
111

Optimal Joins using CompressedQuadtrees

DIEGO ARROYUELO, DIINF, UTFSM & IMFD, Chile

GONZALO NAVARRO, DCC, U. of Chile & IMFD, Chile

JUAN L. REUTTER, DCC, PUC & IMFD, Chile

JAVIEL ROJAS-LEDESMA, DCC, U. of Chile & IMFD, Chile,

Worst-case optimal join algorithms have gained a lot of attention in the database literature. We now count

several algorithms that are optimal in the worst case, and many of them have been implemented and validated

in practice. However, the implementation of these algorithms often requires an enhanced indexing structure:

to achieve optimality one either needs to build completely new indexes, or must populate the database with

several instantiations of indexes such as B+-trees. Either way, this means spending an extra amount of storage

space that is typically one or two orders of magnitude more than what is required to store the raw data.

We show that worst-case optimal algorithms can be obtained directly from a representation that regards

the relations as point sets in variable-dimensional grids, without the need of any significant extra storage.

Our representation is a compressed quadtree for the static indexes, and a quadtree built on the fly that shares

subtrees (which we dub a qdag) for intermediate results. We develop a compositional algorithm to process full

join queries under this representation, which simulates navigation of the quadtree of the output, and show

that the running time of this algorithm is worst-case optimal in data complexity.

We implement our index and compare it experimentally with state-of-the-art alternatives. Our experiments

show that our index uses even less space than what is needed to store the data in raw form (and replaces it),

and one or two orders of magnitude less space than the other indexes. At the same time, our query algorithm

is competitive in time, even sharply outperforming other indexes in various cases.

Finally, we extend our framework to evaluate more expressive queries from relational algebra, including

not only joins and intersections but also unions and negations. To obtain optimality on those more complex

formulas, we introduce a lazy version of qdags we dub lqdags, which allow us navigate over the quadtree

representing the output of a formula while only evaluating what is needed from its components. We show that

the running time of our query algorithms on this extended set of operations is worst-case optimal under some

constraints. Moving to full relational algebra, we also show that lqdags can handle selections and projections.

While worst-case optimality is no longer guaranteed, we introduce a partial materialization scheme that

extends results from Deep and Koutris regarding compressed representation of query results.

CCS Concepts: • Theory of computation → Database query processing and optimization (theory);
Data structures and algorithms for data management.

Additional Key Words and Phrases: Join algorithms, Compact data structures, Quadtrees, AGM bound

ACM Reference Format:
Diego Arroyuelo, Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. 2018. Optimal Joins using

Compressed Quadtrees. ACM Trans. Datab. Syst. 37, 4, Article 111 (August 2018), 52 pages. https://doi.org/10.
1145/1122445.1122456

Authors’ addresses: Diego Arroyuelo, darroyue@@inf.utfsm.cl, DIINF, UTFSM & IMFD, Chile, , , , ; Gonzalo Navarro,

gnavarro@dcc.uchile.cl, DCC, U. of Chile & IMFD, Chile, , , , ; Juan L. Reutter, , DCC, PUC & IMFD, Chile, , , , ; Javiel

Rojas-Ledesma, , DCC, U. of Chile & IMFD, Chile, , ,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0362-5915/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


111:2 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

1 INTRODUCTION
The state of the art in query processing has recently been shaken by a new generation of join

processing algorithms with strong optimality guarantees based on the AGM bound of queries: the

maximum size of the output of the query over all possible relations with the same cardinalities [6].

One of the basic principles of these algorithms is to disregard the traditional notion of a query plan

favoring a strategy that not only takes into account the size of the relations in the database but can

also take advantage of the structure of the query [31, 34].

Our focus is on join processing algorithms that compute all answers of a given query over a

database instance, and specifically in those algorithms that are guaranteed to run in time bounded

by the AGM bound of the query. Several of these algorithms have been implemented and tested in

practice with positive results [16, 35], especially when handling queries with several joins. Because

they differ from what is considered standard in relational database systems, the implementation of

these algorithms often requires additional data structures, a database that is heavily indexed, or

heuristics to compute the best computation path given the indexes that are present. For example,

algorithms such as Leapfrog [41], Minesweeper [32], or InsideOut [19] must select a global order on
the attributes, and assume that relations are indexed in a way that is consistent with this order [35].

However, an ordering that is good for one query may induce a sub-optimal performance on a

different query [32]. Thus, in practice, these algorithms need to work with several possible attribute

orderings, which is commonly achieved with several combinations of B+ trees or other indexes [16].

On the other hand, more involved algorithms such as Tetris [18] or Panda [20] require heavier data

structures that allow reasoning over potential tuples in the answer, and as far as we know there is

no evidence that these heavier structures can be successfully deployed in practice.

Our goal is to develop worst-case optimal join algorithms that eliminate the need to store addi-

tional indexes in the database and compete in practice with the current alternatives. The key here is

the combination of good theoretical and practical performance: current worst-case optimal solutions

depending on heavily indexed databases would remain optimal if the indexes were built on-the-fly

before evaluating each query (it usually takes linear time in data complexity to do so). Such index

construction, however, is in practice orders of magnitude slower than indexed query evaluation

(minutes to hours versus milliseconds to seconds, see our experiments). Practical solutions are thus

forced to compute and store the indexes beforehand so as to achieve competitive query evaluation

times. We address this issue by resorting to compact data structures [27]: representations using a

nearly-optimal amount of space –indeed, almost none on top of compactly storing the raw data–

while supporting all operations we need to answer join queries in worst-case optimal time, without
any need of further indexing.

We show that worst-case optimal algorithms can be obtained when one assumes that the input

data is represented as quadtrees, and stored under a compact representation for cardinal trees [9].

Quadtrees are geometric structures used to represent data points in grids of size ℓ × ℓ (which can

be generalized to any dimension). Thus, a relation R(A) with attributes A = {A1, . . . ,Ad } can be

naturally viewed as a set of points over grids of dimension d , one point per tuple of R: the value of
each attribute Ai is the i-th coordinate of the corresponding point.

To support queries under this representation, our main tool is a new version of quadtrees, which

we denote qdags, where some nodes may share complete subtrees. Using qdags, we can reduce

the computation of a full join query J = R1 Z · · · Z Rn with d attributes, to an algorithm that first

extends the quadtrees for R1, . . . ,Rn into qdags of dimension d , and then intersects them to obtain

a quadtree. Our first result shows that such algorithm is indeed worst-case optimal:

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:3

Theorem 1.1. Let R1(A1), . . . ,Rn(An) be n relations. We can then represent each relation Ri using
|Ai | + 2 + o(1) words per entry, so that the join R1 Z · · · Z Rn can be computed in Õ(AGM) time1.

Note that just storing the tuples in every Ri requires |Ai | words per entry, thus our representation

adds only a small extra space of basically two words per tuple. Instead, any classical index on the

raw data (such as hash tables or B+-trees) would pose a linear extra space, O(|Ai |) words, often

multiplied by a non-negligible constant (especially if one stores multiple indexes on the data).

Our join algorithm works in a rather different way than the most popular worst-case optimal

algorithms. To illustrate this, consider the triangle query J = R(A,B) Z S(B,C) Z T (A,C). The
most common way of processing this query optimally is to follow what Ngo et al. [34] define

as the generic algorithm: select one of the attributes of the query (say A), and iterate over all

elements a ∈ A that could be an answer to this query, that is, all a ∈ πA(R) ∩ πA(T ). Then, for each
of these elements, iterate over all b ∈ B such that the tuple (a,b) can be an answer: all (a,b) in
(R Z πB (S)) Z πA(T ), and so on. Instead, with quadtrees we divide the output space (which if the

domain of the attributes is [0, ℓ − 1] corresponds to a grid of size ℓ3) into 8 subspaces (or subgrids

of size (ℓ/2)3), and for each of these we recursively evaluate the query. This can be regarded as

traversing the output space, while computing only what is needed from the joined relations in

order to proceed at each step.

In general, the algorithm of Ngo et al. [34] chooses a subset of the attributes at each step, not

necessarily one. Our algorithm can also be understood as splitting each attribute Ai into log ℓ

binary attributes
2 A1

i , . . . ,A
log ℓ
i that hold the highest to the lowest bit of Ai , and then using the

generic algorithm by choosing all the attributes A1

i together, for all i , then all the attributes A2

i , and

so on. As it turns out, this strategy is as good as the generic strategy defined by Ngo et al. [34] on

the original attributes, with the advantage that it can always use the same ordering.
3

Our join algorithm boils down to two simple operations on quadtrees: an Extend operation

that lifts the quadtree representation of a grid to a higher-dimensional grid, and an And operation

that intersects trees. The strategy can be extended to other relational operations. For example,

the synchronized Or of two quadtrees gives a compact representation of their union, and comple-

menting the quadtree values implements a Not operation. We integrate all these operations in a

single framework, and use it to answer more complex queries given by the combination of these

expressions, in a fully compositional form.

To support these more complex queries in optimal time we traverse the output space using lazy

evaluation. The idea is to be able to delay the computation of an expression until we know such

computation is needed to navigate the output. For this purpose we introduce lazy qdags, or lqdags

for short, in which nodes may be additionally labeled with query expressions. To analyze our

framework we extend the idea of a worst-case optimal algorithm to arbitrary queries: If a worst-case
optimal algorithm to compute the output of a formula F takes time t over relations R1, . . . ,Rn of a

database D, then there exists a database D ′ with relations R′
1
, . . . ,R′n of sizes |R′i | = O(|Ri |), and

their complements of sizes |R′i | = O(|Ri |), where the output of F over R′
1
, . . . ,R′n is of size Ω(t).

Our framework remains worst-case optimal with lqdags considering joins, union, and negation

operators under some conditions:

Theorem 1.2. Let R1(A1), . . . ,Rn(An) be n relations. Let F be a relational algebra formula com-
posed by join, union and complement operations over the relations Ri , for all 1 ≤ i ≤ n, and where
1
The notation Õ hides poly-log S factors, S being the total input size, as well as factors that just depend on d (the number

of attributes) and n (the query size), which are assumed to be constant. We provide a precise bound in Section 3.3.

2
Our logarithms are to the base 2 by default.

3
The algorithm Tetris [18] also works with a geometrical representation, but uses it to refine the search for new tuples, not

as a way to recursively divide the output space.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:4 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

no relation appears both complemented and not complemented in F . Each relation Ri can then be
represented using |Ai | + 2 + o(1) words per entry, so that F can be evaluated in worst-case optimal
time in data complexity.

Consider, for example, the query J ′ = R(A,B) Z S(B,C) Z T (A,C), which joins R and S with the

complement T of T . One could think of two ways to compute this query. The first is just to join

R and S and then see which of the resulting tuples are not in T . But if T is dense (T is small), it

may be more efficient to first compute T and then proceed as on the usual triangle query. Seen at a

very high level, our algorithm is optimal because it can choose locally between both strategies: by

dividing the output into quadrants it finds dense regions of T in which computing T is cheaper

(and it only works towards those few cells that exist in T ), while in sparse regions the algorithm

first computes the join of R and S (i.e., it only works towards those few cells that exist in R Z S).
We also show that our framework can be extended to handle the full relational algebra, though

in this case worst-case optimality is not guaranteed. However, using lqdags to process relational

algebra queries has other potential advantages: instead of fully materializing the output, we provide

a parameterizable compressed representation, from which the results can be later retrieved with

bounded delay. This extends previous results [10] to the full relational algebra.

Our framework is the first in combining worst-case time optimality with the use of compact

data structures. The latter can lead to improved performance in practice, because relations can be

stored in faster memory, higher in the memory hierarchy [27]. This is especially relevant when

the compact representation fits in main memory while a heavily indexed representation requires

resorting to the disk, which is orders of magnitude slower. For systems that maintain the database in

the aggregate main memory of a cluster, a compact representation leads to using fewer computers,

thus reducing hardware, communication, and energy costs, while improving performance.

In practice. To evaluate how our approach fares in practice, we provide a prototype implementa-

tion of the join algorithmmentioned in Theorem 1.1. Our implementation stores data as compressed

quadtrees, and computes the compressed quadtree representing the result of the joins.

We test our prototype using two different benchmarks for graph databases, namely the wikidata

SPARQL benchmark [16] and a set of queries taken from SNAP [35]. Graph databases give us a good

way of testing worst-case optimal algorithms in practice, because graph queries usually involve

several joins [35]. Further, the selected benchmarks provide a wide range of complex join queries,

and have already been used to test other worst-case optimal join implementations.

We compare against other worst-case optimal implementations [1, 16], as well as some leading

graph database systems. The advantage of using compact data structures is immediately seen when

comparing the size of our representation against all other options: We reduce the storage size used

by graph systems by a factor of 10–20, and this factor is around 250 for EmptyHeaded [1].

Our results show that our implementation of the qdag join algorithm is competitive, in terms

of performance, with other worst-case optimal implementations, outperforming standard graph

systems in many cases. Qdags excel on queries involving up to 4 attributes, outperforming more

sharply the non-wco systems on cyclic queries. Considering the amount of storage space that

is gained by using quadtrees, we find these results remarkable. On the other hand, we observe

that the performance of our implementation quickly degrades as the number of join attributes

increases, becoming much slower and with much higher variance than the alternatives. This is

somewhat expected, because our query times depend exponentially on the dimension. All of this

suggests that qdags excel in applications in which the number of join attributes is low, or perhaps

as a component of a more involved algorithm dealing with tree-decomposition of queries, such

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:5

0 2 4 6 8 10 12 14

1

3

5

7

9

11

13

15

B

01

01

10

10

A(a) (b)

0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 01 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0

Fig. 1. A quadtree representing R(A,B) = {(4, 3), (7, 2), (5, 6), (6, 4), (3, 12), (6, 12), (6, 13), (7, 12), (7, 13), (8, 5),
(14, 1), (15, 0)}. (a) Representation of R(A,B) in a 24 × 24 grid, with the hierarchical partition defining the
quadtree. The black cells correspond to points in R. (b) The quadtree representing R. The integers are in the
last level, and the internal nodes are grayed. The shadowed integer 1 of the tree corresponds to the point
(a,b) = (3, 12), highlighted in red in the grid. Concatenating the labels in the path down to the integer yields
the bit-string ‘01011010’ which encodes the first (resp., second) coordinate of (a,b) in the bits at odd (resp.,
even) positions (a = 3 = 0011,b = 12 = 1100).

as EmptyHeaded [1]. We leave these questions, as well as the implementation of lqdags and of

dynamic versions supporting insertions and deletions of tuples, for future work.

Organization of the paper. In Section 2 we fix the notation on quadtrees and explain their com-

pressed representation. The algorithm for multiway join queries is introduced together with qdags

in Section 3, and our full framework is introduced together with lazy qdags, first in Section 4

for Boolean queries and then in Section 5 for the complete relational algebra. Section 6 describes

our implementation of the multiway join algorithm over qdags and Section 7 its experimental

comparison with other state-of-the-art systems and prototypes. We conclude in Section 8. Ap-

pendix A compares this article with its conference version; the others give more detailed data on

implementation and experiments.

2 QUADTREES
A Region Quadtree [12, 37] is a data structure used to store (pairwise different) points in two-

dimensional grids of size ℓ × ℓ. We focus on the variant called MX-Quadtree [37, 43], which can be

described as follows. Assume for simplicity that ℓ is a power of 2. If ℓ = 1, then the grid has only

one cell and the quadtree is an integer 1 (if the cell has a point) or 0 (if not). For ℓ > 1, if the grid

has no points, then the quadtree is a leaf. Otherwise, the quadtree is an internal node with four

children, each of which is the quadtree of one of the four ℓ/2 × ℓ/2 quadrants of the grid.
Assume each data point is described using the binary representation of each of its coordinates

(i.e., as a pair of log ℓ-bit strings). We order the grid quadrants so that the first contains all points

with coordinates of the form (0 · ca , 0 · cb ), for log ℓ − 1 bit vectors ca and cb , the second contains

points (0 · ca , 1 · cb ), the third (1 · ca , 0 · cb ), and the last quadrant stores the points (1 · ca , 1 · cb ),
where ‘·’ denotes concatenation of bits. If the corresponding children of internal nodes are labeled

00, 01, 10, and 11, then the concatenation of the labels leading from the root to the node storing the

integer 1 of a point (a,b) interlaces the ℓ-bit representations of the coordinates a and b. The path
then implicitly represents the point (a,b). Figure 1 shows a grid and its deployment as a quadtree.

Quadtrees can be generalized to higher dimensions. A quadtree of dimension d is a tree represent-

ing data points in a d-dimensional grid G of size ℓd . In this case, a nonempty grid with side ℓ > 1

corresponds to an internal node with 2
d
children, which represent the 2

d
subspaces spanning from

combining the first bit of each dimension. Generalizing the case d = 2, the children are ordered

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

using the Morton [25] partitioning of the grid: a sequence of 2
d
subgrids of size (ℓ/2)d in which

the i-th subgrid of the partition, for 0 ≤ i < 2
d
, labeled with the binary encoding li of i , is defined

by all the points with coordinates (bc1 , . . . ,bcd ) in which the word formed by concatenating the

first bit of each string bc j is precisely the string li .
A quadtree with p points has p integers 1 in its last level, and thus at most p log ℓ internal nodes

(along the paths of length log ℓ leading from the root to those integers). Since each internal node

can be distinguished from its siblings with its label of d bits, pd log ℓ bits are sufficient in principle

to encode the quadtree structure. Note that this is also the space needed by a plain representation

of p points of d coordinates in [0, ℓ − 1].
Indeed, each point is uniquely identified by the sequence of log ℓ d-bit labels in the path leading

from the root to its integer 1. For the point (3, 12) in Figure 1, this sequence is 01 01 10 10 = 1122. A

trie built on the p resulting sequences then corresponds to the gray and the integer-1 nodes of the

right of Figure 1. We store this trie using a compact representation for cardinal trees introduced by

Benoit et al. [7, Thm. 4.3], which requires essentially d + 2 + o(1) bits per node and performs the

needed tree traversal operations in constant time.

Lemma 2.1. (cf. Benoit et al. [7], Thm. 4.3) Let Q be a quadtree storing p points in d dimensions
with integer coordinates in the interval [0, ℓ − 1]. Then, there is a representation of Q that uses
(d+2+o(1))p log ℓ+O(logd) bits, can be constructed in linear expected time,4 and supports constant time
parent-children navigation on the tree. More precisely, this representation provides integer identifiers
for the quadtree nodes so that, given the identifier of a node and the label of a desired child, it returns
in constant time the identifier of that child, if it exists, and a null value otherwise.

Note that the space overhead of this representation, on top of the dp log ℓ bits needed to represent
the raw data, is essentially 2 extra numbers (of log ℓ bits) per point. Further, this structure can
replace the raw data, because it can recover the points without the need of storing them separately.

From now on, by quadtree we refer to this compact representation. Next, we show how to

represent relations using quadtrees and evaluate join queries over this representation.

3 MULTI-WAY JOINS USING QDAGS
We assume for simplicity that the domain D(A) of an attribute A consists of all binary strings of

length log ℓ, representing the integers in [0, ℓ − 1], and that ℓ is a power of 2.
A relation R(A) with attributes A = {A1, . . . ,Ad } can be naturally represented as a quadtree:

simply interpret each tuple in R(A) as a data point over a d-dimensional grid with ℓd cells, and store

those points in a d-dimensional quadtree. Thus, using quadtrees one can represent the relations in

a database using compact space. The convenience of this representation to handle restricted join

queries with naive algorithms has been demonstrated practically on RDF stores [3]. In order to

obtain a general algorithm with provable performance, we introduce qdags, an enhanced version of

quadtrees, together with a new algorithm to efficiently evaluate join queries over the compressed

representations of the relations.

We start with an example to introduce the basics behind our algorithms and argue for the need

of qdags. We then formally define qdags and explore their relation with quadtrees. Finally, we

provide a complete description of the join algorithm and analyze its running time.

4
The construction time is expected because it involves perfect hash functions on N elements, providingO (1) time evaluation

within O (N ) bits. Although they [7] only consider the (easy and practical) randomized construction of such functions,

those can be built deterministically in O (N log
5 N ) worst-case time if desired [2].

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:7

3.1 The triangle query: quadtrees vs qdags
Let R(A,B), S(B,C), T (A,C) be relations over the attributes {A,B,C}, and consider the triangle

query R(A,B) Z S(B,C) Z T (A,C). The basic idea of the algorithm is as follows: we first compute

a quadtreeQ∗R that represents the cross product R(A,B) ×All(C), where All(C) is a relation with an

attribute C storing all elements in the domain [0, ℓ − 1]. Likewise, we compute Q∗S representing

S(B,C) × All(A), and Q∗T representing T (A,C) × All(B). Note that these quadtrees represent points
in the three-dimensional grid that has a cell for every possible value inD(A)×D(B)×D(C), where
we assume that the domains D(·) of the attributes are all [0, ℓ − 1]. Finally, we traverse the three
quadtrees in synchronization, building a new quadtree that represents the intersection of Q∗R , Q

∗
S ,

and Q∗T . This quadtree represents the desired output because

R(A,B) Z S(B,C) Z T (A,C) = (R(A,B) × All(C)) ∩ (S(B,C) × All(A)) ∩ (T (A,C) × All(B)).

Though this algorithm is correct, it can perform poorly in terms of space and running time.

The size of Q∗R , for instance, can be considerably bigger than that of R, and even than the size of

the output of the query. If, for example, the three relations have N elements each, the size of the

output is bounded by N 3/2
[6], while building Q∗R costs Ω(N ℓ) time and space. This inefficiency

stems from the fact that quadtrees are not powerful enough to represent relations of the form

R∗(A) = R(A ′) × All(A \ A ′), where A ′ ⊂ A, using space close that of a quadtree representing

R(A ′). Due to its tree nature, a quadtree does not benefit from the regularities that appear in the

grid representing R∗(A). To remedy this shortcoming, we introduce qdags, quadtree-based data

structures that represent sets of the form R(A ′) × All(A \ A ′) by adding only constant additional
space to the quadtree representing R(A ′), for any A ′ ⊆ A.

