A Language for Queries
on Structure and Contents

of Textual Databases

by
Gonzalo Navarro

A thesis
presented to the University of Chile
in fulfilment of the

thesis requirement for the degree of
Masters in Computer Science

Advisor: Ricardo Baeza-Yates

Evaluation Commitee: Jorge Olivos
Patricio Poblete

Nivio Ziviani

SANTIAGO - CHILE
April , 1995

A Betina,

sin quien nada tendria sentido.

Abstract

This thesis focuses on the problem of finding a suitable query language for hierarchically structured textual
databases.

The problem about current approaches is that there is no consensus on how the structuring model and the
query language should be, and that they focus strongly either on expressivity or on efficiency issues, but not
on both at the same time. The approaches which are strong in one point are weak in the other. Moreover,
there 1s no formal and complete foundation to analyze the expressivity of these languages.

The goal of this thesis is to find a structural model and a query language that is expressive and efficiently
implementable, achieving a good compromise between the two extremes.

In order to achieve this goal, a number of steps have been carried out. In the first place, a comprehensive study
and evaluation of previous work on the field has been done. Then, a structuring model and query language
with the desired characteristics has been defined. Its expressivity has been compared against similar models,
formally and practically. An informal framework to compare the expressivity of similar models has been
defined. Then, we focused on implementation. Algorithms have been defined and their worst-case space
and time complexity analyzed for all operations, in many different versions for implementing indices and
operations. Finally, a real prototype has been developed implementing the proposed model, to evaluate
heuristics and draw average running times.

This work leads to the conclusion that a set-oriented query language based on operations on nearby structure
elements of one or more hierarchies is quite expressive and efficiently implementable. It also gives an idea of
up to where the expressivity can be enriched without degrading the performance. Finally, it suggests some
research directions.

This work makes a step in the direction of obtaining a unifying perspective on how a query language for
textual databases should be, what expressive power should it have and how well can it be implemented. All
this is necessary to put the emerging area of textual databases in the place it deserves in Computer Science.

Acknowledgments

Not only this work, but the whole way of life that has became a reality for me in the last year, would have
been impossible without the sincere and disinterested friendship and support received from a number of
people. T am indebted to all of them.

First of all, my wife Betina, that left all to follow me in this adventure. Without she, my life would be by
far less interesting to live.

Then I should mention Jorge Olivos, who knew me at ESLAI, and has been pushing me since then to leave
my job and come to Chile, to enjoy serious research. He also made the first steps in giving me an opportunity
to come, and has been always ready to bring me his friendship and help.

A special note for Ricardo Baeza, who not only trusted me from the first time, has been an excellent advisor,
gave me the main financial support, and helped me in every imaginable way, but has been also a constant
friend and guide in this new life.

I want also to acknowledge Patricio Poblete, for his financial support (without even knowing me), his friend-
ship and the stimulating lectures and joint work I enjoyed with him.

I would also like to mention a number of friends who made my life more enjoyable here: Rodrigo, Nancy,
Gaston, Eduardo, Marcelo, Christian... and also my old friends, that are still with me by e-mail and with
who I have enjoyed a lot: Sergio, Pablo, Hernan, Andrés, Mariano... and to my family, who is always proud
of me, even when I do nothing remarkable.

My gratitude to my thesis committee, who read the whole thesis and made a number of useful comments
that bettered the work in many ways: Jorge Olivos (again), Patricio Poblete (again) and Nivio Ziviani.

Finally, I want to acknowledge the Postgraduate School, for allowing me to use English for this thesis, and
see how this experiment works.

Last but not least, FONDECY'T grants 1940271, 1930765 and 1950622, which partially supported this work,
are gratefully acknowledged.

Contents

1 Introduction
2 Related Work
2.1 Traditional Approaches
2.2 Novel Approaches e
2.2.1 A Simple Model: Flat Structure + Full Text Retrieval
2.2.2 A Model of Structuring Based on Matcheso
2.2.3 A Model Based on Overlapped Lists,
2.2.4 A Model Based on Lists of References
2.2.5 A Model Based on Manipulating Parsed Strings
2.2.6 A Query Language Based on Tree Matching
2.3 A Formal Study on Expressivity
3 A New Model for Querying Structured Text
3.1 Main Concepts e
3.2 Data Model
3.3 Query Language e
3.3.1 Operations
3.3.2 Examples L
3.4 A Software Architecture L
4 Expressivity
4.1 Formal Model
4.2 Comparison with Similar Models
4.2.1 The Hybrid Model e
4.2.2 PAT EXPressions v v i vt e e e e e e e
4.2.3 The Overlapped Lists Model
4.2.4 The Lists-of-References Model oo
4.2.5 The Tree Matching Model L
4.3 A Comparison Framework
4.3.1 A Methodology to Analyze a Language
4.3.2 A Brief Analysis

0 =~ = O O Ot Ot o w W

o]

11
12
13
17
18

4.3.3 Common Limits

5 Algorithms and Associated Data Structures

5.1 Indexing oL
51.1 A Fulllndex
5.1.2 A Partial Index
5.1.3 Analysis of Indexing

5.2 Querying e
5.2.1 Full Evaluation

5.2.1.1 Data Structures
5.2.1.2 Generating a Query Plan 0o 0
5.2.1.3 Description of the Algorithms 0.
5.2.2 Lazy Evaluation
5.2.2.1 Mechanism of Expansion 0
5.2.2.2 Implementation Considerations
5.2.2.3 Description of the Algorithms 00
5.2.3 Analysis Summary L.
5.2.4 Space for Queries
5.2.5 Running Time of Operations 0o

6 A Prototype

6.1 TImplementation
6.2 Experiments
6.2.1 Motivation
6.2.2 Tests e e
6.2.3 Results

7 Conclusions and Future Work

7.1 Summary e

7.2 Conclusions e e

7.3 Future Work e

7.4 Open Problems
Bibliography

A Formal Syntax and Semantics

B Translation Formulas
B.1 Hybrid Model e
B.2 PAT EXpPressions 0 v i it e e e
B.3 Overlapped Lists
B.4 Lists of Referenceso

32
32
33
36
38
39
39
39
40
41
69
69
70
70
79
79
80

82
82
86
86
86
88

90
90
90
91
92

94

B.5 Tree Matching

C Experimental Results

C.1 An Operator-Wise Test
C.2 A Test for Lazy vs Merge Algorithms. . .

C.3 A Test for Binary vs Interpolation Search

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4

7.1

Initial diagram of the model oL o 10
Operations of our language L L 13
Mlustration of a query L 18
System architecture: querying L. 19
System architecture: indexing L 20
Expressive features of similar models 00000 29
Graphical representation of expressive power 30
View index tree 33
View in array form and schema of an indexnode L. 34
Reindexing overhead 35
Partial index L 37
Tree representation of a query L 39
Artificial nodes Lo 44
Prototype architecture: querying 83
Prototype architecture: indexing 84
Experimental results: flat operandso 87
Experimental results: deep operandso 88

Efficiency vs Expressivity 91

List of Tables

4.1 A comparison of the operators of the novel models. 26
4.2 An analysis of similar models. 28
5.1 Complexity results for all versions of the operations 81

C Experimental results (16 tables) L 109

Chapter 1

Introduction

Textual databases are deserving more and more attention, due to their multiple applications: libraries, office
automation, software engineering, automated dictionaries and encyclopedias, and in general any problem
based on keeping and retrieving textual information [FBY92, chapter 1].

The purpose of a textual database is to store textual documents, structured or not. A textual database is
composed by two parts: contents and structure (if present). The content is the text itself, while the structure
relates different parts of the database by some criterion.

The purpose of any system related to information retrieval is to help the users of a database to find what they
need. Textual database are not as relational databases [Dat95], in which the information is already formatted
and meant to be retrieved by a “key”. The information is there, but there is no easy way to extract it. The
user must specify what he/she wants, see the results, then reformulate the query, and so on, until is satisfied
with the answer. Anything we can do to help users to find what they want is worth considering.

Traditionally, textual databases have allowed to search their contents (words, phrases, etc.) or their structure
(e.g. by looking at a table of contents), but not both at the same time.

An interesting fact is that human beings have “visual memory”, e.g. they may remember that what they
want was typed in talics, short before a figure that said something about “earth”. Searching for the word
“earth” may not be a good idea, as well as searching all figures or all the text in italics. What really would
help to exploit visual memory would be a language in which we can say “I want a text on italics, near a
figure containing the word ‘earth’ 7. This query mixes content and structure of the database.

Mixing contents and structure in queries allows us to pose very powerful queries, being much more expressive
than each mechanism by itself. By using a query language that integrates both types of queries, we can
potentiate the retrieval quality of textual databases.

This way, we have that the information model of textual databases comprises both content and structure,
and that we want to be able to query both aspects of the database. However, both aspects present their own
special features.

On one hand, the “contents” of the database is not formatted, but appears in natural language form. This
means that no traditional methodology relying on formatted data (e.g. the relational model) is suitable for
extracting the desired information; and that no methodology assuming uninterpreted data objects and relying
only on their (formatted) attributes (e.g. multimedia databases [BRG88]) is powerful enough to express the
rich information model represented by text. The required information has to be extracted from the text, but
not in a rigid way (see also [SDAMZ94]).

On the other hand, there is no consensus on how the structuring model of a database should be. There are a
number of possible models, ranging from no structuring at all to complex interrelation networks. Deciding to
use a structuring model involves choosing also what kind of queries about the structure can be done. There
is a tradeoff between providing a powerful structuring model and implementing it efficiently.

Any information model for a text database should comprise three parts: text, structure, and query language.

It must specify how is the text seen (i.e. character set, synonyms, stopwords, hidden portions, etc.), the
structuring mechanism (i.e. markup, index structure, type of structuring, etc.), and the query language (i.e.
what things can be asked, what the answers are, etc.).

The aim of this work is to present a model to structure and query textual databases, which is expressive and
efficiently implementable. There is not at this time, to the best of our knowledge, any approach satisfying both
goals. In order to compare expressivity, it is necessary to draw a framework in which to situate all approaches,
which does not exist yet. In order to compare efficiency, it is necessary to describe the algorithms to build
the indices and to process queries, to analyze their worst-case behavior in terms of space and time, and to
draw experimental results from an implementation of the model.

The query language we present is not necessarily intended for final users, rather it is an operational algebra
onto which one can map a more user-oriented query language.

This thesis is organized as follows. In Chapter 2, related work is reviewed. In Chapter 3, our model is
informally presented, in terms of the data model and the operations allowed for queries. In Chapter 4, we
analyze the expressivity obtained by the defined operators: we define the operations formally, compare this
model against each similar model we reviewed, and draw a framework on expressivity to situate similar
models. In Chapter 5, we outline algorithms and data structures to efficiently implement this model, and
analyze its worst-case behavior in terms of time and space. In Chapter 6, a real implementation is presented,
which is used to draw real numbers on average times to solve sample queries; and to evaluate heuristics.
Finally, in Chapter 7, our conclusions and future work directions are outlined.

Chapter 2

Related Work

In this chapter we cover previous approaches to the problem of querying a textual database. We first review
the traditional ones, and then cover more in depth novel ideas.

2.1

Traditional Approaches

This chapter presents briefly the classical approaches. In these, no consensus on the structuring model exists,
and the querying on contents is divorced from the querying on structure.

The Relational Model: The relational model [Dat95] expresses the relationships present in a database by

a fixed structure of tables, in which the data is organized. By developing an efficient and versatile set
of operators to manipulate those tables, this model has successfully been applied to a wide range of
information management problems.

However, this model is not suitable for expressing the fuzzy, complex and highly variable structuring
present in a textual database [GT87, KM93] (e.g. a concept as basic in a hierarchical structure as
ancestorship involves transitive closure, which the relational model cannot express), not to mention the
extraction of information from contents, which lies completely outside the scope of this information
model. Some proposals for integrating the relational model with a textual query language can be found

in [SSL*83, DGS86).

The Traditional IR Model: The traditional IR (Information Retrieval) model [SM83, Sal86, SM89] was

the first in recognizing the particular information requirements posed by textual databases, and the
need to create a model oriented to text. In this model, a database is organized as a set of documents,
which are assigned keywords, that is, words or phrases meant to describe the semantic contents of
the document. Queries are in terms of those keywords, and by examining the correlation between the
words of the query and the keywords of the document, the relevance of the document for that query is
established. Therefore, the answer to the query consists of a sequence of documents (ranked according
to the computed relevance). There are many variations on this topic, for example relevance ranking,
the boolean model, the probabilistic model, the vector model, etc. [FBY92, chapters 11, 12, 14 and 15].

Along with queries about keywords, we can also query on contents. The only structure allowed on
contents consists of non-nested, non-overlapped “fields”, regions which cover the whole document.
Those fields can only be used to restrict the areas in which match points are to be found. The problem
with this approach is that the fine structure of documents is lost, since they are seen as “black boxes”
whose only description are their keywords, their (restricted) fields and their content. This approach is
acceptable in multimedia databases [BR(G88], in which objects as audio segments, video clips or images
are assigned descriptors, to which the query can refer; but the text has a much richer structure, which
with this approach is lost.

The Full Text Model: Another approach consists of querying only by contents, in which a query is a
pattern, which is searched in the whole database, answering with the documents and the text positions
in which the pattern matches the text [FBY92, chapter 10] and [BY94]. This search may not use any
additional index, in which case the search has to traverse the whole text database; or it may use some
kind of index (e.g. inverted files [FBY92, chapter 3], signature files [FBY92, chapter 4], etc.). If the
database 1s large, the last option is the only acceptable. A novel index is the “suffix array” or “PAT
array”, which allows, among other things, to find any prefix in a time which is logarithmic on the size
of the database [FBY92, chapter 5] and [MM90]. The problem with this search by contents is that it
is not possible to query on the structure of documents. Most commercially available products combine
full text retrieval with the TR model.

Hypertext: In hypertext [Con87], the database is organized as a graph where nodes are small portions of
the database, and edges connect nodes which are related by some design criterion. In this case, the
idea is not to use querying but a navigational mechanism across the database, with some association
semantics. Edges may not only express associations by semantic similarity, but also the structure of the
text, cross references, etc. Hypertexts model query by structure well, but not by contents; moreover,
not always a navigational approach is acceptable. Recently, some models combining a semantic network
[HK87] with structured text have appeared [TSM91], resulting in a hypertext with some facilities to
query on the text and its structure.

