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Abstract

While operations rank and select on static bitvectors can be supported in constant
time, lower bounds show that supporting updates raises the cost per operation
to Θ(logn/ log logn) on bitvectors holding n bits. This is a shame in scenar-
ios where updates are possible but uncommon. We develop a representation of
bitvectors that we call adaptive dynamic bitvector, which uses the asymptotically
optimal n + o(n) bits of space and, if there are q queries per update, supports
all the operations in O(log(n/q)/ log logn) amortized time. Further, we prove
that this time is worst-case optimal in the cell probe model. We describe a large
number of applications of our representation to other compact dynamic data
structures.

Keywords: Succinct dynamic bitvectors, Adaptive dynamic data structures

1 Introduction

Bitvectors are the basic components of most compact data structures [1]. Apart from
the basic query access(B, i), which retrieves the bit B[i] of the bitvector B[1 . . n], they
support two fundamental queries:

rankb(B, i), which tells the number of times the bit b ∈ {0, 1} occurs in B[1 . . i], and
selectb(B, j), which gives the position of the jth occurrence of b ∈ {0, 1} in B.
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It is well known since the nineties that those operations can be supported in O(1)
time with a bitvector representation that uses n+ o(n) bits of space [2, 3].

Things are considerably different, however, if we aim to allow updates to the bitvec-
tor: just supporting rank and bit flips requires Ω(log n/ log log n) time [4]. Indeed, one
can support in O(log n/ log log n) time, and still within n+o(n) bits, the operations [5]

write(B, i, v), which sets B[i] = v,
insert(B, i, v), which inserts the bit value v at position i in B, and
delete(B, i), which removes the bit B[i] from B.

This almost logarithmic gap between static and dynamic bitvectors permeates
through most compact data structures that build on them, making dynamic compact
data structures considerably slower than their static counterparts, and not as com-
petitive with classic data structures. Although this price is in principle unavoidable,
one may wonder whether it must be so high in cases where updates are sparse com-
pared to queries, as is the case in many applications. As an extreme example, since
the static data structures can be built in linear time, one could have O(1) amortized
time if queries were Ω(n) times more frequent than updates, by just rebuilding the
static structure upon each update. The idea degrades quickly, however: If queries are
q times more frequent than updates, this technique yields O(n/q) amortized times.

In this paper we introduce a representation of dynamic bitvectors B[1 . . n] that
uses the asymptotically optimal n+o(n) bits of space and offers O(log(n/q)/ log log n)
amortized time for all the operations, if queries are q times more frequent than updates.
We call our data structure adaptive dynamic bitvectors.

To obtain our result, we modify classic dynamic bitvector representations [5–8]. Our
structure is a tree of arity Θ(

√
log n) whose leaves may either be “dynamic”, storing

Θ(log2 n/ log log n) bits and supporting updates, or long “static” bitvectors handling
only queries. A whole subtree is converted into static—which we call “flattening”—
when it has received sufficient queries to amortize the cost of building the static
structures (i.e., linear in the number of bits it represents). When an update falls in
a static leaf, the leaf is recursively split into static leaves of decreasing lengths along
a path towards the position to modify, until a (short) dynamic leaf is produced and
the update is executed there—a process we call “splitting”. For maintaining balance
in the tree we build on Weight-Balanced B-trees (WBB-trees) [9, 10], which interact
well with our new operations of flattening and splitting.

We also prove that the (amortized) time complexity of our data structure is optimal
in the worst case (though not necessarily in the amortized sense). For this sake, we
modify Fredman and Saks’ [4] Ω(log n/ log log n) lower bound, on the cell probe model,
for the time of a sequence of operations write and rank—actually a simpler version
that queries only the parity of the rank—, to consider the case where the frequency
of updates is 1/q. We obtain the lower bound Ω(log(n/q)/ log log n).

Finally, we describe how our adaptive dynamic bitvectors can be used to improve
the time complexity of a number of dynamic compact data structures that build on
bitvectors, like arrays, sequences, trees, texts, grids, graphs, and others.
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A preliminary partial version of this paper appeared in SPIRE 2024 [11]. In this
extended version we significantly improve the space and time of our data structure,
prove its (worst-case) optimality, and explore its applications in depth.

2 Our Work in Context

Our problem is an instance of the so-called “dynamic bitvector with indels” problem,
which as said requires Ω(log n/ log log n) time per operation even if we support only
rank and write [4]. Several solutions have matched this lower bound, or been close to.
Hon et al. [7] store a dynamic bitvector B[1 . . n] in n + o(n) bits of space, handling
queries in time O(logb n) and updates in time O(b), for any b = Ω((log n/ log log n)2).
Their main structure is a WBB-tree [9, 10]. Chan et al. [12] use balanced binary trees
with leaves containing Θ(log n) bits, obtaining O(n) bits of space and O(log n) time
for all the operations. Mäkinen and Navarro [13] still use balanced binary trees, but
use leaves of Θ(log2 n) bits, retaining their O(log n) times but reducing the space to
n+o(n) bits. Finally, Navarro and Sadakane [5] replace binary trees by structures closer
to B-trees, retaining the n + o(n) bits of space and supporting all the operations in
the optimal time O(log n/ log log n). In those terms the problem is regarded as closed.

In this paper we focus on a regime, however, that is relevant for many applications:
we assume that there are, on average, q queries per update. In this regime, we obtain
O(log(n/q)/ log log n) time for all the operations, which we prove to be optimal in the
worst case. Our time is amortized, as we rely on converting whole subtrees into static
structures (which answer queries in O(1) time) when they have received sufficient
queries to pay for that conversion. The conversion needs to temporarily copy the bits
stored in the converted subtree, but we still manage to use n+ o(n) bits of space.

There has been work to store the bitvectors within entropy space, which means Hn
bits with H = m

n log2
n
m + n−m

n log2
n

n−m , m being the number of 1s in the bitvector.
Assuming m < n/2, Blandford and Blelloch [14] obtain O(nH + log n) bits of space
while supporting all operations in O(log n) time, using a balanced binary tree where
the distances between consecutive 1s are gap-encoded in the leaves. Mäkinen and
Navarro [13] improve the space to nH + o(n) bits, while retaining O(log n) time for
the operations. Navarro and Sadakane [5] retain this space and reduce the time to the
optimal O(log n/ log log n). We discuss in Section 7 how our results can be extended
to use entropy-bounded space.

3 Weight-Balanced B-trees (WBB-trees)

We briefly survey in this section the classic data structure ours builds on. A Weight-
Balanced B-tree (WBB-tree) [9, 10] is, like a B-tree, a multiary balanced tree where all
the leaves are at the same depth. Given some node arity a ≥ 16 and leaf size b multiple
of 16, the WBB-tree guarantees that every internal node has a/4 to 4a children (save
the root, which has 2 to 4a children) and leaves store b/4 to b elements.

As said, all the leaves of the WBB-tree are at the same level, which is called
level 0. The parent of a level-l node is of level l + 1. We call size(v) the number of
elements in leaves descending from node v. The key WBB-tree invariant is the so-
called weight-balancing constraint: every node v at level l, except possibly the root,
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satisfies alb/4 ≤ size(v) ≤ alb. This implies that the height of a WBB-tree storing n
elements is h ≤ 1 + loga/4(n/(b/4)) = Θ(loga(n/b)).

The navigation of WBB-trees is similar to that of B-trees: internal nodes store
up to 4a routing keys, which are used to search for a key from the root towards the
proper leaf. The total number of nodes visited by a search or update operation is then
h+ 1. As seen later in the paper, it is convenient for now to ignore the time spent by
searches at each internal node or leaf.

The WBB-tree enforces the weight-balancing constraint and the bounds on leaf
sizes; the arity bounds on internal nodes come as a consequence. The insertion at a
leaf may make it overflow, that is, store more than b elements. The leaf is then cut into
two leaves of similar sizes, which are always between 7

16b and
10
16b. While this increases

the arity of the parent, the WBB-tree does not directly control internal node arities,
as said. It only enforces the weight-balancing constraint. When an insertion makes an
internal node v of level l have size(v) > alb, it is cut into two siblings, balancing their
sizes as much as possible. It can be seen that both sizes are between 6

16a
lb and 11

16a
lb.

Deletions can produce leaf underflows, that is, they may be left with less than b/4
elements. In this case they are merged with a sibling leaf and then, if necessary, cut
again into two of about the same size. The resulting leaf sizes are between 8

16b−1 and
14
16b − 1. Similarly, when the size of an internal node at level l falls below alb/4, it is
merged with a sibling node in the same way, so that the resulting sizes are between
8
16a

lb− 1 and 14
16a

lb− 1.
In all cases, the cost of correcting a violation of the weight-balancing constraint is

O(a) for internal nodes and O(b) for leaves. An insertion or deletion visits h internal
nodes and a leaf, and because of the corrections it may cost O(ah+b) time in the worst
case. This may occur because, when we insert or delete an element in a leaf, we may
have to correct all the nodes in the return path, if their (leaf or internal node) sizes fall
out of bounds. An important property of WBB-trees is that, once a correction takes
place at level l, the node needs to receive Ω(alb) further updates in order to need a
new correction. In an amortized sense, then, the O(b) and O(a) cost of maintaining
leaves and internal nodes, respectively, within the allowed sizes can be absorbed by
charging just O(1) time to the visit of the update operations to each node. This makes
the amortized cost of updates just O(h + b) (we always pay O(b) time at leaves to
insert the new element).

