swapping is done, j (the new position in the ordered
vocabulary of w;) is promoted to the next block by setting top[f] = j + 1.

If the codeword C'; has the same length as C;, then C; is sent because it remains
as the codeword of w;, but if C; is shorter than C;, then codeword[h] = C; and
codeword[p] = C; are swapped and the sequence (Csyap, Ci, C;) is sent. The re-
ceiver will understand that words at positions ¢ and j in its vocabulary array must
be swapped and that word w;, which from now on will be encoded as C;, was sent.
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In the receiver, a simple words array word and a variable last are the only
structures needed, as explained. Words in word array are sorted by codeword,
and two words are swapped always following sender instructions. New words are
introduced in the vocabulary array as they arrive, always at the last position.
Therefore, there is an implicit mapping between word position and codeword, as in
ETDC. This fact permits using the same decode procedure of ETDC and DETDC.

The pseudocodes for both sender and receiver algorithms are available at the web
address http://rosalia.dc.fi.udc.es/codes/lightweight.html.

3.2 Searching the compressed text

The problem of performing direct search over text compressed with previous dy-
namic methods is that the codeword used to encode a specific word changes many
times along the process. Therefore, following those changes requires an effort close
to that of just decompressing the text and then searching it.

However, in DLETDC we expect very few codeword swaps, thus codewords as-
signed to words should vary much less frequently than in previous adaptive tech-
niques. Moreover, those swaps are explicitly marked with a Csyaep. This makes
it possible to scan the arriving text looking for some specific patterns, paying the
overhead of re-preprocessing the patterns upon such changes. The first occurrence
of a searched word will appear in plain form, preceded by codeword Ccronode-
At that point, codeword Cj,s becomes the pattern we must look for to find our
word (and last is the number of C.eronode codewords we have seen at that point).
That codeword may change again later, but such a change will be signaled by the
codeword Cjyqp. Thus, the scanning algorithm can easily follow the evolution of
the search patterns across the compressed text.

We apply a Boyer-Moore-type search algorithm, specifically Set Horspool [Hor-
spool 1980; Navarro and Raffinot 2002]. We have to use the multi-pattern version
of Horspool, since we always have to search for Cyyqp (plus the searched patterns)
in order to detect codeword changes. Set Horspool is the best choice to search for
a moderate number of short patterns on a large alphabet (in our case, it is close to
uniformly distributed over 256 values). Set Horspool builds a reverse trie with the
search patterns to speed up comparisons against the text.

However, we have to consider several special issues when searching DLETDC
compressed text. Assume that we are searching for patterns pi,ps,...,pr. We use
P(p;) to denote codeword C.ronode followed by the plain version of the pattern, and
C(pi) to denote the codeword representing p; at a certain moment. Note that P(p;)
cannot be confused with a codeword because it starts with Cleronode. Actually, we
do not search for the full P(p;) strings, but just by C,eronode- The reason is that we
always have to 100k for Ceronode t0 keep track of the current vocabulary size (value
last, see next paragraph). In any multi-pattern Boyer-Moore-type searching, when
longer and shorter patterns are sought, the most efficient choice is to truncate all
to the shortest length and verify them upon occurrence of their truncated version.
The truncated part of the P(p;) is CLeronNode (choosing other truncated substring
would only increase the probability of verifying). We store all the search patterns
p; that have not yet been found in an auxiliary trie, which is used to verify the
occurrence of those patterns upon each occurrence of Ceronode-

Initially, the search trie has only the codewords C.eronode and Cypap. Each time
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CleroNode codeword is recognized, the algorithm traverses the auxiliary trie with
the characters of the plain string that follows C,cronode- If Some p; is detected, then
we have found the first occurrence of P(p;) in the text. The search trie is updated
by inserting the corresponding pattern C(p;) (which initially is the current Cj,s:
value), and the auxiliary trie is also updated to remove the pattern p;. In any case,
we restart the search at the end of the plain string (recognized by a zero-character
terminator). Note that, when the auxiliary trie becomes empty, this check is not
needed anymore. At this point we can remove C,eronode from the search trie, as
we do not seek for any new pattern nor need to know Cj,s: again.

The codeword Ciyap is always in the search trie, as the codeword of a search
pattern can be changed by the sender by using Cswaep as the escape codeword.
Upon finding a Cswap, the search algorithm reads the next two codewords and
checks if one (or both) of them is in the trie. If it is, the trie is updated to replace
C(p;), the current codeword of the searched pattern p;, by its new codeword.

As mentioned, we preferred to use for C,eronode and Ciywap the last 3-byte code-
words because it leads to a better search speed. The improvement in search speed
comes from two combined effects. First, both Ccronode and Csyap must be explic-
itly represented in the trie, so if we used the first two free codewords to represent
them, we would have to update the search trie each time a new word arrived. Sec-
ond, using fixed 3-byte codewords permits longer shifts in the Boyer-Moore-type
algorithm.

3.3 Swaps and evolution of new words

One key issue to understand the compression performance of DLETDC is to deter-
mine the overhead it produces over DETDC due to the need to notify the swaps.
In this section we show, both experimentally and analytically, that this overhead is
very low and vanishes as more and more text is transmitted.

The analytical result is based on Zipf’s law [Zipf 1949], an empirical law widely
accepted in IR, that roughly approximates the distribution of words in the vocab-
ulary. According to Zipf’s law, the i-th most frequent word in a text of n words
appears An/i’ times, where 6 > 1 is a constant that depends on the text size, and
A= ﬁ is a correction factor to ensure that the frequencies add up to n.

>1

We recall that, using a SCDC or ETDC coding scheme, there are some positions
in the sorted vocabulary, W7 = ‘;:11 (s =c¢ =128 in ETDC) for k =1, 2,...,
where the codeword size changes. To be aligned with Zipf’s formulas, let us note in
this section the word positions as starting in 1, not 0. Thus, the word at position
W is encoded with a codeword of length k, whereas the word at position W)} + 1
is encoded with k£ 4 1 bytes.

In DLETDC, if a change in frequency makes a symbol move from a position after
W} to a position before (or equal to) W}, then a Ciyqp symbol will be transmitted.
In other words, this swap will occur if the incremented frequency of a symbol
at a position j > W} is not smaller than the frequency of the symbol at position
i = W;. Assuming Zipf’s law, this is equivalent to the condition An/i%+1 > An/i°.
Solving for j, the symbols that will produce a swap around codeword i = W
when incremented are those at positions i + 1 to j = i(An)Y/?/(An —i%)1/?. The
probability of each new symbol falling between ¢ + 1 and j is
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where n is the current size of the text. Therefore, the total number of swaps due
to crossing position ¢ as the text size grows from 1 to n is at most

WA)Z_“/;W <1 - (1 B 2_1)1_1/9> dr. (1)

where we have disregarded the first i /A text words, necessary to reach the vocab-
ulary cell ¢ under Zipf’s law. The integral could be solved only for some particular
values of 0. In particular, for # = 2, the primitive is

()« B (= B 2)) - oo

(note we are treating A and i as constants and z as the asymptotic variable).
Replacing in Eq. (1), we get that for § = 2 the total number of swaps is of the
form §Inn 4 O(1). The integral can also be solved for § = 1/k and § = 2/k, for

any integer k > 1. In all these cases, Eq. (1) gives 4 Inn+ O(1) = w + O(1).
We conjecture this is the general solution, and verified the accurateness of our
conjecture for a large number of values of # > 1, by integrating numerically.*.