A qdag is an implicit representation of a d-dimensional quadtree Q (that has certain regularities)

using only a reference to a d ′-dimensional quadtree Q ′, with d ′ ≤ d , and an auxiliary mapping
function that defines how to use Q ′ to simulate navigation over Q . Qdags can then represent

relations of the form R(A ′) ×All(A \A ′) using only a reference to a quadtree representing R(A ′),
and a constant-space mapping function (more precisely, with 2

d
entries).

To illustrate how a qdag works, consider a relation S(B,C), and letQ∗S be a quadtree representing

S∗(A,B,C) = All(A)×S(B,C). SinceQ∗S stores points in the ℓ
3
cube, each node inQ∗S has 8 children. As

All(A) contains all ℓ elements, for each original point (b, c) in S , S∗ contains ℓ points corresponding
to elements (0,b, c), . . . , (ℓ − 1,b, c). We can think of this as extending each point in S to a box of

dimension ℓ × 1 × 1. With respect to Q∗S , this implies that, among the 8 children of a node, the last

4 children will always be identical to the first 4, and their type (leaf, internal, or integer) will be

the same as that of the corresponding nodes in the quadtree QS representing S . In other words,

each of the four subgrids 1a1a2 is identical to the subgrid 0a1a2, and these in turn are identical to

the subgrid a1a2 in QS when projected to dimensions B,C (see Figure 2 for an example). Thus, we

can implicitly represent Q∗S by the pair (QS ,M = [0, 1, 2, 3, 0, 1, 2, 3]) as follows: the types of the
roots of Q∗S and QS are the same; if they are integer nodes then both have the same content, and if

they are internal nodes then the i-th child of the root of Q∗S is represented recursively by the pair

(Qi ,M) where Qi is theM[i]-th child of the root of QS .

3.2 Qdags for relational data
We now introduce a formal definition of the qdags, and describe the algorithms that allow the

evaluation of multijoin queries in worst-case optimal time.

Definition 3.1 (Qdag). Let d > 0 be an integer. A d-dimensional qdag Q is a pair (Q ′,M) in which

Q ′ is a d ′-dimensional quadtree, for d ′ ≤ d , andM : [0, 2d − 1] → [0, 2d
′

− 1] is amapping function.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:8 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

0 0 1 0 1 1 1 1C 1 1 1 1 1

(a) (b)

0 2 4 6

1

3

5

7

B
B

A

0 2 4 6

1

3

5

7

C
2
4
6

0 1 1 1 10

101

010

10 0 0 0

010

Fig. 2. An illustration of a qdag for S∗({A,B,C}) = All(A) × S(B,C), with S(B,C) = {(3, 4), (6, 4), (6, 5), (7, 4),
(7, 5)}. (a) A geometric representation of S(B,C) (left), and S∗({A,B,C}) (right). (b) A quadtree QS for S(B,C)
(left), and the directed acyclic graph induced by the qdag (QS ,M = [0, 1, 2, 3, 0, 1, 2, 3]), which represents
S∗({A,B,C}). The red cell in (a) corresponds to the point (4, 3, 4). The leaf representing that point in the qdag
can be reached following the path highlighted in (b). Note the relation between the binary representation
(100,011,100) of (4, 3, 4), and the Morton codes 101, 011, 010 of the nodes in the path to its integer 1.

A d-dimensional qdag can be used to simulate different d-dimensional quadtrees. In particular,

we are interested in the quadtree obtained by the recursive procedure defined below.

Definition 3.2 (Completion of a qdag). Let d,d ′ be integers such that d ′ ≤ d , let Q ′ be a d ′-
dimensional quadtree, and let Q = (Q ′,M) be a d-dimensional qdag. The completion Q∗ of Q is the

unique d-dimensional quadtree recursively defined as follows:

(1) If Q ′ represents a single unit-size cell (i.e., the root of Q ′ is an integer node), then the root of

Q∗ is also an integer node of the same type (either 0 or 1).

(2) If Q ′ represents an empty grid of points (i.e., the root of Q ′ is a leaf), then Q∗ has also as root

a leaf representing an empty grid.

(3) Otherwise, the root r ′ ofQ ′must be an internal node, andQ∗ has then as root an internal node
r ∗ such that, for all 0 ≤ i < 2

d
, the i-th child of r ∗ is the completion of the qdag (Q ′[M(i)],M),

where Q ′[j] denotes the j-th child of r ′.

Definition 3.3 (Identity Mapping). LetA be a set of attributes. Theidentity mapping ofA, denoted

Id(A), is the mapping function M : [0, 2 |A | − 1] → [0, 2 |A | − 1] such that M(i) = i , for all
0 ≤ i < 2

|A |
.

We say that a qdag represents the same relation R(A) represented by its completion. Note that,

for any d-dimensional quadtree Q representing R(A), one can generate a qdag whose completion

is Q by simply using the pair (Q, Id(A)). Note also that we can use mappings to represent any

desired reordering of the attributes.

In terms of representation, a qdag can abstract from the actual representation used for the

respective quadtree, as long as there is a way to refer to any node in the quadtree. For instance,

when quadtrees are stored using Lemma 2.1, the references to quadtree nodes consist of a pointer

to the data structure representing the quadtree, plus the integer identifier of the corresponding trie

node in that structure.

For a qdag Q = (Q ′,M), we denote by |Q| the number of internal nodes in the base quadtree Q ′,
and by | |Q| | the number of internal nodes in the completion of Q.

Algorithms 1 and 2, based on Definition 3.2, allow us to simulate the navigation over the

completion of a qdag in a way that abstracts from the representation of the inner quadtree. Operation

Value yields a 0 if and only if the subgrid represented by the qdag is empty (thus the qdag’s root

is a leaf or an integer 0), a 1 if the qdag represents a full single cell (i.e., the qdag’s root is the

integer 1), and ½ if its root is an internal node. Operation Child lets us descend by a given child

from internal nodes representing nonempty grids. The operations “integer Q ′”, “Q is a leaf”, and

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:9

Algorithm 1 Value (Q)

Require: A qdag Q = (Q ′, M ) with grid side ℓ.

Ensure: The integer 1 if the grid is a single point, 0 if the

grid is empty, and ½ otherwise.

1: if ℓ = 1 then return the integer Q ′

2: if Q ′ is a leaf then return 0

3: return ½

Algorithm 2 Child (Q, i)

Require: A qdag Q = (Q ′, M ) on a grid of dimension d
and side ℓ, and a child number 0 ≤ i < 2

d
. Assumes

Q ′ is not a leaf or an integer.

Ensure: A qdag Qi = (Q ′′, M ) corresponding to the i-th
child of Q.

1: return (Q [M (i)], M )

Algorithm 3 Extend (Q,A)

Require: A qdag Q = (Q ′, M ′) representing a relation R(A′), and a set A such that A′ ⊆ A.

Ensure: A qdag (Q ′, M ) whose completion represents the relation R(A′) × All(A \ A′).

1: create array M [0, 2d − 1]
2: d ← |A |, d ′ ← |A′ |
3: for i ← 0, . . . , 2d − 1 do
4: md ← the d-bits binary representation of i
5: md′ ← the projection ofmd to the positions in which the attributes of A′ appear in A

6: i′ ← the value in [0, 2d
′
− 1] corresponding tomd′

7: M [i] ← M ′[i′]
8: return (Q ′, M )

“Q ′[j]” are implemented in constant time on the compact representation ofQ ′:Q ′[j] corresponds to
descending to the child ofQ ′ by label j . If there is no such child, the structure of Lemma 2.1 returns

a null value, which we interpret as an integer node 0 if its subgrid has a single cell, and as a leaf

otherwise (in both cases, as a node with Value 0). Finally, a non-null node representing a single

cell corresponds to the integer node 1 (with Value 1).

3.2.1 Operation Extend. We introduce an operation to obtain, from the qdag representing a

relation R, a new qdag representing the relation R extended with new attributes.

Definition 3.4. Let A ′ ⊆ A be sets of attributes, let R(A ′) be a relation over A ′, and let QR =

(Q,M ′) be a qdag that represents R(A ′). The operation Extend(QR ,A) returns a qdag Q
∗
R = (Q,M)

that represents the relation R × All(A \ A ′).

To provide intuition on its implementation, let A ′ be the set of attributes {A,B,D} and let

A = {A,B,C,D}, and consider R(A ′), QR and Q∗R from Definition 3.4. Each node of (the completion

of) QR has 8 children, while each node of (the completion of) Q∗R has 16 children. Consider the

child at position i = 12 of Q∗R . This node represents the grid with Morton codem4=‘1100’ (i.e.,
12 in binary), and contains the tuples whose coordinates in binary start with 1 in attributes A,B
and with 0 in attributes C,D. This child has elements if and only if the child with Morton code

m3=‘110’ of QR (i.e., its child at position j = 6) has elements; this child is in turn the M ′[6]-th
child of Q . Note thatm3 results from projectingm4 to the positions 0,1,3 in which the attributes

A,B,D appear in {A,B,C,D}. Since the Morton code ‘1110’ (i.e., 14 in binary) also projects tom3,

it holds thatM[12] = M[14] = M ′[6]. We provide an implementation of the Extend operation for

the general case in Algorithm 3. The following lemma states the time and space complexity of our

implementation of Extend. For simplicity, we count the space in terms of computer words used to

store references to the quadtrees and values of the mapping functionM .

Lemma 3.5. Let |A| = d in Definition 3.4. Then, the operation Extend(QR ,A) can be supported in
time O(2d ) and its output takes O(2d ) words of space.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:10 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

A

B

R(A,B)

S(B,C)

T(A,C)

R(A,B) × All(C)

All(A) × S(B,C)

T(A,C) × All(B)

�

�

�

�

�

�

R(A,B) ⊲⊳ S(B,C) ⊲⊳ T(A,C)

2. Intersect1. Extend

A

C

B

C

A

B

C

A

B

C

A

B

C

Fig. 3. A graphical representation of the MultiJoin algorithm for R(A,B) Z S(B,C) Z T (A,C).

Proof. We show that Algorithm 3 meets the conditions of the lemma. The computations ofmd
and i ′ are immaterial (they just interpret a bitvector as a number or vice versa). The computation

ofm′d is done with a constant table (that depends only on the database dimension d) of size O(22d ):
given the d bits ofmd and other d bits telling which attributes of A are in A ′, the table stores the

corresponding bitvectorm′d . A naive algorithm without this table runs in time O(d2d ). □

3.3 Join algorithm
Now that we can efficiently represent relations of the form R(A ′) × All(A \ A ′), for A ′ ⊆ A,

we describe a worst-case-optimal implementation of joins over the qdag representations of the

relations. Our algorithm follows the idea discussed for the triangle query: we first extend every

qdag to all the attributes that appear in the query, so that they all have the same dimension and

attributes. We then compute their intersection, building a quadtree representing the output of the

query; see Figure 3 for an illustration. The implementation of this algorithm is surprisingly simple

(see Algorithms 4 and 5), yet worst-case optimal, as we prove later on. Using qdags is essential for

this result; this algorithm would not be at all optimal if computed over relational instances stored

using standard representations such as B+ trees. First, we describe how to compute the intersection

of several qdags, and then analyze the running time of the join.

3.3.1 Operation And. We introduce an operation And, which computes the intersection of several

relations represented as qdags.

Definition 3.6. Let Q1, . . . ,Qn be qdags representing relations R1, . . . ,Rn , all over the attribute
set A. Operation And(Q1, . . . ,Qn) returns a quadtree Q that represents the relation R1 ∩ · · · ∩ Rn .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:11

Algorithm 4 MultiJoin (R1, . . . ,Rn )

Require: Relations R1, . . . , Rn , stored as

quadtrees Q1, . . . , Qn ; each relation Ri
is over attributes Ai and A =

⋃
Ai .

Ensure: A quadtree representing the output

of J = R1 Z . . . Z Rn .

1: for i ← 1, . . . , n do
2: Let Qi be the qdag (Qi , Id(Ai ))
3: Q∗i ← Extend(Qi , A)

4: return And(Q∗
1
, . . . , Q∗n )

Algorithm 5 And (Q1, . . . ,Qn )

Require: n qdags Q1, . . . ,Qn representing relations R1(A), . . . , Rn (A).
Ensure: A quadtree representing the relation

⋂n
i=1 Ri (A).

1: m ← min{Value(Q1), . . . , Value(Qn )}

2: if ℓ = 1 then return the integerm
3: if m = 0 then return a leaf

4: for i ← 0, . . . , 2d − 1 do
5: Ci ← And(Child(Q1, i), . . . , Child(Qn, i))
6: if max{Value(C0), . . . , Value(C

2
d−1)} = 0 then return a leaf

7: return a quadtree with children C0, . . . , C
2
d−1

We implement this operation by simulating a synchronized traversal among the completions

C1, . . . ,Cn of Q1, . . . ,Qn , respectively, obtaining the quadtreeQ that stores the cells that are present

in all the quadtrees Ci (see Algorithm 5). We proceed as follows. If ℓ = 1, then all Ci are integers

with values 0 or 1, and Q is an integer equal to the minimum of the n values. Otherwise, if any

Qi represents an empty subgrid, then Q is also a leaf representing an empty subgrid. Otherwise,

every Ci is rooted by a node vi with 2
d
children, and so is Q , where the j-th child of its root v is

the result of the And operation of the j-th children of the nodes v1, . . . ,vn . However, we need a

final pruning step to restore the quadtree invariants (line 6 of Algorithm 5): if Value(vi ) = 0 for

all the resulting children of v , then v must become a leaf and the children be discarded. Note that

once the quadtree is computed, we can represent it succinctly in linear expected time (Lemma 2.1)

so that, for instance, it can be cached for future queries involving the output represented by Q .

3.3.2 Analysis of the algorithm. We compute the output Q of And(Q1, . . . ,Qn) in time O(2d ·
(| |Q1 | | + · · · + | |Qn | |)). More precisely, the time is bounded by O(2dn · |Q+ |), where Q+ is the

quadtree that would result from Algorithm 5 if we removed the pruning step of line 6. We call this

quadtree Q+ the non-pruned version of Q . Although the size of the actual output Q can be much

less than that ofQ+, we can still prove that our time is optimal in the worst case. We start with two

technical results, the first one (Lemma 3.7) bounding the running time of Algorithm 5 in terms of

the maximum numberm of internal nodes of some level in Q+, and the second one (Lemma 3.8)

boundingm by the output size of Algorithm 5 over an instance of similar size.

Lemma 3.7. Let Q1, . . . ,Qn be qdags representing relations R1, . . . ,Rn , all over the attribute set A,
and let h be the height of the completions of Q1, . . . ,Qn . Then the operation Q = And(Q1, . . . ,Qn)
can be supported in time O(m · 2dn · h), wherem is the maximum number of internal nodes in any
level of Q+, the non-pruned version of Q .

Proof. We show that Algorithm 5 meets the conditions of the lemma. Letmk be the number of

nodes of depth k inQ+, and thenm = max0≤k<hmk . The number of steps performed by Algorithm 5

is clearly bounded by n · (
∑

0≤k<hmk · 2
d ) ≤ n ·m · h · 2d : at each depth we continue traversing

all qdags Q1, . . . ,Qn as long as they are all nonempty, and we generate the corresponding nodes

in Q+ (even if at the end some nodes will disappear in Q). The cost incurred in leaves and integer

nodes of Q+ can be charged to their internal parent node. □

Lemma 3.8. Let Q1, . . . ,Qn be n qdags representing relations R1(A1), . . . ,Rn(An), respectively,
and let A =

⋃
Ai . Let Q = And

(
Extend(Q1,A), . . . ,Extend(Qn ,A)

)
, let Q+ be the non-pruned

version of Q , and letm be the maximum number of internal nodes at any level of Q+. Then there exist
relations R′

1
(A1), . . . ,R

′
n(An) such that:

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:12 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

(log ℓ) − 9

9

(a)

(b)

9

(log ℓ) − 9

&

< internal nodes

Q ′
1

Q ′
2

Q ′=
· · ·

··
·

··
·

··
·

& ′

··
·

< integer-1 leaves

Q1 Q2 Q=

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 4. A graphical representation of the construction for the proof of Lemma 3.8. a) An illustration of
the top j-th levels of the qdags Q1, . . . ,Qn representing R1, . . . ,Rn , respectively, and the top j-th levels
of Q = And

(
Extend(Q1,A), . . . ,Extend(Qn ,A)

)
. b) The qdags Q ′

1
, . . . ,Q ′n representing respectively the

relations R′
1
, . . . ,R′n generated, and the quadtree Q ′ = And

(
Extend(Q ′

1
,A), . . . ,Extend(Q ′n ,A)

)
.

• |R′i | ≤ |Ri |, for all 1 ≤ i ≤ n;
• If the qdags Q ′

1
, . . . ,Q ′n represent R′

1
(A1), . . . ,R

′
n(An), respectively, then the quadtree Q ′ =

And

(
Extend(Q ′

1
,A), . . . ,Extend(Q ′n ,A)

)
has at leastm integer-1 nodes.

Proof. Let the maximum numberm of internal nodes be reached at depth 0 ≤ j < log ℓ of Q+.
We construct the relations R′i , for 1 ≤ i ≤ n, as follows: For a binary string c , let pre(c, j) denote
the first j bits of c . Then, for each relation Ri and each tuple (c1, . . . , cdi ) in Ri , where di = |Ai |,

let R′i contain the tuples (0log ℓ−jpre(c1, j), 0
log ℓ−j

pre(c2, j), . . . , 0
log ℓ−j

pre(cdi , j)), corresponding to

taking the first j bits of each coordinate and prepending them with a string of log ℓ − j 0s. While

this operation may send two tuples in an original relation to a single tuple in the corresponding

new one, we still have that each relation R′i contains at most as many tuples as relation Ri .
Let us show that the quadtree Q ′ = And

(
Extend(Q ′

1
,A), . . . ,Extend(Q ′n ,A)

)
has at leastm

integer-1 nodes. Imagine that we represent each R′i using a qdag Q ′i . Because the first log ℓ − j bits
of every tuple component in R′i are all 0, in the top log ℓ − j levels of (the completion of) Q ′i there

will be only one internal node per level, with only the first child of each of these not being a leaf.

Moreover, the remaining j levels at the bottom of Q ′i will be exactly the same as the top j levels of
Qi , except for the last one, in which the internal nodes of Qi become integer-1 nodes in Q ′i , and

the leaves representing empty grids become integer-0 nodes (see Figure 4 for an illustration).

Now suppose that we run Algorithm 5 over Extend(Q ′
1
,A), . . . ,Extend(Q ′n ,A), and let Q ′ be

its output quadtree. Note that, as before, in the top log ℓ − j levels of Q ′ there will be only one

internal node per level, with only the first child of each of these nodes not being a leaf. Then, since

the j levels at the bottom of Q ′i are the same as the top j levels of Qi , for all 1 ≤ i ≤ n, the remaining

j levels at the bottom of Q ′ will be exactly the same as the top j levels of Q , except for the last one,

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:13

in which the internal nodes of Q at the j-th level become integer-1 nodes in Q ′. Therefore, Q ′ must

have at leastm integer-1 nodes at the last level. □

Since the running time of Algorithm 4 is dominated by the execution of Algorithm 5, we can use

the bounds established in Lemmas 3.7 and 3.8 to prove the worst-case optimality of Algorithm 4.

We do this in Theorem 3.9. For a join query J on a database D, we use 2ρ
∗(J ,D)

to denote the AGM

bound [6] of the query J over D, that is, the maximum size of the output of J over any relational

database having the same number of tuples as D in each relation.

Theorem 3.9. Let J = R1 Z . . . Z Rn be a full join query over a database D with schema
{R1, . . . ,Rn}, let d be the number of different attributes in D, and assume the domains of all the
attributes are in [0, ℓ − 1]. Let Ai be the set of attributes of Ri , for all 1 ≤ i ≤ n, N =

∑
i |Ri | be the

total number of tuples in the database, and S =
∑

i |Ai | · |Ri | its total number of tuple components.
The relations R1, . . . ,Rn can then be stored within S log ℓ + 2N log ℓ + o(S log ℓ) +O(n logd) bits, so
that later the output for J can be computed in time O(2ρ

∗(J ,D) · 2dn logmin(ℓ, S)) = Õ(2ρ
∗(J ,D)).

Proof. First, assume that log ℓ is O(log S). The space bound can be achieved by storing the

relations R1, . . . ,Rn as quadtrees Q1, . . . ,Qn , respectively. When these quadtrees are stored using

the data structure of Lemma 2.1, the total space used is

∑
i (|Ai | + 2 + o(1))|Ri | log ℓ +O(n logd) =

S log ℓ+(2+o(1))N log ℓ+O(n logd) bits, which is within the claimed space bound. These quadtrees

are built during the initialization of the databaseD, and not as part of the query evaluation algorithm.

To solve the join query J we first create the qdags (Q1, Id(A1)), . . . , (Qn , Id(An)), which takes

constant time per relation. Then we use these qdags as parameters for Algorithm 4 to compute the

result of the query.

We now show that Algorithm 4 runs in time within the bound of the theorem. The cost of the

Extend operations is only O(2dn), according to Lemma 3.5, so the main cost of Algorithm 4 owes

to the And operation. Let Q be the quadtree resulting from step 4 of Algorithm 4, let Q+ be its non-
pruned version, and letm be themaximumnumber of internal nodes at any level ofQ+. By Lemma 3.7

we know that the running time of this step isO(m ·2dn ·log ℓ), which isO(m ·2dn ·logmin(ℓ, S)) since
log ℓ is O(log S). Furthermore, by Lemma 3.7 we know that there are relations R′

1
(A1), . . . ,R

′
n(An)

with |R′i | ≤ |Ri |, for all 1 ≤ i ≤ n, such that if the qdags Q ′
1
, . . . ,Q ′n represent R′

1
(A1), . . . ,R

′
n(An),

respectively, then the quadtree Q ′ = And

(
Extend(Q ′

1
,A), . . . ,Extend(Q ′n ,A)

)
has at least m

integer-1 nodes. Since running Algorithm 4 over R′
1
(A1), . . . ,R

′
n(An) returns Q

′
, the output of the

query R′
1
Z . . . Z R′n has at leastm tuples. Therefore,m = O(2ρ

∗(J ,D)) and the running time of

Algorithm 4 over R1, . . . ,Rn is O(2ρ
∗(J ,D) · 2dn logmin(ℓ, S)).