4 Adaptive Dynamic Bitvectors

We use the transdichotomous RAM model of computation, with computer words of
w bits, so we can handle in memory bitvectors of length up to 2w. We call n ≤ 2w

the current length of the bitvector B. We do not use w-bit systemwide pointers, but
pointers of O(log n) bits. This requires specialized (though not very complex) memory
management techniques [15] [13, Sec. 4.6]; in particular allocation and deallocation
takes constant time). It also requires us to assume that, say, ⌈log2 n⌉ stays constant.
We handle this by completely rebuilding the data structure when ⌈log2 n⌉ increases by
one or decreases by two, which adds only O(1) time to the amortized cost of updates.
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Our structure uses a multiary tree, much as in previous work that obtained
O(log n/ log log n) time for all the bitvector operations [5–8]. The main novelty is that,
in order to speed up queries when updates are scarce, we convert some subtrees to
static leaves that handle queries in constant time. Static leaves at high levels make
queries to their positions faster, as those queries traverse a short path and end in con-
stant time on a static leaf. We have chosen WBB-trees because they allow us obtain
the desired amortized times.

4.1 Structure

As anticipated, our data structure is a modified WBB-tree with parameters a =
max(16, ⌈

√
log2 n⌉) and b = 16⌈log22 n/(16 log2 log2 n)⌉. We are not using the WBB-

tree to store elements that are searched for by value, but to store bits, on which we
want to support the queries access, rank, and select, and the updates write, insert and
delete. Our tree leaves are of two types:

• A “dynamic leaf”, which corresponds to the WBB-tree leaves. It stores b/4 to b
bits and no rank/select precomputed answers. A dynamic leaf answers access queries
in O(1) time and rank/select queries in time O(b/ log n) = O(log n/ log log n), via
sequential scanning (details are given soon).

• A “static leaf”, which can appear at any level l > 0 and stores arbitrarily large
bitvectors, with their corresponding precomputation to solve access/rank/select
queries in O(1) time [2, 3].

The internal tree nodes v record the following fields (each entry in O(log n) bits):

v.child[1 . . 4a] : the up to 4a children of v.
v.size[1 . . 4a] : the numbers v.size[i] = size(v.child[i]) of bits below each child of v.
v.ones[1 . . 4a] : the number of 1-bits below each child of v.
v.zeros[1 . . 4a] : the number of 0-bits below each child of v.
v.queries : number of queries (access/rank/select) that traversed v since the last update
(write/insert/delete) that traversed v, or since the creation of v.

The arrays v.size, v.ones, and v.zeros in each internal node v will be maintained
using a data structure of Raman et al. [6]. For any sequence X = x1, x2, . . . , x4a of
length 4a = O(

√
log n), of O(log n)-bit numbers, the structure uses O(a log n) bits of

space and is built in O(a) time (we use zeros for the positions of X that are beyond
the current node arity). The structure supports increasing or decreasing any xk by up

to O(log n) in O(1) time, and computes also in O(1) time sum(X, k) =
∑k

t=1 xt for
any k and search(X, s) = min{k, sum(X, k) ≥ s} for any s.

4.2 Queries

The queries use in principle the standard mechanism for dynamic bitvectors B [5–8].
For access(B, i), we descend from the WBB-tree root to a leaf. At each node v, we
compute the index k = search(v.size, i) of the child to descend by. We then descend to
v.child[k], updating i← i−sum(v.size, k−1). Upon reaching a leaf, we read its ith bit in
constant time. The worst-case time is then O(h) = O(loga(n/b)) = O(log n/ log log n).
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For rank1(B, i) we proceed analogously, except that we also start with a counter
r ← 0. Each time we descend to v.child[k], we increase r ← r+ sum(v.ones, k− 1). At
the leaf, however, we must count the o 1s up to position i, so as to return r + o. To
compute rank0(B, i) we just return i− rank1(B, i).

The leaf can be scanned in time O(b/ log n), by processing chunks of Θ(log n) bits
in constant time. This is done via small tables of O(

√
n) entries, which precompute

the number of 1s in every possible chunk of 1
2⌈log2 n⌉ bits. The tables are rebuilt in

o(n) time whenever we reconstruct the whole structure because of changes in ⌈log2 n⌉,
so their overhead is negligible. We then count the 1s of consecutive chunks of Θ(log n)
bits in the leaf, until we reach the chunk that contains position i. To count the 1s in a
prefix of that chunk in constant time, we use a slightly larger table of size O(

√
n log n)

that counts the 1s in every prefix of every chunk; this still takes o(n) bits of space and
construction time.

The worst-case time of rank is then O(h+ b/ log n) = O(log n/ log log n).
The solution to select1(B, j) is the dual of that of rank1(B, i). We start with a

counter p ← 0 and compute k = search(v.ones, j) to find the child to descend by. We
then set j ← j − sum(v.ones, k − 1) and p ← p + sum(v.size, k − 1). For select0(B, j)
we proceed identically, using v.zeros instead of v.ones.

At the static leaf, we must still find the jth 1 or 0. We scan the leaf chunk-wise with
the same table used for rank, until we identify the chunk that contains the answer. We
then make use of new tables of O(

√
n log n) entries that give the position of the jth

1 and the jth 0 inside every possible chunk, for every j. The worst-case time of both
select operations is then also O(h+ b/ log n) = O(log n/ log log n).

In our data structure, however, the three queries may end up at a static leaf.
Static leaves have precomputed the data structures [2, 3] that solve rank and select in
constant time. In those cases, the time of all the queries is O(h− l), where l is the level
of the static leaf arrived at. For example, as a glimpse of our final result, if the static
leaf is of size Θ(q), then by the WBB-tree invariants it is at level l = loga(q/b)+O(1),
and the query times are O(h− l) = O(loga(n/q)) = O(log(n/q)/ log log n).

Flattening

The novelty in our adaptive scheme is that, every time we traverse an internal node
v for any of the three queries, we increment v.queries, and if we traverse it for an
update, we reset v.queries to zero. If, after receiving a query, it holds v.queries ≥ v.size,
we convert the whole subtree of v into a static leaf, which we call “flattening” v.
Flattening is done in time O(v.size), by traversing and deleting the subtree of v, while
writing the bits of all the leaves onto a new bitvector, which is finally preprocessed for
constant-time queries and converted into the static leaf corresponding to v. We show
later, however, that its amortized cost is absorbed by the preceding v.size queries.

Note that flattening temporarily increases the space usage by v.size bits, which
may be as much as n if v is the root (we reduce this impact later). Note also that
flattening does not change v.size, and thus it does not affect the weight-balancing
constraint of the WBB-tree.
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splitflatten

Fig. 1 Flattening and posterior splitting of a node, the former after receiving over v.size consecutive
queries, and the latter when receiving an update at a static leaf; the leaf is recursively split until the
update falls in a dynamic leaf. Circles are internal nodes, round rectangles are dynamic leaves, and
gray rectangles are static leaves.

4.3 Updates

Updates are handled, in principle, as in previous work [5–8]. To perform write(B, i),
we traverse the tree as for access, modify the corresponding bit in the (dynamic) leaf
we arrive at (we consider soon the case where we arrive at a static leaf), and increase
or decrease at most one entry of v.ones and v.zeros for each node v as we return from
the recursion. Because those updates to v take constant time [6], the operation takes
time O(h) = O(log n/ log log n). Note that write has no effect on the tree balance.
Instead, it does reset v.queries to zero on the traversed nodes v.

Insertions and deletions are analogous, yet at the end they insert or delete a bit
in a dynamic leaf and must also update v.size along the path. The bits of a leaf can
be shifted in time O(log n/ log log n), by chunks of Θ(log n) bits (by using tables or
word-wise RAM operations, which shift and copy chunks of w ≥ log2 n bits in constant
time). The insertion and deletion of bits at leaves may cause violations on the allowed
leaf and internal node sizes. We have seen in Section 3 that those can be handled by
charging a constant to the amortized time spent by the update operations on each
internal node, so we do not need to consider them further. The total amortized time
for updates is then O(h+ b/ log n) = O(log n/ log log n).

Splitting

The novel part of updates occurs when we arrive at a static leaf v. In this case, we
“split” v, which means replacing it by an internal node of arity a. From its children,
a− 1 are static leaves and the one containing the position to update is internal. Note
that, if v is of level l, then it holds alb/4 ≤ v.size ≤ alb, and therefore the children,
which are of level l−1, have sizes ⌊v.size/a⌋ and ⌈v.size/a⌉, which are between al−1b/4
and al−1b. Thus, the children maintain the weight-balancing constraint. The internal
node created at level l − 1 is, in turn, split into a children in the same way, until we
reach the internal node of level 1 where the update must be applied. This node, which
represents ab/4 ≤ t ≤ ab bits, is made of arity a′ = (3/4)t/b, so that the leaves are
created with size (3/4)b; note a/3 ≤ a′ ≤ (4/3)a is a valid arity. We can now finally
perform the update on the proper leaf. Figure 1 illustrates flattening and splitting.
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Splitting v takes O(v.size) time. The complete sequence of splits up to the leaves
also takes total time O(v.size), as we create consecutive nodes of exponentially decreas-
ing lengths, at most al

′
b per level l′ = l, l − 1, . . . , 0. Though the worst-case cost of

updates can then be Θ(n), we prove sublogarithmic amortized bounds later.
An issue that arises when combining the WBB-tree corrections of Section 3 with

our static leaves is that, while the weight-balancing constraint can only be violated on
an internal node (static leaves always satisfy the constraint), the merging procedure
might need to merge a level-l internal node whose size fell below alb/4 with a sibling
node u, and that node u may be a static leaf. In this case, we split u into a children,
which are all static leaves if l > 1 and dynamic leaves otherwise (in which case we
might create a′ leaves, as above). Then the merging is carried out. Since, as shown in
Section 3, these mergings occur every Θ(alb) updates, the O(alb) cost of this splitting
is still absorbed by the O(1) cost we already charge to every update that visits v.