Conjecture: Under Zipf’s law with parameter 6, the number of swaps produced
between codewords of length k£ and k£ + 1 in a Dynamic Lightweight Dense Code
with parameters (s, ¢), after processing n words, is % Inn+ O(1).

Thus, we have good reasons to expect that the number of swaps due to each W}
is ©(logn) and also proportional to W; ~ 128%. 5

We have verified this logarithmic growth experimentally with the ZIFF collection,
described in Section 5. This file has 40,627,132 words, and a vocabulary of 237,622
(different) words. The 6 value that better approximates Zipf’s law on this collection
is § = 1.744. With this vocabulary size, and using s = ¢ = 128, there are only two
limits between zones, at W = 128 and Wy = 128 + 1282,

In the process, 31,772 swaps were produced. This means that only 0.078% of
the frequency changes implied a swap. In addition, most of these swaps were
produced in the first stages of the compression, as it can be seen in Figure 4. As a
comparison, in the case of DETDC, the number of swaps was 8,777,606 (21.605%

4If we opt for a simplified lower bound given by multiplying by n instead of integrating over all
the n values, we formally obtain the form /6.

5The original Zipf law used @ = 1, which has been shown not to hold in natural language text
[Baeza-Yates and Ribeiro-Neto 1999]. Yet, despite the development is rather different, the result
for # = 1 can be proven to be ilnn + O(1), thus fitting smoothly in our general conjectured
formula.
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of the 40,627,132 processed words). That is, DETDC produced around 278 times
more codeword changes than DLETDC.

x 10

25
__ 800 =
> = s 2
= 700 H 2 15
3
u— B ©
5 650 S R
é oo R é — g —_—y= | si f bul
2 550 y = real number of swaps 3 y = real number of swaps|| £ 05 Vv = real size 054\éoca ulary
500 o y=11.9+418In(T) o y=-92556 + 6484 In(T) By =7.466 T
0 0
0 5 10 15 0 5 10 15 0 05 1 15 2
Size of text (T) © 10 Size of text (T) «10 Size of text (T) x10°
(a) (b) (c)

Fig. 4. Swaps of (a) 1 and 2 byte, and (b) 2 and 3 byte codewords. (c¢) Number of new words.

Note that most of the changes (30,971) are between codewords of size 2 and 3.
This is expected from our formula: The shape of the Zipf distribution predicts a
bigger difference in frequency between words 128" and 129*" than between words
in positions 128 + 1282 and 128 + 1282 + 1.

Figure 4(a) shows the number of swaps between codewords of length 1 and 2.
The curve can be reasonably approximated with the model y = b+ a - InT for
a = 41.8 and b = 11.9, where T is the text size in bytes®.

Figure 4(b), which plots the number of swaps between codewords of length 2 and
3, exhibits an almost perfect logarithmic growth of the form y = b+ a - InT, with
an excellent fitting for a = 6,484 and b = —92, 556.

The values predicted with the formula a = V—Igé Inn are 73.4 for Figure 4(a) and
9,468 for Figure 4(b), which are of the same order of magnitude of the actual
numbers. This is remarkable for a rather coarse law such as Zipf’s, and confirms
our theoretical predictions.

Figure 4(c) also shows that the number of different words (v), as expected, follows
Heaps’ law [Heaps 1978], v = K - T%, 0 < 8 < 1, for K = 7.468 and (3 = 0.546.

Note that we have used Heaps’ and Zipf’s empirical laws to carry out our analysis.
These have been successfully used for decades to model the behavior of Natural Lan-
guage text collections. Of course, one can build worst-case (artificial) texts where
these laws do not hold. More interesting is the fact that there could be Natural
Language text collections that deviate from those laws, for example those obtained
by concatenating texts from different sources or languages and then reordering the
documents, such that the word statistics vary relatively fast along the text.

We empirically studied the behavior of DLETDC in these scenarios. Our first
experiment entailed reordering the documents of collection ALL (described in Sec-
tion 5), which includes English articles from widely different areas. We made two
partitions: The first divided the corpus into documents of around 1 Kbyte, and the
second of around 10 Kbytes. Those documents were then randomly reordered. The
compression ratio achieved by DLETDC was 33.69% without reordering, 33.70%

6Note that n, the total number of words, depends on T, the text size (T ~ 4.5n).
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when reordering 1 Kbyte partitions, and 33.68% when reordering 10 Kbyte parti-
tions. The second experiment used a multilingual corpus obtained by concatenating
collection ALL with a corpus of news from the Spanish agency EFE. DLETDC com-
pressed the resulting corpus of 1.5 Gbytes to 35.63%. When reordering 10 Kbyte
partitions this raised to 35.64%, and to 35.67% with 1 Kbyte partitions.

This shows that text collections should be rather particular to make a signifi-
cant difference in this respect. Note that, in monolingual corpora, changes in short
codewords (1 vs 2 bytes) are very unlikely, as these depend on the frequency of the
stopwords, which is independent on the topic of the documents. In the multilin-
gual experiment, the compression ratio worsens mainly due to the increase of the
vocabulary size, revealing that frequency changes do not have a significant impact.

4. DYNAMIC LIGHTWEIGHT (S,C)-DENSE CODES

Applying the same guidelines followed to create DLETDC from DETDC, a Dynamic
Lightweight (s,c)-Dense Code (DLSCDC) can also be developed.

We developed a first trivial approach, which we denote DLSCDC™?, to improve
the compression ratio achieved by DLETDC, based on the experiences of applying
SCDC and DSCDC to texts, which showed that the optimal value of the parameter s
usually lies in the range s € (180...200). DLSCDC?" simply fixes s = 190 (and ¢ =
66), and applies the encoding/decoding scheme of SCDC instead of that of ETDC.
Results are interesting, because the compression ratio of DLETDC is improved,
whereas the compression and decompression speed worsen just very slightly.

A true DLSCDC, however, should be able to dynamically adapt the parame-
ters s and ¢ to any source text. Therefore, apart from the process carried out by
DLETDC, DLSCDC must also deal with maintaining s (and c¢) well-tuned. Ob-
viously, in order to obtain a lightweight receiver, the sender must deal with that
effort, and notify the receiver of the changes. A new escape codeword, Cschange, is
added to warn the receiver about a change on s (and ¢). As in DLETDC, codewords
CeroNodes Cswap, and Cschange can be any unused codewords. In our implemen-
tation, we used fixed 4-byte codewords. For usual values of s around 190, using
these escape codewords allows to encode more than 50 million words”. Again, this
choice has little effects in the compression ratio. The compressed version of the Cal-
gary corpus has 1,105,005 bytes (51.82% of compression ratio) with 4-byte escape
codewords, 1,064,346 bytes (49,94%) in the case of using 3-byte escape codewords,
and 1,047,092 bytes (49,13%) with the first free codewords version. As expected,
the effect is even less noticeable in a larger corpus like ZIFF, where the com-
pressed version occupies: 61,998,933 bytes (33.47%), 61,711,832 bytes (33.31%),
and 61,694,413 bytes (33.30%), respectively, depending on the escape codewords
used.