Now, let us consider the case when log S is o(log ℓ) (e.g., when the attribute values are fixed-

length strings). In this case, if we proceed as before we will still meet the space bound, but the

height of the quadtrees storing the relations could be ω(log S), and then Algorithm 4 would not

run in the claimed time because of Lemma 3.7. With a slight variation on how we store the

relations, however, we can convert O(log ℓ) to O(log S) in the time complexity of this algorithm

while preserving the space bound. First we store the values of the attributes appearing in any

relation in an auxiliary data structure (e.g., an array), and associate anO(log S)-bits identifier to each
different value in [0, ℓ− 1] that appears in D (e.g., the index of the corresponding value in the array).

Then, we represent the relations R1, . . . ,Rn in quadtrees using the data structure of Lemma 2.1,

but this time storing the identifiers of the attribute values instead of the values themselves. This

representation requires at most S log ℓ bits for the representation of the distinct attribute values,

and S log S + (2 + o(1))N log S +O(n logd) bits for the quadtrees, which is o(S log ℓ) +O(n logd).
The total is then within the claimed space. As already mentioned, this representation is computed

during the initialization of the database D, and is not part of the query evaluation algorithm. The

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:14 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

analysis of the running time of Algorithm 4 is the same as in the previous case, but this time when

reporting the output we must map the O(log S)-bits identifier of an attribute value to its original

O(log ℓ)-bits value. This can be done by adding only a constant-time overhead per output (e.g.,

when the auxiliary data structure is an array, the O(log S)-bits identifier is directly the position

in this array where its corresponding attribute value is stored). Thus, the space and running time

bound claimed also hold for this case, which completes the proof. □

In a practical implementation of Theorem 3.9, given a databaseD with n relations and d attributes

in total, we only store the relations as quadtrees, a lookup table of sizeO(22d ) to support the Extend
operation efficiently (as described in the proof of Lemma 3.5), and an array or hash table to store

the original values of attributes requiring more than ω(log S) bits in their representation (e.g.,

string-valued attributes). Thus, the initialization of the database consists of building the n quadtrees

and computing the lookup table. We assumed in Theorem 3.9 that the domain of all the attributes

is the same, but one can overcome this restriction in practice by combining the two different

representations described in the proof of the theorem. With respect to the output of the queries

note that, although Algorithms 4 and 5 return a quadtree representing the output, they can be easily

modified to just report the values found. For instance, in Algorithm 5 it is enough to remove lines

6-7, and replace the return statement in line 2 by one reporting the output tuple corresponding to

the leaf found. In this case, the working memory used by Algorithms 4 and 5 is O(logmin(ℓ, S)),
which is the height of the quadtrees representing the relations.

We present and describe in depth a practical implementation in Section 6, and compare its

performance with state-of-the-art alternatives in Section 7.

3.4 Better space and time on clustered datasets
As noted in Section 2, storing p points in a quadtree requires at most p log ℓ internal nodes, because
each point stored at an integer-1 node induces a path of log ℓ internal nodes leading to it. This is,

however, an upper bound, because those paths are not disjoint; see in Figure 1 the paths leading to

(6, 12), (7, 12), (6, 13), and (7, 13). It is not hard to show that the quadtree has indeed fewer nodes

on clustered data (cf. Gagie et al. [13, Thm. 1] for two dimensions).

Lemma 3.10. A quadtree in dimension d containing p points distributed along c clusters, with the
i-th cluster containing pi points inside a subgrid of size si d , has O(c · 2d log ℓ +

∑
i pi log si ) internal

nodes.

Proof. It is sufficient to count the number of ancestors of the nodes in each cluster separately.

Consider the i-th cluster, within a hypercube of size si
d
. Since the quadtree nodes at depth hi =

⌊log(ℓ/si )⌋ span a subgrid of size at least sdi , the cluster hypercube intersects at most two such

nodes in each dimension, for a total of 2
d
nodes. Adding up their ancestors, it turns out that the

cluster has at most 2
d
log(ℓ/si ) ancestors of depth hi or less. In addition, each of the pi points of

the cluster has pi (log ℓ − hi ) < pi (1 + log si ) ancestors deeper than hi . Summing up we have the

upper bound O(c · 2d log ℓ +
∑

i pi log si ). □

This reduction directly impacts on the space required to store quadtrees. Indeed, quadtrees have

been shown to work well in applications such as RDF stores or web graphs, where data points

are distributed in clusters [3, 9]. We can further show that clustering also impacts positively on

query times if we represent the data using quadtrees: by combining their space analysis with the

technique we used to prove Theorem 3.9, we obtain better time bounds, and a small refinement of

the AGM bound itself. Those improvements will show up empirically in Section 7.

Consider again the triangle query R(A,B) Z S(B,C) Z T (A,C), and assume the points in each

relation are distributed in c clusters, each of them fitting in a square grid of width at most s and size

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:15

at most s × s , and with p points in total. Then, at depth log(ℓ/s), the quadtrees of T , R, and S have

at most 2
2 = 4 internal nodes per cluster: at this level one can think of the trimmed quadtree as

representing a coarser grid of cells of size s × s , and therefore each cluster can intersect at most two

of these coarser cells per dimension. Thus, letting Q ′R , Q
′
S , and Q

′
T be the quadtrees for R, S and T

trimmed up to level log(ℓ/s) (and where internal nodes take value 1), then the proof of Theorem 3.9

yields a bound for the number of internal nodes at level log(ℓ/s) of the non-pruned quadtree Q+

of the output: this number must be bounded by the AGM bound of the instances given by Q ′R , Q
′
S

and Q ′T , which is at most (c · 22)3/2 = 8c3/2. Going back to the data for the quadtree Q+, the bound
on the number of internal nodes means that the points of the output are distributed in at most

8c3/2 clusters of size at most s3. In turn, the maximal number of 1s in the answer is bounded by the

AGM bound itself, which here is p3/2. This means, by Lemma 3.10, that the size of Q+ is bounded
by O(c3/2 log ℓ + p3/2 log s), and so is also the running time of the algorithm. This is an important

reduction from the general bound O(p3/2 log ℓ) if the number c of clusters and their width s are
small, as we now multiply the number of answers by log s instead of log ℓ.

Corollary 3.11. If, in the scenario of Theorem 3.9, the points in each relation are distributed in c
clusters of width s , then the join algorithm works in time O

(
(2ρ

∗(J ,Ds )
log(ℓ/s) + 2ρ

∗(J ,D)
log s) · 2dn),

where Ds denotes the database with all the values trimmed to their highest ⌊log(ℓ/s)⌋ bits and thus
2
ρ∗(J ,Ds ) ≤ c · 2

∑
i |Ai | ≤ c · 2dn .

Proof. Assume s is a power of 2, by increasing it to the closest one if needed, and call di = |Ai |.

Let Rsi be the relations resulting out of trimming the values in Ri to their highest h = log(ℓ/s) bits,
and Ds

be the instance given by the relations {Rs
1
, . . . ,Rsn}. Every empty (resp., nonempty) subgrid

of size sdi of the quadtree of Ri then becomes an integer-0 (resp., integer-1) leaf of the quadtree of

Rsi . Further, every cluster of size sdi in Ri results in at most 2
di

points in Rsi , and thus |Rsi | ≤ c · 2di .
Now consider the non-pruned quadtree Q+ built during the application of Algorithm 5. The

number of nodes at depth h correspond to the last-level nodes of the output of the query J applied
on Ds

, that is, at most 2
ρ∗(J ,Ds )

. The total number of internal nodes in Q+ can then be bounded by

splitting them into two parts: (i) the nodes at depth h in Q+ and their ancestors, and (ii) the deeper

nodes in Q+. While the first part is clearly O(2ρ
∗(J ,Ds )

log(ℓ/s)), the second part can be bounded

as in Theorem 3.9: take the level of Q+ with the maximum numberm of nodes, which is at most

2
ρ∗(J ,D)

, and multiply it by the log ℓ − h = log s levels that are accounted for in (ii). The result then

follows by charging theO(2dn) cost incurred by the intersection algorithm on each node ofQ+. The
last inequality follows from the fact that the n restricted relations Rsi are of maximum cardinality

c · 2di and 2
ρ∗(J ,Ds ) ≤ Πi |R

s
i | ≤ c · 2

∑
i di ≤ c · 2dn . □

3.4.1 Geometric interpretation. As quadtrees have a direct geometric interpretation, it is natural to

compare them to the algorithm based on gap boxes proposed by Khamis et al. [18]. In a nutshell,

this algorithm uses a data structure that stores relations as a set of multidimensional cubes that

contain no data points, which the authors call gap boxes. Under this framework, a data point is

in the answer of the join query R1 Z · · · Z Rn if the point is not part of a gap box in any of the

relations Ri . The authors then compute the answers of these queries using an algorithm that finds

and merges appropriate gap boxes covering all cells not in the answer of the query, until no more

gap boxes can be found and we are left with a covering that misses exactly those points in the

output of the query. Such an algorithm is subject of a finer analysis: the runtime of queries can

be shown to be bounded by a function of the size of a certificate of the instance (and not its size).

The certificate in their case is simply the minimum amount of gap boxes from the input relations

that is needed to cover all the gaps in the answer of the query. Finding such a minimal cover is

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:16 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

NP-hard, but a slightly restricted notion of gap boxes maintains the bounds within an O(logd ℓ)
approximation factor.

While any index structure can be thought of as providing a set of gap boxes [18], quadtrees

provide a particularly natural and compact representation. Each leaf or node valued 0 in a quadtree

signals that there are no points in its subgrid, and can therefore be understood as a d-dimensional

gap box. Now let J = R1 Z · · · Z Rn be a join query over d attributes, and let R∗i denote the

extension of Ri to the attributes of J . As in Khamis et al. [18], a quadtree certificate for J is a set of
gap boxes (i.e., empty d-dimensional grids obtained from any of the R∗i s) such that every coordinate

not in the answer of J is covered by at least one of these boxes. Let C J ,D denote a certificate for J
of minimum size; then we can reinterpret the running time of Theorem 3.9 as follows.

Corollary 3.12. Given multijoin J on a database D, Algorithm 4 runs in timeO((|C J ,D | + |J (D)|) ·
2
dn log ℓ), where J (D) is the output of the query J over D.

Now, one can easily construct instances and queries such that the minimal certificate C J ,D is

comparable to 2
ρ∗(J ,D)

. So this will not give us instance-optimality results, as discovered [18, 32]

for acyclic queries or queries with bounded treewidth. This is a consequence of increasing the

dimensionality of the relations. Nevertheless, the bound does yield a good running time when we

know that C J ,D is small, as evidenced in Corollary 3.11. It is also worth mentioning that our join

algorithm directly computes the only possible representation of the output as gap boxes (because

its boxes come directly from the representation of the relations). This means that there is a direct

connection between instances that give small certificates and instances for which the representation

of the output is small.

4 EXTENDINGWORST-CASE OPTIMALITY TO BOOLEAN QUERIES
Next we turn to design worst-case optimal algorithms for more general queries of the relational

algebra. We start in this section with the Boolean queries: we already studied the intersection
(which corresponds to operation And over the qdags), and will show that union (operation Or) and

complement (operation Not) can be solved optimally as well. What is most intriguing, however, is

whether we can obtain worst-case optimality on combined relational formulas. We introduce a

notion of worst-case optimality that generalizes the AGM bound on multijoin queries, and then

design a worst-case optimal algorithm (in data complexity) to evaluate formulas that combine

join, union, and complement operations. We refer to those formulas as JUC queries5; note that the
intersection is a particular case of join.

Definition 4.1. Let F be a formula in the relational algebra over relations R1(A1), . . . ,Rn(An)

from a database D. We define F (D)∗ as the maximum size of the output of F over instances D ′ with

relations R′
1
, . . . ,R′n of respective sizes |R′i | = O(|Ri |), and their complements of sizes |R′i | = O(|Ri |),

for all 1 ≤ i ≤ n. An algorithm to evaluate F is said to be worst-case optimal if it evaluates F in

time O(F (D)∗), and worst-case optimal in data complexity if it evaluates F in time Õ(F (D)∗), which
is O(F (D)∗) multiplied by factors that depend only on the size |F | of the formula, the total number

d = | ∪i Ai | of attributes, and at most polylogarithms of the data and domain sizes.

The guard about the sizes of R′i is important when Ri appears negated in F , to avoid the com-

plement of R′i to be very large and induce a poor bound F (D)∗. For instance, let F = R1 ∩ R2 and

5
Strictly speaking, JUC queries are incomparable to relational algebra because complement operations can only be simulated

with difference when the domain of the relations coincides with the active domain. However, to streamline the comparison

between boolean queries and relational algebra, we assume that the domain and active domain of relations coincide, and

therefore complement and difference are interchangeable.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:17

Algorithm 6 Value on extended qdags

Require: A qdag (Q, M ) with grid side ℓ.

Ensure: Value 0 or 1 if the grid represented by Q is totally empty or full, respectively, otherwise ½.

1: if Q is a leaf then return the integer 0 or 1 associated with Q
2: return ½

0 2 4 6 8 10 12 14

1

3

5

7

9

11

13

15

B

A(a) (b)

1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 10 1 1 1 1 1 0 1 1 0 0 1

011 1 1 1 1 1 1 1 1 1 1 1 1 1 1

111111

1

Fig. 5. (a) A grid representing the complement R(A,B) of the relation R(A,B) in Fig 1. (b) The quadtree

representing R. The integers can now appear at any level, and they represent either empty or full subgrids.
The internal nodes are grayed.

|R2 | = ℓ
d −O(1), so every possible output of F is of size O(1). Yet, if we can choose a relation R′

2

with |R′
2
| = |R2 |/2 = O(|R2 |), then the output of F on R′

2
can be of size up to ℓd/2+O(1), and hence

F (D)∗ = Θ(ℓd ). Our definition avoids this by enforcing that |R′
2
| = O(|R2 |) = O(1). We do not need

to enforce this condition on the relations Ri that do not appear negated in F .
In the particular case where F is a multijoin formula J (no negations), we have F (D)∗ = 2

ρ∗(J ,D)
,

and we have achieved the corresponding worst-case optimality (in data complexity) in Theorem 3.9.

The key technique to obtain worst-case optimality on more complex queries is to deal with them

in a lazy form, allowing unknown intermediate results so that all the components of a formula

are evaluated simultaneously. To do this we introduce lazy qdags (or lqdags), an alternative to

qdags that can navigate over the quadtree representing the output of a formula without the need

to entirely evaluate the formula. We then give a worst-case optimal algorithm to compute the

completion of an lqdag, that is, the quadtree of the grid represented by the lqdag.

4.1 Lqdags for relational formulas
To support worst-case optimal evaluation of relational formulas we introduce two new ideas: we

add “full leaves” to the quadtree representation to denote subgrids full of 1s, and we introduce

lqdags to represent the result of a formula as an implicit quadtree that can be navigated without

fully evaluating the formula.

While the last-level nodes of quadtrees represent a single cell and store its value, 0 or 1, quadtree

leaves at higher levels always represent subgrids full of 0s. We now generalize the representation,

so that those quadtree leaves at higher levels also store an integer, 0 or 1, which is the value of

all the cells in the subgrid represented by the leaf. This generalization is introduced in order to

complement empty subgrids in constant time; see Figure 5. It is now more convenient to call leaves
all the quadtree nodes, in the last level or higher, whose subgrids are all 0s or all 1s, and thus storing

the corresponding integer (see Figure 5). The generalization impacts on the way to compute Value,

as depicted in Algorithm 6. We will not use qdags in this section, however; the lqdags build directly

on quadtrees.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:18 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

AND

EXTENDAND

&)

{�, �,� }
EXTEND

{�, �,� }
EXTEND

{�, �,� }

&'

QTREE

&(

QTREE NOT

Fig. 6. Illustration of the syntax tree of an lqdag for the formula (R(A,B) Z S(B,C)) Z T (A,C). The quadtrees
QR ,QS ,QT represent the relations R, S,T , respectively.

In terms of the compact representation, this generalization is implemented by resorting to an

impossible quadtree configuration: a string shorter than log ℓ in the trie structure of Lemma 2.1

will be used to denote the path of a quadtree node ending at a leaf full of 1s. We emphasize that we

are allowed to use leaves with value 1 when possible, but not forced: quadtrees with those nodes

partially or fully expanded are also valid and equivalent, in the sense that they represent the same

set of points. A relation can then be represented by different quadtrees.

The second novelty, the lqdags, are defined as follows.

Definition 4.2 (lqdag). An lqdag L is a pair (f ,o), where f is a functor and o is a list of operands,
recursively built using the following rules. The rules also define the completion of L, which is a

quadtree QR representing a relation R(A); we also say that L represents R.

(1) L = (QTREE,QR ).

(2) L = (NOT,QR ), where QR is a quadtree representing the complement of R;
(3) L = (AND,L1,L2), where L1 and L2 are lqdags, and QR represents the intersection of their

completions;

(4) L = (OR,L1,L2), where L1 and L2 are lqdags, and QR represents the union of their comple-

tions;

(5) L = (EXTEND,L1,A), where L1 is an lqdag representing a relation R′(A ′), A is a set of

attributes such that A ′ ⊆ A, and R(A) = R′(A ′) × All(A \ A ′).

To illustrate the definition of lqdags, consider the triangle query R(A,B) Z S(B,C) Z T (A,C),
with A = {A,B,C} and the relations represented by quadtrees QR , QS , and QT . This query can

then be represented as the lqdag

(AND, (AND, (EXTEND, (QTREE,QR ),A), (EXTEND, (QTREE,QS ),A)), (EXTEND, (QTREE,QT ),A)).

Lqdags as syntax trees. An lqdag L = (f ,o) can be interpreted as a syntax tree of the formula F
that it represents. The leaves of this tree correspond to the lqdags with functors QTREE and NOT
(i.e., those having a quadtree as their operand) present in L, while its internal nodes correspond to

lqdags with functors OR, AND, and EXTEND (i.e., those having lqdags as their operands). The root of

the syntax tree for L is a node corresponding to the functor f , and there is an edge from a node

for an lqdag L1 to a node for an lqdag L2 if and only if L2 is an operand of L1 (see Figure 6 for an

illustration). The lqdags corresponding to each node of this syntax tree are called fnodes of L.

Deriving other functors and the limitations of the NOT operand. For a quadtree QR representing

a relation R(A ′), and a set of attributes A such that A ′ ⊆ A, the qdag (QR ,MA) that represents
the relation R(A ′) × All(A \ A ′) can be expressed as the lqdag (EXTEND, (QTREE,QR ),A). In this

sense, lqdags are extensions of qdags. Note also that JUC queries, and even other more general

formulas, can be expressed as lqdags. While UNION and COMPLEMENT are equivalent to OR and NOT,

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:19

respectively, one can define other operations, like JOIN and DIFF, by composing the operations

introduced in Definition 4.2:

(JOIN,L1(A1),L2(A2)) = (AND, (EXTEND,L1,A1 ∪ A2), (EXTEND,L2,A1 ∪ A2)) (1)

(DIFF,L1(A),L2(A)) = (AND,L1, (NOT,L2)) (2)

Note that in the definition of the lqdag for NOT, the operand is a quadtree instead of an lqdag,

and then, for example, L2 should be a quadtree in the definition of DIFF in Eq. (2), in principle. We

can get around that restriction by pushing down the NOT operators until the operand is a quadtree

or the NOT is cancelled with another NOT. We formalize this process in Lemma 4.3. Proceeding in

this way, however, does limit the types of formulas for which we achieve worst-case optimality, as

shown later in Section 4.2.

Lemma 4.3. Let L = (f ,o) be an lqdag, and let k be the total number of functors that appear in L,
including f and all those present recursively in o. Let NOT∗(L) denote the quadtree representing the
complement of the completion of L. Then there is an lqdag L = (f ′,o′) whose completion is NOT∗(L),
and contains k functors in total (i.e., including f ′ and those present recursively in o′).

Proof. We prove the lemma by induction on k . When k = 1, L must be either (QTREE,o) or

(NOT,o), with o being a quadtree. In this case L ′ = (NOT,o), or L ′ = (QTREE,o), respectively.
When k > 1, f must be either AND, or OR, or EXTEND. For L = (AND,L1,L2), the number of

functors k1,k2 present in L1,L2, respectively, must be less than k . Thus, by induction there are

lqdagsL1,L2, containing exactly k1,k2 functors, respectively, and whose completions are NOT∗(L1),

NOT∗(L2). By the deMorgan law, the completion of the lqdagL = (OR,L1,L2) is NOT
∗(L). Moreover

it contains exactly 1 + k1 + k2 = k functors in it, and thus the statement is true for this case.

Analogously, when L = (OR,L1,L2), L = (AND,L1,L2) contains k functors and has NOT∗(L) as
its completion.

We are left with the case when L = (EXTEND,L1,A). Since L1 must contain k − 1 functors, there
is by induction an lqdag L1 containing exactly k1 functors and whose completion is NOT∗(L1). We

can show that the completion of L = (EXTEND,L1,A) is precisely NOT∗(L). By Definition 4.2, the

completion of L1 must represent a relation R′(A ′) with A ′ ⊆ A, while the completion of L must

represent a relation R(A) = R′(A ′) × All(A \ A ′). Let R(A),R′(A ′) denote the complements of

R(A),R′(A ′), respectively. Let tX denote the projection of a tuple t to a set of attributes X . Note

that R(A) can be written as

R(A) = {t ∈ All(A) | tA′ < R
′(A ′) or tA\A′ < All(A \ A

′)}.

Since the complement of All(A \ A ′) is empty, R(A) = {t ∈ All(A) | tA′ ∈ R′(A ′)}, which is the

same as R(A) = R′(A ′) × All(A \ A ′). By Definition 4.2, this is the relation represented by the

completion of the lqdag L = (EXTEND,L1,A), thus completing the proof. □

Laziness of lqdags. To understand why we call lqdags lazy, consider the operation Q1 And Q2

over quadtrees Q1,Q2. If either Value at the roots of Q1 or Q2 is 0, then the result of the operation

is for sure a leaf with Value 0. If either Value is 1, then the result of the operation is the other

quadtree. However, if both roots have Value ½, one cannot be sure of the Value of the resulting

root until the And between the children ofQ1 andQ2 has been computed. Solving this dependency

eagerly would go against worst-case optimality: it forces us to fully evaluate parts of the formula

without considering it as a whole. To avoid this, we allow the Value of a node represented by an

lqdag to be, apart from 0, 1, and ½, the special value ^. This indicates that one cannot determine

the value of the node without computing the values of its children.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:20 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

Algorithm 7 Value (L)

Require: An lqdag L

Ensure: Value of the root of L.