Reducing space

In order to maintain the total space in n+o(n) bits (plus the space for flattening), we
store the bits at the leaves v using exactly ⌈v.size/ log2 n⌉ chunks of ⌈log2 n⌉ bits. We
reallocate the leaves as needed when bits are inserted or deleted in order to maintain
this invariant. The cost of reallocation is already included in the O(b/ log n) cost of
bit insertion or deletion. The invariant ensures that we waste only O(log n) bits per
leaf, which amounts to O(n log log / log n) = o(n) total bits, given that the WBB-tree
invariants ensure that there are O(n/b) leaves overall.

To ensure the desired maximum space of n+ o(n) bits, we avoid flattening nodes
v where v.size > n/⌈log2 n⌉, so the maximum temporary space for flattening is
O(n/ log n) bits and the space is within n + o(n) bits. We show in the next section
that this does not affect the time complexities.

5 Amortized Analysis

We will use an accounting scheme to prove that the amortized cost of all the adaptive
dynamic bitvector operations described in Section 4 is O(log(n/q)/ log log n).

We will use a model where a node will refer to a particular WBB-tree node in the
lifetime of the data structure, from the moment in which it is created until the time it
is destroyed. Flattening or splitting a node counts as destroying it and creating a new
node of another type. Further, every time an update traverses an internal node v and
resets its counter v.queries to zero, this counts in our model as destroying the node
and creating a new one. So our nodes are created, receive queries, and then disappear.

The level of a node does not change along its lifetime. We define Il as the set of all
internal nodes of level l that have existed along the lifespan of the data structure. We
assume that m queries and m/q updates occur along this lifespan (we should actually
use m/(q− 1) to have an average update frequency of 1/q, but this way yields cleaner
formulas; the big-O results are of course the same).

We note that queries create only static leaves, by flattening. Only updates can
create internal nodes, by zeroing v.queries (according to our model of node in this
section), by correcting internal nodes, or by splitting static leaves. Note that an update
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can create at most two internal nodes per level (this happens when cutting nodes,
otherwise they create just one). Each update starts at the root and ends at a dynamic
leaf. Since there are m/q updates, the nodes of each level l are visited by m/q updates,
and so at most 2m/q internal nodes can be created in level l along the lifespan of the
data structure, that is, it holds |Il| ≤ 2m/q for every l if the tree starts empty.

Queries and flattening

Queries cost O(1) time per internal node traversed. We charge that cost to those
internal nodes. In case the query arrives at a static leaf, it spends O(1) further time
on the leaf, which is charged to the query. If the query arrives, instead, at a dynamic
leaf, it spends O(log n/ log log n) time on it. Dynamic leaves, however, are of level 0;
therefore we can distribute the O(log n/ log log n) cost spent at the dynamic leaf over
the h = Θ(log n/ log log n) internal nodes traversed to reach it. This increases the cost
charged to internal nodes traversed by just another O(1).

The cost of flattening is also charged to the flattened node. An internal node
v is flattened once v.size consecutive queries have traversed it, and flattening costs
O(v.size). Therefore, we charge O(1) additional cost to the nodes traversed by queries
to pay for their eventual flattening.

So far, we have charged O(1) to query operations and zero to flattening, and
charged most of the actual cost to internal nodes, O(1) per time a query traverses
them. We now calculate how much can be charged to all the internal nodes Il.

An internal node v can be traversed by v.size queries before it is flattened (and thus
destroyed; recall that in our model updates destroy the nodes they visit and create
new versions). If v ∈ Il, then v.size ≤ alb; hence it can be charged by queries at most
alb times before it gets flattened.

Since there are m queries, and each visits each level at most once, there are at most
m queries affecting the nodes of each Il. On the other hand, |Il| ≤ 2m/q. Since those
nodes can be charged at most alb times before disappearing, we could distribute all the
charges of the m queries only if m ≤ (2m/q)alb, that is, if l ≥ l∗ = loga(q/2b). Across
those levels l, the total charges to nodes add up tom(h−l∗) = O(m log(n/q)/ log logn).

The intuition is that, in the higher levels (l ≥ l∗), we can distribute q/2 queries
to each of the 2m/q nodes; they are large enough to receive those q/2 queries before
flattening. On the deeper levels, instead, it is not possible to assign all the m charges
to nodes before they flatten, which means that not all queries can reach those deep
nodes, because they inevitably flatten the nodes at level l∗. Precisely, the nodes at
level l∗ are of length ≤ q/2 and thus might receive q/2 queries, but from there on, the
2m/q nodes at levels l < l∗ can receive at most (q/2)/al

∗−l queries before flattening.
Adding up over all levels l < l∗, we obtain that the amount of queries that can be
received is at most 2m/q ·O(q) = O(m).

Overall, the m queries, including the induced flattenings, have an amortized cost
of O(log(n/q)/ log log n) per operation.

Updates and splitting

Updates do not finish at static leaves; they open up a path to a dynamic leaf is neces-
sary. They then take amortized time O(h+ b/ log n) = O(log n/ log log n). Since there
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are m/q updates, however, their total contribution is just O((m/q) log n/ log log n) ⊆
O(m log(n/q)/ log log n), or O(log(n/q)/ log log n) per operation.

An update can also, however, split a flattened leaf, creating a path of internal nodes
and static leaves, until reaching level 0. We have already accounted for the internal
nodes splittings create; let us now analyze the cost of those splittings. Note that we
do not refer to the splittings induced by WBB-tree corrections; the cost of those are
already accounted for within the formula of the preceding paragraph. Each update
operation can produce one split per level.

Let us call Sl the set of static leaves of level l that have existed along the lifespan of
the data structure. Let us assume pessimistically that |Sl∗ | ≥ m/q. Then, in our quest
to maximize the cost of splittings, we will never choose to flatten a leaf of level below
l∗, because we have sufficiently many of them at level l∗ to choose from and those are
costlier to split. Leaves of level l∗ are of length at most q/2, therefore, if we use our
at most m/q splittings on those, the total splitting cost would be at most m/2.

This cost is not maximal, because we are splitting only flattened leaves, whose
total length is indeed bounded by m. To achieve higher splitting costs, we must split
some flattened leaves and then the static leaves created by the splitting, several times.

Let us then choose a set F = {v1, v2, . . .} of static leaves created by flattening by
the m queries that occurred along the lifespan of the data structure. Let ℓi be the
length of leaf vi, so

∑
i ℓi ≤ m. Each split on some vi creates a number of new static

leaves (not in F), on which other splits may apply later.
To bound how much can we pay by splitting the leaves created from some flattened

leaf v ∈ F at level l, assume the maximum size v.size = ℓ = alb. The first split costs ℓ,
and creates a− 1 static leaves of lengths ℓ/a, a− 1 of length ℓ/a2, etc. The next a− 1
splits pessimistically choose leaves of size ℓ/a, costing ℓ/a and creating a− 1 leaves of
size ℓ/a2, a−1 of size ℓ/a3, etc. Now there are a(a−1) leaves of size ℓ/a2 (a−1 created
with the first split and (a− 1)(a− 1) created during the next a− 1 splits), which are
the next ones to choose to maximize costs, and so on. Let L(t) be the number of leaves
of length ℓ/at created in the process. It can be seen that L(t) = at−1(a− 1). The sum
of all the leaf lengths for any t > 0 is then at most ℓ(a−1)/a. Therefore, if we split all
the static leaves from v along t levels, the total splitting cost is 1+ (ℓ(a− 1)/a)t ≤ ℓt.

By our previous observation, we never choose to split nodes beyond level l∗, so
t ≤ l− l∗ ≤ h− l∗. The total splitting cost is then at most

∑
i ℓi(h− l∗) ≤ m(h− l∗) =

O(m loga(n/q)) = O(m log(n/q)/ log log n).
The amortized cost of all our operations is then O(log(n/q)/ log log n). Finally, to

use only O(n/ log n) temporary bits of space for flattening, we do not flatten nodes v
where v.size > n/⌈log2 n⌉. The level of those nodes is at least l0 = loga(n/(b⌈log2 n⌉)).
The number of (highest) levels that are not flattened is then h− l0 = O(loga(log n)) =
O(1). This changes the costs only by an additive constant.

Finally, the o(n) term in the space is O(n log log n/ log n) due to the space wasted
in leaves and internal nodes. The sublinear term in the static data structures can also
be made O(n log log n/ log n) while retaining linear construction time [16, 17].