Related to this we can mention also graph query languages [CM93] and object-oriented databases
[KL89]. Some attempts have been made to integrate structured text searching into object-oriented
databases (e.g. [CACS94]), which generally result in expressing the structure as a (hierarchical) network,
linked by part-of attributes. Queries are expressed as path expressions in the general language of the
database. This approach, although powerful, results in inefficiencies generated by not fully considering
the semantics of inclusion (see [CM94] for an excellent discussion on this problem).

Although these models are not powerful enough to extract the information we want from textual databases,
they address different problems that pure textual database models oriented to structure do not address in
general (e.g. tuples and joins, attributes, etc.). We do not compare our model to these, because they address
different goals.

In [SDAMZ94] it is argued that is better to put a layer integrating a traditional database system with a
textual one, than trying to design a language comprising all the features. For example, in [CM94] it is
shown that structure-related queries are handled better by a query engine that knows about the semantics
of hierarchies than by a general-purpose object-oriented database language.

We rely on this approach. We design a language which is focused on exploiting the structure- and text-related
features. Other features, such as tuples and joins, should be added by integrating this language with another
one oriented to that kind of operations, e.g. a relational database.

On the other hand, we do not address the issue of merging structural queries with those involving operations
such as relevance ranking (e.g. the sections or titles where the word “computer” is relevant). See [SDAMZ94]
for some ideas on this subject.

2.2 Novel Approaches

These approaches are characterized by two important facts.

First, the structure of documents is assumed to be more or less hierarchical; this in part imposes a minimum
level of structuring power to a model to be considered acceptable (e.g. the traditional IR model would not
qualify), and in part restricts the number of alternatives, by avoiding extremely powerful approaches, as it
would be the hypertext model. This restriction seems reasonable, since up to now even this simpler problem
has not been solved satisfactorily.

Second, the query language is required to integrate in a uniform syntax the queries on contents and on
structure. The structure of text must be stored in some way, for example by marks embedded in the same

text (SGML, for example [ISO86, Gol90, RTW93]), or by keeping auxiliary indices.

We present a sample of novel models, which cover the different approaches to solve this problem under the
stated conditions. See [Loe94] for another survey.

2.2.1 A Simple Model: Flat Structure + Full Text Retrieval

Perhaps one of the simplest approaches is [BY94], which has been partially implemented in SearchCity [Ars92].
The idea is to have a database composed of a set of documents (or files, if no structure is defined), which may
have fields. Those fields need not cover all the text of the document, and can nest and overlap. The subject of
how to parse a document to get the index points is also considered. Finally, the query language is an algebra
over pairs (D, M), where D is a set of documents and M is a set of match points in those documents. There
is a number of operations for obtaining match points: prefix search, proximity, etc. There are operations for
union, intersection, difference and complement of both documents and match points; for restricting matches
to only some fields, and to retrieve fields owning some match point. Since it is not possible to determine
whether a field is included in another (except under certain assumptions on the hierarchy), and it is not
possible to make certain compositions of expressions involving fields, we say that this model is “flat”. We
present more details on this language later, when we compare expressivity.

This model is more expressive than traditional ones, mixing the best of document retrieval [SM83] and full text
retrieval. Although we are not interested in how the indexing is performed nor on the matching sublanguage,
the model makes a first incursion on the problem of mixing queries on structure and contents; we take only
this aspect into account to situate it in the framework of expressivity. This model can be implemented very
efficiently.

2.2.2 A Model of Structuring Based on Matches

Another approach is PAT expressions [ST92], a model that has been implemented in the PAT Text Searching
System [Faw89]. Again, there is a lot of concern on the mechanism to index the database, which we are
ignoring here. The only index is on match points, there is no indexing on structure. For this purpose,
the language allows dynamic definition of structures, based on match point expressions for the beginning
and end of regions. It also allows to use externally computed regions. Although the dynamic definition
approach is flexible, it relies on specific markup requirements: it must be possible to express regions by
simple expressions on match points. For example, it does not allow to recognize the structure of “C” code.
This idea has been applied successfully to the computerization of the Oxford English Dictionary (the OED
project [BGTI1, Gon87]), because it uses an SGML-like markup. Tt is difficult to imagine other type of
structuring where this approach works.

Structures can have substructures; this fact is not explicit, but derived from the inclusion relationship between
regions. By the form of definition of structures, it follows that recursive structures are not allowed, each
structure owns a set of non-overlapping areas of the text.

Although it 1s not supposed to depend on the underlying implementation of the index, the operations defined
on the text are oriented to the use of a PAT array. Indeed, some operations are included mainly because
they are easy to implement with a PAT array, although, as it is pointed out in [ST92], they are rarely used
and difficult to grasp and even to specify (e.g. lrep).

Another characteristic of this language is that it mixes the concept of match point with the concept of region.
This distinction is perhaps inherited from the way the PAT array works, and causes a lot of troubles and lack
of orthogonality and compositionality in the language, as is pointed out in [ST92] (e.g. signif). Sometimes,
it 1s even impossible to determine statically whether the result of an expression is of type “matches” or of
type “regions” (e.g. the +,— and £by operators).

Despite these drawbacks, the model is a good example of structuring documents and querying them by mixing
contents and structure. What is most important, since all operations are based on the PAT array, they are
extremely fast. Operations on areas are also fast, thanks to the restrictions imposed on structures: non-
overlapping and non-recursive. Finally, the space requirement is low if the structure is dynamically extracted

from match expressions on the text. Thus, it achieves high efficiency at the cost of some restrictions, which
for some applications are reasonable. This 1s an example for a model based on a pre-defined index on the
text.

2.2.3 A Model Based on Overlapped Lists

Another approach quite similar to PAT expressions but less powerful is [Bur92a, Bur92b], which also has flat
lists of disjoint segments, originated by textual searches or by “regions” like chapters, for example. The idea
is to unify both searches by using an extension of inverted lists [FBY92, chapter 3], where areas are indexed
the same way as words are. The operations are simple: select regions containing or not containing other
regions; select regions contained or not contained in other regions; select a given region or a given word; and
other operations more close to traditional IR (e.g. relevance ranking).

A recent work extending this idea is [CCB95a, CCB95b], which enhances the algebra with overlapping
capabilities, some new operators and a framework for an implementation.

The new operators are: union (one-of), followed-by, both-of and n-words. In fact, both-of is just a symmetric
followed-by (i.e. (A followed-byB) 4 (B followed-by A)). n-words returns all (overlapping) segments containing
n words.

An interesting feature of followed-by is that it selects the whole segment between the matched operands, not
one of them. Another interesting feature is that, although the model does not allow inclusion between regions
of the same kind, it allows overlaps. This i1s obtained for example by the definition of both-of, since in case of
a text of the form “aba”, the query (“a” both-of “b”) returns two overlapping segments: “ab” and “ba”. Tt is
not clear whether this feature is good or not to capture the structural properties that structured information
has in practice.

The implementation relies in four primitives, that are used to iterate on the operands to produce the result.
Since both the operands and the result are flat lists, the implementation can be very efficient.

2.2.4 A Model Based on Lists of References

In [Mac91, Mac90], a model is proposed to uniform definition and querying of structured databases, by means
of a common language. It is strongly based on SGML [ISO86], although not dependent on it.

The language is somewhat outside the scope that we have proposed for similar models; since it does not only
include data definition features, but also hypertext-like linkages and some operations closer to object-oriented
databases (by means of allowing nodes to have attributes that can also be queried). Tt is also possible to
incorporate “external procedures” to the query language, much as in object-oriented databases.

Although the structure of documents can be hierarchical (with only one strict hierarchy), answers to queries
are flat (only the top-level elements qualify), and all elements must be from the same type (e.g. only sections,
or only paragraphs).

Answers to queries are seen as lists of references. This allows to integrate in an elegant way answers to queries
to hypertext links, since all are seen as lists of references. The model has also some navigational features
that allow traversing those lists of references.

The structuring mechanism is also complex, since some storage organization facts are expressed as structure.
The top-level of the hierarchy has archives, which comprise a set of groups. FEach group have a set of
documents, references and more groups. Each document has a hierarchy of elements. The references can
be retrieved and treated the same way as the result of a query (which is in fact a list of re ferences).

This model is very powerful, and because of this; has efficiency problems in its implementation [Mac91]. To
make the model suitable for our comparisons, we consider only the portion related to querying structures.
Even this portion is quite powerful. A related, although more navigational model is presented in [DWL92].

2.2.5 A Model Based on Manipulating Parsed Strings

This approach has also been used for the OED project [BGT91], but in different problems [GT87]. Those
problems are related to transforming a database, or to generating new views by means of processing the data
and structure. Tt has been successfully applied to the Short OED (SOED) project [BBT92], for example, in
which the goal is to extract a shorter version from the original dictionary.

Since it has to be a data manipulation language rather than a plain query language, the approach is quite
different. The language used to express database schemas is a grammar (regular, context-free or context-
sensitive), that is, the database is structured by giving a grammar to parse its text. The fundamental data
structure is the p-string, or parsed string, which is composed of a derivation tree plus the underlying text
(only context-free grammars are considered). The parsing process implicitly comprises the work of pattern-
matching, since there are no further operations to express text matching. The language also relies on the
facilities of its host language, Godel, based on Maple [CGGT88].

There are a number of powerful operations that can be performed to manipulate parsed strings: they can be
reparsed by another grammar, some nonterminals can be hidden, etc. Since those operations are the usual
ones, we can infer that reindexing, if done, must be carried out very efficiently. With those operators, the job
of taking into account all the complex variations that appear in the structure of the dictionary is simplified,
although not eliminated. There are also querying operations. The approach is extremely powerful, and it is
shown to be relationally complete.

The problem is efficiency. Being such a dynamic approach, it is hard to implement it efficiently. Some
considerations are made about efficiency, but there are no good solutions yet. In [BBT92], we can see that
that operations are really slow, although this was not a concern for the SOED project.

A formalization of a data manipulation model based on grammars, quite similar to this approach, can be

found in [GPG89).

2.2.6 A Query Language Based on Tree Matching

In [Kil92, KM93] a model relying on a single primitive, tree inclusion, is proposed. The idea of tree inclusion
is, seeing both the structure of the database and the query (a pattern on structure) as trees, to find an
embedding of the pattern into the database which respects the hierarchical relationships between nodes
of the pattern. The approach is not meant to be comprehensive in expressivity, but to deeply study the
properties of that primitive.

The main idea of tree inclusion is that it is a way to query on structural properties in which the user does
not need to be aware of all the details of the structure, but only on what he/she is interested. This stands
for data independence.

Simple queries return the roots of the matches, and the language is enriched by Prolog-like variables, which
can be used to express requirements on equality between parts of the matched substructure, and to retrieve
another part of the match, not only the root.

Although the language 1s set-oriented, the algorithms work by sequentially obtaining each match. The use of
logical variables makes the problem intractable (NP-hard in many cases), and even without them, unordered
tree inclusion is NP-complete. Ordered tree inclusion of a pattern P into a textual database T takes O(|P||T),
and O(|T) if the structure is not recursive (i.e. no node can be the ancestor of an equally labeled node). See
[Kil92, KM92, KM95] for this study of complexity.

Finally, the paper suggests that since the leaves of the pattern can be text matching expressions, a good
query plan consists of first searching for those text matches, and then trying to match the pattern only on
those positions, this way using a bottom-up heuristic rather than a top-down approach. We pursue that idea
much further to achieve practical solutions to the problem.

2.3 A Formal Study on Expressivity

In [CM95], a simplification of PAT expressions [ST92] is used to formally analyze its expressive power. It uses
a single hierarchy and a set-oriented query language, with set operators for union, intersection and difference,
operators to select elements including or included in others, and operators to select elements before or after
others.

The paper relates this algebra with monadic tree theory, which provides an alternative point of view on
the expressive power of the language. Tt is found that it is not possible to express direct ancestorship (i.e.
ancestorship without intermediate nodes) nor both-included in the algebra. both-included is a ternary operator
defined as follows: both-included(A, B, C') iff there is a node A ancestor of nodes B and C such that B is
before C'. Another restriction of the algebra is that it cannot join on contents, e.g. select chapters whose
title appears in a given list of titles (which is also in the text).

The paper shows that by extending the language to manipulate tuples (e.g. it currently can select A nodes
including a B node or B nodes included in an A node, but not pairs (A, B) such that A includes B), and
allowing joins by identical nodes, the algebra can express direct ancestorship and both-included, and suggests
that n-included cannot be solved with a 1-tuple algebra (since the demonstration that shows the inability
to express both-included(A, B, C) can be extended to show the inability of this operator to express three-
included(A, B,C, D), and so on). On the other hand, it shows that allowing joins by text contents make
optimization problems much harder.

Observe that the language of [CCB95a] is a 1-tuple algebra and allows to solve the n-included problem.
n-included(c,ay, ..., ay) is equivalent to ¢ including (...(ay followed-by as)... followed-by a,). This is because
the followed-by operator does not return elements from its operands, but create new segments that includes
pairs of elements from its operands. This is a way to “codify” a tuple, but it cannot be used beyond the
scope of flat hierarchies, since it would produce overlapping elements. In fact, we will show that our model
does not solve the general n-included problem, and however includes this feature of [CCB95a].

Returning to [CM95], this paper (and a related one, [CM94]), focuses also on optimization problems. Tt
defines a Region Inclusion Graph, where the nodes are the different labels of the nodes of the hierarchy and
the edges represent the possibility of direct ancestorship between nodes labeled that way. It also defines a
Region Ordering Graph, representing the possibility of nodes appearing in a given order. Both graphs are
used to detect redundant work in the query plans. A study on the complexity of optimization algorithms is
also presented.

[CM94] also integrates the presented textual database engine with a classical database, by seeing the textual
database as a classical one and translating the classical query operations into the language of the underlying
text engine, and applying the optimization techniques. Some operations are much more efficient implemented
this way.