As in DLETDC, the vocabulary of the sender is maintained ordered by codeword
length. An important difference with respect to DLETDC is that the limits of the
ranges of words that are encoded with the same number of bytes (k) are not fixed

“In DLETDC, C.eronode and Cswap were 3-byte codewords. This allows to code up to W3 =
2,113,664 different words, enough even for huge texts. Yet, by setting, for example, s to 190 (and
¢ = 66), the amount of words that can be coded with up to 3-byte codewords decreases drastically
to W3190 = 840, 370 words. Therefore, in DLSCDC, we use 4-byte escape codewords.
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in DLSCDC. That is, the range of word positions that are encoded with k bytes,
[W:_,,W}), depends on s and c¢. Note that, indeed, all the codes depend on a
single change in (s,c¢); we will return to this issue later. In particular, when s
changes from so to si, words in the range [W.°,W;*), k > 0 and W;° < W;*,
(or in [Wpr, W.°), if W' < W;°) might be left with a codeword of inappropriate
length; obviously, this worsens compression. The following example illustrates.

§=132, C=124

8| 8 8 7 7 6 6 6 5
Yodg ago | galaxy| Luke | time | away | Leia | Solo | star | land

Cieaos | Cieaon | Cresor | Cresos | Cresas| Cresot | Creson| Cresoz | Cresoa | Cresos
16498 16499 | 16500 16501 16502 16503 16504 16505 16506 16507
W2

S$=131, C=125

8 7 7 6 6| 5|
Yocbg ago8 galax?/ Luke | time | away | Leia | Solo star6 land

**1 Ciea0| Cieagn | Cies07} Cresos ) Cresos | Cresot | Cresoo | Ciesoz [ Creso4 {Cresos,
" 16498 16499 16500 16501 16502 16503 16504 16505 | 16506 16507
W, W

Fig. 5. Scenario after a change of s and ¢ in DLSCDC.

EXAMPLE 4.1. Figure 5 shows the state of the vocabulary of the sender at a
given point of the compression process. For each word, we show its number of
occurrences, the word itself, the codeword that is currently assigned to it, and its
position in the ordered vocabulary. For example, the word “Yoda” is located at
position 16,498, has appeared 9 times, and its current codeword is Cig49s. Having
s = 132, words from position 16,500 onwards are encoded with 3-byte codewords,
and their codewords will not change unless new occurrences make them move before
position 16,500 (W432). This works fine if s does not change. However, if s decreases
from 132 to 131, words in the range [16500, 16505] (i.e., [W432, W431)) might have
codewords of an inappropriate length. Specifically, words "galaxy" and "Luke"
now deserve 2-byte codewords, since they are ranked before W33!, yet they still
have 3-byte codewords, since C6507 and Cigs0s correspond to positions after Wy3t.

Due to the previous misplacement, there should be words having the opposite
situation. That is, words "star" and "land" are encoded with 2-byte codewords,
whereas they deserve 3-byte codewords. Observe that after the change on s, their
codewords (C1es04 and Cigs05) correspond now to positions prior to W43t, that
is 2-byte codewords. However, their positions are ranked either at or after W33!,
which implies that they should have 3-byte codewords.

Therefore, our initial idea was that, after each change on the parameter s, the
sender should swap the codewords of all those words that are assigned wrong-length
codewords, and then notify which words need to be swapped in order to keep the
receiver synchronized with the sender. In practice, we decided to perform swaps
only for the words with a 1-byte codeword that deserve a 2-byte codeword and
those that own a 2-byte codeword but are ranked before W7. We avoid swapping
words around W}, £ > 1, because the number of swaps that could be needed
among words around W3, and also around W3, is usually too high (for example,
assuming that at a certain moment the encoder is using codewords with up to 4
bytes, increasing s from 190 to 191 could produce up to 1+ 122 + 20,903 = 21,026
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swaps). Moreover, since the number of occurrences of words upon W5 is very
low (usually 1 — 2) the number of bytes needed to notify all those swaps would
be larger than the extra bytes paid for encoding one occurrence of some of these
low-probability words with one extra byte. In addition, finding the words with a
wrong-length codeword and performing the swaps implies a cost in time that could
lead to non-real time transmission.

In order to empirically verify the convenience of this heuristics, we used again the
ZIFF collection. This file has 185,220,215 bytes, and during its compression, the
DLSCDC compressor performs 3,519 changes on s. Running DLSCDC performing
swaps only between words with codewords of 1-2 bytes, yields a compressed file
of 61,988,933 bytes (33,47% of compression ratio). When we force our compressor
to swap codewords of all sizes, the compressed file has 62,513,913 bytes (33,75%).
That is, the cost to notify the swaps outweighs the savings due to better coding.

Observe that, after a change on s and considering only the misplacement of
codewords of 1-2 bytes, the interval where there can be words with codewords of
wrong length ([W7°, W) or [W;*, W;°)) only includes one position, since s changes
at most by one. Therefore, changing s from sy to s; will imply notifying only one
swap to the receiver. This swap will involve the words at positions 5 and posSwap,
where 8 = min(so, s1), and posSwap is the rank of the word that is currently
encoded as Cg. Next, the sequence (Cschanges 51, CposSwap) i transmitted. Then,
the receiver performs a swap between the words at positions § and posSwap =
decode(Cposswap)- The encoder sends Cposswap (instead of posSwap), as it could
require more than one byte to be encoded.

4.1 Data structures

The sender in DLSCDC uses basically the same data structures shown in DLETDC.
However, vector codeword, which stored a codeword C, to handle the explicit map-
ping word«codeword in DLETDC, keeps just the number x in DLSCDC. Using
this number x, the corresponding codeword can be obtained as C, = encode(z, s).
Note that this is mandatory in DLSCDC as the parameter s can change through-
out the compression process. Moreover, a new vector cwPos, containing v elements,
permits locating the word 7 in the vocabulary that is currently being encoded as Cj.
That is, cwPos[j] = ¢ iff codeword[posInT HJi]] = j. This allows us to locate the
word posSwap = cwPos[f] in O(1) time, which is needed each time the parameter
s changes. The data structures used by the sender are shown in Figure 6.

The sender process in DLSCDC is similar to that of DLETDC, with two main
differences: i) It has to maintain vector cwPos updated to follow the changes in the
position of words and codewords, and i) the sender has also to modify the value s
(and notify it to the receiver) when needed.

When the sender reads a word w;, it hashes it to p = hash(w;). Then if w; is
a new word, the only difference with respect to DLETDC process for this case is
that the cwPos entry should be initialized, that is cwPos[last] = last.

If w; was already in the vocabulary, the sender obtains its rank as i = posInV oc[p|
and its codeword as C; = encode(codeword[p], s). Promoting w; to the next fre-
quency group involves the same operations as in DLETDC. This process includes
obtaining f = freg[p], the rank of the first word with frequency f (j = top[f]),
the position in the hash table of such a word (h = posInHT[j]) and its codeword
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(C; = encode(codeword[h],s)). If C; has the same length as C;, then C; is sent
and cwPos[codeword]|p]] is swapped with cwPos[codeword[h]] to maintain vector
cwPos up-to-date. However, if C; is shorter than C; then codeword[h] = C; and
codeword[p] = C; are swapped and the Csyqp tuple is sent.