Theorem 1 An adaptive dynamic bitvector starting empty can be maintained in n+
O(n log log n/ log n) bits of space, where n is the current number of bits it represents,
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so that if the fraction of updates over total operations so far is 1/q, then the bitvector
operations take O(log(n/q)/ log log n) amortized time.

If starting on a tree of n0 nodes, we must add O(n0 log n0/ log log n0) to the cost of
the whole sequence of operations, so as to simulate the first n0 insertions; the analysis
holds if m/q = Ω(n0/b) (actually, it suffices that log(m/n0) = Ω(log(q/b)).

6 A Matching Lower Bound

In this section we prove that our algorithm is indeed optimal, by slightly adapting the
Ω(log n/ log log n) proof of Fredman and Saks [4]. We actually follow an excellent and
unpublished survey of Miltersen [18], which gives a much cleaner proof. As the material
is unpublished and not available at a formal repository, we repeat its details in what
follows, modifying the proof to consider the assumption that the fraction of updates
is 1/q, applying minor fixes and improvements, and explaining it in more depth.

Assume the RAM word size is w = Θ(log n) and that the updates are only of
the form write(B, i). Further, consider a simpler variant of the problem where the
queries are of the form prefix(B, i) = rank(B, i) mod 2 (this is called the dynamic prefix
problem, which obviously reduces to the dynamic bitvector problem).

Assume n is a power of 2 and consider k = n/q updates1 write(B, ik, ak),
write(B, ik−1, ak−1), . . . ,write(B, i1, a1), where the positions are distributed in rounds
as i1 = n/2 (round 1), then i2 = n/4 and i3 = 3n/4 (round 2), then i4 = n/8,
i5 = 3n/8, i6 = 5n/8, and i7 = 7n/8 (round 3), and so on. It is easy to see that, if
u, v ≤ r for some r, then two different write positions iu and iv are sufficiently distant,
that is, |iu − iv| ≥ n/(2r) (and also n− iu ≥ n/(2r)).

The sequence of writes is divided into “epochs”. Epoch 1 is formed by the last
l1 = log3 n write operations (recall that we apply the writes in reverse order, so epoch
1 contains the writes at positions il1 , il1−1, . . . , i1). Epochs 1 and 2 contain the last
l2 = log6 n write operations, that is, epoch 2 spans the writes at positions il2 to il1+1).
In general, epochs 1 to i contain the last li = log3i n write operations. We call r the
number of epochs, which satisfies log3r n = k, that is, r = log(n/q)/(3 log log n) (we
can assume q ≤ n/ log3 n so that r ≥ 1; for larger q the lower bound we derive is
already 1).

The cells in memory will be “stamped” with the last epoch where they were written.
Epochs will define the granularity of our analysis; we will show that many queries
need to read one cell from each epoch; the lower bound then follows easily.

Although we have fixed the write positions i1, . . . , ik, we will consider all the pos-
sible written values a⃗ = ⟨a1, . . . , ak⟩. Let M (⃗a) be the state of the memory after
all the write operations are carried out, and M i(⃗a) be the state M (⃗a) where all the
cells with stamp i are restored to the value they had before epoch i started. Let also
Q(⃗a) = ⟨prefix(B, 1), . . . , prefix(B,n)⟩ be the answers to all the possible queries after
the upates of a⃗ are performed (i.e., run on M (⃗a)), and Qi(⃗a) be the same vector of

1This number is crucial to obtain the result. It is
√
n in Miltersen’s proof, but we do not have

√
n updates

if q >
√
n, that is, if there is a chance that the complexities logn and log(n/q) differ.
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answers when running on M i(⃗a). Consider now the following inequalities:

Worst-case complexity of prefix

≥ max
a⃗∈{0,1}k,y∈[1. .n]

time of prefix(B, y) on M (⃗a) (1)

≥ 1

2kn

∑
a⃗∈{0,1}k

∑
y∈[1. .n]

time of prefix(B, y) on M (⃗a) (2)

≥ 1

2kn

∑
a⃗∈{0,1}k

∑
y∈[1. .n]

r∑
i=1

[prefix(B, y) reads some cell stamped i in M (⃗a)] (3)

=
1

2kn

r∑
i=1

∑
a⃗∈{0,1}k

|{y, prefix(B, y) reads some cell stamped i in M (⃗a)}| (4)

≥ 1

2kn

r∑
i=1

∑
a⃗∈{0,1}k

d(Q(⃗a), Qi(⃗a)) (5)

Formula (1) follows by definition (it is an inequality because we have fixed, for example,
the write positions), and it upper bounds (2), which is the average cost of prefix. This
upper bounds (3), where we charge only one unit of work per epoch stamp prefix reads
(the notation [p] means 1 if predicate p holds and 0 if not). We just reorganize terms
in (4). The term d in (5) refers to the Hamming distance between the two binary
vectors. The inequality holds because, if an answer changes between Qi(⃗a) and Q(⃗a),
this means that prefix must have read some cell that was written in epoch i. We now
split a⃗ = a⃗1 : a⃗2, where a⃗2 contains the older li updates and a⃗1 the newer k − li ones.

1

2kn

r∑
i=1

∑
a⃗∈{0,1}k

d(Q(⃗a), Qi(⃗a))

=
1

2kn

r∑
i=1

∑
a⃗1∈{0,1}k−li

∑
a⃗2∈{0,1}li

d(Q(a⃗1 : a⃗2), Q
i(a⃗1 : a⃗2)) (6)

≥ 1

2kn

r∑
i=1

∑
a⃗1∈{0,1}k−li

n

12
· |{a⃗2 ∈ {0, 1}li ,d(Q(a⃗1 : a⃗2), Q

i(a⃗1 : a⃗2)) ≥ n/12}| (7)

=
1

12 · 2k
r∑

i=1

∑
a⃗1∈{0,1}k−li

(2li − |{a⃗2 ∈ {0, 1}li ,d(Q(a⃗1 : a⃗2), Q
i(a⃗1 : a⃗2)) < n/12}|)(8)

≥ 1

12 · 2k
r∑

i=1

∑
a⃗1∈{0,1}k−li

(2li − |Ai| ·Ham(A,n/12)) (9)

In Formula (6) we just decomposed a⃗, and then applied a simple convenient lower
bounding to obtain (7), which is rewritten in (8). In Formula (9), we are defining
A = {Q(a⃗1 : a⃗2), a⃗2 ∈ {0, 1}li}, Ai = {Qi(a⃗1 : a⃗2), a⃗2 ∈ {0, 1}li}, and Ham(A,n/12) as
the maximum number of elements of A that can be placed in a Hamming ball of radius
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n/12. That is, we upper-bound how many vectors of Q(a⃗1 : a⃗2) can there be close
enough to each vector of Qi(a⃗1 : a⃗2). In turn, by the triangle inequality, Ham(A,n/12)
can be upper-bounded by the elements of A that fall in a Hamming ball of twice the
radius, n/6, centered around some element c⃗ ∈ A (one that is in the original Hamming
ball). We now bound this value.

The elements of A are correct answer vectors after all the writes take place. Per
our partition a⃗1 : a⃗2, where we fixed a⃗1, only the last li of those updates differ between
any two elements c⃗, v⃗ ∈ A. Let j and j′ be two writing positions in {i1, . . . , ili}
that are consecutive in B. Consider the segments of answers cjcj+1 · · · cj′−1 of c⃗ and
vjvj+1 · · · vj′−1 of v⃗. This is the key point: because there are no updates in B[j +
1 . . j′ − 1], either the parities of the ranks (i.e., the answers to prefix) between c⃗ and
v⃗ are all the same along the range, or they are all different. That is, it must hold
either vjvj+1 · · · vj′−1 = cjcj+1 · · · cj′−1 or vjvj+1 · · · vj′−1 = cjcj+1 · · · cj′−1, where c
denotes the complement of bit c. In the first case, the pair (j, j′) contributes zero to the
Hamming distance, but due to the minimum distance between two positions in epoch
i, the second case contributes at least n/(2li). Within a ball of radius n/6 centered at
c⃗, then, there can be at most li/3 pairs (j, j′) that produce changes in the answers. The
number of elements of A within the Hamming ball centered at c⃗ is then bounded by

the number of ways to choose up to li/3 consecutive pairs (j, j′), that is,
∑⌊li/3⌋

t=0

(
li
t

)
.

This is at most 2H(1/3) li ≤ 20.92 li , where H(p) = p log2
1
p + (1 − p) log2

1
1−p is the

binary entropy function [19, p. 427].
We now bound |Ai|. The number of cells referenced by any write operation, if it

performs t units of work in the worst case, can be upper-bounded by 2wt via the
“decision assignment tree” model of a deterministic algorithm: the root indicates the
first cell read by the algorithm. It has 2w children, one per possible content of the cell,
by which the execution can continue. The edge to the child is annotated with the value
the algorithm rewrites on the cell. Then the algorithm reads a second cell, the one
indicated in the child node, which can have 2w possible outcomes, and so on. After t
steps, the number of cells possibly accessed by the algorithm is at most 2wt. The total
number of cells accessed along the k write operations is then s ≤ k2wt. Therefore,

|Ai| = |{Qi(a⃗1 : a⃗2), a⃗2 ∈ {0, 1}li}| ≤ |{M i(a⃗1 : a⃗2), a⃗2 ∈ {0, 1}li}|,

because the number of distinct query result vectors onM i(⃗a) is bounded by the number
of distinct memory configurations on which the queries were executed. We can bound
the number of those configurations as

|{M i(a⃗1 : a⃗2), a⃗2 ∈ {0, 1}li}| ≤
t·li−1∑
j=0

(
s

j

)
2wj ≤

t·li−1∑
j=0

(
k2wt

j

)
2wj .