1: if L = (QTREE, Q ) then
2: return Value(Q )

3: if L = (NOT, Q ) then
4: return 1 − Value(Q )

5: if L = (AND, L1, L2) then
6: if Value(L1) = 0 or Value(L2) = 0 then return 0

7: if Value(L1) = 1 then return Value(L2)

8: if Value(L2) = 1 then return Value(L1)

9: return ^

10: if L = (OR, L1, L2) then
11: if Value(L1) = 1 or Value(L2) = 1 then return 1

12: if Value(L1) = 0 then return Value(L2)

13: if Value(L2) = 0 then return Value(L1)

14: return ^

15: if L = (EXTEND, L1, A) then
16: return Value(L1)

Algorithm 8 Child (L, i)

Require: An lqdag L(A) and an integer 0 ≤ i < 2
|A|

.

Ensure: An lqdag for the i-th child of L.

1: if L = (QTREE, Q ) then
2: return (QTREE, Child(Q, i))

3: if L = (NOT, Q ) then
4: return (NOT, Child(Q, i))

5: if L = (AND, L1, L2) then
6: if Value(L1) = 1 then return Child(L2, i)
7: if Value(L2) = 1 then return Child(L1, i)
8: return (AND, Child(L1, i), Child(L2, i))

9: if L = (OR, L1, L2) then
10: if Value(L1) = 0 then return Child(L2, i)
11: if Value(L2) = 0 then return Child(L1, i)
12: return (OR, Child(L1, i), Child(L2, i))

13: if L = (EXTEND, L1(A
′), A) then

14: d ← |A |, d ′ ← |A′ |
15: md ← the d-bits binary representation of i
16: md′ ← the projection ofmd to the positions in which

the attributes of A′ appear in A

17: i′ ← the value in [0, 2d
′
− 1] corresponding tomd′

18: return (EXTEND, Child(L1, i′), A)

As we did for qdags, in order to simulate the navigation over the completion Q of an lqdag L

we need to describe how to obtain the value of the root of Q , and how to obtain an lqdag whose

completion is the i-th child of Q , for any given i . We implement those operations in Algorithms 7

and 8, both constant-time. Note that Child can only be invoked when Value = ½ or ^. The base
case occurs when L = (QTREE,Q) or L = (NOT,Q), where we enter the quadtree and resort to the

algorithms based on the compact representation of Q . As per Algorithm 6, Value(Q) returns ½ for

internal nodes, and thus the implementation of Value for EXTEND is trivial in Algorithm 7.

Note that the recursive calls of Algorithms 7 and 8 traverse the fnodes of the lqdag, and terminate

immediately upon reaching an fnode of the form (QTREE,Q) or (NOT,Q). Therefore, their time

complexity depends only on the size of the formula represented by the lqdag. We show next how,

using these implementations of Value and Child, one can efficiently evaluate a relational formula

using lqdags.

4.2 Evaluating JUC queries
To evaluate a formula F represented as an lqdag LF , we compute the completion QF of LF , that is,

the quadtree QF representing the output of F (as detailed in Algorithm 9).

To implement this we introduce the idea of non-pruned completion of an lqdag. The non-pruned

completion Q+F of LF is the quadtree induced by navigating LF , and interpreting the values ^
as ½ (as in Algorithm 9 omitting lines 4 and 5). Note that, by interpreting values ^ as ½, we are

disregarding the possibility of pruning resulting subgrids full of 0s or 1s and replacing them by

single leaves with values 0 or 1 in QF . Therefore, Q
+
F is a non-pruned quadtree (just as Q+ in

Section 3.3) that nevertheless represents the same points of QF . Moreover, Q+F shares with QF a

key property: all its nodes with value 1, including the last-level leaves representing individual cells,

correspond to actual tuples in the output of F .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:21

AND

EXTENDAND

&)

{�, �,� }
EXTEND

{�, �,� }
EXTEND

{�, �,� }

&'

QTREE

&(

00
01 10

11

QTREE NOT

1

1

0

0

0 0

0

&+
�

000 010

0

0

1

1�

�
101 111

�

00
01 10

11

1

00
01 10

11

1 1

�

1

2

1

2

1

2

1

2

Fig. 7. Illustration of the evalua-
tion of an lqdag for the formula
(R(A,B) Z S(B,C)) Z T (A,C). The
quadtrees QR ,QS ,QT represent the
relations R, S,T , respectively. We show
the top values of Q+F on top and of QT
on the bottom. The gray upward arrows
show how the value 1 in the quadrant
00 of QT becomes 0s in octants 000 and
010 of Q+F without accessing QR or QS .
The red upward arrows show how the
value 0 in the quadrant 11 of QT makes
the quadrants 101 and 111 of Q+F depend
only on their left child (and, assuming
their value is ½, becomes a ^ in Q+F ).

Algorithm 9 Completion (LF )

Require: An lqdag LF whose completion represents a formula F over relations with d attributes.

Ensure: The completion QF of LF .

1: if Value(LF ) ∈ {0, 1} then return a leaf with value Value(LF )

2: for i ← 0, . . . , 2d − 1 do
3: Ci ← Completion(Child(LF , i))
4: if max{Value(C0), . . . , Value(C

2
d−1)} = 0 then return a leaf with value 0

5: if min{Value(C0), . . . , Value(C
2
d−1)} = 1 then return a leaf with value 1

6: return a quadtree with value ½ and children C0, . . . , C
2
d−1

To see how lqdags are evaluated, let us consider the query F = R(A,B) Z S(B,C) Z T (A,C). This
corresponds to an lqdag LF :

(AND, (AND, (EXTEND, (QTREE,QR ),A), (EXTEND, (QTREE,QS ),A)), (EXTEND, (NOT,QT ),A)).

Assuming that some of the quadtrees involved in LF have internal nodes, the non-pruned

completion Q+F first produces 8 children. Suppose the grid ofT is full of 1s in the first quadrant (00).

Then the first child (00) of QT has value 1, which becomes value 0 in (NOT,QT ). This implies that

(EXTEND, (NOT,QT )) also yields value 0 in octants 000 and 010. Thus, when function Child is called

on child 000 of QF , our 0 is immediately propagated and Child returns 0, meaning that there are

no answers for F on this octant, without ever consulting the quadtrees QR and QS (see Figure 7 for

an illustration). On the other hand, if the value of the child 11 of T is 0, then (EXTEND, (NOT,QT ))

will return value 1 in octants 101 and 111. This means that the result on this octant corresponds to

the result of joining R and S ; indeed Child towards 101 in QF returns

(AND,Child((EXTEND, (QTREE,QR ),A), 101),Child((EXTEND, (QTREE,QS ),A), 101)).

If Child((EXTEND, (QTREE,QR ),A), 101) and Child((EXTEND, (QTREE,QS ),A), 101) are trees with
internal nodes, the resulting AND can be either an internal node or a leaf with value 0 (if the

intersection is empty), though not a leaf with value 1. Thus, for now, the Value of this node is

unknown, a ^. See Figure 7 for an illustration.

Note that the running time of Algorithm 9 is O(|Q+F |). Lines 4 and 5 compact Q+F to obtain QF ,

without affecting the complexity of traversing Q+F . Thus, bounding |Q
+
F | yields a bound for the

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:22 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

running time of evaluating F . While |Q+F | can be considerably larger than the actual size |QF | of

the output, we show that |Q+F | is bounded by the worst-case output size of formula F for a database

with relations of approximately the same size.

We will not use the ^ values in the proof, because these are not needed when all we want is to

materialize the output of the query; we can just replace them all by ½ in that case. The ^ values

are useful, instead, to evaluate the formula progressively, for example to provide an iterator over

the output.

4.2.1 Analysis of the algorithm. Let LF be an lqdag for a formula F , and consider the syntax tree

corresponding to LF . We call atomic expressions of LF the lqdags associated with the leaves of

this tree (i.e., the fnodes with functors QTREE and NOT, see Figure 6 again). We say that two atomic

expressions L1 and L2 are equal if both their functors and operands are equal. For example, in the

formula

F = (OR, (AND, (QTREE,QR ), (QTREE,QS )), (AND, (QTREE,QR ), (QTREE,QT )))

there are three different atomic expressions, (QTREE,QR ), (QTREE,QS ), and (QTREE,QT ), while in

F ′ = (AND, (QTREE,QR ), (NOT,QR )) there are two atomic expressions. Notice that in formulas like

F ′, where a relation appears both negated and not negated, the two occurrences are seen as

different atomic expressions. We return later to the consequences of this definition.

The following lemma is key to bound the running time of Algorithm 9 for evaluating a formula.

Lemma 4.4. Let F be a JUC query represented by an lqdag LF in dimension d , and let Q+F be
the non-pruned completion of LF . Let R1(A1), . . . ,Rn(An) be the relations that appear in F , and
assume F does not contain subexpressions (QTREE,Q) and (NOT,Q) for a same quadtree Q . Letm be
the maximum number of internal nodes in any level of Q+F . Then, there is a database D

′ with relations
R′
1
(A1), . . . ,R

′
n(An) of sizes |R′i | = |Ri | for all 1 ≤ i ≤ n, such that the output of F evaluated over D ′

has size Ω(m).

Proof. Let mk be the number of internal nodes in level k of Q+F and j be a level where m =
mj is maximum. Let A1, . . . ,An be the distinct atomic expressions of LF and Q1, . . . ,Qn their

corresponding quadtrees (note that this is the number of relations intervening in F , because
both subexpressions (QTREE,Q) and (NOT,Q) cannot appear for the same Q). Let Q ′

1
, . . . ,Q ′n be

the quadtrees that result from trimming the levels at depths higher than j − 1 from Q1, . . . ,Qn ,

respectively, and replacing each node with value ½ in level j by a leaf valued 0 or 1 depending on

whether the functor of Ai is NOT or QTREE, respectively. We first show that Q ′
1
, . . . ,Q ′n represent

relations R′
1
, . . . ,R′n with |R′i | ≤ |Ri | such that, when F is evaluated over these relations, the output

of the formula is at leastm. Then we complete the proof by showing how to augment R′i so that
|R′i | = |Ri |, while preserving an output size of at leastm when F is evaluated over the new relations.

From internal nodes to output tuples. LetQ+F
′
be the non-pruned completion ofLF when evaluated

over Q ′
1
, . . . ,Q ′n . We will show that Q+F

′
has at leastm nodes with value 1 at the last level (the j-th),

and thus the output of F over the relations represented by Q ′
1
, . . . ,Q ′n is at leastm.

First, consider the completionA∗i ofAi evaluated overQi , and the completionA∗i
′
ofAi evaluated

over Q ′i , for all 1 ≤ i ≤ n. We say that A∗i ≤ A∗i
′
if both have the same topology up to the last level

of A∗i
′
, and the value of each node in A∗i

′
is not smaller than that of its homologous node in A∗i .

The value of a node in the quadtree resulting from an AND or OR operand is monotonic on the

values of the homologous nodes of the operands (i.e., when a node value in an operand is increased,

the value in the homologous node of the result never decreases). A simple inductive argument on

the syntax tree of LF shows that the value of each node in Q+F is also monotonic on the values of

the homologous nodes from the quadtrees A∗i involved in its computation. Thus, if we show that

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:23

Q8 Q
′
8½

½ 1 ½ 0

½ 1 1 ½ 0 ½ ½ 1

½ 0 ½ ½ ½ ½ 1 ½ 1 ½ ½ ½ 0 ½ 1 0

½

½ 1 ½ 0

1 1 ½ 0 ½ ½ 1

0 0 0 0 0 1 1 0 1 0

0

00 0 0 0 0

≥

NOT NOT

A
∗
8 ½

½ 0 ½ 1

½ 0 0 ½ 1 ½ ½ 0

½ 1 ½ ½ ½ ½ ½ 0 ½ ½ ½ 1 ½ 1

& ′
8 ½

½ 0 ½ 1

½ 0 0 ½ 1 ½ ½ 0

1 1 1 1 1 1 0 1 10 1 1 1 1 1 0

≤

00

Fig. 8. An illustration of the construction of Q ′i and Q
′
i in the proof of Lemma 4.4 for an atomic expression

Ai = (NOT,Qi ). The number inside each node represents its value, and the relations ≥ and ≤ drawn between
trees apply to the value of each pair of corresponding nodes. The figure assumes that the maximum number of
internal nodes in Qi occurs at the fourth level. The red node in Qi has been compacted into a leaf with value
0 since their children had all value 0 after the transformation of values ½ to 0. These nodes are un-compacted
back in Q ′i to ensure Qi and Q ′i have the same topology up to level four.

A∗i ≤ A∗i
′
for all i , we prove that Q+F ≤ Q+F

′
. This implies that Q+F

′
has at leastm nodes with value 1

in its last level: in Q+F there are at leastm internal nodes at level j that become leaves in the last

level of Q+F
′
, and since their values cannot be 0 due to monotonicity, they must be 1.

If Ai is of the form (QTREE,Qi ), showing that A∗i ≤ A∗i
′
is easy: the values in the first j − 1 levels

of A∗i are respectively equal to those in the j − 1 levels of A∗i
′
, and the only change in the j-th level

is that the values ½ were increased to 1 when converting every Qi to Q
′
i .

WhenAi = (NOT,Qi ), we show instead thatA∗i
′
is equivalent to a quadtreeQ ′i (i.e., both represent

the negation of Q ′i ) such that A∗i ≤ Q ′i . When we convert the nodes at level j with value ½ in

Qi to leaves with value 0 in Q ′i , we may create nodes v in Q ′i whose descendant leaves are all of
value 0, and thus those nodes v would become leaves with value 0 themselves. This changes the

topology of A∗i
′
with respect to A∗i , and it is the reason why we instead compare A∗i with a quadtree

Q ′i equivalent to A
∗
i
′
. We construct Q ′i by using the same topology of Q ′i , and complementing the

values 0 and 1 of every leaf (see Figure 8). In addition, we expand up to level j all those new leaves

v of Q ′i that were created via pruning (which is valid because the leaves we expand in Q ′i are of

value 1). After this expansion, Q ′i has the same topology of A∗i up to level j, its node values are

never smaller than those of the corresponding nodes in A∗i , and thus A∗i ≤ Q ′i .
So far, we showed how to obtain n relations over the same set of attributes as the original ones

such that, when F is evaluated over them, the output size is Ω(m). Moreover, since each quadtree

Q ′i is obtained by trimming Qi at some level, we know these quadtrees represent relations R′i such
that |R′i | ≤ |Ri |. The values in R

′
1
, . . . ,R′n belong, however, to a smaller universe of j-bit values. This

is remedied by simply appending (log ℓ − j) 0s at the beginning of the binary representation of

these values. Restoring the size of the universe also gives space to augment the generated relations

so that their cardinalities coincide with the original ones. We show next how to achieve this.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:24 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

Augmenting the relations. After appending the (log ℓ − j) 0s at the beginning of the binary

representation of each value in R′i , the points represented by each Q ′i are distributed in a subgrid of

size 2
d j

from the total space of size 2
d log ℓ = ℓd . There are 2d log ℓ/2d j = 2

dc
such subgrids in the

domain of Ri , for c = log ℓ − j > 0. Thus, we have 2
dc − 1 > 0 empty subgrids where we can add

spurious points in order to increase the size of R′i . We show that the amount of points within these

subgrids is enough to augment R′i so that |R′i | = |Ri |.
We first consider the case whenAi = (NOT,Qi ). For the purpose of the proof, assumeQi has leaves

with value 1 whenever possible.
6
The points of Ri can be classified into the points Oi represented

by a node with value 1 at level k ≤ j in Qi , and the points Ii represented by a node that descends

from a ½-valued node at level j of Qi . Thus |Ri | = |Oi | + |Ii |, and:

• Each node valued 1 at level k ≤ j in Qi induces 2
d (j−k )

points in R′i and 2
d (log ℓ−k )

points in

Ri ; therefore there are 2
dc

points in Oi per point in R′i . Those are all the points in R′i , so to

match |Oi | we must insert 2
dc − 1 further points for each point in R′i .

• For every empty cell in R′i there can be up to 2
dc − 1 points in Ii , because if the 2

dc
points

existed in the subgrid of Ri corresponding to the cell of R′i , then they would have induced a 1

at level j of Qi , not a ½. Therefore, to match |Ii | we must insert up to 2
dc − 1 further points

for each empty cell in R′i .

Summing up both cases, it suffices to add 2
dc − 1 points for each of the 2

d j
cells of R′i , full or empty.

Then, we have sufficient space in all the other 2
dc − 1 > 0 subgrids, each of 2

d j
cells, to add the

spurious points needed to make R′i of size |Ri |.
The case of Ai = (QTREE,Qi ) follows easily from the previous case. Let R′′i be a relation rep-

resented by the quadtree Q ′′i generated via trimming at the j-th level for the atomic expression

(NOT,Qi ). Then, |R
′
i | = |R

′′
i | +m because in Q ′i them internal nodes in the j-th level are converted

into nodes with value 1, while in Q ′′i they become leaves with value 0. We already know that there

is enough room in the new subgrids to augment R′′i so that |Ri | = |R
′′
i |, and therefore the same can

be achieved for R′i , which requires fewer points. □

For a formula F represented as a d-dimensional lqdag LF that involves relations R1, . . . ,Rn ,
we can bound the time needed to compute the non-pruned completion Q+F of LF using the same

reasoning as in Section 3.3. Sincem is the maximum number of internal nodes in a level of Q+F , the
number of internal nodes inQ+F is at mostm log ℓ. Now, each internal node inQ+

LF
results from the

application of |F | operations on each of the 2
d
children being generated, all of which take constant

time. Thus the non-pruned completion can be computed in time O(m · 2d |F | log ℓ). On the other

hand, by Definition 4.1, it holds that F (D)∗ = Ω(m), and therefore the query F can be computed in

time O(F (D)∗ · 2d |F | log ℓ). This means that the algorithm is worst-case optimal in data complexity.

By using the same technique of Theorem 3.9 to convert log ℓ into logmin(ℓ, S), we obtain the result.

Theorem 4.5. Let F be a JUC query on the relations {R1, . . . ,Rn} of a database D, with d attributes
in total, and where the domains of the relations are in [0, ℓ− 1]. LetAi be the set of attributes of Ri , for
all 1 ≤ i ≤ n, N =

∑
i |Ri | be the total number of tuples in the database, and S =

∑
i |Ai | · |Ri | its total

number of entries. The relations R1, . . . ,Rn can then be stored within S log ℓ + 2N log ℓ + o(S log ℓ) +
O(n logd) bits so that, if the lqdag of F does not contain both subexpressions (QTREE,Q) and (NOT,Q)
for some Q , its output can be computed in time O(F (D)∗ · 2d |F | logmin(ℓ, S)) = Õ(F (D)∗).

This result generalizes Theorem 3.9, where F (D)∗ = 2
ρ∗(F ,D)

and |F | = Ω(n). Moreover, it does

not matter how we write our formula F to achieve worst-case optimal evaluation. For example, our

algorithms behave identically on ((R Z S) Z T ) and on (R Z (S Z T )).

6
Alternatively, when generating Q ′i , we convert to 1, not to 0, the values ½ whose descendant leaves are all 1s.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:25

Lemma 4.4 requires that no single quadtree Qi appears in both forms, (QTREE,Qi ) and (NOT,Qi ),

in the formula, because for each of those atoms we create different versions of Q ′i to construct the

worst-case database D ′. This restriction carries over to Theorem 4.5. To see why it is necessary,

consider again our example formula F ′ = (AND, (QTREE,QR ), (NOT,QR )). While the answer of this

query is always empty, and therefore |QF′ | = 0, it holds |Q+
F′
| = Ω(|R |/2d ) for every R, and our

algorithm will take time Ω(|R |). Our algorithm is then worst-case optimal only if we consider the

possible output size of a more general formula, F ′′ = (AND, (QTREE,QR ), (NOT,Q
′
R )). This impacts

in other operations of the relational algebra: we can write them all as lqdags, but for some of them

we will not ensure their optimal evaluation.

In case the formula F contains (after pushing down the NOT operators) both atomic subexpres-

sions (QTREE,Q) and (NOT,Q) for the sameQ , Theorem 4.5 can still yield an upper bound on a more

relaxed formula F ′, where the occurrences of (NOT,Q) are replaced by (NOT,Q ′) and Q ′ is a copy
ofQ . Note, however, that the optimality in the evaluation of F ′ does not imply the optimality on F ,
because a worst-case instance of F ′ may choose different instances for Q and Q ′.

5 FULL RELATIONAL ALGEBRA ON LQDAGS
Lqdags can be elegantly extended to handle the full relational algebra, even if in general we cannot

provide optimality guarantees when the remaining operations are included. We consider in the

sequel the operations not covered in Section 4 (recall that set difference is handled as in Eq. (2), and

its optimality holds under the same conditions of Theorem 4.5).

First, note that attribute renaming, ρAi /Aj (L), requires no computation in our framework: we

retain the same lqdag ofL(A) but interpret it asL(A ′), whereA ′ = A\{Ai }∪{Aj }, assuming that

the dimension of L that represented Ai now represents Aj . Relation renaming is also immaterial.

Note that renaming can be used to alter the order of the attributes in a relation, and to include it

with various orders in the same formula. This is supported in our framework with various qdags

(Q,Mi ) referring to the same quadtree and with different permutationsMi of its attributes.