In Figure 6, assuming that the text “ABBCDEF” has already been processed (left),
it is shown how the sender deals with a new occurrence of word “D”. Dark boxes
indicate data that is modified during the process. Since “D” is located at slot 4
in the hash table, we have p = 4, ¢ = 3 = posInVocld], f = 1 = freqlp], and
j = top[l] = 1. Then we obtain h = 5 = posInHT[j], and compute C; = C5 =
encode(codeword[4], s) and C; = Cy = encode(codeword[5],s). Next, we swap
posInHT[1] < posInHT[3] and posInVoc[4] < posInVoc[5], and promote word
“D” to the group of frequency 2 by setting top[l] = 2 and freq[4] = 2.

Now the sizes of C; and C; have to be compared to check if a swap has to
be performed. Assuming that in that moment s = 4 (Figure 6 (b)), C; and C}
have the same size. Hence no swap between codewords takes place, and only an
exchange between cwPos|[codeword[4]] and cwPos[codeword[5]] is done. However,
if we assume that s = 3 (Figure 6 (c)), then the size of C; is 1, whereas the size of
C; is 2. Therefore, a swap between codeword[4] and codeword|5] is performed.

AB ABBCDEFD s=4.no swap ABBCDEFD s =3, swap C:.Co
2 word | F C word | F B|[D|A E|C word [ F B|[D]|A E|[C
%posanoo 5 2 posinVoc | 5 0|1]3 4 [ 2] posinvoc| 5 01113 412
] freq| 1 \ freq| 1 212 |1 1 1 freq| 1 21211 1 1
< |codeword | 5 A codeword | 5 1130 4 |2 codeword | 5 110|3 4 |2
1 8 172 3 4 5 6 7 8 17 2 3 4 5 6 7 8
@
E{ top[ - J2]0J0JO0JO] top[ - J2J0JoJo0JoO]
k] 0 1 2 3 4 5 0 1 2 3 4 5
. chosE owpos BT 0 [2 [T 4[5 ]lst=6  owpos| 1[0 [2[3 4[5 Jst=56
B4 posinHT[ 3] posinHT[ 3 [4 T8 [6]7]1] posinHT[ 3 [4 T8 [5]7 1]
H 0] 0 1 2 3 4 5 0 1 2 3 4 5

v

(a) (b) (c)

Fig. 6. Data structures of the sender.

After having processed the word w;, the sender calls the algorithm that modifies
the value of s if needed. When the value of s changes, the sender has to swap
the codewords associated to the words ranked 8 and posSwap = cwPos[f], and
notify such a swap and the new value of s to the receiver. As explained in the
previous section, if the value of s was decreased, then § = s is set, otherwise [ is
set to the previous value of s. Once ( is known, we find posSwap = cwPos|f].
Then the slots in the hash table associated to § and posSwap are obtained as p =
posInHT [posSwap] and h = posInHT[f] respectively. Next the codewords associ-
ated to 8 and posSwap are swapped by exchanging codeword[p] with codeword[h],
and vector cwPos is updated by swapping cwPos[3] with cwPos[codeword[h]]. Fi-
nally, the receiver is informed that the words in positions 8 and codeword[h] have
to be exchanged, and is also notified about the new value of s. As seen, this is
done by sending (Cschanges S, Cposswap)- Figure 7 shows the data structures of the
sender that are modified when s is decreased from 209 to 208. Again changing data
is shown darkened.

Apart from the variable s, the data structures used by the receiver are exactly
the same as in DLETDC. Therefore, only a word vector, and the variables last and
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Initial state S0 =209 State after change s=20
word ... B .. Al .. word ... B .. Al ..
posinVoc ... 208] ... 1011 ... posinVoc ... 208 ... 101 ...
codeword ... |- 691 ... 208] ... codeword ... 208 ... 69| ..
=/ 39 40 55 56 = 39 40 55 56
cwPos .. [208] .. [ P J101] . cwPos .. [101] .. T | Je08] ..
posinHT _--- [ .. 40) ... posinHT - | | .. |56] [40] ..
- 69 101 208 - 69 101 208
posSwap [

Fig. 7. Data structures of the sender modified after a change on s.

s are needed. As in DLETDC, the receiver has only to decode each codeword Cj
to obtain the rank ¢ = decode(C;, s) of the word w; associated to C;, and to follow
sender instructions when an escape symbol is received.

The pseudocodes for both sender and receiver algorithms are available at the web
address http://rosalia.dc.fi.udc.es/codes/lightweight.html.

Removing the cwPos vector. Based on our experimental results, which showed
that the number of changes of the parameter s is very small, an improvement of the
DLSCDC compressor can be done. As shown, maintaining cwPos up-to-date upon
swaps between words or codewords, involves performing some operations each time
a word is processed. This additional task leads to some loss in the compression
time of DLSCDC with respect to DLETDC.

In practice, using a sequential search for the value posSwap is much simpler and
faster than maintaining the vector cwPos. Note that this sequential search does
not need to start at the beginning of the vocabulary and traverse all of it, but
can be done in a smarter way. On the one hand, if s decreases from sy to sg — 1
then 8 = sy — 1, and it is known that posSwap < 3. Therefore, we have only to
search for posSwap in the range [0... ] (in decreasing order). On the other hand,
when s is increased from sg to so + 1, we know that 8 = sg and posSwap > 3.
In such a case, the search process is performed through the range [3...v). Such
a search process involves only iterating over the words ¢ in the chosen range while
codeword[posInHTYi]] # 3. At the end, we obtain posSwap = i.

In practice, searching for posSwap sequentially instead of using vector cwPos
improves the compression speed by around 6-8%. Thus, the empirical results for
DLSCDC in Section 5 refer to the faster and simpler version of the compressor.

4.2 Searching text compressed with DLSCDC

Searches using Boyer-Moore type algorithms can also be performed directly inside
the text compressed with DLSCDC. However, there exists one important difference
with respect to the searches performed over text compressed with DLETDC.
Apart from the detection of C.cronode;s Cswap, and the codewords C; associated to
any search pattern p;, when using DLSCDC the searcher must detect the codeword
Cschange, Which indicates that a change on the parameter s takes place. Note
that when s changes from sy to s1, the (s,c)-Dense encoding varies for all the
symbols. Therefore, the searcher has to remove from the trie all the codewords C;
associated to the search patterns p; that have already appeared in the text, and
add the updated codewords C;* = encode(decode(C;, so), s1). Of course, since any
Cschange implies also a swap between two codewords Cjg and Cposswap, the searcher
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swaps the codewords associated to any search pattern p; such that C; = Cposswap
or CVZ = 6

Another peculiarity of the DLSCDC code defined up to now is that it is not yet
searchable (using a Boyer-Moore type algorithm), as false matchings might occur.
However, they are easily avoided by ending each sequence (Cschanges S; CposSwap)
with a byte set to zero (to ensure that it is always a stopper value). The problem
could appear because, when s decreases, the last byte of the codeword Cposswap
might become a continuer. Therefore, if the codeword following the Cschange tuple
is a suffix of the codeword associated to a search pattern, a false match could
be notified. Fortunately, the number of changes of s is so small (under 4,465
in our experiments) that adding this extra byte does not noticeably worsen the
compression ratio.