This is because, once a⃗1 is fixed, all the changes in epoch i are restored to their original
value in M i(⃗a). The changes that remain are those applied on the epochs i − 1 to 1,
on which we perform li−1 write operations. Those li−1 operations may affect j cells,
with j ranging from 0 to t · li−1. For each possible set of j cells, of which there are

(
s
j

)
,
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there are by the discussion above at most 2wj different executions—and thus different
memory configurations. Now we show that this value is in 2o(li). Bounding

t·li−1∑
j=0

(
k2wt

j

)
2wj ≤ (t · li−1) · (k2wt)t·li−1 · 2wt·li−1 ,

remembering that li = log3i n, i ≤ r = O(log n/ log log n), w = log n, k ≤ n,
and assuming t = O(log n/ log log n) (i.e., the optimal worst-case time for the write
operation), we take logarithm on the last term to obtain

O
(
log n+ (log3i−2 n/ log log n)(log n+ log2 n/ log log n) + log3i−1 n/ log log n

)
,

which is o(log3i n) = o(li). We are now ready to finish our chain of inequalities:

1

12 · 2k
r∑

i=1

∑
a⃗1∈{0,1}k−li

(2li − |Ai| ·Ham(A,n/12))

≥ 1

12 · 2k
r∑

i=1

∑
a⃗1∈{0,1}k−li

(2li − 2o(li) · 20.92 li) (10)

≥ 1

12 · 2k
r∑

i=1

∑
a⃗1∈{0,1}k−li

2li/2 (11)

=
1

24 · 2k
r∑

i=1

∑
a⃗1∈{0,1}k−li

2li =
1

24 · 2k
r · 2k =

r

24
=

log(n/q)

72 log log n
. (12)

The bounds we have derived justify Formula (10). Then the step to (11) holds for
sufficiently large n. The final result in (12) follows easily.

Theorem 2 In the cell probe model, with computer words of size w = log n, some of
the operations on a dynamic bitvector of length n, where the fraction of updates is 1/q,
must require Ω(log(n/q)/ log log n) time in the worst case.

Note that we have proved a lower bound just on a sequence of operations write
and rank. The lower bound trivially holds for supersets of those operations, but we
can also obtain uncomparable results by reductions. An easy one is to reduce write to
insert and delete, so we can replace it by the two operations in the lower bound. We can
also replace rank by select in the lower bound [17, Lem. 7.3], by representing B[1 . . n]
with a bitvector B′ of length up to 2n where every B[i] = 0 is encoded as a 1 and
every B[i] = 1 is encoded as 01. It then holds that rank1(B, i) = select1(B

′, i)− i (and
select1(B, i) = select0(B

′, i)− i+ 1). We can also reduce to select0 by complementing
the bits in the encoding. The lower bound, then, holds for the operation write (or,
alternatively, insert/delete) and any of the queries rank, select1, or select0.
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7 Applications

Navarro [1, Ch. 12] describes several dynamic compact data structures that can be
built from dynamic bitvectors. We revisit them in this section, showing how our new
result yields adaptive dynamic variants (see the chapter for more details). An original
aspect of this section is the way it combines static and dynamic versions in a single
data structure; this uncovers interesting tradeoffs in some cases.

7.1 Arrays with cells of fixed length

Instead of a dynamic array of bits, we might have a dynamic array of ℓ-bit elements
A[1 . . n], where we wish to perform operations insert(A, i, v), which inserts value v at
A[i], delete(A, i), which removes A[i], read(A, i), which returns A[i], and write(A, i, v),
which sets A[i]← v. We assume ℓ ≤ w.

Dynamic fixed-length arrays can be implemented analogously to dynamic bitvec-
tors, using b = Θ(w log n/ log log n) bits per leaf and holding up to ⌊b/ℓ⌋ cells in each
leaf. Allocating an integral number of words wastes at most w bits per leaf, which
amounts to O(nℓ log log n/ log n) bits in total. Note that operations read and write on a
leaf take constant time, while insert and delete take time O(b/w) = O(log n/ log logn),
as we move the data by whole computer words. Because of the larger leaf sizes we can
afford, we can use w-bit system pointers at the nodes.

We can apply the same techniques developed for adaptive dynamic bitvectors, so
that we flatten nodes that are updated infrequently. While a dynamic leaf can also
be read in constant time, a flattened leaf has smaller depth and thus fewer tree nodes
are traversed to reach it. Interestingly, we should not consider write to be an update
operation, as it can be performed on static leaves in constant time as well.

Corollary 1 An adaptive dynamic array of ℓ-bits cells, starting empty, can be main-
tained in nℓ(1+o(1)) bits of space, where n is the current number of cells it represents,
so that if the fraction of insertions/deletions over total operations so far is 1/q, then
the array operations take O(log(n/q)/ log log n) amortized time.

7.2 Arrays with cells of variable length

In a more complex scenario, we want to store an array A[1 . . n] where each cell has a
different length, which is usually inferred from the cell content (i.e., each cell contains
a self-delimiting variable-length code like Huffman, γ-codes, δ-codes, etc. [20]). Let
N be the sum of all the lengths of the cells in A. We can represent A as a bitvector
B[1 . . N ] that concatenates all the cells of A.

Our dynamic representation of B stores an integral number of cells of A in each
leaf; we assume again that cell lengths do not exceed w bits. We return to using leaves
of b = Θ(log2 n/ log log n) bits,2 so the wasted space is O(N/ log n) bits. The total
space incurred by our data structure is then within N + o(N) bits.

Processing a leaf, for queries or for updates, requires scanning it to decode its cells.
If cells are short, this may require decoding up to O(log2 n/ log log n) individual cells.

2In the awkward case where a w-bit cell does not fit within a leaf, we can allocate a w-bit leaf for that cell.
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We can use precomputed tables of size o(n) to decode Θ(log n) bits (which may encode
several cells) in constant time, analogous to those used in Section 4; this mechanism
has been detailed, for example, for δ-codes [13, Sec. 5.1.1]. With this method, cells of
length Ω(log n) are still processed one by one, so we assume each cell can be decoded
in constant time. When we execute write, we must also encode one cell, for which
we may allow O(log n/ log log n) time; the rest of the cost is for copying memory in
the leaf, which can be done by chunks of w bits. Overall, leaves can be processed in
O(log n/ log log n) time under these assumptions. We note that operation write(A, i, v)
might change the length of cell A[i], and therefore it must be treated as an update just
like insert and delete, as it requires shifting bits in, and even resize, the (dynamic) leaf.

For static leaves v, let Bv be the local piece of the bitvector B stored at v. We can
use a sparse static bitvector Sv [21–23] to mark the starting positions of the entries
in Bv. To perform read(Bv, i), we extract the bits from the positions select1(Sv, i)
to select1(Sv, i + 1) − 1 of Bv; this takes constant time. Such representation uses
ni log2(Ni/ni) + O(ni) bits for the ith static leaf, storing ni cells of total length Ni.
Added over all the static leaves we get

∑
i ni log2(Ni/ni)+O(ni) ≤ n log2(N/n)+O(n)

extra bits of space, using Jensen’s inequality. This is o(N) +O(n) bits.

Corollary 2 An adaptive dynamic array of variable-length cells, starting empty, can
be maintained in N + o(N) + O(n) bits of space, where n is the current number of
cells and N the sum of the lengths of the cells, so that if the fraction of updates over
total operations so far is 1/q, then the array operations take O(log(n/q)/ log log n)
amortized time. This assumes cells can be decoded in constant time and encoded in
O(log n/ log log n) time.

Compressed bitvectors

Dynamic compressed bitvectors [5, 13, 14] aim to represent bitvector B[1 . . n] using
nH bits of space; the bitvector entropy 0 ≤ H ≤ 1 was defined in Section 2. A (static)
representation of B within nH + o(n) bits [17], which is built in linear time, divides
it into chunks of κ = (log2 n)/2 bits, and stores for each chunk its “class” c (number
of 1s) in ⌈log2(κ+ 1)⌉ bits, and its “offset” o (index within the class) using ⌈log2

(
κ
c

)
⌉

bits. While the c components add up to o(n) bits, it is shown that the lengths of the
o components adds up to nH, which still holds if we distribute them across leaves.

While the classes c can be stored in fixed-length cells, the offsets o have variable
length, which can be known from their class c. The static representation can be used
for the static leaves, as it offers access, rank, and select in constant time. On the
dynamic leaves, we store an integral number of chunks and implement the operations
via scanning. We use again precomputed tables, as already described in the literature
[13, Sec. 5.2.1], to obtain O(log n/ log log n) scanning time. The operations insert and
delete at the bit level require re-encoding all the chunks of the leaf that lie to the right
of the affected one, which is also done by chunks of Θ(log n) bits [13, Sec. 5.2.2]. A
variant of the (class,offset) encoding ensures that one insertion or deletion makes the
size of the leaf grow or shrink by O(log n) bits [5, Sec. 8.2].