5.1 Selection and θ -join
The selection operation in relational algebra, σθ (F ), takes a subexpression F and a predicate θ ,
which is a logical expression on the attributes of F . This can be written with our lqdags as

(SELECT,LF (A),θ ) = (AND,LF (A),pred(θ ,A)), (3)

where LF is an lqdag representing F , and pred(θ ,A) is a virtual lqdag onA whose cells are exactly

those that satisfy the predicate θ . For example, a simple predicate like θ ≡ (Ai = a), which fixes the

value of the attribute Ai , can be written as

pred((Ai = a),A) = (EXTEND, (QTREE, ⟨a⟩),A \ {Ai }),

where ⟨a⟩ is a quadtree in one dimension, on attribute Ai , with a single cell with value a. Logical
disjunctions, conjunctions, and negations in θ can be handled by using the lqdag operations OR,
AND, and NOT, respectively. All those pred(θ ,A) lqdags can then be easily formed from very small

quadtrees and the Boolean lqdag operations.

However, θ can be in general a logical formula over more complex conditions than an attribute

being equal to a constant: two attributes, or an attribute and a constant, can be compared with any

operator in {=,,, ≤, ≥, <, >}. A general way to handle any such predicate is to set pred(θ ,A) =
(QTREE,Qθ ) without building an actual quadtree Qθ on A (see Figure 9 for an example of Qθ ).

Instead, we simulate the navigation through Qθ , keeping track of the subgrid boundaries as we

descend, and returning Value for the current node as follows:

• 0 if θ does not hold for any cell in the current subgrid;

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:26 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

(a) (b)

1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10

0 1 0 1 0 1 0 1

0 1 0 1

0 1

�

�

Fig. 9. An illustration of Qθ for the predicate θ : A < B, with A,B attributes. a) A representation in a grid of
the tuples matching θ when ℓ = 2

4. b) The quadtree that represents the tuples matching θ .

• 1 if θ holds for every cell in the current subgrid;

• ½ otherwise.

Whether θ holds for some or for all cells in a given subgrid of the output can be easily determined

in timeO(|θ |) for the logical formulas comparing attributes and constants we have discussed above

(e.g., as in Figure 9, A < B holds somewhere iff sa < eb and it holds everywhere if ea < sb , where
[sa , ea] and [eb , sb ] are the ranges of values of the attributes A and B, respectively, in the subgrid).

For a formula F represented by the lqdag LF = (SELECT,L,θ ), if we count |θ | as a part of |F |, then
we can compute the output of LF in time O(|Q+F | · 2

d |F |), where Q+F is the super-completion of

LF . This complexity is indeed worst-case optimal when θ selects tuples from a single relation R:
the AGM bound for LF = (AND, (QTREE,R), (QTREE,Qθ )) is F (D)

∗ = min(|R |, |Qθ |) because there

exists a relation R′ with |R | points placed at the coordinates that satisfy θ , unless of course there
are fewer of the latter. The quadtree Q+F we virtually traverse, on the other hand, contains exactly

the ancestors of the leaves of the quadtree of R that also belong to Qθ , of which there are at most

O(F (D)∗ logmin(ℓ, S)). We then obtain the same bounds of Theorem 4.5.

The complexity of evaluating our formula might not be worst-case optimal, however, when θ
combines attributes from two or more tables, because |Q+F | may no longer be bounded by F (D)∗ in
that case. To see this, let LR ,LS be lqdags representing relations R(A,B), S(B,C), respectively, and
consider the lqdag

LF = (SELECT, (JOIN,LR ,LS ),A = C).

Because each value of A in R can now match only one value of C in S , F (D)∗ is linear in the

size of R and S . In terms of lqdags, however, computing Q+
LF

amounts to intersecting the lqdag

(JOIN,LR ,LS ) with a virtual treeQA=C of dimensions {A,C} and whose points lie on the diagonal

where A = C . The problem is that checking whether a point in (JOIN,LR ,LS ) intersects with this

diagonal may require inspecting all the way down to the leaves of this lqdag. This implies that the

size of the non-pruned completion Q+F is actually bounded by |R Z S |.
In terms of our results, if we apply Theorem 4.5 on the formula of Eq. (3), then F (D)∗ is allowed

to replaceQθ by any other relation of the same cardinality onA. In the example above, the running

time for σA=C (R Z S) is bounded by the worst case running time of the join of R, S and any other

binary relation with ℓ tuples.
Therefore, we can retain worst-case optimality upon selections whenever the predicates can be

pushed down to the leaves of the syntax tree, that is, to the individual relations. Otherwise, our

technique still handles them correctly, though not optimally. The same happens if θ is an arbitrary

formula whose validity can only be tested for individual cells; in this case we can only evaluate F
and discard one by one the cells that do not satisfy θ .
The Cartesian product is a variant of the join where the relations have no common attributes;

our join formula in Eq. (1) actually computes the Cartesian product in this case. The θ -join selects

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:27

the tuples from the Cartesian product that satisfy the predicate θ . We can then define

(THETAJOIN,L1,L2,θ ) = (SELECT, (JOIN,L1,L2),θ ),

which also allows the relations to share attributes. Once again, our lqdag evaluation of this expres-

sion is correct but not worst-case optimal.

5.2 Projection and derivatives
The projection, πA′(F ), takes a subexpression F on attributes A and projects it onto A ′ ⊆ A. We

define the corresponding lqdag L = (PROJECT,LF (A),A
′) as follows. Let |A| = d , |A ′ | = d ′, and

LF be an lqdag for F . If Value(LF ) is 0 or 1 then Value(L) = Value(LF ), otherwise Value(L) = ^.
In the latter case, the root of the non-pruned completion Q+

LF
of LF has 2

d
children, and the root

of the non-pruned completion of Q+
L
of L has 2

d ′
children. The i-th child of Q+

L
is computed as the

OR of all children j of Q+
LF

such that the projection of the d-bit representation of j to the positions

in which attributes in A ′ appear in A is precisely the d ′-bit representation of i (see Figure 10 for
an illustration). For example, if Value(LF ({A,B,C})) is not 0 or 1 and L = (PROJECT,LF , {A,B}),
we have that

Child(L, 0) = (PROJECT, (OR,Child(LF , 0),Child(LF , 1)), {A,B});

Child(L, 1) = (PROJECT, (OR,Child(LF , 2),Child(LF , 3)), {A,B});

Child(L, 2) = (PROJECT, (OR,Child(LF , 4),Child(LF , 5)), {A,B});

Child(L, 3) = (PROJECT, (OR,Child(LF , 6),Child(LF , 7)), {A,B}).

Supporting projection on lqdags then enables the remaining operations of the relational algebra:

(SEMIJOIN,L1(A1),L2(A2)) = (PROJECT, (JOIN,L1,L2),A1)

(ANTIJOIN,L1(A1),L2(A2)) = (PROJECT, (JOIN,L1, (NOT,L2)),A1)

(DIVISION,L1(A1),L2(A2)) = (DIFF,L ′
1
, (PROJECT, (DIFF, (JOIN, (L ′

1
,L2),L1),A1 \ A2))

where L ′
1
= (PROJECT,L1,A1 \ A2) and A2 ⊆ A1

Just as in the case of selection, our strategy to handle projections does not ensure worst-case

optimality either. Consider, for example, the projection F represented by the lqdag

LF = (PROJECT, (JOIN,LR ,LS ), {A}),

where LR ,LS are lqdags representing relations R(A,B), S(B,C), respectively. Since its output is
of dimension 1, F (D)∗ ≤ ℓ. We have, essentially, the same problem encountered for the case of

selection: As we navigate LF to project out values in the lqdag (JOIN,LR ,LS ), we may have to

inspect all the way down to the leaves. In total, the non-pruned completion Q+
LF

of LF may be of

size |R Z S |.
A projection L = (PROJECT,LF (A),A

′) from a d-dimensional lqdag LF to d ′ dimensions has

one further problem: its Child translation makes the resulting formula to grow by 2
d−d ′

elements

every time we move to a child in Q+
L
. Thus, during a traversal of Q+

L
, the lqdag L may grow up to

size |L| · 2c(d−d
′)
for nodes at level c , possibly becoming as large as QLF . Therefore, the size |L|

cannot be anymore considered constant in data complexity when projections are considered.

A consequence of the non-optimality of our strategy in this section is that, unlike in Section 4,

the way in which the formula is written does matter. For example, if we rewrite LF in the preceding

example as

(PROJECT, (JOIN,LR , (AND, (PROJECT,LR , {B}), (PROJECT,LS , {B}))), {A}),

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:28 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

(a)

�

(b)

PROJECT

{� }

�
PROJECT

{� }

�

�

�

�

OR

PROJECT

{� }

�

�

�

�

OR

1

0 1 1

1 0

0

0 1

&

&1 &2

L

L1

L2

�

�
'(�, �)

Fig. 10. An illustration of the Child operation for a 2-dimensional lqdag with functor PROJECT. a) A relation
R(A,B) in a two dimensional grid (left), its projection to B in a 1-dimensional grid (center), and the quadtree
QF that represents the projection (right). b) An lqdag L = PROJECT((QTREE,QR ), {B}) whose completion isQ ,
with QR denoting the quadtree that represents R(A,B). Note that Q1,Q2 in a) are the completions of L1,L2

in b), respectively. Thus, Child(L, 0) = L1, and Child(L, 1) = L2.

then we have |Q+
LF
| ≤ |R | + |S |. On the other hand, as noted, evaluating each node of Q+

LF
can be

more expensive now because the formula may grow due to the internal projections.

5.2.1 Yannakakis’ algorithm. Having defined the projection, a natural question is whether one can

use it to obtain finer bounds for acyclic queries or for queries with bounded treewidth. For example,

even though the AGM bound for R(A,B) Z S(B,C) is quadratic, one can use Yannakakis’ algorithm

[44] to compute it in time O(|R | + |S | + |R Z S |). This is commonly achieved by first computing

πB (R) and πB (S), intersecting them, and then using this join to filter out R and S . Unfortunately,
expressing this strategy directly in our lqdag framework, even if we push down the projections,

(JOIN, (JOIN,LR ,I), (JOIN,LS ,I))

where I = (AND, (PROJECT,LR , {B}), (PROJECT,LS , {B})),

would still give us a quadratic algorithm, even for queries with small output, because after extending

I it may take quadratic time to compute the join.

More generally, this also rules out the possibility to achieve optimal bounds for queries with

bounded treewidth or similar measures. We return to this point in the Conclusions.

5.3 Partial materialization of query results

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:29

&+ & &̃

0

½

0

½

0

0

Output-dense zonesZones where no output tuples were found

0
0

Fig. 11. A comparison between Q,Q+, and Q̃ . The quadtree Q is obtained by pruning from Q+ the subtrees
explored by Algorithm 9 that did not produce an output tuple. Similarly, Q̃ is obtained from Q by pruning
the subtrees of Q for which, to produce an output tuple, Algorithm 9 does not traverse more than τ internal
nodes before finding it. We call the subtrees meeting this property output-dense zones.

The algorithms we have described can generate the output Q of the formula F explicitly, in the

same compressed quadtree format of the input relations, and as such they can be used compo-

sitionally. It is worth reminding that the output of a join query can be considerably larger than

the input relations, which is particularly relevant in the context of using little space for query

processing. In this section we show another advantage of using quadtrees for representing the

query results: Because the output is a function of the input relations, it can be not only represented

as a compressed quadtree, but also materialized only partially, as long as one is willing to pay extra

time to navigate such output. This parameterizable materialization of the query output, where we

can trade space for traversal time, is inspired by a similar result by Deep and Koutris [10].

We compute a partial quadtree representation Q̃ that contains |Q̃ | ≤ min(|Q |, |Q+ |/τ ) nodes,
for any parameter τ ≥ 1 fixed at query time, and allows us to traverse the result with delay

O(τ · 2dV (F ) logmin(ℓ, S)), where V (F ) is the time to compute Value on F using Algorithm 7. The

time to produce Q̃ is the same as for generating Q using Algorithm 9, that is, O(|Q+ | · 2dV (F )).
Our partial result Q̃ is a version ofQ where some subtrees are pruned. The quadtree representation

we use for Q̃ is a slight extension of the one we have been using. In this case, leaves may have

Value 0, 1, or ½. A leaf node with value ½ means that the resultQ has elements below that node but

these are not stored in Q̃ , and thus must be recomputed (see Figure 11 for an illustration). In terms

of the representation of Lemma 2.1, a leaf with value ½ is seen as an internal node with no children,

a configuration that cannot occur in the basic quadtrees but that the compact representation allows.

The key is that leaves v with value ½ in Q̃ will be produced only when, in a DFS traversal of

Q+ below v , (1) the number of internal nodes of Q+ visited between any two consecutive internal

nodes of Q is at most τ , and (2) the number of internal nodes of Q+ visited before the first and

after the last internal node of Q , are at most τ/2. This then guarantees the promised delay when

rerunning the intersection algorithm to recover the values omitted below v in Q̃ .
To produce Q̃ instead of Q , we modify Algorithm 9 so that every recursive call may, after

computing the subtree of Q below a node v in line 6, choose to return instead a leaf with value ½.

In case it returns a leaf, the algorithm accompanies it with the following numbers:

• For a leaf with Value = 0, the number c of internal nodes of Q+ visited below v (this is the

number of times it reached line 2 in further recursive calls).

• For a leaf with Value = ½, the numbers l and r of internal nodes ofQ+ visited before the first
internal node of Q and after the last internal node of Q , respectively.
• For a leaf with Value = 1, the numbers l = r = 0.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:30 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

The algorithm decides as follows whether to return a quadtree with children C0, . . . ,C2
d−1 or to

prune them and return instead a leaf with value ½. If its children are integer nodes (i.e., the last

level), it always prunes them because it can be recomputed in time O(2dV (F )), which is within our

time budget. Otherwise, if some child is not a leaf, the algorithm never prunes the node: if the child

was not converted into a leaf, it is because the delay τ cannot be guaranteed below it. Otherwise, if

all the children Ci are leaves, the algorithm may choose to prune the node, as follows. Let Ci j be

the children leaves with Value = ½ or 1, for 0 ≤ i1 < · · · < ik < 2
d
. Then, if

l =

(
i1−1∑
s=0

c(Cs )

)
+ l(Ci1 ) ≤ τ/2, (4)

r = r (Cik ) +
©­«

2
d−1∑

s=ik+1

c(Cs )
ª®¬ ≤ τ/2, and (5)

r (Ci j ) +
©­«
i j+1−1∑
s=i j+1

c(Cs )
ª®¬ + l(Ci j+1 ) ≤ τ for all j = 1, . . . ,k − 1,

the algorithm prunes the node and returns instead a leaf with value ½, accompanied with the values

l and r computed in Eqs. (4) and (5).

The way to traverse the full result Q from Q̃ is to execute Algorithm 9 as an iterator, which also

traverses Q̃ in synchronization. Every time we reach a leaf v with value 0 or 1 in Q̃ , we skip the

recursion of Algorithm 9 at v , because we know that Q has no results (0) or is full of results (1) in

the subgrid of v . If, instead, we arrive at a leaf v of Q̃ with value ½, we traverse all the subtree of v
in Q using Algorithm 9 as an iterator, knowing that the promised delay is attained below v: we
obtain a true internal node of Q every, at most, τ internal nodes we traverse in Q+.

The space guarantee is obtained by considering that, on the one hand, the nodes of Q̃ are a subset

of the internal nodes of Q . On the other hand, if we regard the internal nodes of Q in DFS order,

then for each internal node of Q we include in Q̃ there are more than τ/2 internal nodes of Q+ and
not in Q̃ preceding or following it, therefore Q̃ contains less than 4|Q+ |/τ internal nodes of Q (so

we can build our structures with 4τ instead of τ to obtain our precise promised bounds).
7

By representing Q̃ with the data structure of Lemma 2.1, and since we may have to traverse up

to 2
d
logmin(ℓ, S) nodes of Q between two consecutive leaves with value 1 (i.e., two consecutive

output elements), we obtain the following result.

Corollary 5.1. Assume lqdags can compute the output of a relational formula F in time V (F ) per
node of Q+F . Then, given a parameter τ chosen at query time, we can compute a partial representation
of the output in timeO(|Q+F | · 2

dV (F )), which takesO(|Q+F | ·d/τ ) bits using the encoding of Lemma 2.1,
and retrieves the successive elements of the output of F with a delay of O(τ · 2dV (F ) logmin(ℓ, S)).

This corollary then extends to the full relational algebra the result Deep and Koutris [10] had

obtained for join queries. We remark that V (F ) = O(|F |) if F does not contain projections, and that

|Q+F | ≤ F (D)∗ logmin(ℓ, S) for JUC queries.

7
Every node in Q̃ has τ /2 nodes not in Q̃ preceding or following it, but those can be the same τ /2 nodes that follow the

previous node of Q̃ or that precede the next node of Q̃ , respectively. Thus we can exclusively assign only τ /4 nodes not in
Q̃ to each node in Q̃ . Therefore, Q̃ ≤ |Q+ |/(τ /4).

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:31

0 2 4 6 8 10 12 14

1

3

5

7

9

11

13

15

�

01

01

10

10

0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0)

!

(c)

�(a) (b)

0 0

0 1 0 01 0 0 0 1 1 1 1 0 1 1 00 0 1 0 0 0 1 0

1 1 1 0

0 1 0 1

0 0 1 0 1 0 0 0 0 0 1 0

1 1

0 0 1 0 0 0 1 0

0 1 0 1 0 1 1 0 0 0 1 0

1 1 1 0 0 1 0 10 0 1 1

0 0 1 0

0 0 1 0

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

0 0 1 0

0 0 1 1

0 1 0 0

Fig. 12. A k2-tree representing the same relation R(A,B) of Figure 1. (a) Representation of R(A,B) in a 24 × 24

grid. (b) A quadtree representing R, and the respective k2-tree nodes. A 1-bit is assigned to every internal
and integer-1 node of the quadtree, and a 0-bit to every leaf and integer-0 node. The k2-tree combines the 2d

children of a node of the quadtree into one node. The k2-tree nodes are highlighted as shaded rectangles
with dashed borders. The integer-1 node of the quadtree in bold correspond to (a,b) = (3, 12), highlighted in
red in the grid. (c) The k2-tree represents R using only the bitvector V = T · L, where T represents the bits of
the nodes at all levels but the last, in level-wise order, and L stores the bits of the bottom level. The identifier
of each node is represented as a small gray number on top of each node. The nodes highlighted in red, and
the bolder bits within, correspond to the root-to-leaf path encoding the tuple (3, 12).

6 ENGINEERING AND IMPLEMENTATION
We implemented our representation andmultijoin algorithm described in Section 3, plus the simplest

selection described in the beginning of Section 5.1. This section describes the algorithm engineering

and implementation, and the next one its experimental evaluation.

6.1 Space-efficient qdags
We do not use the tries [7] of the theoretical proposal (Lemma 2.1) to implement the quadtrees,

but the simpler kd -trees of Brisaboa et al. [9] with parameter k = 2. Such a kd -tree represents
each internal quadtree node as the 2

d
bits telling which of its quadrants is empty (0) or nonempty

(1). Note that, for the deepest internal nodes, this coincides with the values corresponding to its

children, which are integer nodes. Leaves and integer nodes are then not represented, because their

data is deduced from the corresponding bit of their parent. We exploit the simplicity of kd -trees to
enable speedups and direct compressed construction of the output, as described in the sequel.

The kd -tree is just a bitvector V concatenating the 2
d
bits that represent every internal node in

levelwise order. Each node is identified with the first position of its 2
d
bits in this concatenation,

the first position being 1. Bitvector V supports navigating towards a node’s children using a

succinct data structure to support rank operation: rank(V , i) counts the number of 1s in V [1..i].
This operation can be computed inO(1) time using o(|V |) additional bits on top ofV [26]. With the

rank operation at hand we can then simulate the traversal of the kd -tree: For an internal node x
(i.e., whose description starts at V [x]), its j-th child (0 ≤ j < 2

d
) is (i.e., its description starts in V at

position) child(x , j) = 2
d · rank(V ,x + j) + 1; this is computed in O(1) time.

In practice, the bitvector V is cut in two parts, V = T · L, where L concatenates the 2
d
-bit

descriptions of the deepest-level internal nodes, and T those of the higher nodes. That is, L stores

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:32 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

the content of all the integer nodes (see Figure 12 for an example). This is advantageous because

the rank operation must only be supported on T , whereas for L we only need to support access.

On a quadtree in dimension d storing p points, the length of the bitvector V is |V | ≤ 2
dp log ℓ,

which increases exponentially with d . In high dimensions, this is much more than the (d + 2 +
o(1))p log ℓ bits used in Lemma 2.1. A practical alternative to reduce the space in higher dimensions

is to exploit the fact thatV has at most p log ℓ 1s, one per ancestor of each integer-1 node. A sparse

bitvector representation [36] then also uses (d + 2 + o(1))p log ℓ bits, though it supports rank in

time O(d). We choose not to implement this option, as we were focusing only on relatively low

dimensions. However, this is an interesting direction for future work.

In practice, not all the domains are of the same size ℓ. We extend them all to the next common

power of 2. This does not pose a significant overhead because the points are clustered within a

subgrid of the actual size.

6.1.1 Our kd -tree Implementation. Contrary to the typical kd -tree representation just described

(for k = 2), we use a set of b = log ℓ bit vectors B0,B1, . . . ,Bb−1 to store each level of the quadtree

separately. This will facilitate appending new nodes as we compute the join, so that we can produce

the output directly in compressed form. Each bitvector Bi stores the nodes at depth i , using the

2
d
-bit encoding explained above. It is easy to see that the j-th child of a node x at depth i < log ℓ

starts at position 2
d · rank(Bi ,x + j) + 1 in Bi+1. Again, bitvector Bb−1 needs not support rank.

Although there are highly-optimized and practical approaches to support operation rank [14], we
obtain good results with the following ad-hoc scheme, optimized for current processors ofw = 64

bit words. For a bitvector B[1..N ], we store a precomputed table P such that P[j] = rank(B,w · j),
for j = 0, . . . , ⌊N /w⌋. If 32-bit integers are used for the cells of P , then it takes N /2 bits on top of B.
Operation rank(B,x) is computed as P[⌊x/w⌋] plus the number of 1s within B[1+ ⌊x/w⌋ ·w,x]. The
latter is computed using a popcount operation within thew-bit word storing B[x]. In our particular

implementation, withw = 64, we use the special popcount operation from the SSE 4.2 instruction

set. This supports rank efficiently: almost twice as fast as the highly-optimized implementation

from the sdsl library [14]. The precomputation of P takes O(N /w) time.