4.3 Evolution of swaps and changes on s

Determining the overhead of DLSCDC with respect to DSCDC involves studying
two aspects: the number of changes of the parameter s, and the number of swaps.

We verified empirically that the number of changes on s is very small. During the
compression of the corpus ALL, described in Section 5, there are 4,465 changes on
s. In general, at the beginning of the compression process, the number of changes
on s grows fast, and then the slope of the curve becomes less steep. In the ZIFF
corpus, from the 3,519 changes on s in total, 20% of the changes occur when the
first 10% of the text is processed. After this, the growth follows fairly well the
model y = a-T (with a rather small constant a), where y is the number of changes
on s produced after processing T bytes of text. This can be seen in Figure 8 (a),
which shows the number of changes on s as the ZIFF corpus is compressed.

On the ZIFF corpus, most of the 4,570 swaps between codewords of 1 and 2
bytes appear during the processing of the first 10% of the file, as it is shown in
Figure 8 (b), and as expected, most of the swaps (75,197) occur between codewords
of 2 and 3 bytes (see Figure 8 (c)).

x10° x 10° x 10*

= 5 8
>
" = —
c 3 >4 >
S 2 9 6
123
g g3 ]
c 2 n n
IS - = 4
= o o
2 g 2 5]
S] a o
51 E =
2 S = =1
£ s y=real number of changes on s =1 = y=real number of swaps = s y=real number of swaps
2 O y=2619+1810°T O - y=-226+1.7-10°° T+ 88 In(T) O -+ y=-1.4-10>+ 1.8-10"* T+ 9581 In(T)

0 0 0

0 5 10 15 0 5 10 15 0 5 10 15
Size of text (T) % 10 Size of text (T) x 10 Size of text (T) % 10
(a) (b) (c)

Fig. 8. (a) Changes on s, swaps of (b) 1 and 2 byte codewords, (c¢) 2 and 3 byte codewords.

From the 4,570 swaps between codewords of 1 and 2 bytes, 3,519 swaps are di-
rectly attributable to changes of s. To cope with these extra swaps, in our least
square fittings, we add an additional linear factor to our logarithmic model, obtain-
ing consistent results (see Figure 8 (b)).
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Regarding the words around W5, as shown, each change on s could leave several
codewords with incorrect length (e.g., 124 if changing from s = 190 to s = 191). Let
us consider again the scenario depicted in Figure 5. After a decrease of s from 132
to 131, words "galaxy" and "Luke" remain with codewords of 3 bytes, although
they deserve 2-byte codewords. However, the next occurrence of any of these words
can produce a regular swap. For example, let us consider a new occurrence of
"galaxy": after increasing its frequency, it is swapped with the word "ago", since
this is the first word in the ranked vocabulary with frequency 8. Figure 9 (a) shows
the state of the vocabulary after this swap. Now the sender compares Cig507, the
codeword of "galaxy", with Ciga99, the codeword of "ago", and since Cigagg is
encoded with 2 bytes and Cig507 with 3, the compressor issues a new swap, which
exchanges the codewords of "galaxy" and "ago". The new state of the vocabulary
at the sender is shown in Figure 9 (b). The incorrect length codeword of 3 bytes,
previously assigned to "galaxy", is now assigned to "ago" (that still ought to have
a 2-byte codeword), yet "galaxy" is now more probable and therefore deserves
more the 2-byte codeword.

Again, in order to handle those extra swaps, we use the same model with linear
and logarithmic terms, obtaining good fittings, as it can be seen in Figure 8 (c).

9 9 8 8 7 7] 6 [¢ 6] 5
Yoda |galaxy| ago | Luke | time | away | Leia | Solo | star | land

Ciugs| Cres07| Creaoe| Cresos| Creso3| Cisso1| Cresoo| Cresoz| Cresoa| Cresos

16498 16499116500 16501 16502 16503 16504 16505116506 16507
@)

9| 9 8 8 7 7 6 [¢ 6] 5
Yoda |galaxy| ago | Luke | time | away | Leia | Solo | star | land

CIGAEB C|6499 C;16607 C16508 016533 c;16601 C16500 016532 016604 C|6505

16498 16499116500 16501 16502 16503 16504 16505116506 16507
®)

Fig. 9. Scenario after a new occurrence of the word "galaxy" with s = 131.

5. EXPERIMENTAL RESULTS

We used three text collections of different sizes. The small and medium size col-
lections are the Calgary corpus® (CALG) and the Ziff Data 1989-1990 (ZIFF) col-
lection from TREC-2Y, respectively. To obtain the largest collection (ALL), we
aggregated the Calgary corpus, the ZIFF corpus, and several texts from TREC-2
and TREC-4, namely AP Newswire 1988, Congressional Record 1993 and Financial
Times 1991 to 1994. We used the spaceless word model [Moura et al. 1998] to create
the vocabulary, that is, if a word was followed by a single space, we just encoded
the word, otherwise both the word and the separator were encoded.

An isolated Intel®Pentium®-1V 3.00 GHz system (16Kb L1 + 1024Kb L2 cache),
with 4 GB dual-channel DDR-400Mhz RAM was used in our tests. It ran Debian
GNU/Linux (kernel version 2.4.27). The compiler used was gcc version 3.3.5 and
-09 compiler optimizations were set. We measure CPU user time in seconds.

Sftp ://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.
9http://trec.nist.gov.
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5.1 Compression ratio and compression/decompression speed

We split this empirical comparison into two sets. First, we compare DLETDC and
DLSCDC against general-purpose compressors, including: Gzip'® (a Ziv-Lempel
compressor with performance very similar to zip) [Ziv and Lempel 1977], Bzip2!!
(a block sorting compressor) [Burrows and Wheeler 1994], and ppmdi'? (a compres-
sor using an arithmetic encoder coupled with a k-order modeler). Although these
compressors use very different principles, we compare to them because they pro-
vide a measure of the effectiveness of DLETDC and DLSCDC from an end-user’s
point of view. In the case of Gzip three compression options were compared: best
compression (‘-9’), default compression (‘-6’), and fastest compression (*-17).

To measure the effectiveness of the coding scheme exclusively, the second set of
experiments compares DLETDC, DLSCDC, and DLSCDCT" against other tech-
niques that also use word-based modelling. As adaptive compressors, we included
DETDC, DSCDC, and our own implementation of a word-based byte-oriented Dy-
namic Plain Huffman (DPH)!3. Given that one of the features of DLETDC and
DLSCDC is their search capability, to have qualified competitors in this category,
we included the semistatic compressors ETDC and SCDC. Finally, as a baseline, we
added Vbyte, a dynamic word-based compressor that uses the same coding scheme
as ETDC, but does not use any statistical information of the text in order to obtain
a good compression ratio. Vbyte simply assigns the first codeword to the first word
in the text, the second codeword to the second distinct word in the text, and so on.