Chapter 3

A New Model for Querying
Structured Text

In this chapter we present our model. A model must include both the type of structuring allowed for
the database, and the language to query on that structure and on the contents. We first point out some
considerations about the problem, and then present our model.

e There are different ways to express structure, e.g. SGML markup, grammars for parsing, etc.

e There may be parts (or the whole) of the text with no structure, e.g. a highly structured form may
have a place for free annotations, which has no internal structure.

e We are focusing on hierarchical structures, e.g. a book has an introduction and a set of chapters, which
may have sections, subsections; etc. which are composed from paragraphs.

e We do not restrict ourselves to strictly hierarchical structures, e.g. the same book may also have
volumes, pages and lines, which overlap with the previous structure.

e It is not normally possible to impose a priori limits on the complexity of the structure, since it may be
recursive, e.g. the structure of “C” code has no limits on nesting.

e The structure may be coarse- or fine-grained, depending on the problem, e.g. a book vs “C” code.

e It is not possible to establish general criteria for the distribution or shape of structures, e.g. declarations
on “C” code are concentrated on the beginning, most formulas may be in a single chapter of a book,
etc. This means that a meaningful study on the average running times of our algorithms is not possible
in general.

All these facts need to be taken into account at the time of designing a structuring model. We present now
an informal description of our model, to enhance intuitiveness. We formalize these notions in a later chapter.

3.1 Main Concepts

In this section we expose our general ideas on how a structuring model and a query language can be defined
to achieve the goals of efficiency and expressivity simultaneously. Later, we draw the model following these
lines.

Our main goal is to define powerful operations that allow matching on the structure of the database, but
avoiding algorithms that match “all-against-all” (e.g. [KM92]), searching what we want across the whole tree
of the structure.

Since we want to define a fully compositional query language, we can consider query expressions as syntax
trees, where the nodes represent operations to perform and the subtrees their operands.

A first point is that we want a set-oriented language, because they have been found successful in other areas
(such as the relational model), and because if we have to extract the whole set of answers, it is possible to
find algorithms that retrieve the elements at a very low cost per element.

To obtain the set of answers we want to avoid a “top-down” approach, where the answers are searched in the
whole tree. We rather prefer a “bottom-up” strategy. The idea is that we should be able to quickly find a
small set of candidates for our answers, and then delete those not meeting the search criterion.

Our solution is a language oriented to sets of nodes. That means that the operations take sets of nodes and
return a set of nodes. These sets of nodes are subsets of the set of all nodes of the tree of the database. The
only place in which we pose a text matching query or name a structural component should be at the leaves
of the syntax tree of queries. These leaves must be solved with some sort of index, and converted to a set
of nodes. Thereafter, all operators deal with sets of nodes and produce new sets of nodes. Figure 3.1 shows
the main concepts, and will be refined along the work, to detail the query language and to draw a general
software architecture comprising this model.

Query
Language

Composition
Operators

Basic Text
Operators

Basic Structure
Operators

Structure index

Figure 3.1: Initial diagram of how our model operates.

With this approach, we use indices to retrieve the nodes that satisfy a text matching query, or the nodes
corresponding to a given structural component, also called “constructor” (e.g. chapters). These sets must be
obtained without traversing the whole database.

Once we have converted the leaves of the query syntax tree into sets, all the other operations take the sets of
nodes and operate them. Normally one set will hold the candidates for the result of the operations. Observe
that, this way, we never have to traverse the structure when searching.

We need still another piece to complete the picture, since at this point the operations between sets can be as
time-consuming as matching against the database.

This piece is the coupling between nodes and segments. The segments are pairs of numbers representing

10

contiguous portions of the text. This coupling allows us to use efficient data structures to arrange the nodes
by looking at their segments (for example, forming a tree). In other approaches [KM93, GT87], there is a
weak binding between nodes and the segment they own in the text, and thus they need to search in the whole
tree to find what they need.

In order for this arrangement to be efficient, the operations should be defined in such a way that they only
need to match nodes from both operands that are more or less proximal. When this happens, we can easily
apply divide-and-conquer techniques to drastically limit the area in which we must search for matching nodes.

If we can efficiently convert text matching and named structural components into well-arranged sets of nodes,
and all operators can efficiently work with the arranged sets and produce arranged sets, then we will have
an efficient implementation.

This schema allows us to have more than one structure hierarchy, if they are independent.

On the other hand, we must show that many interesting operators are in fact of the kind we need, 1.e. they
operate on nearby nodes and all what they need to operate is the identity of the nodes and their corresponding
segment.

Our point is then twofold: first, we must show that a language in which all operations work on nearby nodes
can be efficiently implemented by using adequate data structures; and second, we must show that it is possible
to obtain a quite expressive query language by using only that kind of operations.

3.2 Data Model

A text database is composed of two parts:

e Text, which is seen as a (long) sequence of symbols. Whether this text is stored as it is seen, or it is
filtered to hide markup or uninteresting components, is not important for the model, since we use the
logical view of the text. Additionally, symbols may be characters, words, etc.

e Structure, which is organized as a set of independent (orthogonal) hierarchies. Each hierarchy has its
own types of nodes, and the areas covered by the nodes of different hierarchies can overlap, although
this cannot happen inside the same hierarchy.

Removing markup from the document is important, though. The user should not be aware of details about
how the structure of the document is internally represented, or if it is obtained by parsing, etc. He/she
should be able to query the document as it is seen in the display device. If two words are contiguous in the
logical view, the user should not be aware about that there may be markup between them if, for example, is
asking for proximity. It may be argued that including the markup in the text allows the user to query on the
markup by text matching. However, we believe that this work must be carried out by the implementation.
Any query about markup is probably a query about structure, and we have a query language for that. The
user should not query the structure in such a low-level fashion, he/she should use the content query language
to query on contents and the structure query language to query on structure.

The text is considered static, and the structure built on it quite static also. That is, although we allow to
build new hierarchies, delete and modify them, our aim is not to make heavy and continued use of those
operations. We are not striving for efficiency in those aspects, our model of usage is: the text is static, the
hierarchies are built only once (or sparingly), and querying is frequent.

Fach hierarchy (or tree) is called a view, which as its name suggests, is an independent way to see the text
(recall the example on chapters and pages, or see [SW87] for an example of what could be a view to index
only to presentation structures). Although views are strict hierarchies (no overlaps), they do not have to
cover the whole text, some portions may not be reachable through a particular view. The root of each view
1s a special node considered to comprise the whole database.

Each view has a set of constructors, which denote types of nodes of the corresponding tree. Examples of
constructors are page, chapter and section. The sets of constructors of different views are disjoint.

11

Each node of the tree corresponding to a view has an associated constructor, and a segment, which is a pair
of numbers representing a contiguous portion of the underlying text. The segment of a node must include the
segments of its children in the tree (this inclusion needs not to be strict). The correspondence between nodes
and segments is important, since (unlike p-strings [GT87]) a node cannot be dissociated from its segment.

Any set of disjoint segments can be seen as belonging to a special text view, where the nodes belong to a text
constructor and have flat structure (all nodes at the second level of the tree). Thus, the text view has one node
for each possible segment of the text. The idea is to use that view to model pattern-matching queries; which
we impose to have flat structure. This imposition is not essential, since those pattern-matching expressions
could perfectly well generate a nested structure. However, we assume that the structure is flat for some
operations on pattern-matching queries, which would not be applicable if the structure is not flat.

3.3 Query Language

In this section, we define a query language to operate on the structure defined previously, including also
queries on contents.

We do not intend to define a monolithic, comprehensive, query language, since the requirements vary greatly
for each application. Including all alternatives in a single query language would make 1t too complex.
Instead, we point out a number of features that may be useful, in order to select an appropriate subset for
each application.

We would like to be able to express

e Pattern-matching expressions on the contents of the text; we prefer to be independent of the pattern-
matching sublanguage. It could be as simple as single-word matching or as complex as regular expres-
sions with proximity operators, etc. Appropriate pattern-matching languages already exist.

e Operations on those matches: collapse, intersect or shift segments, seeing the top-level nodes of a query
as the result of pattern-matching, etc. These operations are to be considered, together with the previous
one, as part of the pattern-matching sublanguage.

e All the nodes which belong to some constructor, e.g. all chapters.

e Things which include or are included in others (segment inclusion), e.g. chapters including a figure, or
figures included in a section.

e Things preceding or following others, both included in some other structure, e.g. “computer” preceding
“architecture” | in the same paragraph.

e Things which are at a given position inside others, e.g. the second paragraph of all chapters.

e Direct ancestors or descendants in the tree, e.g. sections with three or more top-level paragraphs (not
included in a subsection).

e Things whose contents are the same than others, e.g. the chapter whose title is “Introduction”.

e Union, difference and intersection of queries.

It 1s still possible to add a number of requirements to the query language, but we have to take care on that
the operations proposed operate with nearby nodes. Operations not satisfying this cannot be implemented
efficiently (see later a discusion about semijoin).

We define a set-at-a-time algebra, following [ST92, GT87], and to mimic the idea of the relational model,
which has shown that a set-oriented language is in general much better than a navigational one. Each set
produced by evaluating a query is a subset of some view. Each element of this set is a single node, representing
a single segment. Thus, a query returns a set of nodes of some view, not a subtree, so it is not possible to

12

manipulate subtrees nor use queries as “views” (in the relational sense). In this sense, this approach is weaker

than [GT87].

We decided not to merge nodes from different views in a single result for two reasons: first, it is not clear,
views being different and independent ways to see the same text, whether this could make sense (e.g. pages
or chapters with a figure); second, the implementation is much more efficient if every set presents a strict
hierarchy. In the approach of [CCB95a], the other choice is selected, i.e. overlaps are allowed in answers, but
not nested components.

Although it 1s not possible to retrieve subtrees, the algebra allows to select nodes on the basis of their context
in the view tree, or the trees of the operands, much like in [KM93].

This language is an operational algebra, not necessarily intended to be accessed by the final user, as the
relational algebra is not used by the users of a relational database. It serves as an intermediate representation
of the operations.

3.3.1 Operations

We list now the operations we consider are enough for a large set of applications, and suitable to be efficiently
implemented. As we said before, this set 1s not exclusive nor essential.

Positional
By including
elements

Composition
Operations

after, after(k)
before, before(k)

By included elements

with(k)
withbegin(k)
withend(k)

in

beginin

Set manipulation Di sti nct

hi erarchi es

.~ Direct structural

[s] beginin

Sane hi erarchy
[s] endin

parent(k)
[s] child

collapse, subtract...
Content
Basis

View

Structure
Basis

Constructor

Figure 3.2: The operations of our model, classified by type.

In Figure 3.2 we outline the schema of the operations. There are basic extraction operations (forming the
basis of querying on structure and on contents), and there are operations to combine results from others,
which are classified in a number of groups: those which operate by considering included elements, including

13

elements, nearby elements, to manipulate sets and by direct structural relationships.

Matching sublanguage: Is the only one which accesses the text contents of the database, and is orthogonal
to the rest of the language.

Matches: The matching language generates a set of non-overlapping segments, which are introduced in
the model as belonging to the text view, as explained before. For example, "computer" generates
the flat tree of all segments where that word appears in the text. Note that the matching language
could allow much more complex expressions.

Operations on matches: Are applicable only to subsets of the text view, and make transformations
to the segments. We see this point and the previous one as the mechanism for generating match
queries, and we do not restrict our language to any sublanguage for this. However, we show a
number of good candidates for this set.

M collapse M’: Is the set of segments obtained by superimposing both sets of matches; when
an overlap results, they are merged. For example, "John Smith" collapse "J. Smith" gets
the apparitions of John Smith in a text, in both forms.

join M: Pairs of segments of M touching each other are merged. For example, join ">*\n" gets
all referenced lines in an e-mail file (that follows that commonplace convention) and packs
contiguous referenced line, this way getting referenced paragraphs.

M subtract M’: From the segments of M, we delete the points which are in a segment of M’.
Resulting empty segments are also deleted. For example "Name: #*\n'" subtract "Name:"
isolates the names following “Name:”.

M intersect M’: Is the set of segments of M, deleting points which are not in a segment of M’.
For example, "Chapter 8 * Chapter 9" intersect "Page 5 * Page 6" selects the text of
chapter 8 which is in page 6 (assuming that sui generis notation).

complement M: Is the set of segments comprising all points which are not in a segment of M,
making segments as large as possible. For example, complement "~>*\n" gets the portions
of a mail file that do not reference other mail messages.

move(n,m) M (C): All segments of M are displaced, n positions the left point, m the right one
(n and m can be negative). The movement is limited to avoid a segment getting out of the
smallest segment of C' which previously included it. C'is any query from any view (not only
textual). For example, move(2,0) "197?" (none) could get the last two digits of years from
this century appearing in the text.

M to M’ (C): Is the set of segments that extend from the start point of a segment of M to the
end point of a segment of M’ for the closest pairs of segments of M and M’. That means
that a segment is in the result only if no segment included in i1t has qualified. C' can be any
query (not only textual), and is used to restrict pairs: a pair (m, m’) can be selected only if
the minimal segment of C' including m and m’ is the same or does not exist in both cases.
For example, "<section>" to "</section>" (chapter) selects inner sections in a SGML-like
tagged document. This allows a restricted version of both-included, as we see later. Observe
that this operator cannot produce overlaps, since if two segments (ai,b1) and (az,bs) are
generated such that a3 < as < by < bs, then none of them should have been generated,
(az,b1) should.

toplevel P: Ts the set of segments comprising all points which are in a segment of P (note that
P is any expression, not only of matches), making segments as large as possible. For example,
one can get the text of chapters without figures with (toplevel chapter) subtract (toplevel
figure). This can be done only by seeing chapters and figures as text segments.

beginnings/ends P: Is the set of all points beginning/ending some segment of P. Each resulting
point is considered a separate segment. For example, one may want to say beginnings/ends
italics to know where to send the appropriate commands to the printer.

Basic structure operators: Are the other kind of leaves of the syntax tree, which refer to basic structural
components.

14

Name of constructor: (“Constr” queries). Is the set of all nodes of the given constructor. For
example, chapter retrieves all chapters in a book.

Name of view: (“View” queries). Is the set of all nodes of the given view. For example, Formatting
retrieves the whole view related to formatting aspects. The same effect can be obtained by summing
up (“4” operator) all the constructors of the view.

Included-In operators: Select elements from the first operand which are in some sense included in one of
the second.

Free inclusion: Select any included element.

P in Q: Is the set of nodes of P which are included in a node of Q. For example, citation in
table selects all citations made from inside a table.

P beginin/endin Q: Is the set of nodes of P whose initial/final position is included in a node of
Q. For example, chapter beginin italics are the chapters that begin when the italic font
is active.

Positional inclusion: Select only those elements included at a given position. In order to define
position, only the top-level included elements for each including node are considered.