6.2 Implementing extensions
To compute the join R1(A1) Z · · · Z Rn(An), each Rr (Ar ) represented with a qdag Qr = (Tr , Ir ),
we must first compute operation Extend(Qr ,A \ Ar ), for A = ∪

n
r=1Ar . We regard the attributes

Aj as integer identifiers in 0, . . . , |A| − 1, and use them to give an order in A. Along with Qr , we

represent the attribute set Ar using an integer ar with the corresponding attribute identifiers: We

precompute ar starting with ar ← 0 and then, for each Aj ∈ Ar , do ar ← ar | (1 ≪ (Aj − 1)),

where operators | and≪ denote bitwise-or and shift-left, respectively. Then, line 6 of Algorithm 3,

which is run for i = 0, . . . , 2 |A | − 1, is implemented as i ′← i & a′, where a′ represents A ′ and &

denotes bitwise-and. This encodes in i ′ the projection of i to the positions in which the attributes

of A ′ appear in A, which can then be used in line 7 of Algorithm 3. The time complexity of

this implementation is O(2 |A |) under the assumption that |A| = O(w); otherwise we can obtain

O(2 |A | · |A|/w) time by representing the numbers using multiple computer words.

6.3 Implementing multiway intersections
Oncewe have extended every qdaqQr = (Tr , Ir ) representingRr toQ

∗
r = (Tr ,Mr ) = Extend(Qr ,A\

Ar ) in order to compute the join R1(A1) Z · · · Z Rn(An), we proceed to intersect the qdags Q∗r
by traversing them all in synchronization, as explained.

The recursive traversal algorithm takes the current node xr in each qdag Q∗r , as well as the

current level (or depth) v they have in the tree. It is invoked with v = 0 and x1 = · · · = xn = 1,

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:33

(a)

�

�
'(�, �) ( (�,�)

�

) (�,�)
�

(c)

(d)(b)

0 1 10 1 0 1 00 1 0 0

00 01 10 11 00 01 10 11 00 01 10 11

0 0 0 00 0 1 1 0 1 0 1 1 0 1 0

011010

�' [0100] = 00110000 �( [0101] = 01010101

011001 111101

�) [0110] = 01011010

0 1 0 1 0 1 0 1

100 110

Root of &' Root of &( Root of &)

Root of &∗
'

Root of &∗
(

Root of &∗
)

�

�

'∗ (�, �,�) (∗ (�, �,�) ) ∗ (�, �,�)

�

�

�

�

�

� �

00000000 00000000 00000000

00000011 00010001 00000101

00001100 00100010 000010100010

�' (�,�) �( (�,�) �) (�,�)

0

1

2

8

11011101 11110101

11101110 11111010

11111111 11111111

13

14

15

00001111 00110011 00001111

00110000 01000100 01010000

00110011 01010101 01010101

0011

0100

0101

3

4

5

00111100 01100110 01011010

00111111 01110111 01011111

11000000 10001000 10100000

0110

0111

1000

6

7

8

10011001 10100101

10101010 10101010

10111011 10101111

9

10

11

11001100 1111000012

0000

1001

1010

1011

1100

1101

1110

1111

0001

11000011

11001100

11001111

11110000

11110011

11111100

11111111

001 011

�

�

Fig. 13. Materialization of the kd -tree nodes of the extended relations using lookup tables. (a) Three relations
R(A,B), S(B,C) and T (A,C). We denote by QR , QS and QT the k2-trees representing R, S,T , respectively.
(b) The lookup tables CR ,CS ,CT for the materialization of extended nodes when computing R(A,B) Z
S(B,C) Z T (A,C). (c) The relations R∗(A,B,C) = R(A,B) × All(C), S∗(A,B,C) = S(B,C) × All(A),T ∗(A,B,C) =
T (A,C) × All(B). We denote by Q∗R , Q

∗
S and Q∗T the (virtual) k3-trees representing R∗, S∗,T ∗, respectively. (d)

The k3-tree nodes corresponding to the roots of Q∗R ,Q
∗
S ,Q

∗
T are looked up in CR ,CS ,CT , respectively, using

the root node of QR ,QS ,QT as the index in the table. The bits highlighted in red belong to the intersection of
the root nodes of Q∗R ,Q

∗
S ,Q

∗
T since 00110000& 01010101& 01011010 = 00010000.

the qdag roots. At each step, for j = 0, . . . , 2d − 1, it recurses on the j-th child of every xr if the
n children are not null; otherwise the traversal is pruned and a leaf in the resulting quadtree is

written. Formally, we recurse on the j-th child of x1, . . . ,xn if it holds that Tr .Bv [xr +Mr [j]] = 1
for all 1 ≤ i ≤ n. Checking this naively takesO(2dn) time per node (as it shows up in Theorem 3.9),

which is inefficient whenMr maps to the same child in Tr for many different values of j.

6.3.1 Materializing nodes. We now introduce a more efficient approach to reduce this O(2dn) cost.
The main idea is to quickly materialize the 2d children of every node xr ∈ Q

∗
r , and then intersect

the n sets of children using bit-parallel operations, instead of computing the intersection child-wise.

Recall that, for each qdag Q∗r , we only store explicitly the kdr -tree of the base quadtree Tr ; the
traversal on the virtual kd -tree representing Q∗r is simulated through mappingMr . Therefore, the

sequence of 2
d
bits that describes the children of xr in Q

∗
r is a function of the 2

dr
children of xr ∈ Tr

(which are contiguous in its kdr -tree representation) and of the mappingMr .

To quickly materialize the 2
d
children of xr ∈ Q

∗
r , we precompute a tableCr on which the 2

dr
-bit

encoding e of the children of xr ∈ Tr is used as an index to obtain inCr [e] the corresponding 2
d
-bit

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:34 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

encoding of the children of xr ∈ Q
∗
r . Table Cr has 2

2
dr

entries, the number of possible encodings of

2
dr

bits (see Figure 13 for an example). Each entry stores the corresponding 2
d
-bit encoding, so

the overall size of Cr is 2
2
dr +d

bits. We build all the tables Cr , for r = 1, . . . ,n, on the fly, before

running the intersection, in timeO(22
dr +d ), by obtaining each bit of each entry usingMr . The extra

time and space,

∑n
r=1O(2

2
dr +d ), is O(22

d+dn) in the worst case, yet in general it is considerably

smaller. These tables can be discarded once the intersection is completed.

Once the tables Cr are built, the traversal takes only O(⌈2
d/w⌉n) time per recursion step, where

w is the number of bits in the computer word. We then obtain aw-fold speedup compared to the

naive algorithm (typicallyw = 64, but it can be larger if we use broadword operations). Being at

nodes x1, . . . ,xn during the traversal, we extract in constant time the 2
dr

contiguous bits encoding

the children of each xr ∈ Tr , er = Bv [xr ..xr + 2
dr − 1], and lookup in Cr its extended version of

2
d
bits, e∗r = Cr [er ]. We then intersect the bitvectors e∗r using bitwise-and operations (&), which

operatew bits in O(1) time, e∗ = e∗
1
& · · ·& e∗n . This takes O(⌈2

d/w⌉n) time (we stop earlier if the

result is all zeros before operating all the e∗r s).
Finally, we must recurse on the children j of all x1, . . . ,xn whenever e∗[j] = 1. To obtain each

such 1 from e∗ in constant time, we use the __builtin_clz built-in function of gcc compilers to

count the number of leading zeroes in e∗, hence finding its most-significant bit set. This built-in

function is implemented by hardware in most modern CPU architectures, yet it can also be easily

implemented [21] if not provided by the processor. This constant time can then be charged to each

child we visit.

In our experiments it holds that 2
dr ≤ w , and therefore we can handle the indices in Cr

in constant time as if they were numbers. The tables Cr are also reasonably small and fast to

build. For larger dr values, we can split the bitvectors er into chunks of a maximum allowed

size c ≤ w , er = e1r · · · e
s
r for s = ⌈2dr /c⌉, and create tables C1

r , . . . ,C
s
r for each chunk, such

that each Ct
r has 2

c
entries storing 2

d
bits, where only those activated by the t-th chunk of

er are set. We then simulate Cr [e] = C1

r [e
1

r ] | · · · | C
s
r [e

s
r ] in time O(⌈2d/w⌉s), using bitwise-or

operations ( | ). We now spend O(
∑n

r=1⌈2
dr /c⌉2c+d ) ⊆ O((2c+2d/c)n) time and bits to build the

tables. Note that the superexponential growth is now controlled using c . In exchange, we spend

O(
∑n

r=1⌈2
dr /c⌉ ⌈2d/w⌉) ⊆ O(22d/(cw)n) time per recursion step, a slowdown factor of O(2d/c).

6.3.2 Writing the output. We generate the output of the intersection directly in the form of a

kd -tree T . Because we traverse the n quadtrees Q∗r in depth-first and left-to-right form, we can

append the 2
d
bits of each new node of level v to the corresponding bitvector T .Bv of the output.

We maintain one cursor per output bitvectorT .Bv . Once we compute the bitvector e∗, we recurse
on the 1s of e∗ as explained. For each e∗[j] = 1, we recursively enter into the j-th children of

x1, . . . ,xn . If that recursive call returns that the subgrid is empty, we set e∗[j] = 0. If, after all the
recursive calls to children j , the bitvector is e∗ = 0, we return to the recursion parent indicating that

the whole subgrid is empty, and do not modifyT .Bv . Otherwise, we append e
∗
toT .Bv , increase its

cursor by 2
d
positions, and return to the recursion parent indicating that the subgrid is nonempty.

In this way, although we can work more than what is needed to produce the outputT , we do not
allocate more space than what is needed to represent T , because we only write the bits when we

know that the subgrid is nonempty. The recursion stack is of maximum depth log ℓ, so it requires

at most O(2dn log ℓ) bits of space.
OnceT is built, if we want to further operate on it, we must (1) prepare its bitvectorsT .Bv for fast

rank operations in O(|T |/w) time, and (2) convert it into a qdag Q = (T , Id), Id being the identity

mapping on d attributes (Def. 3.3), in O(2d ) time.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:35

6.4 Some special cases
Our implementation also handles some specific extensions in order to support the queries in the

chosen benchmarks; we describe those in this section.

6.4.1 Simple selections. Our implementation supports simple selections σθ (L), in particular the

following generalization of predicate θ ≡ (Ai = a) discussed in Section 5.1. For an attribute Ai and

a set of constant values V , we support predicates of the form θ ≡ (Ai ∈ V ), which can be expressed

using lqdag notation as

pred(Ai ∈ V ,A) = (EXTEND, (QTREE, ⟨V ⟩),A \ {Ai }),

where A is the attribute set of subexpression L and ⟨V ⟩ is the quadtree in one dimension with |V |
cells and values in V . Our implementation uses, however, qdags instead of lqdags. Thus, we build a

compressed quadtree QV for V , to then form the corresponding qdag QV = (QV , Id) by just adding

the identity mapping Id. Then, we extend it to Q∗V = Extend(QV ,A \ {Ai }) using Algorithm 3, to

finally use Algorithm 5 to compute the AND of Eq. (3), which will yield the desired selection. The

construction of pred(Ai ∈ V ,A) then takes time O(|V | log ℓ + 2 |A |).

6.4.2 Self-joins. Graph patterns usually involve several self-joins. Our framework can be extended

to efficiently compute that kind of queries without any overhead.

Consider, for example, a graph whose edges are represented as one relation R(S,O), and a query

looking to retrieve all tuples (a,b, c) of elements forming a triangle in the graph. In order to express

this query in relational algebra, we create three different renamings of R: R1(A,B), R2(B,C) and
R3(C,A). Then, the triangle query is expressed as J = R1(A,B) Z R2(B,C) Z R3(C,A). We can

do this without actually creating any physical copy of R, relying instead on mappings. More

precisely, we intersect three qdags: (QR ,MAB ), (QR ,MBC ), and (QR ,MCA), whereQR is the quadtree

representing R(A,B) and the mappings extend it to three dimensions (A,B,C) in different ways:
8

MAB = [0, 0, 1, 1, 2, 2, 3, 3], MBC = [0, 1, 2, 3, 0, 1, 2, 3], MCA = [0, 2, 0, 2, 1, 3, 1, 3].

By Theorem 3.9, this strategy is worst-case-optimal, as the running time matches 2
ρ∗(J ,D)

, the

worst-case size of the triangle query when we regard the join as operating on different relations

R1(A,B), R2(B,C), and R3(C,A). This bound may overestimate the actual worst-case output size

of a self-join, though in the case of the triangle query, they differ only by a constant factor that

depends on the query [15] (and this is the best known bound for queries with self-joins).

6.5 A parallel version
Algorithm 5 is easily parallelizable, because it traverses the independent subgrids of the output.

As a proof of concept, we explore a simple way to parallelize its computation: given p processors

available, we find the first level ℓ′ such that Q+ has at least p nonempty nodes, and from there an

independent thread computes the points in the subgrid of each nonempty node at that level.

Note that, because of our mechanism to lift the dimension of the input quadtrees, many sub-trees

of the extended qdags share the same subtrees of the input quadtrees, and then those may be

accessed simultaneously by various processes when running the intersection. The corresponding

parts of the output relation, instead, are written independently by each process. At the end, their

output bitvectors T .Bv must be concatenated for each v , to form the final result.

8
The mappings are obtained by listing the identifiers of the octants a0b0c0, a0b0c1, a0b1c0, a0b1c1, a1b0c0, a1b0c1, a1b1c0,
a1b1c1, where the identifiers are 0, 1, 2, or 3 depending on the quadrant of R referred by the octant, for example in R2(B, C)
the quadrants are 0 = b0c0, 1 = b0c1, 2 = b1c0, 3 = b1c1 and thus the sequence is as shown in MBC .

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:36 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

(a) P2. (b) P3. (c) P4. (d) T2. (e) Ti2. (f) T3. (g) Ti3. (h) J3.

(i) T4. (j) Ti4. (k) J4. (l) Tr1. (m) Tr2. (n) S1. (o) S2. (p) S3. (q) S4.

P2 P3 P4 T2 Ti2 T3 Ti3 J3
353.60 114.50 111.34 175.50 236.92 29.60 127.74 142.18

T4 Ti4 J4 Tr1 Tr2 S1 S2 S3 S4
63.08 81.88 110.00 11.62 14.90 10.60 28.32 38.34 4.50

Fig. 14. The 17 query patterns for the Wikidata Graph Pattern Benchmark and, below, their average number
of results per query.

This strategy does not ensure a theoretical speedup, because all the nodes in Q+ may be concen-

trated in one of the subgrids; a more robust parallelization is a matter of future work. Even so, in

practice this simple technique produced a significant speedup, as we show in Section 7.

7 EXPERIMENTAL RESULTS
In this section we report the results of the experimental comparison of our implementation of

qdags with various other prototypes and systems, both in terms of index space and query time.

All our experiments ran on an Intel(R) Xeon(R) CPU E5-2630 at 2.30GHz, with 6 cores and 12

hyperthreads, 15 MB of cache, and 96 GB of RAM. Our source codes were compiled using g++ with

flags -std=c++11, -O3, and -msse4.2. Our parallel versions then use p = 12 threads.

7.1 The Wikidata SPARQL Benchmark
We test first the Wikidata Graph Pattern Benchmark (WGPB) introduced by Hogan et al. [16]. This

corresponds to a Wikidata [42] sub-graph with 81,426,573 RDF triples (subject,predicate,object)

featuring 2,101 different predicates. We store the triples as binary relations, according to the

predicates: for each triple (s,p,o), the pair (s,o) is stored in the binary relation corresponding to

predicate p. This benchmark provides 17 query patterns of different widths and shapes, including

acyclic and cyclic queries, as shown in Figure 14. Each pattern is instantiated with 50 different

random queries
9
involving random Wikidata predicates, so that the query results are nonempty.

We execute the 850 resulting queries in random order.

We compare our Qdags with the following prototypes and database systems:

EmptyHeaded: An implementation [1] of NPRR [33]. Each predicate is stored as a separate

relation. For each, EmtpyHeaded creates two different tries, which must be maintained in

main memory during query evaluation.

Apache Jena: A reference implementation of the SPARQL standard.We use TDB, with B+-trees

indexes in three orders: spo, pos, and osp. For a fair comparison, and since predicates are

constant in our queries, we disregard the osp order.

9
https://github.com/GQgH5wFgzT/benchmark-leapfrog/tree/gh-pages/benchmark/queries/bgps

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/GQgH5wFgzT/benchmark-leapfrog/tree/gh-pages/benchmark/queries/bgps


Optimal Joins using CompressedQuadtrees 111:37

Jena LTJ: An implementation [16] of the wco leapfrog trie join algorithm (LTJ) on top of Jena

TDB. All six different orders are indexed in B+-trees, though we again disregard the space

usage of orders osp and sop.
RDF-3X: The reference scheme [30] that indexes a single table of triples in a compressed

clustered B+-tree. The triples are sorted and those in each B+-tree leaf are differentially

encoded.

Virtuoso: A widely used graph database hosting the public DBpedia endpoint, among oth-

ers [11]. It provides a column-wise index of quads with an additional graph (д) attribute, with
two full orders (psog, posg) and three partial indexes (so, op, gs) optimized for patterns with

constant predicates (like the ones in our queries).

Blazegraph: The graph database system [40], hosting the official Wikidata Query Service [23].

We run the system in triples mode wherein B+-trees index three orders: spo, pos, and osp.

7.1.1 Sorting out the database. Since our index assumes that the attribute values are integers in a

range [0, ℓ − 1], we must assign integer identifiers to the distinct strings appearing in the triples.

We can do this assignment in any convenient way. As already mentioned in Section 3.4, the

clustering of the points across the underlying hypercube is crucial for the efficiency of quadtrees,

both in terms of space usage and of running time. An offline optimization we attempt here is to

assign the integer identifiers so as to improve the clustering of the resulting points within the

hypercube. Similar strategies have been used on binary matrices [17], graphs [1], and inverted

indexes [5]. In the particular case of Wikidata triples, we enumerate the subject s and object o
of each RDF triple (s,p,o) of Wikidata, thus generating the 2-dimensional points that are further

indexed using qdags. We try the following strategies for enumerating subjects and objects:

Original Order (Qdag Original): Subjects and objects are enumerated using the original order

of the triples in the Wikidata dataset.

Lexicographic Order of Predicates (Qdag Lex): We first sort the triples lexicographically by

predicates, and then carry out the enumeration of subjects and objects using this order. The

rationale is that, if each predicate tends to connect a small subset of subjects and objects,

then the resulting matrices will be clustered.

BFS Order (Qdag BFS): Consider the graph where subjects and objects are the nodes, and

predicates are directed edges from subjects to objects. We then number the nodes of this

graph by running several BFS traversals until enumerating all the nodes. The traversals are

started according to an initial lexicographic order of the nodes. The resulting node ordering

is the integer assignment to subjects and objects; the aim is to give consecutive identifiers to

the objects assigned to the same subjects, thereby inducing clusters.

Appendix C illustrates the effect of those node orderings on the point distribution of grids. As it

can be seen, Lex and BFS yield a less scattered distribution (e.g., in BFS, points tend to lie on the

diagonal of the grid). As anticipated in Section 3.4, this clustering will impact positively on the

space of the index and the time performance of the multijoin queries.

7.1.2 Space usage. Table 1 shows the space usage (in bytes per tuple) for the different systems

and algorithms we tried, as well as their construction time, in elapsed minutes. As it can be noted,

Lex and BFS orders yield considerably improved space usage when compared to the original order.

Qdag Lex and Qdag BFS use about 1/10 of the space of Jena, the one that uses the least space

among the competing schemes. Recall that within this space usage we include data and indexes,

which means that all the compact Qdag versions use less than the 8 bytes per tuple needed to just

represent the dataset if we separate the triples by predicate and represent each pair (s,o) with two

32-bit integers. The Lex and BFS orders not only reduce the index space, but also the construction

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:38 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

Table 1. Index space, in bytes per tuple, and construction time, in elapsedminutes, on theWikidata benchmark.
Qdags and EmptyHeaded build the indexes from the numeric tuples, so we have added to those the 13.12
minutes it took us to parse the strings and convert them to integers. Further, we added to the Lex and BFS
versions the time it took us to reorder the identifiers.

System (Data + Indexes) Space Build time

Qdag Original 6.76 18.90

Qdag Lex 4.75 17.86

Qdag BFS 4.90 25.47

Qdag BFS, non-compact 205.71 30.31

EmptyHeaded 1292.28 61.39

Jena 48.42 101.47

Jena LTJ 96.83 107.43

RDF-3X 107.65 16.41

Virtuoso 104.89 14.42

Blazegraph 99.86 58.28

10−4

10−2

100

102

T
im

e
(s
ec
s)

P2 P3 P4 T2 Ti2

Non-Compact BFS
Original
Lex
BFS
Parallel Lex
Parallel BFS

10−4

10−2

100

102

T
im

e
(s
ec
s)

T3 Ti3 J3 T4 Ti4 J4

10−4

10−2

100

T
im

e
(s
ec
s)

Tr1 Tr2 S1 S2 S3 S4

Fig. 15. Query times (in seconds and logscale) for the different variants of Qdags on the Wikidata benchmark.

time of Qdag variants: once the integers of the triples are generated in the appropriate order,

Original takes 4.26 microsecs/tuple, Lex takes 3.49, and BFS takes 3.67. Note this is 5–6 minutes

total construction time from the sorted integer triples. The qdags are also built within space close

to their final size, 5.51 bytes per tuple for Lex and 5.66 bytes per tuple for BFS.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:39

0

0.02

0.04

0.06

0.08

0.1

T
im

e
(s
ec
s)

P2 P3 P4 T2 Ti2

Qdag BFS
Qdag Par BFS
EmptyHeaded
Jena LTJ
Jena
RDF3X
Virtuoso
Blazegraph

0

0.02

0.04

0.06

0.08

0.1

T
im

e
(s
ec
s)

T3 Ti3 J3 T4 Ti4 J4

0

0.01

0.02

0.03

0.04

0.05

T
im

e
(s
ec
s)

Tr1 Tr2 S1 S2 S3 S4

Fig. 16. Query times (in seconds) of the best Qdag variants and state-of-the-art prototypes and database
systems, on the Wikidata benchmark.