Corollary 3 An adaptive dynamic bitvector starting empty can be maintained in
nH + o(n) bits of space, where n is the current number of bits and H its entropy, so
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that if the fraction of updates over total operations so far is 1/q, then the bitvector
operations take O(log(n/q)/ log log n) amortized time.

Very sparse bitvectors

An alternative formula of entropy compression is nH = m log2(n/m)+O(m), where m
is the number of 1s in B. This shows that the o(n) bits of redundancy in the previous
scheme is too large when m≪ n. A representation that avoids that redundancy stores,
in a variable-length array of m elements, the lengths of the gaps between consecutive
1s in B. If we encode those values using δ-codes, then the sum N of the cell lengths
is upper bounded as N ≤ m log2(n/m) + O(m log log(n/m)) = nH + o(nH) + O(m)
bits. As before, this also holds if we distribute the sequence across several leaves.

We can use, in principle, Corollary 2 to represent this sequence. Operations insert
and delete on B translate into write, insert and delete on the sequence. As for queries,
the sequence representation enables read operations on the cells, but we need another
functionality on B: access, rank, and select. On dynamic leaves, we can implement
them by scanning the sequence of gap lengths. This can be done by chunks of Θ(log n)
bits so that leaves are processed in O(log n/ log log n) time [13, Sec. 5.1.1].

On the static leaves, we do not use the O(n log(N/n))-bit sized bitvectors Sv; we
directly encode Bv using the representation we chose for Sv [23]. Such representation
supports select1(Bv, j) in O(1) time and the other queries in time O(logm).

Let the ith v leaf store a bitvector of length ni with mi 1s. If the ith leaf
is dynamic, then it is represented with δ-codes and its space is mi log2(ni/mi) +
O(mi log log(ni/mi)), as already said. If it is dynamic, the space of its representation
is mi log2(ni/mi)+O(mi) [23]. The sum can then be bounded as

∑
i mi log2(ni/mi)+

O(mi log log(ni/mi)) ≤ m log2(n/m)+O(m log log(n/m)) = nH+o(nH)+O(m) bits,
using Jensen’s inequality. Our representation then uses the same asymptotic space.

We note that the O(logm) time for rank and select0 is particularly high in this sce-
nario; they run faster on dynamic leaves (i.e., O(logm/ log logm) time) than on static
ones! A solution is to encode, in static leaves, a static version of our WBB-tree, which
instead of explicitly storing the leaves points to their position in the static bitvector.
Such static WBB-trees add only o(nH) + O(m) further bits and reduce the times as
described. Lower times for rank can be obtained with other static representations [24].

Corollary 4 An adaptive dynamic bitvector starting empty can be maintained in
nH + o(nH) + O(m) bits of space, where n is the current number of bits, H is its
entropy, and m is its number of 1s, so that if the fraction of updates over total
operations so far is 1/q, then the bitvector operations insert, delete, and select1 have
O(log(m/q)/ log logm), and the rest O(logm/ log logm), amortized time.

Searchable partial sums

A sparse bitvector like that of Corollary 4 can be used to implement searchable par-
tial sums with indels [7]. Here we aim to represent an array A[1 . . n] of positive

numbers so that we can, in addition, support the operations sum(A, i) =
∑i

j=1 A[j]
and search(A, v) = max{i, sum(A, i) ≤ v}. If we let N = sum(A,n) and repre-
sent A as a bitvector B[1 . . N ], where we set a 1 at every position sum(A, i), then
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it follows that sum(A, i) = select1(B, i), search(A, v) = rank1(B, v), and read(A, i) =
select1(B, i)− select1(B, i− 1).

By using Corollary 4, we would actually be representing the entries of A in variable-
length cells, using δ-codes in the dynamic leaves. Operations write, insert, and delete
on A boil down to similar operations on the δ-codes. A problem, however, is that the
internal array v.size (and also v.zeros, but we do not need that one here) may change
by arbitrarily large amounts, which is not supported in the data structure we use to
maintain the array [6]. This is a fundamental problem, as otherwise we would break
lower bounds [25].

We can obtain logarithmic times by using a constant tree arity a in our data
structure. A consequence is that, if we suspend flattening on a constant number of
levels, we can only ensure we flatten nodes of size at most ϵ ·n for some constant ϵ > 0;
therefore the space grows by a constant fraction. We then have the following result.

Corollary 5 An adaptive searchable partial sum with indels, starting empty, can be
maintained in (1+ ϵ)n log2(N/n)+O(n) bits of space, for any constant ϵ > 0, where n
is the current number of elements and N their sum, so that if the fraction of updates
over total operations so far is 1/q, then the operations insert, delete, read, write, and
sum have O(log(n/q)), and search has O(log n), amortized time.

7.3 Wavelet trees and matrices

Wavelet trees [26] represent a sequence S[1 . . n] over alphabet [1 . . σ] so that vari-
ous operations can be carried out on it, in particular access(S, i), which yields S[i],
rankc(S, i), which gives the number of times c occurs in S[1 . . i], and selectc(S, j),
which is the position of the jth occurrence of c in S. The wavelet tree is a balanced
tree of O(σ) nodes storing bitvectors at every node, adding up to n bits per level. Its
operations are carried out in O(log σ) time by reducing them to O(log σ) operations
on the bitvectors, one per level. Dynamic representations [5] support the operations
insert and delete on S and obtain time O(log σ log n/ log log n) per operation, and even
O(⌈log σ/ log log n⌉ log n/ log log n) by reducing the wavelet tree to small subalphabets
instead of to bits (this can probably be made adaptive too, but here we stick to the
case of bits). A wavelet matrix [27] is formed by log2 σ bitvectors of length n (one
per wavelet tree level) and simulates the same operations of the wavelet tree without
spending O(σ log n) bits to store the nodes.

We note that each query/update on the wavelet tree or matrix translates into
one query/update on each level of the bitvectors. Thus the number q of queries per
update stays the same over the bitvectors of every level. Given m wavelet tree oper-
ations, u of the operations being updates, with q = m/u, let us consider how the
(same number of) operations distribute along the bitvectors of a given level. Let
the ith bitvector, of length ni, receive mi operations of which ui are updates. The
total amortized time using our adaptive dynamic bitvectors is then

∑
i mi log(ni/qi)

divided by O(log log n), where qi = mi/ui,
∑

i mi = m,
∑

i ni = n, and
∑

ui = u. By
Jensen’s inequality, the sum is at most m log

∑
i mini/(qim) = m log

∑
i(niui)/m ≤

m log(
∑

i ni)(
∑

i ui)/m = m log(nu/m) = m log(n/q). We then obtain the following.
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Corollary 6 An adaptive dynamic wavelet tree or matrix over alphabet [1 . . σ], start-
ing empty, can be maintained in n log2 σ+o(n log σ) bits of space (plus O(σ log n) bits
in the case of a wavelet tree), where n is the current number of sequence elements, so
that if the fraction of updates over total operations so far is 1/q, then the operations
have O(log σ log(n/q)/ log log n) amortized time.

We note that there exist sequence representations that carry out all the operations
in time O(log n/ log log n) [28]; this is incomparable with ours. By combining wavelet
trees with compressed bitvectors, giving them Huffman shape, and using many other
techniques, one can obtain a wide range of space-time tradeoffs for sequences [29];
they all have their corresponding counterparts if combined with our adaptive dynamic
bitvectors. We leave exploring those as an exercise to the reader. Instead, we will focus
on other data structures that can be implemented on top of wavelet trees or matrices.

Discrete grids

A discrete grid of r rows and c columns contains n points at positions (i, j) ∈ [1 . . r]×
[1 . . c], and supports queries like counting how many points are there in a rectangle
[r1 . . r2]× [c1 . . c2], or reporting those points, among others. If the grid is dynamic, we
can also insert and delete points at any grid position. A way to maintain a grid is by
combining a bitvector B[1 . . c+n] = 10n110n2 · · · 10nc , which signals that there are nj

points in column j, with a wavelet matrix S[1 . . n], which gives the row coordinates
of the points, read in increasing column order. This uses (c+ n log2 r)(1 + o(1)) bits.

Queries on the grid are translated to queries on the sequence using select on B, for
example the column range [c1 . . c2] becomes the string range S[select1(B, c1) − c1 +
1 . . select1(B, c2+1)−(c2+1)]. On the other hand, a string position S[i] corresponds to
the point (select0(B, i)−i, S[i]), if we want to report it. Those conversions take constant
time in the static case. Further, the operation that counts the number of points on
a rectangle is implemented in time O(log r) using the wavelet matrix, whereas each
point is reported in time O(log r) as well. In the dynamic structure, inserting/deleting
a point corresponds to inserting/deleting a 0 in B and a symbol in the wavelet matrix.
By using our adaptive bitvector representation, we obtain the following result.

Corollary 7 An adaptive dynamic grid of r rows and c columns, starting empty, can
be maintained in (c+n log2 r)(1+o(1)) bits of space, where n is the current number of
points, so that if the fraction of updates over total operations so far is 1/q, then points
can be inserted and deleted, the points within a rectangle can be counted, and each such
point can be retrieved, in O((log(c/q) + log(n/q) log r)/ log log n) amortized time.