[s] P in Q: The same as in, but only qualifying the nodes which descend from a @-node in a
position (from left to right) considered in s. In order to linearize the position, for each node of
() only the top-level nodes of P not disjoint with the ()-node are considered, and those which
overlap are discarded, along with their descendants. The language for expressing positions
(i.e. values for s) is also independent. We consider that expressing finite unions of ¢..j,
last —i..last — j, and i..last — j would suffice for most purposes. The range of possible values
is 1..last. For example, [3..5] paragraph in page retrieves the 3rd, 4th and bth paragraphs
from all pages. If paragraphs included other paragraphs, only the top-level ones would be
considered, and those partially included in a page would be discarded.

[s] P beginin/endin Q: The same as beginin/endin, but using s as above. For example,
[last] page beginin chapter selects the last pages of all chapters (which normally are
not wholly included in the chapter).

Including operators: Select from the first operand the elements including in some sense elements from the
second one.

P with(k) Q: Is the set of nodes of P which include at least k nodes of Q. If (k) is not present,
we assume 1. For example, section with(5) "computer" selects the sections in which the word
“computer” appears five times or more.

P withbegin/withend(k) Q: Is the set of nodes of P which include at least k start/end points of
nodes of @. If (k) is not present, we assume 1. For example, chapter withbegin(10) page selects
chapters which extend for ten pages or more (assuming each chapter begins at a new page).

Direct structure operators: Select elements from the first operand based on direct structural criteria, i.e.
by relationships of direct parentship in the tree of the view. Both operands must be from the same
view, which cannot be the text view.

[s] P child Q: Ts the set of nodes of P which are children (in the view tree) of some node of @, at
a position considered in s (that is, s-th children). If [s] is not present, we assume 1..last. For
example, title child chapter retrieves the titles of all chapters (and not titles of sections inside
chapters). Note that child is not essential, since [s] P child @ = P is ([s] View in @), but this
alternative is much more expensive, as we see in the implementation.

P parent(k) Q: Is the set of nodes of P which are parents (in the view tree) of at least k& nodes of
Q. If (k) is not present, we assume 1. For example, chapter parent(3) section selects chapters
with three or more top-level sections.

15

Positional operators: Select from the first operand elements which are at a given distance of some element
of the second operand, under certain additional conditions.

P after/before Q (C): Is the set of nodes of P whose segments begin/end after/before the end/beginning
of a segment in @. If there is more than one P-candidate for a node of), the nearest one to the
()-node is considered (if they are at the same distance, then one of them includes the other and
we select the higher one). In order for a node of P to be considered a candidate for a @-node,
the minimal node of C' that contains it must be the same than that of the -node, or must not
exist in both cases. This appears to solve the problem of both-included, but it does not, as we see
later. For example, table after figure (chapter) retrieves tables which are nearest to a figure
preceding them, inside the same chapter.

P after/before(k) Q (C): Is the set of all nodes of P whose segments begin/end after/before the
end/beginning of a segment in @, at a distance of at most k& text symbols (not only the nearest
ones). C plays the same role as above. For example, "computer" before(10) "architecture"
(paragraph) selects the words “computer” that are followed by “architecture” at a distance of
at most 10 characters (or words, depending on the view we have on the text), inside the same
paragraph. Recall that this distance is measured in the filtered file (e.g. with markup removed).

Set manipulation operators: Manipulate both operands as sets, implementing union, difference, and in-
tersection under different criteria. Except for same, both operands must be from the same view (which
must not be the text view).

P + Q: Is the union of P and @. For example, small + medium + large is the set of all size-changing
commands. To make a union on text segments, use collapse.

P — Q: Is the set difference of P and (). For example, chapter — (chapter with figure) are the
chapters with no figures. To subtract text segments, use P subtract (P same Q).

P is Q: Is the intersection of P and). For example, ([1] section in chapter) is ([3] section in
page) selects the sections which are first (top-level) sections of a chapter and at the same time
third (top-level) section of a page. To intersect text segment use same.

P same Q: Is the set of nodes of P whose segment is the same segment of a node in . P and @
can be from different views. For example, title same "Introduction" gets the titles that say
(exactly) “Introduction”.

Observe that all operations related with beginnings and endings make sense only if the operands are from
different views, since otherwise they are the same as their full segment counterparts.

Except for child and View, the operators are not redundant. One can consider that there are too many
operands, but recall that we do not propose a specific query language, rather we point out a number of
operators that are efficiently implementable within our approach.

Note that the only moment in which we access the text i1s in pattern-matching subqueries, which are leaves of
the syntax tree of the query expression, and that names of nodes are converted to the set of their segments.
From then on, the rest of the operations manipulate nodes based on their identity and their segment, not text
contents nor structures. By only manipulating nodes with a suitable data structure to combine them and to
easily obtain the set of segments of a given constructor, a quite expressive language can be obtained, which
i1s at the same time efficiently implementable, since we know from the start where to combine the elements
for matching structures.

At this point, we could consider a “semijoin” operation (since the full join needs tuples and is completely
outside the style of the algebra). A semijoin selects from one set the elements that would participate in a
join with other set. For example, suppose that we have an operator P says @ (where P and @ are from the
text view), which selects the elements of P whose text is equal to the text of some element of Q. This is not
like same, that compares segments, in this case we compare contents.

A constructor like this one would allow us to express queries like “give me the books that are referenced in
this list” (think of hypertext, for example).

16

Many implementations are possible. For example, we could read all segments of @ from the text file (in a
single pass, if we have the set sorted by segment position), build an automaton [HU79] to recognize any of
the strings, and then passing the automaton on the segments of P (another single pass on the text), selecting
those segments where the automaton recognizes exactly the segment. This solution is time-efficient, but has
to store all the strings of @.

Another possibility is to store hash values of the strings, and then traversing P doing the same. If we find
that the hash value of a P segment is equal that of a () segment, we read again the) segment to make the
exact comparison. As it can be seen, less space but more seeks are needed.

Still a third possibility is to use a PAT array to search for each @) segment. Each search returns an area of the
PAT array with all the points of the database where the text begin like the) segment. Then, we search each
P segment into the set of all match points returned by the PAT, selecting those which are found. Observe
that we only have to read the contents of @ segments, not P segments. This approach is O(nlog, 7)) time
(where n is the size of the operands and T is the length of the text of the database) and makes no seeks,
although it may require to store a lot of match points (a word each) if the words of @ are too frequent. We
can store the areas of the PAT array instead of each of their segments, making the algorithm O(n) space,
but then each P element has to be sequentially searched in each area, thus adding n x matches to the time
complexity.

The problems are many. First, 1t is no longer true that the text is only accessed at the leaves of the query
syntax tree. This, on the one hand, does not help to isolate the text search engine from the rest of the
system, since we have to access the database from our own. On the other hand, can make text management
much more inefficient, since a good text search engine can answer the normal questions about text with little
access to the real database, by using indexing.

It is because of this that we prefer to have an algebra oriented to node proximity. Our point is that that
algebra is much more efficient if we do not have operators like semijoin. Although we lose some expressivity
by eliminating it, we prefer to sacrifice that expressivity in terms of efficiency and purity of the model.

3.3.2 Examples

We present some interesting examples of the use of these operators.

Suppose we have a view V with constructors book, introduction, bibliography, chapter, appendix,
section, paragraph and formula. A book has an introduction, a number of chapters, a bibliography
and an appendix that has sections. chapters also have sections and sections have more sections
inside them, and paragraphs. We also have figure and table, which can be children of a section or a
chapter. A table is divided in rows, and these in columns. The following elements have always a title:
book, chapter, section, figure and table. Finally, we have citations which references other books, listed
under bibliography.

We have another view V' with volume, page and line. We have still another view VP for presentation
aspects, e.g. underline, emphasize, font, etc.

Suppose also that we have a simple matching language, in which it is only possible to find a given word.

e italics before(100) (figure with "earth") (page) is the query we wanted in the Introduction.

e chapter parent (title same "Architecture"), is the set of all chapters of all books titled “Ar-
chitecture”. Here, "Architecture" is an expression of the pattern-matching sublanguage.

e [last] figure in (chapter with (section with (title with "early"))), is the last figure of
chapters in which some section (or subsection, use parent if you want top-level sections) has a title
which includes the word “early”. This example is illustrated in Figure 3.3.

e paragraph before (paragraph with ("Computer" before(10) "Science" (paragraph))) (page),
is the paragraph preceding another paragraph where the word “Computer” appears before (at 10 sym-
bols or less) the word “Science”. Both paragraphs must be in the same page.

17

VP with (Q) solves the problem of [SW8T], by giving the sequence of presentation commands to follow
in order to present matches from query). Those commands are obtained by traversing the tree in

depth-first order.

[3] column in ([2] row in (table with (title same "Results"))), extracts the text in posi-
tion (2, 3) of tables titled “Results”.

(citations in ([2..4] chapter in book)) with "Knu#*", selects references to Knuth’s books in
chapters 2-4.

e (section with formula) — (section in appendix), selects sections with mathematical formulas

that are not appendices.

e introduction + (chapter parent (title with "Conclusions")) + bibliography,can be a good
abstract of books.

book book book
chapter chapter chapter

titte section Structure

/N title title section

titte figure figure

oo | | title Cligure
| title title

/ | h Vo title

title

/ \ / \ Text

lEarIyr&uIts\ v r s s s s s s w o« o« Solveearly...
| |

Figure 3.3: Illustration of the effect of the query [last] figure in (chapter with (section with
(title with "early"))). Bold circles are selected nodes.

3.4 A Software Architecture

In this section we outline a possible software architecture for a system based on our model. Later, we show
how the prototype follows these lines.

Our language is not intended to be accessed by final users. Rather, it presents an operational algebra onto
which a user-oriented query language can be mapped.

Users should interact with our system via an interface, in which they define what they want in a friendly
language (see [KM93] for an example of a friendly language oriented to querying structured databases). That

18

interface should then convert that query into a query syntax tree, i.e. the language we present here. This
tree 1s then submitted to the query engine.

The query engine optimizes the query and generates a smart query plan to evaluate it (i.e. linearizes the
tree into a sequence of operations to perform). The leaves of the query tree involve extracting components
of the hierarchy by name (constructors), and text matching subexpressions. The first ones are solved by
accessing the index on structure to extract the whole set of nodes from that constructor (i.e. a set of node
ids and their segments). The second ones are submitted to the text search engine, which returns a list of
segments corresponding to matched portions of the text. Thereafter, the rest of the operations are performed
internally, until the final result (a set of nodes) is delivered to the interface.

The interface is in charge of providing visualization of results. To accomplish that, it must access the contents
of the database, at the portions dictated by the retrieved segments. This is also done via a request to the
text engine, since only 1t knows how to access the text.

We pose some requirements to the text engine. The minimum that we need is a subsystem offering us a
pattern matching language, to which we can submit a query in that language and it returns a set of (non-
nested and non-overlapped) segments of the text that match the query. The subsystem is the only responsible
for the view we have on the text, and which can perform markup filtering, stopword elimination, synonym
substitution, use a thesaurus, etc. We access the text only through this engine, which is also responsible for
indexing the text for its operation. Finally, it must provide a means to retrieve filtered text upon submission
of a segment. Notice that if the text subsystem makes any kind of filtering or if it partitions documents into
multiple files, it is responsible for keeping consistency between positions in the filtered file (as the upper layer
sees it) and positions in the real file. These positions can be word positions, character positions, etec.

See Figure 3.4 for a diagram of how a complete system based on this schema should be. The figure does not
illustrate the indexing process. The “document layer” is intended to support more sophisticated document
management, such as collections of documents, etc. Tt translates all references to collections (as the user sees
them) to references to documents (as they are indexed in lower levels).

Query \L q\ Visualization of results
Interface
Document layer
Query Set of
tree nodes
Constructor
name
-

Structure Query
index . Segment Text contents

- = engine

Set of
nodes Textual List of
query segments
Search
e
Text Text index
i S Text contents
engine

Results

Figure 3.4: The architecture of a system following our model, regarding querying. Arrows illustrate the
process of solving a query.

19

The indexing process is presented in Figure 3.5. If the text engine is a completely separate subsystem, two
separate indexing processes can exist. One of them indexes the text to answer text pattern-matching queries
(this indexing is performed by the text engine). The other extracts the structure in some way from the text
(parsing, recognizing markup, etc.), and creates the structure index, which is later accessed by the query
engine. This i1s the only time when the text can be accessed directly from outside the text engine.

Add
documents

Interface

Document layer

Add Add
document document
Structure Write index Structure Text Write index .
) - . . —= | Textindex
index indexer engine

N/

-

Text contents

Figure 3.5: The architecture of a system following our model, regarding indexing. Arrows illustrate the steps
to add a document to the database.

Indeed, both indexers must collaborate, since the markup used by the structure indexer should be filtered
out by the text indexer when presenting the text to upper layers.

20

Chapter 4

Expressivity

The aim of this chapter is to study the expressivity of our model. We begin with a formalization of the
description of Chapter 3, then we formally compare our model against each one of the similar models and
finally we draw an informal framework to situate the expressivity of any similar model.

We are not going to treat our proposal as a complete language. The idea is to make an operator-wise
comparison, i.e. which operators we need to represent each of the similar models, and vice versa.

4.1

Formal Model

A text database is a tuple (7,V,C, N, R, Constr, Segm), where

¥ = I(7) is the alphabet of the text (I(f) denotes the image of function f).

7 :[1..T] — X is the text array. T is the size of the database (number of symbols).

V is the finite set of views over the text, with a distinguished element V; € V (the text view).

C = I(C) is the finite set of constructors, with a distinguished element C; € C (the text constructor).

N = I(N) is the finite set of nodes, including special text nodes ¢, for each 1 <a < b <T' (the text
nodes).

C :V — p(C) is the set of constructors of each view, we also write C(V) as Cy. Tt holds V] # V4 €
V,Cy, NCy, = 0. Also, Cy, = {C:}.

N 1V — p(N) is the set of nodes of each view, we also write N(V) as Ny. It holds VV; # V5 €
V, Ny, N Ny, = 0. Also, Ny, = {tayb/l <a<b< T}

R:V — p(N x N) is the binary relationship which defines the tree of each view, we also write R(V)
as Ry. It holds VV € ¥V, Ry C (Ny x Ny). Also, R(V;) = 0.

Constr : N — C is the constructor of each node. It holds VV € V,Va € Ny, Constr(z) € Cy. This
implies that Va,b/1 < a < b <T,Constr(tss) = Cs.