7.1.3 Comparing Qdag variants. We first compare the different Qdag variants, testing the parallel

implementation from Section 6.5, a non-compact Qdag baseline we describe in Appendix B, and

the clustering approaches proposed in Section 7.1.1. Figure 15 summarizes the query times for the

17 query patterns of Figure 14.

As it can be seen, the orders Lex and BFS yield improved query time, as expected from the

discussion in Section 3.4. In general, BFS outperforms Lex and Original, both in the sequential and

parallel versions.
10
Parallelism yields important speedups, except where the sequential version

is already very efficient and thus the overhead introduced by parallelism does not pay off. The

average speedup is 3.24. Finally, the non-compact version (of which we show only the BFS variant)

is not only 40 times larger than the serial compact BFS version, but also about 130 times slower on

average, which shows the beneficial effects of compact representations in reducing the cache faults

in main memory.

7.1.4 Comparison against others. Figure 16 compares the query times of Qdag BFS and Qdag Par
BFS, the best performing variants in Section 7.1.3, with the prototypes and systems listed at the

beginning of Section 7.1, on the 17 query patterns of Figure 14 (see Appendix D for the full detail).

We note that EmptyHeaded, Jena, Jena LTJ, and Blazegraph use several processors, like Qdag Par
BFS, while RDF-3X and Virtuoso are sequential. We observe the following facts:

• Qdags are the fastest alternative on almost all patterns with three nodes: P2, T2, Tr1, and
Tr2, and is only slighlty outperformed by EmptyHeaded on Ti2, the remaining pattern

10
A disadvantage of those convenient orders is that, in the more general setting that allows selections, predicates with

inequalities make no sense if one reorders the identifiers. This has no effect on the equijoin queries we study in these

experiments.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:40 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

with three nodes in the benchmark. This is in line with the theoretical bounds presented in

Section 3: patterns with three nodes implies qdags with only three dimensions, and since

the running time is exponential in the dimension, it is expected that our algorithm excels

in low-dimensional queries. To put times in context with respect to the space usage, the

next-best alternative, EmptyHeaded, uses 264 times the space of Qdag BFS, as noted in Table

1. The same table shows that Jena, the next least-memory contender, uses 10 times the space

of our approach. Note that Qdags do not need to load a different index order from secondary

storage upon query optimization, because they have only one index.

• Let us consider next the patterns P3 and P4, representing paths. For the case of P3, a pattern
with 4 nodes, Qdags are close to the best time, given by EmptyHeaded. On the other hand,

neither Qdags nor EmptyHeaded are competitive for P4, but the best algorithms are Jena LTJ,

the other worst-case optimal algorithm we tested against, and the standard engine of Jena.

We speculate that systems based on Jena have an edge because they are able to consistently

find a better variable ordering for this type of queries (see Hogan et al. [16] for a discussion

on orderings). On the other hand, Qdags are not dependent on variable orderings, but as we

mentioned our index becomes less competitive as the dimension of queries increases.

• The next queries we discuss are the so-called star queries, with T3, Ti3 and J3 having one
central node connected to three external nodes, and T4, Ti4, and J4 having a central node
connected to four external nodes. The behaviour we see is consistent with the other set of

queries. For queries with four nodes Qdags remain competitive, being the fastest for T3, but
outperformed for Ti3 and J3. Interestingly, EmptyHeaded, the usual contender and the best

alternative for Ti3 and J3, does not perform well on T3. On the other hand, Qdags do not

fare well on the star queries with 5 nodes. It turns out that, in these types of star queries,

worst case algorithms in general are outperformed by traditional graph database systems,

although EmptyHeaded is still the best alternative for Ti4.11

• Finally, we discuss the square queries S1, S2, S3, and S4. Once again, worst-case optimal

algorithms take the lead, with Qdags and EmptyHeaded earning the best time in two queries

each. Note the large difference between the non-parallel and parallel versions in S2. Upon
inspecting the intermediate results of these queries, we found that they were demanding

Qdags to focus on poorly-clustered parts of the graph, and therefore parallelism was more

important since more distant portions of the qdags needed to be analyzed. One can notice

how BFS do not take advantage of clustering when processing queries in S2 by looking again

at Figure 15: the times for Original and BFS are virtually the same.

7.1.5 String identifiers. Our implementation of Qdags works directly on datasets and queries

where the identifiers are already mapped to integers. This can be seen as unfair to the database

systems managing strings, because reporting strings may induce additional time overhead and their

space can be significant compared to the integer triples. In our Wikidata subgraph, for example,

the strings occupy 1,427 MB, nearly 150% of the 932 MB used by the integer triples in plain form.

Blazegraph, Jena, Jena-LTJ, RDF-3X, and Virtuoso include this overhead, while EmptyHeaded and

Qdags do not.

We can largely diminish the impact of the strings by storing them in succinct dictionaries [24],

which map from strings to integers (to translate the queries) and back (to translate the solutions)

in a few microseconds per string. For example, using the variant HTFC-rp with sampling 64 [24],

11
Since the benchmark is constructed out of random walks, the probability of finding a star query with 3 or more leaves in

which all joins are equally selective is quite low. Thus, we conjecture that traditional systems are able to achieve good times

simply by a careful planning of the join order, beating wco algorithms and Yannakakis, which may end up doing more

excess work if a bad order is chosen.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:41

Table 2. Summary of the results on querying the SNAP benchmark, depending on the fraction of queries
where Qdags performed much better, better, similarly, worse, or much worse than each other index.

EH LTJ MS PSQL MonetDB Virtuoso Neo4j

Cyclic

Acyclic

small

selective

Acyclic

small less

selective

Acyclic

larger

the strings in our benchmark are compressed to 17%, or 235 MB (3 additional bytes per triple) and

an identifier is translated to its string in about 3 microseconds. The total impact of translating the

identifiers back to strings adds at most 0.003 seconds in Figure 16.

7.2 Benchmark on SNAP Graphs
Our second test uses the benchmark by Nguyen et al. [35], which includes several patterns on

SNAP graphs [22]. The benchmark includes both cyclic and acyclic queries, and allows one to

regulate the selectivity of each pattern. The detailed experimental setup and results are given

in Appendix E. Table 2 summarizes the results by showing, for each kind of query and each

competing implementation, the proportion of queries where Qdags perform better or worse than

the competitor, as follows:

• Qdag << X : Qdags are 10 times, or more, faster than the other, or only the other gives

time-out or out-of-memory.

• Qdag < X : Qdags are more than twice, but less than 10 times, faster than the other.

• Qdag = X : both times are within a factor of two of each other.

• Qdag > X : Qdags are more than twice, but less than 10 times, slower than the other.

• Qdags >> X : Qdags are 10 times, or more, slower than the other, or only Qdags give time-out.

For the case where a given time is zero, we round it up to 1 in order to consider proportions. The

cases where both indexes give time-out or out-of-memory are disregarded.

We separate the queries into cyclic, acyclic on small graphs (with more and less selectivity), and

acyclic on large graphs (here, selectivity did not make an important difference). We can see that:

• In general, Qdags are outperformed by wco schemes like EmptyHeaded (EH), LTJ, and MS,

and tend to outperform those that are not: MonetDB, Virtuoso, and Neo4j. The situation is

mixed for PSQL.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:42 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

• On cyclic queries, where being wco is most relevant, Qdags perform similarly to the other

wco approaches in about half of the cases, and sharply outperform the non-wco schemes in

most queries.

• On acyclic queries, Qdags perform similarly to the other wco approaches in half to a quarter

of the queries, worsening as the output size increases. Qdags still outperform MonetDB and

Neo4j most of the time.

We remind that Qdags obtain these mixed results using one or two orders of magnitude less space

than the competing schemes (in particular, they use 6–200 times less space than EmptyHeaded).

This can make the Qdag attractive, for example, as a companion index to non-wco systems where,

for a very modest increase in space, a Qdag may speed up cyclic queries considerably. Qdags can

also be a relevant solution when the extra space of other wco data structures cannot be afforded.

8 CONCLUSIONS
We have introduced the first index for multijoin queries that is simultaneously time-optimal and

nearly space-optimal. More precisely, it achieves worst-case-optimal time in data complexity while

storing only 2 + o(1) extra words per tuple. Our index regards relations on d attributes as point

sets in a d-dimensional hypercube, which are represented with compressed quadtrees. The join

algorithm uses a new structure we dub qdag, which simulates a dimensionality-lifted quadtree,

and then generates the result in the form of a compressed quadtree by virtually traversing the

output space. We prove that such a simple traversal does reach the AGM bound. A lazy version

of qdags, dubbed lqdags, support the full relational algebra, and retain for Boolean queries an

extended notion of worst-case optimality, while requiring no space for intermediate results.

The evaluation of join queries using qdags provides a competitive alternative to current worst-

case optimal algorithms [18, 20, 32, 33, 41]. Regarding space, qdags require only a few extra words per

tuple in the worst case, and in practice they even manage to compress the database representation,

as shown in our experiments. This is generally much less than what standard database indexes

require, and definitely less than the space required by current worst-case optimal algorithms (e.g.,

[18, 33, 41]). Moreover, in both NPRR [33] and leapfrog [41], the required index structure only

works for a specific ordering of the attributes. Thus, in order to efficiently evaluate any possible

query using these two algorithms, a separate index is required for every possible attribute order. In

contrast, all we need to store is one quadtree per relation, and that works for any query. In our

experiments, which include only binary relations (i.e., alternative indexes need to store just two

attribute orders), the least space-consuming index, Apache Jena, uses 10 times more space than our

Qdag index, whereas EmptyHeaded uses about 250 times more space.

Time complexity. Regarding time, the first comparison that stands aside is the logN factor, present

in our solution (as well as in, e.g., Hogan et al. [16]) but not in others like NPRR [33] and leapfrog [41].

Note, however, that NPRR assumes to be able to compute a join of two relations R and S in time

O(|R | + |S | + |R Z S |), which is only possible when using a hash table and when time is computed

in an amortized way or in expectation [33, footnote 3]. This was also noted for leapfrog [41, Section

5], where they state that their own logN factor can be avoided by using hashes instead of tries,

but they leave open whether this is actually better in practice. More involved algorithms such as

Panda [20] build upon algorithms to compute joins of two relations, and therefore the same logN
factor appears if one avoids hashes or amortized running time bounds.

Our algorithm also incurs in an additional 2
d
factor in time when compared to NPRR or leapfrog,

similarly to other worst-case optimal solutions based on geometric data structures [18, 32]. While

this factor does not depend on the data, it is relevant in practice, as shown in our experiments: Qdags

excel in queries yielding relations of 3 attributes and fare well on 4, but cease being competitive on 5

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:43

or more attributes. This slowdown, the price we pay for using so little space, is partly compensated

by the fact that our indexes are compressed, and thus might fit in faster memory: our experiments

show that a non-compact version of our index is 40 times larger and 2–1000 times slower.

Usage scenarios. One important benefit of our framework is that the answers to queries can be

built directly in their compressed representation. As such, we can iterate over them, or store them,

or use them as materialized views, either built eagerly as quadtrees, or in lazy form as lqdags, or in

partially materialized form with bounded delay, as incomplete quadtrees.

Aside from their standalone use, one could take advantage of the low storage cost of quadtrees

and add them as a companion to a more traditional database setting. Simple queries could be

handled by the database, while multijoins could be processed faster over the quadtrees.

Using a simple proof-of-concept, we also show that our multijoin algorithm is easily parallelizable

to obtain, without sophisticated techniques, average speedups over 3 with 6 cores. This opens the

door to a deeper study of quadtrees in the setting of parallel computation (see, e.g., Suciu [39]).

Dynamism. We have only discussed the static scenario in this article, where tuples cannot be

added or removed from the relations. In order to enable dynamism, we only need to replace the

quadtree representation of Lemma 2.1 by a data structure that supports insertions and deletions of

points. The qdags and lqdags then stay automatically up to date upon changes on their underlying

quadtrees. A dynamic quadtree can be obtained via itskd -tree representation described in Section 6.1.
For the dynamic case, we rather represent the bitvector V , which is of length |V | ≤ 2

dp log ℓ and
hasv ≤ p log ℓ 1s, as the sequence ofv differences x j = pj −pj−1 between the consecutive positions

p1, . . . ,pv of the 1s, with p0 = 0. Operation rank(V , i) is then equivalent to operation search(j) =
max{j,pj ≤ i} = max{j,

∑j
t=1 xt ≤ i}, andV [j] = search(j)−search(j−1). A dynamic representation

of partial sums [29, Lem. 1.4] using, say, δ -codes [38] to encode the values x j , takes dp log ℓ(1+o(1))
bits of space and implements search in timeO(log |V |/log log |V |) ⊆ o(d + logp + log log ℓ). Within

the same time, it can insert and remove values xi , which suffices to emulate insertion and deletion

of points in the kd -tree (using O(log ℓ) such operations) [8]. Therefore, we can insert or delete

tuples in time o((d + logp + log log ℓ) log ℓ). The price is an o(d + logp + log log ℓ) slowdown factor

with respect to the times given in Lemma 2.1, Theorem 3.9 (where the times are still in Õ(2ρ
∗(J ,D))),

and Theorem 4.5 (where the times are still in Õ(F (D)∗)).

Beyond wco. Finally, an important direction for future work is to go beyond worst-case optimality.

EmptyHeaded [1] may outperform the AGM bound for multijoin queries and approach their

fractional hypertreewidth. It structures the query graph, which is cyclic in general, as a tree where

each node is a cyclic subquery. Each node is then solved within the AGM bound, and the resulting

materialized relations are finally processed with Yannakakis’ algorithm. While, as discussed in

Section 5.2.1, a direct application of lqdags would not obtain the same complexity, we can use

qdags to process each tree node in worst-case optimal time and materialize the resulting relation,

so as to apply Yannakakis’ algorithm on those. A clear advantage of using our representation is

that those intermediate materialized relations, which can be large, are represented in compact

form as quadtrees, thereby making this algorithm much more practical. Further, the qdags would

typically have to produce relations of lower dimension, a case where they perform significantly

better. The Panda algorithm [20] takes this further, and can process queries in time bounded by the

submodular width bound. Again, an interesting direction for future work is to understand how to

use Qdags in combination with Panda.

Epilogue. We continued pursuing the line initiated in this article, about compact data structures

able to implement wco joins. After the conference version of this paper, we developed with other

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:44 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

coauthors a new compact data structure called the ring [4], which supports wco joins for the specific
case of labelled graphs (or, equivalently, a relation formed by triples). The ring is not compositional:

the outcome of a multijoin query is not anymore a ring. In exchange, it offers more stable times than

qdags, though qdags still outperform the ring in queries with few nodes. The qdags we implement

here are more space-efficient than the most compressed ring representation.

What is most interesting is how both structures evolve as the dimension d of the relations grow.

Our qdags always need one copy of the database, though their query time grows asO(2d ). The ring,
instead, requires one copy only in the particular case of d = 3. Multidimensional rings, though not

yet implemented, are shown to require Ω(2dd−1/2) copies of the database, though in exchange their

query time grows asO(d2). Space translates into update time in the dynamic scenario, however: the

time to insert/delete tuples in qdags grows asO(d), as we have seen, whereas it is Ω(2dd1/2) on rings.
A very interesting question is how to develop compact data structures that can more gracefully

trade space for time in this exponential dependence on d , or that can eliminate it completely.

ACKNOWLEDGMENTS
We thank Aidan Hogan for his help with the construction time of alternative indexes, Matilde

Rivas and Fabrizio Barisione for spotting mistakes in two figures, and the reviewers for their

insightful comments. This work was funded by ANID – Millennium Science Initiative Program –

Code ICN17_002 (all authors) and Fondecyt Grant 1-200038 (second author).

REFERENCES
[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. 2017. Emptyheaded: A relational engine for graph

processing. ACM Transactions on Database Systems 42, 4 (2017), 1–44.
[2] N. Alon and M. Naor. 1996. Derandomization, witnesses for Boolean matrix multiplication and construction of perfect

hash functions. Algorithmica 16 (1996), 434–449.
[3] S. Álvarez-García, N. Brisaboa, J. Fernández, M. Martínez-Prieto, and G. Navarro. 2015. Compressed vertical partitioning

for efficient RDF management. Knowledge and Information Systems 44, 2 (2015), 439–474.
[4] D. Arroyuelo, A. Hogan, G. Navarro, J. Reutter, J. Rojas-Ledesma, and A. Soto. 2021. Worst-case optimal graph joins in

almost no space. In Proc. 47th ACM International Conference on Management of Data (SIGMOD). 102–114.
[5] D. Arroyuelo, M. Oyarzún, S. González, and V. Sepúlveda. 2018. Hybrid compression of inverted lists for reordered

document collections. Information Processing Management 54, 6 (2018), 1308–1324.
[6] A. Atserias, M. Grohe, and D. Marx. 2013. Size bounds and query plans for relational joins. SIAM Journal on Computing

42, 4 (2013), 1737–1767.

[7] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. 2005. Representing trees of higher degree.

Algorithmica 43, 4 (2005), 275–292.
[8] N. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, and G. Navarro. 2017. Compressed representation of dynamic binary

relations with applications. Information Systems 69 (2017), 106–123.
[9] N. Brisaboa, S. Ladra, and G. Navarro. 2014. Compact representation of Web graphs with extended functionality.

Information Systems 39, 1 (2014), 152–174.
[10] S. Deep and P. Koutris. 2018. Compressed representations of conjunctive query results. In Proc. 37th ACM Symposium

on Principles of Database Systems (PODS). 307–322.
[11] O. Erling and I. Mikhailov. 2009. RDF support in the Virtuoso DBMS. In Networked Knowledge – Networked Media.

Springer.

[12] R. A. Finkel and J. L. Bentley. 1974. Quad Trees: A data structure for retrieval on composite keys. Acta Informatica 4
(1974), 1–9.

[13] T. Gagie, J. González-Nova, S. Ladra, G. Navarro, and D. Seco. 2015. Faster compressed quadtrees. In Proc. 25th Data
Compression Conference (DCC). 93–102.

[14] S. Gog and M. Petri. 2014. Optimized succinct data structures for massive data. Software: Practrice and Experience 44,
11 (2014), 1287–1314.

[15] G. Gottlob, S. T. Lee, G. Valiant, and P. Valiant. 2012. Size and treewidth bounds for conjunctive queries. Journal of the
ACM 59, 3 (2012), 16.

[16] A. Hogan, C. Riveros, C. Rojas, and A. Soto. 2019. A worst-case optimal join algorithm for SPARQL. In Proc. 18th
International Semantic Web Conference (ISWC). 258–275.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:45

[17] D. S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubramanian. 2004. Compressing large Boolean

matrices using reordering techniques. In Proc. 30th International Conference on Very Large Data Bases (VLDB). 13–23.
[18] M. A. Khamis, H. Q. Ngo, C. Ré, and A. Rudra. 2016. Joins via geometric resolutions: Worst case and beyond. ACM

Transactions on Database Systems 41, 4 (2016), 22.
[19] M. A. Khamis, H. Q. Ngo, and A. Rudra. 2016. FAQ: Questions asked frequently. In Proc. 35th ACM Symposium on

Principles of Database Systems (PODS). 13–28.
[20] M. A. Khamis, H. Q. Ngo, and D. Suciu. 2017. What do Shannon-type Inequalities, Submodular Width, and Disjunctive

Datalog have to do with one another?. In Proc. 36th ACM Symposium on Principles of Database Systems (PODS). 429–444.
[21] D. E. Knuth. 2009. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision

Diagrams (12th ed.). Addison-Wesley Professional.

[22] J. Leskovec and A. Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/

data.

[23] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt. 2018. Getting the most out of Wikidata: Semantic

technology usage in Wikipedia’s knowledge graph. In Proc. International Semantic Web Conference (ISWC). 376–394.
[24] M. A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. 2016. Practical compressed string dictionaries.

Information Systems 56 (2016), 73–108.
[25] G. M. Morton. 1966. A computer oriented geodetic data base; and a new technique in file sequencing. Technical Report.

IBM Ltd.

[26] J. I. Munro. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS). 37–42.

[27] G. Navarro. 2016. Compact Data Structures – A practical approach. Cambridge University Press.

[28] G. Navarro, J. Reutter, and J. Rojas-Ledesma. 2020. Optimal joins using compact data structures. In Proc. 23rd International
Conference on Database Theory (ICDT). 21:1–21:21.

[29] G. Navarro and K. Sadakane. 2014. Fully-functional static and dynamic succinct trees. ACM Transactions on Algorithms
10, 3 (2014), article 16.

[30] T. Neumann and G. Weikum. 2010. The RDF-3X engine for scalable management of RDF data. The VLDB Journal 19
(2010), 91–113.

[31] H. Q. Ngo. 2018. Worst-case optimal join algorithms: Techniques, results, and open problems. In Proc. 37th ACM
Symposium on Principles of Database Systems (PODS). 111–124.

[32] H. Q. Ngo, D. T. Nguyen, C. Re, and A. Rudra. 2014. Beyond worst-case analysis for joins with Minesweeper. In Proc.
33rd ACM Symposium on Principles of Database Systems (PODS). 234–245.

[33] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. 2012. Worst-case optimal join algorithms. In Proc. 31st ACM Symposium on
Principles of Database Systems (PODS). 37–48.

[34] H. Q. Ngo, C. Ré, and A. Rudra. 2013. Skew strikes back: New developments in the theory of join algorithms. ACM
SIGMOD Record 42, 4 (2013), 5–16.

[35] D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra. 2015. Join processing for graph patterns:

An old dog with new tricks. In Proc. 3rd International Workshop on Graph Data Management Experiences and Systems
(GRADES). 2:1–2:8.

[36] D. Okanohara and K. Sadakane. 2007. Practical entropy-compressed rank/select dictionary. In Proc. 9th Workshop on
Algorithm Engineering and Experiments (ALENEX). 60–70.

[37] H. Samet. 2006. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann.