We note that each of the reported points counts as a query to the bitvectors, so the
values of q are high if we use reporting queries. Other operations that take O(log r)
time are similarly translated to the adaptive dynamic case.

Graphs

The same data structure can be used to represent a directed graph of n nodes and
e edges: the n × n grid has a point in (i, j) iff there is an edge from node i to node
j. Insertions and deletions of edges correspond to insertions and deletions of points
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in the grid, and adjacency queries, queries for all the neighbors of a node, or all its
reverse neighbors, are translated to rectangle queries on the grid.

Corollary 8 An adaptive dynamic graph on n nodes, starting empty of edges, can
be maintained in (n + e log2 n)(1 + o(1)) bits of space, where e is the current num-
ber of edges, so that if the fraction of updates over total operations so far is 1/q,
then edges can be inserted and deleted, an adjacency can be queried, and the neigh-
bors and reverse neighbors of a node can be counted and each can be enumerated, in
O(log(e/q) log n/ log log e) amortized time.

Texts

Our final application of wavelet trees is to maintain a dynamic collection of text
documents, so that we can insert and delete whole documents, and search for patterns
on those [5, 12, 13]. The main data structure we maintain is the Burrows-Wheeler
Transform (BWT) [30] of the concatenation of the texts. The BWT is a permutation
of the symbols of the collection in an order that is suitable for compression and for
indexed searching [31]. The search for a short pattern P [1 . .m] is done in O(m log σ)
time, corresponding to O(m) operations on the wavelet tree of the BWT. After this
time, one can tell how many times P occurs in the collection, and then can output the
text position of each such occurrence in time O(l log σ), where l is a sampling step that
induces O((n/l) log n) extra bits of space, n being the total length of the document
collection. If the wavelet tree compresses the bitvectors with the technique we used in
Corollary 3 [17], then its total space is nHk + o(n log σ) bits for any k ≤ α logσ n and
constant α < 1, where Hk is the kth order empirical entropy of the collection [13].

The insertion of a new text T [1 . . n′] into the collection, or the deletion of T [1 . . n′]
from the collection, requires O(n′) queries and updates on the wavelet tree of the
BWT. In addition, dynamic arrays with fixed-cell width of O(n/l) entries must be
maintained. By using Corollaries 6 and 2, we obtain the following result.

Corollary 9 An adaptive dynamic text collection on alphabet [1 . . σ], starting empty,
can be maintained in nHk + o(n log σ) + O((n/l) log n) bits of space, where n is the
current size of the collection and l is a sampling step, so that if the fraction of updates
over total operations so far is 1/q, then the occurrences of a pattern P [1 . .m] can be
counted in time O(m log σ log(n/q)/ log log n), each of its occurrences can be located in
time O(l log σ log(n/q)/ log logn), and any text of length n′ can be inserted in or deleted
from the collection in O(n′ log σ log(n/q)/ log log n) time; all times are amortized.

Again, we note that a pattern search counts as O(m) queries, a locate as O(l)
queries, and an insertion/deletion of a document as O(n′) updates. This is a case
where updates are bursty, as we perform the O(n′) update operations together.

7.4 Trees

A simple representation of ordinal trees of n nodes, which fits particularly well with
our result, is LOUDS [32]. This representation consists of a bitvector B[1 . . 2n], which
is built by traversing the tree levelwise starting from the root, left to right on each
level, and at each node appending its “signature” 1c0 to B, where c is the number

20



of children of the node. Nodes are identified with the position where their signature
starts. Navigation of the static representation can be performed in constant time: the
number of children of node v is degree(v) = next0(B, v)−v, its ith child is child(v, i) =
select0(B, rank1(B, v − 1 + i)) + 1, its parent is parent(v) = 1 + prev0(B, j), where
j = select1(B, rank0(B, v − 1)), and the position of v among the children of its parent
is childrank(v) = j − parent(v) + 1. Here prev0 and next0 look for the closest preceding
or following 0; they can be implemented with rank and select or more directly.

A dynamic LOUDS representation uses a dynamic bitvector representation for
B. It can insert a new leaf child of v at position i with insert(B, v, 1) and then
insert(B, child(v, i), 0). Analogously, it can delete a leaf v by computing j as above and
then doing delete(B, v) and then delete(B, j). By using our adaptive dynamic bitvector
representation, we obtain the following result.

Corollary 10 An adaptive dynamic ordinal tree, starting empty, can be maintained
in 2n + o(n) bits of space, where n is the current number of tree nodes, so that if
the fraction of updates over total operations so far is 1/q, then all the LOUDS nav-
igation operations, as well as insertions and deletions of leaves, can be performed in
O(log(n/q)/ log log n) amortized time.

Cardinal trees

Unlike ordinal trees, cardinal trees have their children labeled in [1 . . σ], with at most
one child per label. An example are binary trees (with σ = 2). A LOUDS-like repre-
sentation of cardinal trees performs a levelwise traversal and writes a σ-bit signature,
with 1s at the positions for which children exist. Such LOUDS-based cardinal tree
representation uses σn bits, and it can be navigated with operations rank and select,
much as in the way we have described for standard LOUDS.

Inserting a leaf into such an ordinal tree requires setting to 1 the corresponding
position of the parent of the node, and then inserting a block of σ 0s at the corre-
sponding child position. Analogously, deleting a leaf requires removing the block of
σ 0s, and then setting to 0 its position in its parent. For these operations to work
smoothly in our scheme, it is best to consider B[1 . . σn] as an array A[1 . . n] of cells
of fixed length σ. This array must be enriched so that it carries out operations rank
and select over the underlying bitvector, so as to support navigation. It is not hard to
combine both functionalities to obtain the following result.

Corollary 11 An adaptive dynamic cardinal tree of constant arity σ, starting empty,
can be maintained in σn+ o(σn) bits of space, where n is the current number of tree
nodes, so that if the fraction of updates over total operations so far is 1/q, then all
the LOUDS-based navigation operations, as well as insertions and deletions of leaves,
can be performed in O(log(n/q)/ log log n) amortized time.

A particular kind of cardinal trees are the k2-trees [33], which are cardinal trees of
arity σ = k2 that represent the recursive partitioning of an ℓ× ℓ grid into k2 subgrids.
The maximum depth of a leaf in the k2-tree is ⌈logk ℓ⌉, so one does not indicate that
last-level nodes are leaves (thereby saving the storage of those k2 0s). If storing n
points, the most basic form of k2-trees requires at most k2n logk ℓ bits. The k2-tree
can determine whether a cell contains a point in time O(logk ℓ), and the dynamic
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variant needs O(logk ℓ) updates to the bitvector to add or remove points from the
grid, because it may have to insert or delete a full path of logk ℓ nodes.

These trees use less space when the grid is clustered, and have been successfully
used to represent web graphs, social networks, grids, and many other structures. Their
performance when implemented using Corollary 11 is as follows.

Corollary 12 An adaptive dynamic k2-tree on an ℓ × ℓ grid, starting empty, can be
maintained in k2n logk ℓ(1 + o(1)) bits of space, where n is the current number of
points in the grid, so that if the fraction of updates over total operations so far is
1/q, then accessing cells, as well as inserting and deleting points, can be performed in
O(logk n log(n/q)/ log log n) amortized time.

Parentheses

Another popular representation of ordinal trees uses a sequence of 2n balanced paren-
theses [34]. The sequence is built by traversing the tree in depth-first order, appending
a ‘(’ when first arriving at a node and a ‘)’ when finally leaving it. The sequence is
then regarded as a bitvector B[1 . . 2n]. A so-called fully-functional (static) represen-
tation [5] is built in linear time and supports a large number of operations in constant
time by navigating the parentheses sequence.

Such a representation is advantageous for dynamism: by inserting a couple of
matching parentheses at the correct positions, we can represent the insertion not only
of leaves, but of nodes in the middle of an edge, and in general of a node u that
becomes a child of a node v and replaces v’s ith to jth children, which now become
children of u [5]. Similarly, by deleting a pair of matching parentheses, we can remove
leaves and internal nodes u, leaving their current children as children of u’s parent.

The representation also offers a much richer set of navigation operations com-
pared to LOUDS: apart from the basic navigation queries supported by LOUDS, we
can determine the depth, subtree size, height, number of leaves, leaf range, pre and
postorder rank, iterated ancestors, and deepest descendant leaf of nodes, as well as
ancestorship and lowest common ancestors of node pairs, among others [5, Tab. I]. All
those operations are implemented on top of the concept of excess: the excess of a posi-
tion in the parentheses sequence is the number of opening minus closing parentheses
up to that point. As we identify nodes with the position of their opening parenthesis,
the excess is naturally the depth of the node. A few primitives are built on top of the
excess: forward/backward search, which given a position and a desired excess find the
closest following/preceding position in the sequence having that excess, the position
of the minumum/maximum excess in a range, and the number of times the minimum
excess occurs in a range.

A simple solution supporting those primitives is the range min-Max tree (rmM-
tree) [5], which cuts the bitvector into blocks and builds a perfect binary tree on top
of them, so that each rmM-tree node represents a range of the bitvector. Each such
node stores a few fields: total, minimum and maximum relative excess, and number
of excess minima in the bitvector range. Any query is then solved in O(log n) time by
partially scanning an initial and a final bitvector block, plus traversing an upward and
downward path of the rmM-tree. They [5] then show how to speed up all the times

22



to constant, by using multiary rmM-trees that handle polylogarithmic-sized chunks of
the bitvector and classic data structures that solve inter-chunk queries.