Segm : N — [1..T] x [1..T] is the segment of each node. It holds V& € N, Segm(z) = (a,b) = a < b. We
also define F'rom and To to satisfy Segm(z) = (From(z), To(z)). Finally, we define Segm(t, ;) = (a,b),
as expected.

We define a binary relationship — as the union of Ry, for all V' € V, that is —= (Jy,cy, Rv. We impose
the following conditions on —:

21

o Vz,ye N,z —*t y = -y — =, that is, loops are not allowed. Here, —7 is the transitive closure of

.
e VV eV, Al ry € Nyv/ Az € Ny /& — ry, that is, each view has a single root.
e Vz,ye N,z — y = Az # ©/2z — y, that is, any node has at most one parent.

o Vz,y e N,z — y = Segm(y) C Segm(z). When we operate segments as sets we interpret Segm(z) =
{n € Nat/From(z) < n < To(x)}. That is, the segment of a node includes the segment of its
descendants.

o VV eV —{V;},Vz,y € Ny, Segm(z) C Segm(y) = x —* y, that is, except in the text view, if two
segments of the same tree are included one into the other, then the including one is ancestor of the
included.

o YV €V — {Vi},Va,y € Ny, Segm(z) = Segm(y) = ¢ —* y V y —™ z, that is, except in the text
view, if two segments of the same tree are equal, then they are in a single path of the tree. Here, —*
is the Kleene (transitive and reflexive) closure of —.

o VYV €V —{Vi},Va,y € Ny, Segm(z) C Segm(y) V Segm(y) C Segm(z) V Segm(x) N Segm(y) = 0,
that is, there is a strict hierarchy of segments (except in the text view).

Finally, we define a binary relation in A" x A, called C, to mean that the first node includes the other (do not
confuse with segment inclusion). If both nodes are from the same view then the second must descend from
the first one; otherwise we test for segment inclusion. Thus, x C y < (3V € V—{Vi}/{z,y} C Ny) 7y —7
z @ Segm(z) C Segm(y). Observe that # C y = Segm(x) C Segm(y), but the reciprocal is not true.

We are now in position to define the semantics of the defined operations. We do so by defining a function
T : Fxpr — p(N), which interprets each expression in terms of a set of nodes. In Appendix A we define Fapr
(our language syntax) by an annotated abstract syntax, and then define Z. With that formal definition, we
can compare our model against others.

It is important to note that our model includes all operators proposed in [CM95] and more, so its positive
results about expressivity apply also to us, while some negative results do not (e.g. we can express direct
ancestorship, but not both-included nor joins on contents).

4.2 Comparison with Similar Models

In this section we compare our model against those which are close to it, namely the novel approaches.

We compare first our model against the hybrid model [BY94], PAT expressions [ST92], overlapped lists
[CCBY95al, lists of references [Mac91] and the tree matching model [KM93]. We determine which aspects of
one model can be represented in another one.

The p-strings model [GT8T7] lies outside this comparison, since it is a data manipulation rather than a query
language. We can say, intuitively, that it is very expressive. Recall also that we compare only the portion of
lists of references [Mac91] related to querying structures.

Before entering into the details of each case, we define here the overhead of a representation, as the ratio
between the translated query length over the original one. This is defined as if only one translation rule were
to be applied, for example if a translation rule duplicates an operand, we say that the overhead is 2, although
a formula with n operators like that one will be 27 times longer when translated.

4.2.1 The Hybrid Model

We show that our model subsumes this simple model. Some observations follow.

22

This model consists of documents, fields and match points. Fields can overlap freely. Thus we have a view
of documents (called DV') and a number of views for fields, as many as necessary to avoid overlapping nodes
inside a single view. We represent a field f by the constructors fi..f,, where r > 1 if we need to split the
view of that field because of overlaps.

Answers in the model are pairs (D, M), where D is a set of documents and M a set of match points, so we
represent each query of this model with two of ours, one for D and another for M.

Finally, we do not compare the matching sublanguage, since our interest is not there.

We define two functions, D to represent the D component and M to represent the M component. Always
D() € DV and M() C V; (in fact, size-1 segments). For a formal definition of the semantics of the hybrid
model, see [BY94]. The definition of the D and M functions is depicted in Appendix B.1.

From the definition follows that we can represent all the model, although with some overhead: O(m2™) if
some(qy..qm) is involved, max(2, r) otherwise.

The converse of this representation is weak. The hybrid model can represent little from ours, because
of 1ts poor structuring power. It can define all our hierarchies, but without obtaining information about
ancestorship.

Suppose we have a single document comprising all the database, and all the constructors from all views are
represented as fields (we cannot use documents because they are too strict, thus we can only use match
points). We represent the beginnings of the segments, so suppose there are no two segments with the same
starting point (which is a restriction). We use a function R to denote the translation, which is defined in
Appendix B.1.

As the definition of the function shows, little can be represented in this model. There is no overhead in the
subset that can be represented.

4.2.2 PAT Expressions

This approach does not have a very powerful structure, albeit it has good pattern matching primitives. We
begin by showing that we can represent this model almost completely (disregarding text matching and some
undesirable complications).

Since each region definition is a set of non-overlapping (and, in fact, non-nesting) segments, we use a view
Vreg for each region reg, and our answers are text segments with the resulting areas. The language is quite
complicated with respect to the conversion between regions and match points, and this is in fact not good,
so we disregard this subject as long as we can, assuming we deal with regions (= segments). In any place
where a conversion from regions to match points is needed, we can apply the beginnings operator. This
conversion cannot be syntactically determined, so we cannot represent it. However, these conversions are
more a problem of the model than a powerful feature we would like to represent in ours.

We define a function 7 to represent the translation. For a description of the semantics of the language, see
[ST92]. The T function is defined in Appendix B.2.

As it can be seen from the definition of the function, most of the model can be represented in our terms. The
overhead is no more than 2.

Now the converse. A strong restriction is that our views have to be flat. We suppose we have a region reg,
for each constructor ¢, and we return segments from regions. We use a function P to denote the translation.

P is defined in Appendix B.2. From its definition follows that we have to lose a lot of structuring power to
translate our model into this one. The subset that can be translated has no overhead.

4.2.3 The Overlapped Lists Model

The structuring mechanism of this approach is quite similar to PAT Expressions, so the comparison is
analogous. We show that, except for overlapping regions, our model subsumes this one.

23

We use views V;.., and the rest as before. We cannot represent overlapping regions, so this is a restriction. For
a description of the semantics of the language, see [CCB95a]. The H function representing the translation is
defined in Appendix B.3. Since we cannot represent overlaps, we return the collapsed version of the original
answer.

As it can be seen from the definition of the function, all the model except the overlapping feature can be
represented in our terms. The overhead is no more than 2.

Now the converse. A strong restriction is that answers are flat (although they can overlap). We suppose we
have a region reg. for each constructor ¢, and we return segments from regions. We use a function W to
denote the translation.

W is defined in Appendix B.3. From its definition follows that, if we disregard the problem of flat answers
(which is important), a significant part of the query operations can be translated. The overhead is no more
than 2, except for with(k), where the overhead is k (i.e. the overhead is exponential, because the operand is
repeated k times, while the original formula needs logk bits to represent k).

4.2.4 The Lists-of-References Model

This model allows the structures to be hierarchical, but it does not retrieve sets with nested elements or sets
with elements from different constructors.

We initially discuss how to represent this model. Tt has just one (strict) hierarchy, so we have a single view
V. We define a function X' to represent the translation. For a description of the semantics of the language,
see [Mac91]. The & function is defined in Appendix B.4.

As it can be seen from the definition of the function, all the (selected portion of the) model can be represented
in our terms. The overhead is no more than 5 (because of not having all n).

Now the converse. A strong restriction is that only one hierarchy can be represented, and that the answers
have to be flat and from the same constructor, so only the top-level of our answers can be represented, and
unions can be done only in the same constructor. We use a function) to denote the translation.

Y is defined in Appendix B.4. From its definition follows that an interesting part of our model can be
expressed with this one, if we disregard the mentioned limitations. The subset that can be translated has no
overhead.

4.2.5 The Tree Matching Model

This model is quite expressive in terms of structure, but weak with respect to the relationship between
structure and text.

We begin analyzing how can we represent this model. Tt has just one (strict) hierarchy, so we have a single
view. To represent a single leaf ¢ we use Constr(c). To represent constr(Ty,...,Ty) (i.e. a tree labeled constr
with subtrees T4, ..., T}), we could in principle use (...((Constr(constr) with T1) with 75)... with T}), but
that is not exactly the same. The reason is that, as [KM93] specifies, a structural property (e.g. ancestorship)
must hold in the target if and only if it holds in the pattern, so our query translating a(b,¢) (i.e. (a with b)
with ¢) could return the root of a tree a(b(c)), in which holds that ¢ descends from b, which is not true in
the pattern. We have not been able to express this restriction in our language. We can use after/before to
express that they should not descend from one another, but we cannot say that both of them should descend
from a (i.e. a with (b before ¢ (none)) will retrieve a from the target d(a(b), ¢), which is not desired).

This problem is exactly the n-included problem mentioned when we surveyed [CM95], which we are confident
that cannot be solved with a 1-tuple algebra like ours. Observe that the source of this problem is that it is
not possible to express that a constructor appearing in two parts of an expression should denote the same
node, and that is exactly what an equijoin would do. We could add a ternary operator both-included(A, B, C')
to solve the a(b, ¢) problem, but we could not solve the a(b, ¢, d) problem, and so on.

By looking at our representation of the overlapped lists model, we can attempt to solve the problem for

24

a restricted case. Suppose we translate a(by,...,b,) as (a with ((toplevel b;) to ... to (toplevel b,)
(none)...(none))). It works if there are no solutions at a deeper level, for example a(b, ¢) would not be found
in a(b(b, ¢)). But it works for certain restricted cases, namely when for each of the b; there is a b; such that
b; cannot include b; (we can achieve this by partitioning the constructor sets). With this restriction we can
represent tree patterns, by recursively applying the translation to each of the b; subtrees. Observe that the
overlapped lists model handles this situation more easily.

Before referring to logical variables, which make this model much more powerful but more intractable from
the point of view of the algorithms, we should consider that tree pattern-matching alone, as defined, cannot
express our inclusion semantics, except by a union of a combinatorial number of alternatives. That means
that each model has a different conception of how an inclusion pattern should be understood. While this
model interprets that an ancestorship relation should hold in the target if and only if it holds in the pattern,
our model interprets that the relation should hold in the target if it holds in the pattern, but more relations
can hold. The subject of why cannot we represent the alternative semantics or how can logical variables be
used to reasonably represent our semantics should not distract us from the fact that both models have a
basically different conception of what an inclusion pattern is. It is hard to decide which conception 1s better
in practice.

On the other hand, the model has logical variables, which we cannot express at all. They are used to extract
other parts of the matching subtree, not only the root (we can do this with other mechanisms implicit in our
language, since we express the context to search and at the same time what node we want from the context);
and to express that two parts of the match must be identical (what we cannot express at all).

We now consider what in our model can be expressed by the tree matching model. A first restriction is that
there is only one view. We use the Prolog-like syntax of [KM93], and a function Kx to denote the translation,
which leaves the result in the Prolog variable X. Suppose the view is called V' and the constructors are
1, ..., ¢r. The function Kx is defined in Appendix B.5.

As it can be seen, an interesting part of our model can be expressed with tree pattern matching, being the
weakest part those operators related with the textual contents of the database. The overhead is exponential,
because of the with(k) operator, where the overhead is & (and we need log k bits to represent k). With the
exception of this operator, there is no overhead.

4.3 A Comparison Framework

Table 4.1 summarizes the primitives offered by each model to deal with the many aspects of a query language
for structured text. We do not include considerations about the matching sublanguage, which is another
important subtopic in practice.

We situate the similar models in a common framework, and use this framework to compare the distinguishing
features of each model.

Finding a model of expressivity as it could be the hierarchy of grammars in formal languages [HUT79] is
certainly an ambitious goal (a first step in this direction could be [CM95]). We content ourselves with
pointing out a number of aspects in which (at least) a model should be examined in order to analyze its
expressivity. Later, we draw an informal graphical representation of the expressive power of these languages.

In [SDAMZ94], a number of queries that this kind of language should be able to answer are pointed out. We
summarize them here to show that we can express all in the areas we are interested in (i.e. we exclude the
features related to relevance ranking and connection to relational databases, which we do not address in this
work).

e Word-by-word access, e.g. “find {doc)s containing ‘parallel’ and (‘computing’ or ‘processing’)” can be
expressed as (doc with “parallel”) with (“computing” collapse “processing”).

e Query scope restricted to sub-documents, e.g. “find (doc)s with (title) containing ‘parallel’ and ‘pro-
cessing” ” can be expressed as doc parent ((title with “parallel”) with “processing”). The other

25

Operation Set Inclusion Distances Other
manipulation features
Our +,—, with*(k), *in after[(k)](C) powerful in both
model is,same parent(k), [s] child | before[(k)](C') | aspects: structure
[s] *in and contents.
Hybrid +,—,&,~ field with both documental
model or, butnot, in field only in matches and textual
[BY94] and, not queries.
PAT +,—,A tncluding.n powerful matching
expressions not op within fby,near language; dynamic
[ST92] regions definition.
Overlapped >, B n words combination
lists \V4 <, 4 SOVAN operators and
[CCBY95a] overlaps
Reference union of, from also hypertext
lists intersection in none and attribute
[Mac91] difference having any & management
Tree tree patterns powerful
matching . 3 + variables none structural
[KM93] queries.
Table 4.1: A comparison of the operators of the novel models.
example in the paper is “find {(doc)s with 1st (para) containing ‘parallel’ and ‘processing’ ”, that can

be expressed as doc with ((([1] para in doc) with “parallel”) with “processing”).

e Retrieval of sub-documents, e.g. “find (section)s with (para)s containing ‘parallel” and ‘processing’ ”

can be expressed as section with ((para with “parallel”) with “processing”).

e Access by structure of documents. Many examples are presented here:

— “Find elements with parent of type (article)” can be expressed as View child article.

— “Find elements with children” can be expressed as View parent View.

— “Find elements where the first child is {title)” can be expressed as View parent ([1] title child

View).

— “Find elements within a (section)” can be expressed as View in section.

— “Find {doc)s that contain a {corres) can be expressed as doc with corres.

— “Find (section)s that contain a (section)” can be expressed as section with section.