[38] D. Solomon. 2007. Variable-Length Codes for Data Compression. Springer-Verlag.
[39] D. Suciu. 2017. Communication cost in parallel query evaluation: A tutorial. In Proc. 36th ACM Symposium on Principles

of Database Systems (PODS). 319–319.
[40] B. B. Thompson, M. Personick, and M. Cutcher. 2014. The Bigdata®RDF Graph Database. In Linked Data Management.

193–237.

[41] T. L. Veldhuizen. 2014. Triejoin: A simple, worst-case optimal join algorithm. In Proc. 17th International Conference on
Database Theory (ICDT). 96–106.

[42] D. Vrandecic and M. Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. Communications of the ACM 57, 10

(2014), 78–85.

[43] D. S. Wise and J. Franco. 1990. Costs of quadtree representation of nondense matrices. Journal of Parallel and Distributed
Computing 9, 3 (1990), 282–296.

[44] M. Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc. 7th International Conference on Very Large
Databases (VLDB). 82–94.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://snap.stanford.edu/data
http://snap.stanford.edu/data


111:46 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

A APPENDIX: COMPARISONWITH THE CONFERENCE VERSION
This article is the extended version of the ICDT’20 paper “Optimal Joins Using Compact Data

Structures" [28]. We have revised and extended the original paper as summarized below:

• We implemented a prototype of our index, and compared it experimentally with state-of-the-

art alternatives. We added a new section on the choices we made during the implementation,

and on the variants of our index that were implemented. We also added a section on the

experimental analysis of these variants, and more importantly on the comparison between

our solution and other state-of-the-art systems on two different benchmarks.

• We improved, proved theoretically, and validated in practice, the bounds on the space and

running time of our solution on clustered datasets. These results were added as an extension

to the section on multi-join queries.

• We refined the definition of worst-case optimality for formulas composed of join, union and

complement (JUC) operations so that upper bounds for formulas containing complement

operations are more meaningful. As a consequence, we had to revise and update the proof of

the worst-case optimality of lazy qdags for JUC queries so that it remained valid. Our main

result on JUC queries is now stronger than in its conference version.

• We extended our framework of lazy qdags (lqdags) to evaluate more expressive queries from

relational algebra. We added a new section showing how to extend lqdags to allow renaming

the attributes of a relation, and to support selection and projection operations. By combining

these three with the join, union, and complement operations, lqdags can now evaluate any

formula of the relational algebra. Although for these extended formulas we can no longer

guarantee worst-case optimality, we introduce a partial materialization scheme that subsumes

and extends results from Deep and Koutris regarding compressed representation of query

results with enumeration delay guarantees.

• Finally, we improved the completeness and readability of the paper by adding every non-

obvious full proof to theorems and lemmas of the conference paper, and including new figures

and examples to illustrate the description of our solution.

B APPENDIX: A NON-COMPACT QDAG BASELINE
Using a compact representation of quadtrees increases the constants in the running time of accessing

the value of a node, or its children: while in a non-compact representation these can be stored

directly within the node, the compact representation resorts to compact data structures to compute

them. Using a compact representation, however, also increases the probability of having the memory

required by the CPU to perform an operation already in the processor’s cache. Given that cache

memory is considerably faster than main memory, it should mitigate or eliminate the effect of

higher constants in accessing the value or children of a compact quadtree node. To investigate

this trade-off, we also implemented a non-compact version of our index. We then compared the

running times of join queries over these two different representations, changing only the storage

scheme of the quadtrees, and keeping exactly the same algorithm.

The non-compact quadtree representation consists of just two arrays, F and C . Each node of the

tree is identified by an id, the root’s being 0. For a node x with id i , F [i] stores the id of its first child,
while the id of the j-th non-empty child of x is F [i] + j. Moreover, the k-th least significant bit of

C[i] is 1 iff the k-th child of x represents a non-empty subgrid. Each value of F is a 64-bit integer;

the length of each value ofC depends on the number of attributes in the relation being represented

by the quadtree (e.g., for two and three attributes with use 8-bit integers). Thus, for a quadtree

with N nodes this representation uses at least (64 + 8)N bits. For two-dimensional quadtrees, for

instance, this wastes at least 4 bits for each node because the smallest basic type in the language

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:47

Fig. 17. Point distribution of the grids corresponding to predicates P352, P3417, P2888, and P935 of the
Wikidata dataset. The figure shows the original order (top), lexicographic order (middle), and BFS order
(bottom). The images corresponding to the distributions with high clusterization seem to have fewer points
because multiple ones are rendered in the same pixel due to lack of resolution.

we used (C++) is the byte. Moreover, if the relation is small, using 64 bits to identify each node also

incurs waste.

C APPENDIX: EFFECT OF NODE ORDERING ON THE POINT DISTRIBUTIONS
Figure 17 shows the point distribution of the grids corresponding to predicates P352, P3417, P2888,
and P935 of the Wikidata dataset

12
, using the original order (top), lexicographic order (middle),

and BFS order (bottom). These relations correspond to the join P352(A,B) Z P3417(A,C) Z
P2888(D,B) Z P935(D,C) from query pattern S2. For this pattern, this particular query is the one

that yields the maximum relative difference between Original and BFS order.

D APPENDIX: RESULTS ONWIKIDATAWITH COMPLETE TIME INTERVAL
Figure 18 shows the complete time intervals for the experimental results of Figure 16, on the

Wikidata benchmark.

E APPENDIX: FULL DETAILS ON THE SNAP BENCHMARK
We describe the setup and detailed results on the benchmark by Nguyen et al. [35], which includes

several patterns on SNAP graphs [22].

E.1 Experimental setup
Table 3 shows the graphs tested, along with the number of nodes, edges, and triangles of each graph,

and the space used by Qdags BFS. According to the number of nodes, the graphs are classified as

small (top ones in the table), medium-size (middle), and large (bottom) [35].

12
Available at https://www.wikidata.org/wiki/Property:X , where X ∈ {P352, P3417, P2888, P935}.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:48 Arroyuelo, Navarro, Reutter, and Rojas-Ledesma

0

0.2

0.4

0.6

0.8

1

T
im

e
(s
ec
s)

P2 P3 P4 T2 Ti2

Qdag BFS
Qdag Par BFS
EmptyHeaded
Jena LTJ
Jena
RDF3X
Virtuoso
Blazegraph

0

0.2

0.4

0.6

0.8

1

T
im

e
(s
ec
s)

T3 Ti3 J3 T4 Ti4 J4

0

0.1

0.2

0.3

0.4

T
im

e
(s
ec
s)

Tr1 Tr2 S1 S2 S3 S4

Fig. 18. Query times (in seconds) of the best qdag variants and state-of-the-art prototypes and database
systems, on the Wikidata benchmark.

We run only Qdags Par BFS and EmptyHeaded in this comparison. Let edge denote the binary
relation representing the graph edges. Note then that all the queries will be self-joins, which we

handle as described in Section 6.4.2.

For this benchmark, we test the following cyclic queries:

3-Clique (Triangle): edge(A,B) Z edge(B,C) Z edge(C,A);
4-Clique: edge(A,B) Z edge(B,C) Z edge(C,D) Z edge(D,A) Z edge(A,C) Z edge(B,D);
4-Cycle: edge(A,B) Z edge(B,C) Z edge(C,D) Z edge(D,A).

For queries 3-Clique and 4-Clique, graphs are regarded as undirected.

We also consider the following acyclic queries:

3-Path: V1(A) Z edge(A,B) Z edge(B,C) Z edge(C,D) Z V1(D);
4-Path: V1(A) Z edge(A,B) Z edge(B,C) Z edge(C,D) Z edge(D,E) Z V2(E);
1-Tree: V1(A) Z edge(A,B) Z edge(A,C) Z V2(C);
2-comb: edge(A,B) Z edge(A,C) Z edge(B,D) Z V1(C) Z V2(D).

Here, unary relations V1 and V2 represent subsets of the graph nodes. These are used to select a

particular subset of nodes on which we want to query the corresponding pattern. For instance,

for 3-Path, we query for all directed paths of length 3 that start in some node a ∈ V1, and end

in some node b ∈ V2. This kind of query allows us to test in practice our implementation of the

select operator from Section 6.4.1. By choosing the size of V1 and V2, we can also regulate the query

selectivity. For instance, let us consider query 3-Path. For a given target selectivity s , we build
V1(A) by choosing every node a in πA(edge(A,B)) with probability 1/s [35]. We proceed similarly

for V2(D). After building V1(A) and V2(D), we proceed as explained in Section 6.4.1 to obtain the

corresponding extended qdag needed to carry out the intersection. In our experiments, for small

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Optimal Joins using CompressedQuadtrees 111:49

Table 3. Graphs used in the SNAP benchmark: small (top), medium-size (middle), and large (bottom) graphs.
We also include the bytes per tuple used by Qdag BFS and EmptyHeaded (EH).

Graph Nodes Edges Triangles Space Space EH

wiki-vote 7,115 103,689 608,389 1.68 43.48

p2p-Gnutella31 62,586 147,892 2,024 3.37 57.36

p2p-Gnutella04 10,876 39,994 934 0.29 60.53

loc-Brightkite 58,228 428,156 494,728 1.28 38.29

ego-Facebook 4,039 88,234 1,612,010 1.27 32.59

email-Enron 36,692 367,662 727,044 0.97 41.98

ca-GrQc 5,242 28,980 48,260 0.64 60.49

ca-CondMat 23,133 186,936 173,361 0.91 41.37

ego-Twitter 81,306 2,420,766 13,082,506 1.19 21.85

soc-Slashdot0902 82,168 948,464 602,592 1.65 45.34

soc-Slashdot0811 77,360 905,468 551,724 1.61 38.30

soc-Epinions1 75,879 508,837 1,624,481 1.95 42.71

soc-Pokec 1,632,803 30,622,564 32,557,458 4.42 25.72

soc-LiveJournal1 4,847,571 68,993,773 285,730,264 3.61 29.57

com-Orkut 3,072,441 117,185,083 627,584,181 3.96 23.66

graphs we test with selectivity 8 and 80, which select (at random) 12.5% and 1.25%, respectively, of

the graph nodes. For medium-size and large graphs, we use selectivity 10, 100, and 1000.

E.2 Results
Table 4 shows the times for cyclic queries, Table 5 for small acyclic queries, and Table 6 for large

acyclic queries. We use a timeout of 1800 seconds and carry out count queries (i.e., we do not

materialize the output; we just compute its size). We also include the times obtained by Nguyen et

al. [35], as a comparison point. In particular, they compare LeapFrog Trie Join (LTJ), Minesweeper

(MS), postgresql (PSQL), MonetDB, Virtuoso, and Neo4J. Their processor is similar to ours, though

slightly faster: an Intel(R) Xeon(R) E5-2670 at 2.60GHz, with 8 hyperthreads (recall ours is an

E5-2630 at 2.30GHz). We put in gray the times obtained directly from their paper.

ACM Trans. Datab. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:50
A
rroyuelo,N

avarro,R
eutt

er,and
R
ojas-Ledesm

a

Table 4. Query times (in seconds, rounded to the nearest integer) for cyclic queries on SNAP. TO stands for timeout (>1800 secs), whereas OM indicates an
out-of-memory crash. Times in gray are obtained directly from Nguyen et al. [35].

w
ik
i-
vo
te

G
nu

te
lla
31

G
nu

te
lla
04

B
ri
gh

tk
it
e

Fa
ce
bo

ok

En
ro
n

G
rQ

c

C
on

dM
at

Tw
itt
er

Sl
as
hd

ot
09
02

Sl
as
hd

ot
08
11

Ep
in
io
ns
1

Po
ke
c

Li
ve
Jo
ur
na

l1

O
rk
ut

3-Clique Qdag 0 0 0 0 0 0 0 0 3 4 3 3 596 956 TO
EmptyHeaded 0 0 0 0 0 0 0 0 2 0 0 0 5 12 73

LTJ 0 0 0 0 0 0 0 0 5 1 1 1 75 165 742

MS 1 1 0 2 1 3 0 1 23 7 5 6 282 TO TO
PSQL 1446 6 2 TO 575 TO 10 348 TO TO TO TO TO TO TO

MonetDB TO 3 3 945 947 TO 22 98 TO TO TO TO TO TO TO
Virtuoso 18 2 1 17 23 46 1 4 296 75 68 158 TO TO TO

Neo4j 348 19 6 212 250 418 4 32 TO 1441 1308 1745 TO TO TO

4-Clique Qdag 26 47 5 37 20 29 0 2 351 698 616 450 TO TO TO
EmptyHeaded 6 0 0 4 12 5 0 1 29 2 2 5 61 OM TO

LTJ 3 0 0 11 9 4 0 1 427 4 4 13 644 TO TO
MS 11 1 0 10 31 25 1 2 288 39 32 96 TO TO TO

PSQL TO 52 10 TO TO TO 1021 TO TO TO TO TO TO TO TO
MonetDB TO 17 15 TO TO TO 1219 TO TO TO TO TO TO TO TO
Virtuoso 447 2 0 364 1240 968 2 38 TO 1247 1273 TO TO TO TO

Neo4j TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

4-Cycle Qdag 3 1 0 70 21 59 0 4 136 1430 923 221 TO TO TO
EmptyHeaded 22 1 0 14 11 29 0 2 350 OM OM OM OM OM OM

LTJ 11 1 0 4 8 7 0 1 171 31 29 34 1416 TO TO
MS 24 3 1 17 23 59 0 3 587 183 156 268 TO TO TO

PSQL 309 4 1 1394 539 TO 47 112 TO TO TO TO TO TO TO
MonetDB 502 1 1 657 347 TO 19 60 TO TO TO TO TO TO TO
Virtuoso TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

Neo4J TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

A
C
M

T
r
a
n
s
.
D
a
t
a
b
.
S
y
s
t
.,
V
o
l
.
3
7
,
N
o
.
4
,
A
r
t
i
c
l
e
1
1
1
.
P
u
b
l
i
c
a
t
i
o
n
d
a
t
e
:
A
u
g
u
s
t
2
0
1
8
.



O
ptim

alJoins
using

C
om

pressed
Qu

adtrees
111:51

Table 5. Query times (in seconds, rounded to the nearest integer) for acyclic queries on small SNAP graphs, using selectivity 8 and 80. TO stands for timeout
(>1800 secs), whereas OM indicates an out-of-memory crash. Times in gray are obtained directly from Nguyen et al. [35].

wiki-vote Gnutella31 Gnutella04 Brightkite Facebook Enron GrQc CondMat
80 8 80 8 80 8 80 8 80 8 80 8 80 8 80 8

1-Tree Qdag 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

EmptyHeaded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LTJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MS 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

PSQL 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0

MonetDB 4 5 1 1 0 0 TO TO TO TO TO TO 0 0 1 1

2-Comb Qdag 0 8 19 29 1 4 44 206 0 1 12 115 0 0 3 12

EmptyHeaded 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0

LTJ 0 6 0 0 0 0 1 20 0 3 1 50 0 0 0 2

MS 0 0 0 1 0 0 1 3 0 0 1 2 0 0 1 1

PSQL 0 51 0 0 0 0 2 206 0 29 3 553 0 0 0 6

MonetDB 388 478 3 3 1 1 TO TO TO TO TO TO 5 5 53 62

3-Path Qdag 0 6 5 17 0 2 39 198 0 0 10 114 0 0 2 12

EmptyHeaded 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0

LTJ 0 2 0 0 0 0 1 20 0 0 1 40 0 0 0 2

MS 0 1 0 0 0 0 1 4 0 0 1 3 0 0 1 1

PSQL 0 12 0 0 0 0 2 203 0 3 3 556 0 0 0 7

MonetDB 128 131 1 1 0 0 993 1036 45 56 TO TO 6 5 57 68

Virtuoso 1 16 0 0 0 0 18 319 0 4 37 719 0 1 1 10

Neo4j 4 71 1 2 0 1 82 633 4 19 163 1584 1 4 6 42

4-Path Qdag 21 690 513 1725 19 154 TO TO 0 10 TO TO 1 4 278 TO
EmptyHeaded 1 2 0 0 0 0 7 OM 1 4 OM OM 0 1 1 3

LTJ 4 193 0 0 0 0 44 1155 1 9 75 TO 1 5 6 59

MS 1 1 0 1 0 0 4 9 0 1 4 7 0 0 2 4

PSQL 3 1099 0 1 0 0 299 TO 0 102 914 TO 0 39 4 437

MonetDB TO TO 3 4 1 2 TO TO TO TO TO TO 230 321 TO TO
Virtuoso 30 1363 0 1 0 0 1664 TO 5 189 TO TO 4 29 37 577

Neo4j 161 TO 1 7 0 3 TO TO 105 437 TO TO 23 109 201 1309

A
C
M

T
r
a
n
s
.
D
a
t
a
b
.
S
y
s
t
.,
V
o
l
.
3
7
,
N
o
.
4
,
A
r
t
i
c
l
e
1
1
1
.
P
u
b
l
i
c
a
t
i
o
n
d
a
t
e
:
A
u
g
u
s
t
2
0
1
8
.



111:52
A
rroyuelo,N

avarro,R
eutt

er,and
R
ojas-Ledesm

a

Table 6. Query times (in seconds, rounded to the nearest integer) for acyclic queries on medium-size and large SNAP graphs, using selectivity 10, 100, and
1000. TO stands for timeout (>1800 secs), whereas OM indicates an out-of-memory crash. Times in gray are obtained directly from Nguyen et al. [35].

Twitter Slashdot0902 Slashdot0811 Epinions1 Pokec LiveJournal1 Orkut
1K 100 10 1K 100 10 1K 100 10 1K 100 10 1K 100 10 1K 100 10 1K 100 10

1-Tree Qdag 0 0 2 0 1 7 0 1 5 0 0 1 49 530 TO 201 TO TO TO TO TO
EmptyHeaded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 35

LTJ 0 0 2 0 0 1 0 0 1 0 0 0 1 3 30 1 7 82 2 32 443

MS 1 2 2 1 1 1 1 1 1 0 1 1 28 32 46 55 64 97 79 100 152

PSQL 0 1 44 0 0 4 0 0 1 0 0 2 1 17 160 25 36 513 2 106 TO
MonetDB 88 78 95 TO TO TO TO TO TO 12 11 10 TO TO TO TO TO TO TO TO TO

2-Comb Qdag 2 59 363 8 400 TO 7 264 TO 1 30 300 TO TO TO TO TO TO TO TO TO
EmptyHeaded 0 1 1 0 1 2 0 1 2 0 0 1 1 2 18 4 6 391 6 TO TO

LTJ 1 15 180 1 8 117 1 11 101 0 5 41 11 140 1780 66 1161 TO 395 TO TO
MS 2 7 12 1 4 6 1 4 6 1 1 3 64 156 272 128 282 507 312 575 TO

PSQL 2 205 TO 0 5 1014 0 6 936 0 3 288 14 196 TO 153 1111 TO 162 TO TO
MonetDB TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO

3-Path Qdag 2 55 391 10 364 TO 6 258 TO 1 30 328 TO TO TO TO TO TO TO TO TO
EmptyHeaded 0 0 2 0 1 2 0 1 2 0 0 1 1 3 7 4 5 263 5 21 560

LTJ 1 13 144 1 8 98 1 8 110 0 5 27 9 120 1521 61 1035 TO 60 825 TO
MS 1 5 18 1 4 10 1 4 10 0 1 4 25 129 408 68 259 TO 111 451 TO

PSQL 2 215 TO 0 5 938 0 6 890 0 2 243 8 166 TO 142 1011 TO TO TO TO
MonetDB TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO
Virtuoso 7 59 1435 8 52 1433 6 65 1268 2 15 403 75 784 TO TO TO TO TO TO TO

Neo4j 57 323 TO 28 370 TO 41 405 TO 15 88 877 TO TO TO TO TO TO TO TO TO

4-Path Qdag 239 TO TO TO TO TO TO TO TO 110 TO TO TO TO TO TO TO TO TO TO TO
EmptyHeaded 16 OM OM 45 OM OM 13 OM OM 6 33 OM OM OM OM OM OM OM TO TO TO

LTJ 103 1286 TO 3 203 TO 62 240 TO 4 68 TO 710 TO TO TO TO TO TO TO TO
MS 8 22 46 7 13 24 7 14 23 2 6 10 206 556 TO 470 TO TO 697 TO TO

PSQL TO TO TO 9 1211 TO 10 1637 TO 1 470 TO 94 TO TO TO TO TO 1378 TO TO
MonetDB TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO
Virtuoso 710 TO TO 1058 TO TO 657 TO TO 46 1785 TO TO TO TO TO TO TO TO TO TO

Neo4j TO TO TO TO TO TO TO TO TO 1097 TO TO TO TO TO TO TO TO TO TO TO

A
C
M

T
r
a
n
s
.
D
a
t
a
b
.
S
y
s
t
.,
V
o
l
.
3
7
,
N
o
.
4
,
A
r
t
i
c
l
e
1
1
1
.
P
u
b
l
i
c
a
t
i
o
n
d
a
t
e
:
A
u
g
u
s
t
2
0
1
8
.


	Abstract
	1 Introduction
	2 Quadtrees
	3 Multi-way Joins using Qdags
	3.1 The triangle query: quadtrees vs qdags
	3.2 Qdags for relational data
	3.3 Join algorithm
	3.4 Better space and time on clustered datasets

	4 Extending Worst-Case Optimality to Boolean Queries
	4.1 Lqdags for relational formulas
	4.2 Evaluating JUC queries

	5 Full Relational Algebra on Lqdags
	5.1 Selection and -join
	5.2 Projection and derivatives
	5.3 Partial materialization of query results

	6 Engineering and Implementation
	6.1 Space-efficient qdags
	6.2 Implementing extensions
	6.3 Implementing multiway intersections
	6.4 Some special cases
	6.5 A parallel version

	7 Experimental Results
	7.1 The Wikidata SPARQL Benchmark
	7.2 Benchmark on SNAP Graphs

	8 Conclusions
	Acknowledgments
	References
	A Appendix: Comparison with the Conference Version
	B Appendix: A Non-compact Qdag Baseline
	C Appendix: Effect of Node Ordering on the Point Distributions
	D Appendix: Results on Wikidata with Complete Time Interval
	E Appendix: Full Details on the SNAP Benchmark
	E.1 Experimental setup
	E.2 Results