In any case, compression times consider that compressors are fed with the text in
plain form. In the same way, decompression times include the complete process of
recovering the original text. Finally, we recall that our compression ratios give the
size of the compressed file as a percentage of the original size in plain form (text)
and the compressed file size includes the size of its model.

General-purpose set. The results of this first experiment are given in Table I.

Corpus Size(Mb) Gzip-1 Gzip Gzip-9 DLETDC DLSCDC ppmdi Bzip2

CALG 2.0 43.53 36.95 36.84 50.16 51.82 26.39 28.92

(a) ZIFF 176.6 40.34 34.55 34.47 33.88 33.47 23.04 25.67
ALL 1,030.7 41.31 35.09 35.00 33.69 33.19 24.21 25.98
CALG 0.13 0.34 0.42 0.11 0.12 1.24 0.77

(b) ZIFF 9.47 27.04 31.40 9.17 10.18 98.81 63.02
ALL 56.76 160.01 191.30 58.45 64.13 599.15 375.55

CALG 0.06 0.04 0.05 0.03 0.04 1.31 0.30

(c) ZIFF 3.84 3.38 3.36 2.46 2.44 102.85 25.71
ALL 23.12 21.05 20.98 16.27 15.86 631.09 156.18

Table I. DLETDC and DLSCDC against general-purpose compressors: (a) Compression Ratio (in
percentage), (b) compression and (c) decompression times (in seconds).

It can be seen that ppmdi and Bzip2 yield the best (23-26%) compression ratios.
Our techniques achieve 33-34%, being slightly better than the most effective Gzip

Ohttp: //www.gnu. org.
Hhttp://wuw.bzip.org.
2http://pizzachili.dcc.uchile.cl.
3nttp://rosalia.dc.fi.udc.es/codes/.
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variant. The exception is the small collections (Calgary), where the vocabulary size
is still significant compared to the text size.

With respect to compression times, DLETDC, DLSCDC, and Gzip -1 obtain
the best results, near 1 min/Gbyte, yet Gzip -1 is very ineffective in compression
ratios (40-41%). Both Bzip2 and ppmdi, which achieve the best compression, are
significantly (6-10 times) slower than the others. The Gzip variants that compete
in compression ratios with our dynamic compressors are 2.5-3 times slower.

Finally, regarding decompression times, we remark that Gzip is a very efficient
technique; in fact this is one of its main strengths. However, our lightweight tech-
niques are more than 20% faster than any Gzip variant, and 1040 times faster than
ppmdi or Bzip2.

This shows that DLETDC and DLSCDC offer very attractive tradeoffs for dy-
namic natural language compression. On the other hand, one can argue that
DLETDC and DLSCDC suffer from a higher memory consumption due to their
use of a word-based model. While the amount of the memory used by Gzip, ppmdi
and bzip2 is bounded, DLETDC and DLSCDC must keep the vocabulary (i.e., the
model) in memory.

We verified how serious is the problem in practice, in our setup. During the com-
pression of the ALL corpus (1 Gbyte of text), DLETDC and DLSCDC consumed
around 90 Mbytes, Gzip 720 Kbytes, ppmdi 10 Mbytes, and bzip2 7.8 Mbytes (using
default options when applied). Taking into account that DLETDC and DLSCDC
compressors are designed to run in a normal desktop computer (the sender), 90
Mbytes of memory consumption is perfectly reasonable.

Memory usage for decompression is of special interest, as DLETDC and DLSCDC
decompressors should run over weaker machines such as handheld devices. During
the decompression of the ALL corpus, DLETDC and DLSCDC consumed 16.5
Mbytes, in comparison with 520 Kbytes of Gzip, 10 Mbytes of ppmdi, and 5 Mbytes
of bzip2. Yet, current PDA devices usually have around 128-256 Mbytes of memory,
therefore it is perfectly realistic to assume that they will have enough memory to
decompress any compressed text, independently of its size.

In general, by Heaps’ law, the size of the vocabulary is of the form v = K - T%,
0 < B < 1, which implies that the model grows sublinearly with the text size, as
seen in Figure 4(c). In our experiments, as well as in many others [Baeza-Yates
and Ribeiro-Neto 1999], v is close to O(y/n). Given that the space requirement
of DLETDC and DLSCDC is O(v) integers with modest constants'®, we expect
that the memory requirements for compression and decompression will be small
enough to allow DLETDC and DLSCDC handle large texts in current computer
memories without any problem. Indeed, many inverted indexes assume that similar
vocabulary structures fit in main memory [Baeza-Yates and Ribeiro-Neto 1999].

Another side of the coin is whether those general-purpose compressors can take
advantage of more memory, that is, how would be the comparison if all used the
same memory. With respect to the k-th order statistical compressors, we forced
ppmdi to use more memory'®. By using around 20 Mbytes (instead of 10 Mbytes),
the compression ratio improves to 22.34%, yet at the expense of even worse com-

M The vocabulary size is O(v). Farifia [2005] shows how to keep array top using O(v) integers.
15In the case of bzip2, the use of option -9 did not improve the default results.
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pression times (636.57 seconds on corpus ALL). Thus, as expected, the gaps in
compression ratio and in compression/decompression times just widen as ppmdi
uses more memory.

The case of Ziv-Lempel compressors is more interesting, as we beat Gzip in com-
pression ratio and time simultaneously. We tested software p7zip'®, which allows
using a buffer of arbitrary length. By using a buffer of 32 Mbytes (instead of
32 Kbytes) and arithmetic encoding of the pointers, p7zip consumes 192 Mbytes
when compressing corpus ALL, and 17.3 Mbytes during decompression. Its com-
pression ratios (22.81% in corpus ALL) are clearly better than those of DLETDC
and DLSCDC. Yet, compression times are now much worse, 1939.4 seconds for com-
pressing and 54.03 seconds for decompressing corpus ALL. The result is now similar
to k-th order compressors: it achieves better compression ratio at the expense of
much worse compression and decompression times.

As a conclusion, if we provide the general-purpose compressors with more mem-
ory, to match ours, they will achieve better compression ratio than DLETC and
DLSCDC, at the expense of significantly higher times. So if we want pure compres-
sion ratio, DLETDC and DLSCDC are not the best choice. However, if we want
fast real-time compression and decompression with efficient direct search capabili-
ties (the general-purpose compressors are not efficiently searchable), and reasonable
compression ratios, then DLETDC and DLSCDC are a good alternative.

Word-based compressors. Table II shows the results of this second comparison.

Corpus DETDC DSCDC DPH Vbyte DLETDC DLSCDC DLSCDCTU ETDC SCDC

CALG 47.73 46.81 46.55 55.18 50.16 51.82 49.60 47.40 46.61

(a) ZIFF 33.79 33.08 32.90 38.03 33.88 33.47 33.17 33.77 33.06
ALL 33.66 33.03 32.85 45.00 33.69 33.19 - 33.66 33.02
CALG 0.09 0.11 0.12 0.07 0.11 0.12 0.11 0.16 0.16

(b) ZIFF 8.53 9.64 10.92 6.32 9.17 10.18 9.34 11.89 11.75
ALL 55.31 61.35 71.54 39.55 58.45  64.13 — 75.58 75.20
CALG 0.04 0.05 0.07 0.03 0.03 0.04 0.03 0.03 0.04

(c) ZIFF 3.82 444 7.11 248 2.46 2.44 2.38 2.25 2.55
ALL 25.27 28.62 50.82 17.45 16.27  15.86 — 14.56 15.08

Table II. DLETDC and DLSCDC against word-based compressors: (a) Compression Ratio (in
percentage), (b) compression and (c) decompression times (in seconds).