Access to different types of document, e.g. “Find articles, papers and books with ‘parallel” and ‘com-
puting’ in the title” can be expressed as (article + paper + book) with ((title with “parallel”)
with “computer”). This issue is more concerned with the problem of having the different constructors
standing for “title” in each type of document, but this is also easily handled: (book with booktitle
...) + (article with articletitle...) + ...

Access by attributes, e.g. “find {corres)s with attribute ‘confidential’ = yes”. If we have those attributes
as constructors children of the node and their values in the text, we can answer simple queries, in this
case we express it as corres parent (condifential same “yes”).

Another attempt to classify these kind of models is made in [Loe94], which surveys a number of approaches
to structured text retrieval.

26

4.3.1 A Methodology to Analyze a Language

We want to make a stricter analysis that the one done in [SDAMZ94], since its requirements are fulfilled by
not-so-powerful languages also. We divide our analysis in three main areas.

Structuring mechanism: It refers to the capabilities of the language to express the structure of a textual
database. Some questions one should ask here are:

Is it possible to express a hierarchy? (e.g. some models impose a flat structure).

Is there any limit on the hierarchy? (e.g. maximum depth, recursiveness, etc.).

Is the hierarchy strict or does it allow overlaps? (e.g. we allow overlaps only between different
views).

Does it allow to express multiple hierarchies? (e.g. the tree matching model has only one hierar-
chy).

Is there any limitation on the construction of the hierarchy? (e.g. PAT expressions has some
parsing constraints that impose a nonrecursive structure).

Query language for contents: It refers to the part of the query language related to the text of the
database, and especially the way to relate 1t to structure. Some important questions are:

How is the string matching sublanguage? (e.g. wildcards, proximity, matching with errors, ranges,
regular expressions, etc.).

How is a matching subquery inserted in the context of a structural query? (e.g. we see text queries
as part of a special text view).

How can restrictions on distances be expressed? (e.g. after/before).

How is the text seen in the model? (e.g. we associate nodes with their segments, other models see
almost only text, and others almost do not see the text).

Is it possible to express relationships between the contents of different parts of the text? (e.g.
chapters whose title is listed elsewhere in the text).

How are the set manipulation features with respect to contents? (e.g. we use different operators,
as also does the hybrid model).

Are text segments first-class objects? (e.g. some models do not allow to retrieve text segments,
or to test if a text segment includes something).

Query language for structure: It refers to the part of the query language related to the structure of the
database. Important questions are:

How can ancestorship/descendantship be expressed? (e.g. in, with).

Can it distinguish between direct and transitive relations? (e.g. the tree matching model cannot
differentiate a child from a descendant).

Can it discriminate ordering or positions among siblings? (e.g. [s] in).

Can it express relationships between the structure of different parts of a matching tree? (e.g. the
tree matching model can select chapters having two sections with identical structure).

How are the set manipulation features with respect to structure? (e.g. union, difference, intersec-
tion, complement, etc.).

27

Area Structuring Contents Structural
mechanism query language query language
A set of disjoint Text is a special view. Can express inclusion,
strict trees (views), Nodes cannot be disso- positions, direct and
with no more ciated from segments. transitive relations;
restrictions. Views Text queries are leaves discriminates ordering
can overlap. of query syntax trees. (with restrictions)
There are powerful dis- and manipulates sets.
Our model tance operators. Text Cannot express relation-

content is accessed only
in matching subqueries,
thereafter it is seen
just as segments. There
are special set operators
for text.

ships between different

parts of the structure.
Can express complex
context conditions,
but not everything.

Hybrid model
[BY94]

IR-like documents
+ fields + text.
Fields can nest and
overlap, but it is
a flat model.

Query = matches +
documents. Almost all the
language is oriented to
matches, which are seen
as their start point. Ex-
presses distances. Has sep-
arate set manipulation tools
for matches and documents.

Only to restrict match-
ing points to be in a
given field or to select
fields including match-

ing points (selected
fields are then seen as
matching points).
Weak in general.

PAT expressions
[ST92]

Dynamic definition
of regions, by pattern
matching. Each
region is a flat
list of disjoint
segments.

Powerful matching lang-
uage. Has matching points
and regions. Regions are
just segments. Has set
manipulation operations.
Expresses distances.

Weak, since structures
are flat. Can express
inclusion, set
manipulation and little
more.

Overlapped lists
[CCBY5a)

A set of regions,
each one a flat
list of possibly

overlapping segments.

Not specified. Words and
regions are seen in a
uniform way, by an inverted

list metaphor.

Results are flat, although
they can overlap. Can
express inclusion, union

and combinations (<&, A).

Reference lists
[Mac91]

A single hierarchy
with attributes in
nodes and hypertext
links.

Text queries can only be
used to restrict other
queries.

Results are flat and from
the same constructor. Can
express inclusions,
complex context conditions
and set manipulation.

Tree matching
[KM93]

A single tree, with
strict hierarchy.
No more
restrictions.

Not specified, orthogonal
to the model. Apparently
it can only be used to
restrict sets of nodes of
the tree. Weak link between

contents and structure.

Powerful tree pattern
matching language. Can
distinguish order but
not positions nor dir-
ect relationships. Can
express equality between
different parts of a
structure, by using
logical variables. Set
manipulation features
via logical connectives.

Table 4.2: An analysis of similar models.

28

"""""""""""""""""""""""""""""""" Overlapped
Our

. . .
; o078 . .
: - N JPCIA . lists
1t \ o .

model // P05|t|9nal N - : .
< / inclusion \ o0 e .
.) RS Overlaps in A
: ! Direct o structure * A
. . .' \ .
o ancestorship . " - ——— .E. _______ B
E ' & vy Distances ; Text is first- [E
. | T : _ class object (I
; \\ . 1 : T T~ I .
: \ 'n. I : \\ | :
i ‘\ .* Recursive ! Set . N I
. \ . structures ; manipulation . \| ¢ Overlaps

: .
. \ e.. : + Compositional 1| ¢ inresults
o \ LI i * 1
$ Inclusion * language /] a 9
; S F.. ! relations - :
~ . -
i ~ . 1.. ¢ - ’ .
. o S < - See = r = .
‘ Hierarchy J-- - - =S T : Combination
: on results S e : of nodes
Tuples Semijoin
and join by contents
Tree .
. - = = PAT expressions
matching

...... Hybrid model
————— Lists of references

Figure 4.1: A graphical representation of the comparison made in the framework.

4.3.2 A Brief Analysis

Table 4.2 informally compares the similar models (including ours) with regards to the structuring mechanism,
and the query language for contents and for structure. We disregard matching sublanguages in this analysis.

In Figure 4.1 we present a graphical version of the analysis done for similar models in the framework. The
main desirable features are presented, and each model is represented as a set of the features it supports.
Recall that we only consider part of the lists-of-references model.

From the figure, we can see that the main features lacking in our model are tuples, semijoin by contents and
the possibility of having overlaps and combined nodes in the result set of a query.

Regarding tuples, joins and semijoins, only the tree matching model can manage these features (and also
p-strings, in its own context of a data manipulation language). These two languages have not an efficient
implementation. On the other hand, overlaps and combination of resulting nodes from a query are allowed
by the overlapped lists model, but at the expense of not allowing them to form a hierarchy. We have not
found an efficient implementation if we allow both features at the same time, and consider that the hierarchy
is more important in real cases.

This way, we have that our model has most of the features that are important in practice. Those which
are not present are not suitable of efficient implementation (although some of them may be important in
practice, e.g. tuples and semijoin). We show later that the efficiency of this model is similar to those of less

29

expressivity.

Finally, we draw an intuitive graphical representation of the expressive power of a language, in which we
situate the analyzed approaches. It consists of a three-dimensional space, representing more or less expressive
power in the three areas: structuring power (z axis), querying on contents (y axis) and querying on structure
(z axis). The representation is depicted in Figure 4.2. The placement of each model is done by considering
mainly Figure 4.1, but being a quantization of concepts, it is, to a certain extent, subjective. It must be seen
just as an alternative description of the results of this analysis, easier to interpret but less formal.

Query on Our mode!
contents ¢

Structuring
power

) Tree matchin
Lists of references g

AT S SRR

expressions/- @ ------- R RRRIIIIE
Hybrid o @ Overlapped lists ' '
model !

Query on structure

Figure 4.2: A graphical representation of the expressive power of similar models.

4.3.3 Common Limits

From the analysis of a number of structuring models, 1t also emerges a set of commonplace limits in their
expressivity. Although the formal study of these properties is still at the beginning (see [CM95] for some
results), we should point out a number of topics that limit most text retrieval query languages. We believe
that further improvements on expressivity must begin by considering these features, and how to implement
them efficiently.

e Most languages cannot express tuples of values, nor join on their attributes. They are 1-tuple-valued,
l.e. any answer from a query 1s a set of objects, never pairs. Exceptions to this are the p-strings model
and tree matching (via logical variables). Notice that both of them are quite inefficient to evaluate
queries.

e Most languages cannot do a semijoin on text values. We have decided also to avoid it (as we explain
in the definition of our language). Again, the exceptions are p-strings and tree matching. Also the

30

object-oriented part of the lists-of-references model can deal with attributes, that can address similar
problems.

The languages that do not have an explicit hierarchy cannot answer direct ancestorship questions, such
as finding the immediate parents of a set of nodes. Our model can do this, as p-strings does. In this
case, tree matching avoids it to encourage data independence (i.e. to avoid forcing the user to be aware
of the full structuring details).

Finally, it is not possible to express both-included in most languages (see Section 2.3). The possibility
to express n-included 1s related to tuples, and hence can be expressed in the p-sirings and the tree
matching model. An interesting exception 1s the overlapped list model, which does not allow tuples
but allows combination operators, that together with a flat hierarchy with overlaps, allows to express
n-included. Our model can express it only in restricted cases.

31

Chapter 5

Algorithms and Associated Data
Structures

In this chapter we explain the mechanisms to implement indexing and querying. We present a data structure
that allows us to efficiently implement all the defined operations, and many others which are still to be
devised. We analyze our implementation in both time and space.

Since our language is fully compositional, we are faced with the problem of, given the syntax tree of a
query, compute the set resulting from i1t. This must be done by recursively solving the subqueries, this way
obtaining the resulting sets, which are the operators of the operand at the root. Each operator implements
a manipulation of its operands (sets of nodes) to obtain a new set.

A first concern is whether to use full or lazy evaluation. Full evaluation means completely computing the
operands before applying an operation, while lazy evaluation means trying to obtain result of the top-level
operation element by element, where the extraction of each element triggers the need to obtain certain
elements from the subtrees. This way, only the needed part of the operands is computed, which can be much

less than the total [GT87].

Consider, for example, the query “section with(10) "Computer"”. If instead of first computing the whole
tree of sections and subsections and then deleting sections not containing ten “Computer” words, we first
compute the top-level sections, see which of them contain ten “Computer” words, and then follow expanding
only the subsections of sections that classify, we avoid expanding a lot of unnecesary nodes.

[T

On the other hand, lazy evaluation may force to use less efficient algorithms for some operations, thus it is
not immediate which one is better. This has to be experimentally tested.

For full evaluation, we propose two different techniques, which we name search-operate and merge. The last
technique is modified to use lazy evaluation, sometimes losing efficiency as explained.

On the other hand, we can use different kinds of indices, each of them supporting some operations at the
cost of some space requirements.

We begin by describing the indexing mechanisms, and then the algorithms for implementing the operations.

5.1 Indexing

We are not going to address the problem of generating the index, since it can be constructed from many
different sources. In the prototype, we provide mechanisms for generating the index from a parse tree (which
is much simpler to generate), this way allowing any method which generates a parse tree from the source
text, to generate an index this way. This mechanism is quite general, since any hierarchical structuring of
the text is naturally represented and obtained as a parse tree.

32

We need indices for two different tasks: for the matching language and for the structure language. We
are not going to innovate on the first one. Since it is an independent sublanguage, we also leave open its
implementation. For our prototype, we use a matching sublanguage implemented by using a PAT or suffix
array [FBY92, chapter 5] and [MM90], but any matching sublanguage and any implementation of it can be
used. Indeed, our first prototype used a sequential search engine, without indices.

5.1.1 A Full Index

For efficiently answering queries on structure, we are going to implement each view as a general tree, which
embodies all its nodes. As we explain later, the sets of nodes resulting from query evaluation are represented
as trees too.

The tree has enough information to extract the nodes of each constructor in time proportional to the number
of nodes of the constructor, not the number of nodes of the whole view. That is, each node has pointers to
its first child and next sibling in the tree of the nodes of its constructor (see Figure 5.1). Also, the whole
view can be transformed into the format of the result of a query in time proportional to its size, by a simple
recursive algorithm.

Figure 5.1: An example of a view tree. Full lines are the whole tree. Dashed lines are the per-constructor
parent-child relationship. Dotted lines are the per-constructor sibling relationship. Arrows go from the array
of constructors to the first top-level node of that constructor.

Memory Representation

A space-efficient way to store this view tree, both in memory and disk, is to store it in a breadth-first fashion
on a long array, that is, all nodes from level ¢ are before all nodes of level 7 + 1. Also, we need an array of
constructors, where for each element, among other data, we have the position in the view tree of the root
of the first tree of nodes of that constructor (see Figure 5.2). This, combined with the mentioned child and
sibling information, allows us to answer the query Constr(c) in time O(|c|) (where |¢] stands for the number
of nodes of the ¢ constructor).

Note that the position of the parent of each node and of its first child is also stored in the array. The number
of children needs not to be stored if the layout is breadth-first, since it is first child(i + 1) — first child(7);
in order for this formula to work, the first child of a leaf node must be the same as the first child of the next

33

C3

offset to parent
I—

constr id
segment

L offset to first child

e - offset tofirst child of same constructor
> offset to next sibling of same constructor

Figure 5.2: The same view of Figure 5.1 in array form. The tree is laid in a breadth-first fashion. Below, the
schema of a node with its 7 words of data.

non-leaf node, and we add a dummy final element whose first child is supposed to be itself. The array can be
transformed into a tree (i.e. the format of answers to queries, as we see later) by a simple recursive algorithm
that traverses the array following the child information.

Keeping the Index on Disk

The space requirement of this index is quite large, 7 words per node, so it is unlikely that it will fit in
memory for real applications. If the array is kept on disk, we can obtain the tree of the view, but this time it
is preferable to use a breadth-first traversal, to make a single pass over the array on disk. It is also possible
to extract the tree of a constructor (query Constr(c)) by passing over (at worst all) the array and extracting
in breadth-first the required tree (using a queue). Athough we pass over almost all the array, we read only
sectors containing a node of the tree. Note that the sibling chain needs not to be in ascending order on the
array (see Cs in Figures 5.1 and 5.2), so it is not possible to predict the amount of seeks necessary to retrieve
the subtree of a constructor.