Dynamic versions of this structure [5, 35] identify the rmM-tree with a balanced
binary tree, whose leaves store the bitvector blocks. Parentheses insertions and dele-
tions easily adjust the fields stored at internal nodes as they return from the recursion.
Overall, they obtain O(log n) time for all the queries and node insertions/deletions.

It is also possible to obtain O(log n/ log log n) time for most queries and node
insertions/deletions, by using a multiary tree whose internal nodes store sequences
of values like those we store for rank and select, now specialized on the excess [5, 8].
Most of the operations require constant time per internal node traversed, yet some
require time O(log log n) and thus their total time is O(log n); this is the case of the
iterated ancestor. Further, in order to support updates in time O(log n/ log log n), the
operations degree, child, and childrank cannot be supported (note that child is not the
only operation that lets us traverse the tree downwards; we can use instead the more
basic operations that get the first/last child and the next/previous sibling of a node).

To use our adaptive dynamic bitvectors to store B, we aim to implement the opera-
tions in constant time on the static leaves. If we exclude the three operations mentioned
above—degree, child, and childrank—then it is possible to build the constant-time static
data structure [5] on static leaves (we return soon to these three operations).

Corollary 13 An adaptive dynamic fully-functional ordinal tree, starting empty, can
be maintained in 2n+ o(n) bits of space, where n is the current number of tree nodes,
so that if the fraction of updates over total operations so far is 1/q, then all the
operations [5, Tab. I] that take O(log n/ log log n) time in their “variant 1” can be
solved in O(log(n/q)/ log log n) amortized time, and those having O(log n) time can
be solved in O(log(n/q)) amortized time.

Supporting degree, child, and childrank requires more complex updates, which take
O(log log n) time per internal node, and O(log n) time overall. The same happens with
the complexity of the operations themselves. Further, the constant-time solution for
those three operations [5] assumes that the bitvector represents a valid tree. This is
not the case of our static leaves, which represent arbitrary ranges of the parentheses
sequence. To handle those operations, we also include on the static leaves a multiary
static rmM-tree that supports all the operations in time O(log log n) [5].

Corollary 14 An adaptive dynamic fully-functional ordinal tree, starting empty, can
be maintained in 2n+o(n) bits of space, where n is the current number of tree nodes, so
that if the fraction of updates over total operations so far is 1/q, then all the operations
[5, Tab. I] that have O(log n/ log log n) time in their “variant 2” can be solved in
O(log(n/q)/ log log n) amortized time, and those having O(log n) time can be solved in
O(log(n/q)) amortized time, with the exception of degree, child, and childrank, which
take O(log(n/q) + log log n) amortized time.

A way to obtain O(log(n/q)/ log log n) time for those three operations is to use
parentheses to encode instead the DFUDS representation of the ordinal tree [36]. In
this representation, we traverse the tree in depth-first order and append to B the
LOUDS signature of each visited node (precisely, c ‘(’s and 1 ‘)’ if the node has c
children). The sequence turns out to be balanced if we prepend a ‘(’ to it, and the same
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primitives we have discussed can be used to implement most operations, excluding
the node depth and height, the deepest descendant leaf, postorder numbering, and
iterated ancestors of a node. Another limitation is that we can insert and delete nodes
of constant arity, as we must insert/delete c+1 contiguous parentheses to insert/delete
a node with c children.

In exchange, operations degree, child, and childrank are supported using the most
basic primitives, which run in constant time on internal nodes and static leaves, and
hence take O(log(n/q)/ log log n) amortized time on adaptive dynamic bitvectors.

Lower bounds

Chan et al. [8, Thm. 5.2] showed that rank, select, insert, and delete on bitvectors
B[1 . . n] can be reduced to the most basic problems of maintaining a sequence of
balanced parentheses, namely inserting and deleting pairs of matching parentheses
and solving two queries:

match(B, i), the position of the parenthesis matching that in B[i].
enclose(B, i), the position of the opening parenthesis that most tightly encloses B[i].

The reduction creates a parenthesis sequence P from B as follows: it scans B left
to right, and for each B[i] = 1, it appends ‘((’ to P ; if B[i] = 0 it appends “()”. After
scanning B, it appends r = rank1(B,n) copies of ‘))’ to P so as to make it balanced.
The sequence length is then m = 2n+ 2r ≤ 4n. It is then easy to see that:

• rank1(B, i) = (m−match(P, enclose(P, 2i+ 1)) + 1)/2;
• select1(B, j) = match(P,m− 2j + 1)/2.

An update insert(B, i) or delete(B, i) reduces to inserting or deleting two paren-
theses at P [2i− 1] and at the end of P . By the lower bound of Fredman and Saks [4],
this shows that we need Ω(log n/ log log n) time to support insertions and deletions of
parentheses plus match and enclose. Per our comments after Theorem 2, just support-
ing updates and select requires time Ω(log n/ log log n), and therefore any sequence
of operations consisting of parenthesis insertions and deletions, plus match queries,
requires time Ω(log n/ log log n). Operation match is the most basic one required to
support almost every operation on parentheses-based tree representations.

Another basic query on parentheses is to compute the excess at some position
of P . We can reduce rank to it, because excess(B, i) = rank1(B, i) − rank0(B, i) =
2 · rank1(B, i)− i, thus rank1(B, i) = (excess(B, i) + i)/2.

Because bit updates and queries reduce to a constant number of parentheses
updates and queries, we have the following result.

Corollary 15 Consider the problem of maintaining a sequence of balanced parenthe-
ses under the operations of inserting and deleting a matching pair, and either queries
match or excess. In the cell probe model, with computer words of size w = log n, some
of those operations on n parentheses, where the fraction of updates is 1/q, must require
Ω(log(n/q)/ log log n) time in the worst case.
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8 Conclusions and Future Work

We have shown how to store a dynamic bitvector B[1 . . n] within (the asymptot-
ically optimal) n + o(n) bits of space so that updates and queries can be solved
in O(log(n/q)/ log log n) amortized time if queries are q times more frequent than
updates. We have discussed applications of our result to a number of dynamic compact
data structures.

We have proved that the above time is optimal in the worst case, so our amortized
time is not optimal. For example, if we could know q in advance (which our structure
does not need) we could use the structure of Hon et al. [7] with parameter b = q.
Queries then need O(logb n) = O(logq n) time, and updates need time O(q), but since
their relative frequency is 1/q, their amortized time is constant.

A first challenge for future work is to deamortize the times of our data structure, so
as to make it optimal. We believe, however, that retaining our times for every operation
over adversarial sequences will need other techniques, more than just deamortizing
the costs of flattening and splitting.

A practical version of our ideas has been implemented using weight-balanced binary
trees, which obtains O(log(n/q)) amortized times [37]. Their experiments show that
the ideas are practical and sharply outperform non-adaptive implementations for large
enough q. They also suggest that a multi-ary tree would be more resistant to the growth
of n. While implementing a practical multi-ary version is a challenge we are pursuing,
another line of work [35] is to consider the use of splay trees instead of our binary trees,
which should favor cases where certain areas of the bitvector are frequently accessed.
Our amortized analysis should then be combined with that of splay trees in order
to ensure O(log(n/q)) amortized time, while at the same time enjoying some of the
(proven or conjectured) properties of splay trees [38]. We note that such properties
would not hold for individual bitvector positions, as they are packed in leaves of up
to b elements, but they could hold for sufficiently coarse bitvector areas.

Finally, in terms of functionality, we have not considered the problem of cutting and
concatenating bitvectors. This has been solved in time O(log1+ϵ n) for any constant
ϵ > 0 [5]. It is easy to implement them via flattening, but obtaining (poly)logarithmic
amortized times that are also adaptive to q is a challenge for future work.
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[13] Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3), 32 (2008)

[14] Blandford, D., Blelloch, G.: Compact representations of ordered sets. In: Proc.

26



15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 11–19
(2004)

[15] Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in O(log n) time. Journal of Computer and Systems Sciences 33(1), 66–74 (1986)

[16] Golynski, A.: Optimal lower bounds for rank and select indexes. In: Proc. 33rd
International Colloquium on Automata, Languages and Programming (ICALP),
pp. 370–381 (2006)

[17] Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), 43 (2007)

[18] Miltersen, P.B.: Cell probe complexity – a survey. Downloaded from
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/cellprobesurvey.pdf

(2000)

[19] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Germany
(2006)

[20] Solomon, D.: Variable-Length Codes for Data Compression. Springer, Germany
(2007)

[21] Elias, P.: Efficient storage and retrieval by content and address of static files.
Journal of the ACM 21, 246–260 (1974)

[22] Fano, R.: On the number of bits required to implement an associative memory.
Memo 61, Computer Structures Group, Project MAC, Massachusetts (1971)

[23] Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dic-
tionary. In: Proc. 9th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 60–70 (2007)

[24] Gupta, A., Hon, W.-K., Shah, R., Vitter, J.S.: Compressed data structures:
Dictionaries and data-aware measures. Theoretical Computer Science 387(3),
313–331 (2007)
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