In compression ratio, DPH, which generates optimal prefix-free byte-codes, ob-
tains the best results. The opposite case is Vbyte, which obtains the worst results
due to poor modelling. The artifacts required to produce a lightweight dynamic
dense code compressor do not introduce differences of more than 0.4 percentage
points with respect to any other dense code variant, if we except the small collec-
tion (where differences can reach 5 percentage points).

Vbyte simplicity makes it unbeatable in compression speed. Due to the manage-
ment of swaps, DLETDC and DLSCDC?" are slightly slower than DETDC. Being
around 10% slower than DLETDC, DLSCDC pays also for the efforts needed to
maintain the parameter s well tuned. DPH, ETDC and SCDC also obtain good

Ohttp://p7zip.sourceforge.net/
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performance, but they are overcome by the dynamic dense compressors, in the case
of DPH due to the complexity of maintaining a well-formed Huffman tree dynami-
cally, and in the case of ETDC and SCDC due to the two passes over the original
text.

With respect to decompression time, DPH is about three times slower than
DLETDC and DLSCDC, which are on a par with the very fast semistatic dense
codes and the simple Vbyte.

To sum up, DLETDC is easier to program, compresses more, and compresses and
decompresses faster than Gzip. This is enough by itself to make DLETDC an in-
teresting choice for dynamic compression of natural language texts. Yet, DLETDC
has other relevant features, as we show in the next section. DLSCDCT? goes even
further, improving the compression ratio obtained by DLETDC while obtaining
results similar to those of DLETDC at compression and decompression speed. The
same is applicable to DLSCDC, which is a bit slower at compression, but is able to
overcome DLETDC at decompression speed and compression ratio. We note that
DLSCDC is almost twice as fast as DSCDC for decompression, hence well deserving
the tag “lightweight”.

5.2 Searching compressed and uncompressed text

We performed single-pattern and multi-pattern searches for patterns chosen at ran-
dom over corpus ALL. We carry out two kinds of comparisons. The first is aimed
at showing how much is gained or lost, at search time, due to having the text in
compressed form. Here we compare searching text compressed with DLETDC ver-
sus searching uncompressed text, either in plain or tokenized form (details later).
The second kind of comparison is among different encoders that achieve compa-
rable compression ratios, in order to show how our new compressors perform, at
text searching, with respect to similar compressors. Here we also include the best
searcher on text compressed with a general-purpose compressor.

We first describe the search techniques that work over text compressed using
ETDC, DLETDC, DLSCDC, DETDC, and Gzip -9. To search text compressed with
ETDC, we use our own implementations of Horspool and Set-Horspool algorithms
[Horspool 1980; Navarro and Raffinot 2002]: Hoorpool for single-pattern searches,
and Set-Horspool for multi-pattern searches. Horspool is the best option to search
for a pattern on a relatively large alphabet (|X| = 256 in the case of ETDC)
[Navarro and Raffinot 2002]. In the case of multi-pattern searches, a Wu-Manber-
based searcher [Wu and Manber 1994] might seem the best choice [Navarro and
Raffinot 2002]. Basically, Wu-Manber is a Set-Horspool algorithm that inspects
blocks of characters instead of individual ones, and computes shift values for such
blocks. When searching uncompressed text, it typically uses blocks of size B = 2-3
characters. The recommended value is B = log|s;(2 - K - £yin), where | is the
alphabet size, K is the number of patterns sought, and ¢,,;, is the length of the
shortest pattern. In Dense Codes, it turns out that Wu-Manber would use |B| = 1,
boiling down to the simpler Set-Horspool algorithm.

The simplest way of searching text compressed with DLETDC, DLSCDC, and
DETDC, is to mark the vocabulary words that match the pattern and then simulate
the decompression processes, reporting occurrences of marked words instead of
emitting all the source words. Since all of the bytes in the compressed file are
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processed, this variant is called all-bytes (or just all).

As shown in Sections 3.2 and 4.2, Set-Horspool algorithm can be used to perform
Boyer-Moore-type searches over text compressed with DLETDC and DLSCDC.
These searchers are tagged (S-H) in the experiments. Recall that the simple Hor-
spool cannot be used here, as we must always search for Csyqp, in addition to the
true patterns.

In DLETDC, DLSCDC, and DETDC, the searcher might only be interested
in counting the occurrences of the patterns (for example to classify documents) or
might be interested in displaying an uncompressed context around each occurrence.
If local decompression is needed, the searcher must not only search for the patterns,
but also be able to rebuild the vocabulary of the decompressor. Those variants are
tagged +dec in the experiments.

As explained, we compare with the best way to search text compressed with a
general-purpose compressor. As far as we know, the best alternative in practice
is LZgrep [Navarro and Tarhio 2005]. We included in our comparison the authors’
implementation!”. LZgrep permits direct searching text compressed with LZ77 (i.e.,
Gzip) and LZW (i.e., Compress) formats [Ziv and Lempel 1977; 1978] faster than
performing decompression plus searching. LZgrep is fastest on Gzip -9, thus we
used this format. We note that LZgrep did not search for more than 100 patterns.

On the other hand, three different algorithms were tested to search the uncom-
pressed text: our own implementations of Horspool and Set-Horspool algorithms,
and the agrep'® software [Wu and Manber 1992a; 1992b], a fast pattern-matching
tool which allows, among other things, searching a text for multiple patterns. Ac-
cording to Navarro and Raffinot [2002], the best option for the single-pattern search
on English text is Horspool. For multi-pattern searches, the best option is the Wu-
Manber algorithm, which is included in our experiment by using agrep.

Agrep searches return chunks of text containing one or more searched patterns.
The default chunk is a line. When traversing a chunk, if agrep finds a search
pattern, it skips the processing of the rest of the chunk. This appreciably distorts
the comparison against the rest of the searchers. To avoid this pernicious effect, we
performed the searches over a modified version of the text obtained by removing
all the pattern occurrences from it, and then scaled the results. More precisely, we
computed the text T’ that is obtained by removing all pattern occurrences from the
original text (ALL corpus). Then we ran agrep -s over T” and we scaled the resulting
times assuming that |T'| = |ALL|. This shows essentially the same statistics and
reflects more accurately the real search cost of agrep.

Finally, following the integer-on-integer searching approach presented by Culpep-
per and Moffat [2006], we show the effect of searching a tokenized text (that is,
words are mapped to integers and the integer sequence is scanned instead of the
source text). In our experiments this type of search is denoted INT32:seq. This
technique is very easy to implement and extremely fast, as the symbols (words)
have now fixed length. We note this is not a compression method, but rather serves
to illustrate how fast the search can be if we do not use variable-length encoding of
the source words in order to achieve compression. As an intermediate alternative,

http://www.dcc.uchile.cl/gnavarro/software/lzgrep.tar.gz.
18ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z
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we also compare the search over Vbyte using Horspool for single-pattern searches
and Set-Horspool for multi-pattern searches.