In order to avoid this random access to the array, we need to store, for each node, the position of the next
node (in the array) of the same constructor. With this information we can, in one pass over the array, read
all nodes, store them in a hash table (accessing them by their position in the view array), and traverse the
view as before, but searching the nodes in the hash table instead of randomly accessing the disk. The only
problem is that we do not want to add more data to the index.

What we can do is to replace the two words that link the nodes of the same constructor by other two: the
next element (in the array) of the same constructor, and the first ancestor of the same constructor. The idea
is to retrieve the nodes of a given constructor by following the next-element link (thus making a single pass
on the disk). We build the tree at the same time, and keep a hash table with the nodes, indexed by their
position in the array. Fach time a new element is needed from the disk, its first-ancestor (i.e. its parent in
the tree of the constructor) is searched in the hash table, to determine from which node must it descend in
the answer. This way we build the tree in expected linear time.

A word can be eliminated from this index by noting that, in fact, the information of where the first child of
a node is can be eliminated at low cost. The only situation in which we need it is to answer the View query,
but if the traversal is breadth-first, we can do 1t by using only the information on parent, with the same hash
table technique.

34

Reindexing

Another important problem of this schema is related to reindexing. The ideal is to be able to reindex without
having to rewrite the whole index, but only the modified part. As it is, the index must be almost wholly
rewritten even if we add text at the end (which results in adding a subtree somewhere at the extreme right
path of the view tree), or if we delete something at the end. We can achieve the ideal of rewriting only the
modified part, but at the cost of incrementing seek time at query time. Since we are more interested on
querying than on indexing efficiency, we prefer to keep the index more or less consecutive, and to search for
a reasonable tradeoff.

This tradeoff can be achieved by modifying the layout of the index on disk to have a different (contiguous)
file per level of the tree. This way, adding a subtree at the end can be done by appending the necessary nodes
at the file of each level, and similarly to remove a subtree at the end. For adding or removing a subtree at
the middle, the amount of data we must move corresponds to the number of nodes at the right of the path
going from the root to the leaf of the modified zone, while with the initial layout we must move almost all the
array (see Figure 5.3). We need to modify some parent/child pointers also, namely those of the parents of
the moved nodes, which are the same nodes to move plus an additional path of the tree. While we move the
nodes; we must update their parent/child information, and update the child information of the additional
path.

Note that pointers can point now to another level, and thus we use absolute positions. However, a single
word should still be enough to codify the level and position information.

singlefile separate files

Figure 5.3: Reindexing overhead. The triangle represents the whole view, and the shaded part is what needs
to be rewritten when a modification at the internal path occurs, under a single file and separate files policy,
respectively.

Finally, we do not consider the work needed to obtain the new tree from the modified text, this is outside
our interest here.

Avoiding Random Access to the Disk

Another problem is that some query operations need to access this index in unpredictable patterns, so the
bigger the index, the more I/O needed to access arbitrary positions (be it due to paging or to accessing
the disk at random). The reason for this access pattern is that the sets of nodes manipulated by the query
algorithms are just pointers to the index, to minimize space utilization, and sometimes it is necessary to ask
whether a node is the parent of another.

However, the parser of the query can sintactically determine which sets will need information on parentship,
and for the sets that will need this information, read it to main memory at the time the sets are built (any
set construction which is not from the text view starts with a Constr query). This information consists of
the parent of each node, and is to be gathered for all the nodes involved in the right hand side of a parent
operation, and in the left hand side of a child operation. This way, when those questions are made later, the
information is already in main memory.

35

Favoring “Constr” Queries Against “View” Queries

Constr queries are much more common than View queries, while our index is more efficient for View than
for Constr.

This problem can be overcome by having a separate index for each constructor, which is much like the index
for the whole view we have been considering, but only the nodes of that constructor are stored. The difference
is that we do not need to store explicitly where the sibling of the same constructor is, since that information
1s now implicit. We need instead to store where the first child and next sibling in the view are, and that may
point to another file. So the pointers are now of the form constructor:position, what should fit in a single
word. The parent pointer is as always, but in the constructor:position format.

Solving Constr with this schema is as easy as it is to solve View with the other: we make a single pass
over the file of the constructor and build the tree, with no additional seek. To solve View, we must process
the files of all constructors in parallel, advancing sequentially in each one. By having a pointer to the first
top-level node of the view, we follow its pointers to its first child and next siblings, in the corresponsing file.
If we traverse the view in DFS, then we will progress sequentially in each file. The change from file to file
produces the only secks of the process, which are not few. In this case, since the view must anyway fit in
main memory, it is better to read all files to main memory and merge them there, where there are no seek
costs.

This approach is better when Constr is more frequent than View, which is normally the case.
These files can also be split at each level to improve reindexing efficiency.

An interesting idea is that, since the query i1s known in advance, all the constructor trees could be read in a
single pass over the disk, thus reducing the amount of disk I/O. This improvement can only be done if all
leaves can be kept in memory at the same time and we are using full evaluation.

Lazy Evaluation

The single-file index is also suitable for lazy evaluation: if we need to expand only the first level of a given
node from the tree of a view, all we need is to store for this node the pointer to the view array where its first
child lies, and the number of children. This way, by using sequential disk access, we retrieve all its children
from disk. If, instead, we need to expand a given node from the tree of a constructor, we store the pointer to
the first child of the same constructor of the node in the index array, and from then on follow its siblings. If
the constructor is spread along the view, this may take O(d) disk accesses, where d is the number of children.
Observe that the solution we proposed for this problem does not work for lazy evaluation, since the whole
file has to be processed. The idea to eliminate a word from the index does not work either.

If we use the multiple-file index, then it becomes easy to expand the node of a Constr query, but hard to
expand the node of a View query. In this case, expanding a View node involves accessing multiple files at
random positions (and the solution of reading all into main memory does not work).

The proposed techniques to handle reindexing can be used here too.

5.1.2 A Partial Index

Under certain conditions, it is possible to use a much simpler index, which takes much less space and is
equally efficient. Tts problems are twofold: we cannot efficiently answer parent/child questions (i.e. they are
O(1) with the full index and O(|Nv|) here), and we cannot allow two nodes to have the same segment, since
we will not be able to distinguish which is ancestor of which. The idea is to store, for each constructor, two
arrays holding one of them the initial positions of all segments of this constructor, and the other the final
positions. Both of them are sorted by position (see Figure 5.4). Similar ideas are used in both the PAT text
searching system and in SearchCity [ST92, Ars92].

The space utilization of this index is 2 words per node, so the whole space utilization is 2| Ny |, much less

36

[1T275 5 [6| initia positions \
[3]6 [77 [10] find positions |2_3 | |5_7 |

Figure 5.4: An example of a partial index and its associated view tree.

than the full index. To answer the query Constr(c), we select the file of ¢ and traverse both arrays at the
same time, in the same order as if we were merging the numbers of both files (in case of equality, we give
preference to the final point). The output of this merge is manipulated as follows: we build the tree while
reading the nodes, each time we get an initial position, we create a child of the current point, whose initial
position is what we read; each time we get a final position, we complete the segment we have last opened,
and we return to the previous level. This way, the tree is extracted from the two arrays in O(|c|) time, and
by sequentially accessing the files.

If, instead, we have to create the tree of the whole view, we need to interpret View(V) as Constr(C1) +
...+ Constr(C), where Cyv = {C1,...,Cy} are the constructors of V. We show when implementing the +
operation that the cost to build Q1 + Q2 is O(|Q1] + |Q2|), so supposing that the size of each constructor
is C' = |Ny|/k (which is the worst case if we sum up from smaller to larger constructs), to sum all the &
constructors until obtaining the whole view takes us

(C+O)+(2C+C)+ ..+ ((k—1)C+C)=C (Llc; D _ 1) ~ LVQNV'

which is reasonable if we consider that queries on the whole view are not frequent.

Reindexing on this schema is quite easy: we take the new set of initial and final extremes and merge them
with the current set (additions), or we extract from the current set the removed nodes (removals). In both
cases, we must rewrite almost the whole tree.

A possible alternative to partial indexing is to use a PAT array to comprise both indices. This only works
under the assumption that we have the text with markup, and that the initial and final mark of each
constructor have a unique prefix (for example, the SGML-like <constr> and </constr>). In order to get
the tree of a constructor, we search for <constr> and for </constr>, sort both results (since in the PAT
array the ordering is lexicographic and not positional), and then we are in the same position as if we had our
partial index. Thus, if the number of index points is n, this method takes a factor O(2logn + 2|c|log|c|), on
top of ours. Moreover, since the PAT array stores one word per entry and we need two entries per segment,
the space utilization is the same as our partial index, at no benefit. Indeed, not having to index the markup
reduces (slightly) the search time for normal matches. So this idea should be discarded.

Lazy Evaluation

This index performs well for full evaluation. However, if we want to expand just one node to get its children,
it 1s very inefficient. To retrieve the first level of descendants we need to traverse the whole subtree of a
constructor. For lazy evaluation we can use an index which is O(3|Nv/|) space. It is an adaptation of the full
index that stores each constructor in a separate file, but storing only the segment and the first child of each
node. This index offers the same efficiency that the previous one does, but now it is easy to expand just one
node, in a similar way to the expansion in the full index, that 1s, with minimal disk movement and transfer.
Expanding the node of a view is harder, as said previously.

37

5.1.3 Analysis of Indexing

In this section we analyze the space requirement for indices, and the time they need to answer Constr and
View queries.

The initial proposal for the full index in memory uses 7 words. We show now how many bits it requires.
From those 7 words, we have a segment description, which takes 2log, T bits (T is the size of the text); a
constructor id (log, |Cyv | bits); and four pointers into the same index (4log, [Ny| bits). We also store an
array of constructors with pointers to their first top-level nodes (log, |Nv| bits). So, the number of bits
required for the full index is

|Nv [(4logy [Ny | + 2logy T+ log, |Cyv|) + |Cv | logy | Ny |

This index is optimal in time, since it answers View (V) in time O(|Nv|) and Constr(c) in time O(|c]).
However, the assumption of keeping it in memory is not realistic. When keeping 1t on disk, the seek time can
make the retrieval of Constr(c) to be O(|c||Ny|) seek time.

If we add the information on the next (in the array) node of the same constructor, the seek time is reduced
to O(|Nv|), but we add |Ny|log, |[Nv| to the space requirement (i.e. 8 words per node). We can avoid
this by replacing the two fields as explained, thus keeping the original space requirement and average time
complexity, although the worst case for Constr is now O(|c|log]|c|) (by using appropriate data structures
and external addressing in hashing).

Finally, we can eliminate the pointer to the first child in the view (thus eliminating another |Ny|log, | Ny |
term in the space usage, i.e. using 6 words per node), and keep the same average complexity, but the worst
case for View(V) turns to O(| Ny |log | Nv |).

The variations that store the index in different files do not alter the space usage, they just change the order
of elements. However, the time complecity changes if we use a separate file for each constructor. In this
case, we answer Constr(c) in time O(]e|) in total, but View(V') can work O(|Ny|?) seek, although only
O(| Ny |) reads are made. In this case, for lazy evaluation it is better to translate V = C1 + ...+ C}, and work
O(|Nv ||Cy]), while for full evaluation it is better to read all files to main memory and merge there, where
there are no seek costs.

Of course if we can pay the space cost of two indices, we can keep the best version for each query.

The partial index, instead, uses two words per node. In bits, it has two arrays of points, i.e. 2log, T bits.
We also need, for each constructor, to find its two arrays, so if we had all the data in a long tape, we would
need to begin with |Cy | “pointers” to the rest of the tape, i.e. log, [Ny | bits (the total number of positions
of the rest of the tape). Thus, this index takes

2|Ny [logy T+ |Cv | logy [Ny |

bits.
This index answers Constr(c) in O(]c|) time, and View (V) in O(|Ny||Cv|) time.

The lazy version of the partial index takes 3 words. In bits, it holds the segment and the next child, thus it
takes

|Nv [(2logy T+ logs [Ny |) + |Cyv [log, | Nv |

bits. The time complexity is the same as 1ts 2-words version.

To get an idea of how big Ny can be with respect to T (the size of the database), the indexing structure of
a 300-page book (with 7'x 1 Mb) may have Ny = 1000 nodes (needing 28 Kb for the full index and 8 Kb
for the partial one) if we index chapters, sections and paragraphs. If, instead, we index 1 Mb of C code with
all the fine parsing details, we would have near 300K nodes, i.e. 8 Mb of space for the full index and 2.3 Mb
for the partial one.

38

5.2 Querying

We describe here the algorithms to implement the defined operations, to show that all of them can perform
very efficiently. Observe that we have already addressed the implementation of View and Constr as part
of the definition of indices, so we focus on the rest here.

5.2.1 Full Evaluation

Since the result of a query is a set of nodes (a subset of some view), and the query language is compositional,
all operations deal with sets of nodes to produce new sets. The generation of leaves is already addressed:
Constr and View are resolved in the previous section, and since the algorithms for matching operations are
not of interest in here, we just assume they generate a set of matches.

5.2.1.1 Data Structures

For efficient operation, we represent the set of nodes by a tree (it is already mentioned in the previous section,
but with no justification for this). This tree does not represent any hierarchy, it is just a way to store a set,
which allows efficient implementation of the operations.

The criterion to form the tree is straightforward: a node descends from another in the tree if and only if it
does in the view (see Figure 5.5).

In order to save space, we could put the tree in an array, as we do with indices, but since these trees are
going to be operated upon (i.e. additing, moving and deleting of nodes), we need a highly dynamic structure,
which is not provided by the array implementation. Thus, we implement trees with pointers. For the same
reason, 1t is difficult to have these trees on disk, because we need rapid access to different portions of them.
Since the sets may be large, the need to store the full tree in memory is a weak point of this approach.

This problem can be solved by a virtual-memory-like approach, keeping part of the intermediate results (i.e.
whole trees) swapped out to disk. In this case, we must select the operand which will be used later to swap
it out (that information is available from the query plan). An interesting option to store those internal
results is to use the same layout as the one we use for the indices of constructors. This idea, together with
a good swapping policy, provides a uniform and elegant solution to the problem. Observe also that, while
an operand has to be kept in memory to efficiently modify it, a read-only operand could be operated from
disk with reasonable efficiency. This way, the policy could prefer the operands that are to be used just for
reading, to swap them out.