To choose the search patterns, we considered the vocabulary of corpus ALL, from
which we removed both the stopwords (prepositions, articles, etc.) and the sepa-
rators (sequences of non-alphanumerical characters). Then, following the model
where each word is sought with uniform probability [Moura et al. 2000], we ex-
tracted 100 sets with K words of length L. We considered lengths L = 5,10, and
> 10, and for each length we measured K = 1, 5, 10, 35, 50, 100, 200, 400, and
1000 patterns. We only show the case of lengths L > 10, which gives an advantage
to the uncompressed text searchers, whereas the others are mostly insensitive to L.

Figure 10(a) shows the first experiment, where we compared DLETDC:S-H with
searches over plain text, Vbyte, and INT32:seq. This gives a clear picture of the
search speed of DLETDC with respect to the alternative of not compressing the
text with competitive techniques.
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Fig. 10. Searching for multiple patterns.

As expected from previous work [Ziviani et al. 2000], compressed text search-
ing is several times faster than searching the plain uncompressed text, which was
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described in that work as a “win-win situation”: compressing the text with some
word-based modelling methods achieves a large gain in space and search speed si-
multaneously. Now, the comparison with INT32:seq shows that this gain is mostly
due to the word tokenization that is implicit in the modelling. Searching the tok-
enized text, as a sequence of integers, is extremely fast, even if the “compression
ratio” it achieves is just around 85%. Still, when searching for up to 25 patterns, the
further compression achieved by assigning variable-length byte codes to the tokens
further improves search times. After that point, the Set-Horspool shifts become
short enough on average to degrade the performance well beyond that achieved by
INTS32:seq.

The performance of Vbyte is rather similar to DLETDC:S-H, and slightly better,
again, when searching for many patterns. In fact, this is unavoidable: A better
encoder will find the way to assign shorter codewords to more text words than a
worse encoder. Thus if those words are sought, the Horspool shifts will be shorter
and the search will be slower. To illustrate this point, we also show in Figure 10(a)
the performance of DLETDC:S-H when the 128 most frequent words (i.e., those
receiving a 1-byte codeword) are forbidden from the search (called “searchable
words” in the figure). Now the performance is always better than Vbyte, and
better than INT32:seq for up to 50 patterns.

Figure 10(b) displays the results of the second experiment. We include LZgrep,
all the dense code variants and the plain text searchers. DLETDC:all+dec and
DLSCDC:S-H+dec are not displayed to avoid overloading the figure, given that
their times are practically the same as those of their corresponding version without
the +dec option. In the same way, we removed the data from DLSCDC:all+dec
and DLSCDC:all, as their times are very close to those of DLETDC:all.

DETDC and DSCDC introduced several improvements on previous compressors
in the dynamic scenario [Brisaboa et al. 2008]. Regarding searches, DETDC ob-
tained slightly better times than LZgrep, its main competitor. At that point of
the state-of-the-art, DETDC and LZgrep already achieved search times that made
them preferable to decompression and searching. Yet, as shown in the figure, they
were far from being faster than uncompressed text searching.

However, by breaking the usual symmetry of the dynamic compressors, the
lightweight dynamic dense compressors are now able to overcome the traditional
adaptive compressors by far. Even the :all versions of our searchers are 2.5 times
faster than the best DETDC searcher (note that DETDC is intrinsically of type
:all). Moreover, using Set-Horspool, lightweight adaptive dense compressors obtain
search times that are, at worst, 25% slower than those obtained by the very fast
semistatic compressors, and can be even faster when the number of patterns is not
very high. Finally, we emphasize that searching text compressed with DLETDC
and DLSCDC is, for the first time in the dynamic scenario, faster than search-
ing the uncompressed text. In the case of single-pattern searches, DLETDC and
DLSCDC are from 17%, in the case of long patterns where Horspool over plain text
can perform longer shifts, up to 4 times faster than searching plain text. When
performing multi-pattern searches, DLETDC is usually twice as fast as (and up to
7 times, on short patterns) Agrep and Set-Horspool.

Obviously, being faster than plain text searchers, lightweight dense techniques
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Fig. 11. Space/time trade-offs among dynamic techniques, on corpus ALL, related to compres-
sion/decompression time.

also beat previous searchers over dynamic compressed text. DLETDC:S-H is 4 to
18 times faster than LZgrep.

6. CONCLUSIONS

We have developed new adaptive compressors for natural language text (DLETDC
and DLSCDC) that use dense coding coupled with a word-based model. Their
main conceptual innovation is to break the compressor/decompressor symmetry
that is usual in statistical adaptive compression. Now the sender keeps track of the
statistical model and informs the receiver of the changes in codeword assignments.
This is coupled with a mechanism to carry out only the changes that are absolutely
necessary to maintain the compression effectiveness. The decompressor is much
lighter and can be run over weaker processors such as handheld devices.

The new compressors are well-suited for addressing the problem of efficient trans-
mission of natural language text documents. They retain several desirable features
of previous dynamic text compressors based on dense codes: simplicity, good com-
pression ratios (around 32-36%), and fast compression. The new techniques become
much faster at decompression than their predecessors, and stand out as attractive
space/time trade-offs. In particular, they overcome in all aspects the popular Ziv-
Lempel compressors, for sufficiently large natural language texts.

In addition, the compressed text can be searched with much less work than that
of decompressing it. The search is almost as fast as on semistatic compression
formats and much faster than the uncompressed text, breaking a long-standing
assumption that adaptive statistical methods would never be efficiently searchable.

Figures 11 and 12 show trade-offs between compression ratio and efficiency on
different tasks, to illustrate the results achieved by our new techniques.

Future work involves trying to use these dynamic techniques to cope with com-
pression of text collections that grow over time. Semistatic methods require to
rebuild the compressed text from time to time, so as to include new words that ap-
peared and update the statistics. With a dynamic code this updating is automatic,
yet it is not possible to access a document at random from the collection. Some
preliminary works [Brisaboa et al. 2005a] shows that a combination of techniques
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could give good results.

S

< 100} o e

g .7 34

© 36 A

5 350 O gl ,

g 34 A A

S 5l = " ol * @[ % Eetpcis-H

E 320t (), ‘ ‘ ‘ ‘ ‘ ‘ , 05 07 09 +  SCDC:S-H
° 0 2 4 6 8 10 12 14 16 A DLETDC:S-H
< 5 patterns. Search time (sec) A DLETDC:all
5 100 * % a4 & < DLSCDC:S-H
S 36t sl > DLSCDC:all
5 35f o) m  DETDC:all

2 34 AN + -

g =l :4?4 4 ] 32 (2 ©) gzp.LZgrep
g. b + '(2) - 36 40 44 ® Plain:Agrep
£ . Ll . . . . . ~  magnified areas O Plain:S-H

© 0 2 4 6 8 10 12 14 16

1000 patterns. Search time (sec)

Fig. 12. Space/search time trade-offs among dynamic techniques, on corpus ALL, related to search
time for patterns of length > 10.
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