Figure 5.5: An example of a query (subset of the example view) and its tree representation.

From the nodes of the tree, we point to the information stored in the view array (see the section of indexing
for the many variations on this view array).

39

Observe that, given the criterion to form the tree, any tree obtained from matches or operations on matches
is flat, i.e. a linear array of non-overlapped, non-nested segments, so all operations on matches need to work
on those arrays, while operations on other structures work over general trees.

5.2.1.2 Generating a Query Plan

Given the syntax tree of a query, we need to generate a query plan, that is, a sequence of operations to yield
the desired result. There are many ways to linearize the operations of a tree preserving dependencies. We
prefer the one which minimizes the total space needed for the computation. Suppose one has to evaluate
X op (Y op (Z op W)). One could first obtain X and then obtain the other side. To obtain the other side
one must, while keeping X in memory, compute Y, and then evaluate the other side, and so on. This way,
we have, at a given time, XY 7 and W all in memory (of course we can paginate, but this is not desirable
either). If, instead, we evaluate right-to-left in this case, we need space just for two operands at each time.
Note that almost all operators select nodes from the left operand which have some property, so normally
X op ¥ < |X].

This problem, although simplified, is solved in [ASU86]: one has to obtain first the “heavier” operand, then
the other, and then operate them. Since in [ASU86] the problem is assignment of registers to compile an
expression tree, the “weight” of a tree is defined as its number of nodes. We need instead to estimate the
size of our sets. In absence of good estimators, using the number of nodes seems a reasonable initial choice
(although more sophisticated heuristics should be developed). Thus the algorithm would be as simple as
solving the tree by selecting first the bigger subtrees to evaluate.

A useful modification to having a syntax tree for the query is to have a directed acyclic graph (DAG), to avoid
re-evaluating common subexpressions. These are not so uncommon in our language: not only constructor
names can be frequently repeated, but for example the not form is expressed as Q — (@ such that...).

In that case, the problem of finding an optimal evaluation order becomes much more complicated, being
similar to the problem of evaluating the DAG of an expression minimizing registers [ASU86], which is known

to be NP-Complete [GJ79).

Another important point is that we can write our algorithms to operate by modifying one of the operands
to produce the answer, or by generating a new set. If the selected operand is to be used only once, it is
better to modify it, otherwise we should generate a new set. This way, we should have two versions for
each algorithm. Another alternative is to use modifying algorithms and make a copy of the selected operand
before the operation; or to use generating algorithms and deleting the operand the last time it 1s used.

The query plan generator must implement the appropriate policy to avoid keeping unnecessary copies in
memory, deleting operands the last time they are used. This can be avoided if the last use is “modifying”, so
a good policy is to leave that operation for the end. If we have both versions of the algorithms we just select
the modifying version the last time we use an operand. Most of the algorithms modify just one operand, so
the other is used just for reading. If we have only modifying operators, we can avoid making a copy if it is
the last use for the operand to be modified. All these ideas must coexist with a general heuristic to evaluate
a DAG minimizing the use of memory. This problem reveals of most importance in the experimental results,
and deserves a complete study in the context of smart query plan generation.

A reasonable heuristic for a DAG [ASU86] is to collect the root and all shared nodes, forming the tree of each
collected node, consisting of their descendant nodes, but stopping at leaves or at shared nodes (i.e. roots of
other trees). Each tree is solved with the optimal algorithm for trees, and the order for evaluating trees is
some topological ordering of the shared nodes, where after evaluating each node we must keep it until all its
parents have been evaluated.

Observe that all these algorithms to select a suitable order of evaluation are meaningful only if we use full
evaluation, since for lazy evaluation the order is dictated by the mechanism itself.

Another interesting point is the optimization of the query, but we do not address that issue here, since it is
complex enough to constitute a whole separate problem (see, for example, [CM94]).

40

5.2.1.3 Description of the Algorithms

Now we describe the algorithms to implement the operations. We define first the type of trees Ty, over view
V', that these operators work on and yield. Operators are of type operator:

Ty = Subtreey,
Subtreey = Ny x Ty

operator = Ty, — Ty

As we mentioned before, we have two strategies for full evaluation.

The first one, called search-operate, operates by selecting one of the two operands and, for each of 1ts nodes,
searching into the (tree of the) other against what should it operate, making then the operation. The
searcher /searched selection can be changed for the subproblems (subtrees), which are generally easy to find
given the search performed by the root node. Which operand is searched into which is a heuristic decision.
In the operands, we call “12” the strategy that searches the left operand into the right one, and “21” the
opposite. For example, if we want to intersect P and @ (i.e. is), we can take each element p from the
top-level of P, search it in the tree of), and keep 1t only if it is found in @. The search for the children of
p starts where the search for p ended. It seems a better idea to search the smaller tree into the bigger, so if
the subtree where the children of p must be searched is smaller than the subtree of p we prefer to search the
smaller @) subtree into the subtree of p. It also seems a good idea to have a data structure that allows binary
search on each level of the trees. We have selected the heuristic to decide between “12” and “21” based on
the results of the analysis, intuition and experimental results.

The second one, called merge, operates by sequentially traversing both trees, in a more or less synchronized
way. For example, to solve (P is)), we traverse both top-levels in synchronization, keeping the P nodes that
we also find in @. Depending on the inclusion relationships between P and @) nodes, we may have to descend
in some of the two trees. This strategy works better with a data structure that allows efficient sequential
access at each level.

As we show below, the worst-case behavior of merge is better than that of search-operate, but the average case
has to be compared experimentally, since search-operate could be better if the operands have too different
size. Along with the description of each algorithm we include its worst-case analysis.

We use the following notation (see also the formal definition of the model in Chapter 3):

e A segment can be written by denoting its two extremes {a, b), being @ and b two natural numbers from
ltoT.

e p > q means that the segment of p is definitely after the one of ¢, i.e. From(p) > To(q). We use the
same notation with p and ¢ being segments, or even subtrees (denoting their root node). Analogously
we define p < ¢.

e p = ¢ means that both nodes are the same (not segments) if they are from the same view, but if we
compare two nodes from different views for equality, we mean segment equality.

o As expected, C means C or = (recall the definition of C between nodes).
e p overlaps ¢ means From(p) < From(q) < To(p) < To(q) or vice versa.

e We assume for convenience (in all merge and lazy algorithms) that each list of subtrees ends with a
special segment (o0, 00}, and we assume oo = 0.

o If P is a query, then its top-level list of nodes is referred as {p1..piase}. If the list of subtrees of P has
only one element, this lone subtree is referred to as p. {p4..ps} represents a subsequence of P.

41

e node(t) and query(t) are the node and subquery, respectively, of a Subtreey t. (this query(t) may be
not expanded in lazy algorithms).

e | P| denotes the number of top-level elements of a tree, and size(P) denotes the total number of nodes

of P.

e If we compare two segments or a node against a segment, the comparison operator should be interpreted
as if they were from different views. This is always well defined. For example, {a,b) C n < {(a,b) C
Segm(n).

o parentyiey(node) denotes the parent of node in the view tree, and parentg(node) denotes the same in
the tree of the query @); it can be none if the node has no parent. parentg is not stored but computed
while searching the node into Q.

® POSyiew and posg denote the position of the child into its corresponding parent.
e none, used as a query, denotes an empty query.

e When we use an operator name in prefix form, we indicate that the operation is not performed but left
specified (for lazy evaluation).

o If P={p1.pn} and Q = {¢1..qm} are queries (denoted by their top-level trees), then the query P : @
(concatenation of top-levels) denotes {p1..pn, ¢1..¢m}. This can only be done if p, < ¢;.

e We use a C-like notation for our algorithms, with call-by-value convention and replacing braces by
indentation. If any statement follows an If or While condition in the same line, then all the statements
following the condition in the same line form the body of the compound sentence. In merge and lazy
versions, we use a switch-like notation (a big left brace), in which the conditions are sequentially tested.

Finally, recall that we are not deciding whether the operations work by modifying its arguments or they
generate a new set with the result (we use the modifying or the generating terminology, which is most
convenient for the exposition), and that we are not including in the algorithms the operations needed to keep
count of sizes (which we need for some operations). We disregard also the consideration of some exception
conditions that can happen, to avoid complicating the exposition (e.g. empty queries, empty segments, null
values, unmarking, etc.).

If we use modifying operators, we need to merge nodes from different levels, extract a range of nodes from a
level, etc. Although we do not detail this, we assume we use a data structure that allows searching, extracting
a subinterval and merging (when the merged set is to be inserted entirely in a single point) in logarithmic time.
For example, we can use balanced binary trees. Searching can be done by simple binary search. We can delete
a subinterval by making two “cut” operations and then merging the resulting subtrees (i.e. to delete (a..b)
from T, we make (Lq, Ry) = Cut(T, a), then (I4p, Ry) = Cut(Ry,b), and then 7" = Merge(L,, Rp)). Finally,
we can insert a subinterval by making one “cut” and merging three subtrees, 1.e. to insert I, in 7', we make
(L, R) = Cut(T, a) (note that since the whole subinterval fits in the same point of T', Cut(T, a) = Cut(T\, b)),
then we make 7 = Merge(L, Merge(I4, R)). All this can be done in O(logn) time for trees of size n,
including the necessary rebalancing.

We use the following numbers in the analysis: nx is the size of the set corresponding to operand X, hx is
the height of its tree (in the worst case it can be nx) and dx is the maximum degree of its tree (it can also
be nx in a flat tree). We also use n, d and h as the maximun corresponding value between all operands
(there are two or three operands). Although it is possible to obtain a measure in terms of n only, there exists
normally some relationship to A and d, which should be interesting when we know some properties of the
trees a particular application uses.

Some heuristic assumptions we have to make when we attempt to map the results of the analysis into a
heuristic decision for “12” vs “21” (since we do not store d nor h) are: d, h, hlogd = logn, logd =~ constant.

42

“4” operator

Search-operate version: We select one of the two trees to “put into” the other. For each element of
the top-level of one tree, we search it into the other, inserting it where corresponds, and chaining with
subproblems appropriately. Which tree is searched into which is a heuristic decision, as in all search-operate
algorithms.

To partition the problem adequately, we do not search each element of the first tree in sequence, but we parti-
tion the set in a binary fashion. This way, if we have to insert {(1,1),(2,2), ..., (n,n)} into {({1, 2n}), {1, 2n — 1},
o, {1, n+ 1)}, we operate by first searching (1, n), then (1,n/2) and (n/2 + 1, n}, then (1, n/4), (n/4 + 1,n/2),
(n/241,3n/4) and (3n/4 + 1, n), etc., until reaching the real nodes. Note that in this way we insert the
node (1, n) until the bottom of the second operand, making n operations in total, while if we inserted each
element (i,), we would make n? operations. One can see this technique as if for each level of the searching
tree, we built a binary search tree, adding artificial internal nodes (e.g. {1,n), (n/2+ 1,3n/4)). Note that
we add O(n) artificial nodes. This technique is applied in all the search-operate algorithms.

See Figure 5.6 for another example. From a single level of P a binary tree of artificial nodes is created. When
inserting that level into @), an originally O(n?) task (straight arrows) is converted to an O(nlogn) task (curve
arrows).

Observe that no overlaps are possible, since P and ¢ must be from the same view.

P + @ (search-operate version): Operate (P, Q)
Operate (P, Q)

If (size(P) < size(@)) return Plus (P, Q)
else Plus (Q,P)

Plus (P,Q)

If |P|=1

(Q',b,t) — Search (node(p),@).

If (g #p) Q — {11} : (0 Ag-ai}) {ai4a--}-

query(q;) — Operate (query(q;), query(p)) .
else

(Q',b,t) — Searchi ({(From(p1),To(piast)), @) .

Q —{q1--q,_1} - Plus ({pr..prair}, Plus ({prats41-Praset, {¢4--411)) {dipr--}-
Return ()’.

Search (node, Q)

b—1. t—1Q|.
Repeat
Restrict b,¢ while ¢p_1 < node < ¢;41 (binary search).
If (view(node) = view(qy) # text view)
If (node ¢ q;) Return (Q),b,1).
else If (Segm(node) ¢ Segm(qy)) Return (Q,b,t).
Q — query(qp).

43

Searchi (node, Q)

b—1. t—1Q|.

Repeat
Restrict b,¢ while ¢p_1 < node < ¢;41 (binary search).
If (node € q;) Return (Q,b,1).
Q — query(qp).

artificial
nodes

- —— = = = —— — — - rednodes

v v v v v A v
y 3 v

Figure 5.6: An example of the mechanism of artificial nodes.

Search operates by binary searching the left and right extremes of the node, thus it is O(logd). Note
that if Search takes care of, prior to searching each side, verifying if the answer is not already the initial
value of b or ¢, no additional work is done by adding the artificial nodes, since at each iteration, two of
the four ends to search are already computed: after determining that (From(p:), To(piast)) restricts the
@ list to {gs..q:}, we search (From(p1), To(praip)) in {qs..q+} (then From(p:) is work already done) and
(From(phatf+1), To(prast)) In the same array (then To(piqs:) is work already done). In this way, we do not
make any additional work. Searchi is similar, but it enters into a node also when it is equal to the searching
node.

We can show that this algorithm is between O(nlogd) and O(nlog?d). We have not been able to tighten
this analysis. This analysis is only valid if both operands are from the same view, which is true in this case.

We first analyze the algorithm as if always P was searched into @), we take care later of the possible reversing
of roles in subproblems.

To see that it is O(nlog® d) we first demonstrate that a given node of @ can only be traversed by O(logdp)
nodes from P. We are interested in nodes of P that traverse some node of @) (by traversing we mean that
along the global execution of Plus, the P-node searches into a level of) and falls inside one (J-node, going
to the next level; this -node is said to be traversed by the P-node), since the P-nodes which do not traverse
()-nodes can only search on a single level of @, thus their whole complexity is O(np logdg).

To see that, we first show that all the P-nodes traversing a single ()-node are in a single level of P. Suppose
p1,p2 traverse ¢, and are from different levels of P. Suppose first that both nodes have parents, which we
denote Py, Py. If p; traverses ¢, then P; does not (since if P; traversed ¢, p; would search into the descendants
of ¢, being impossible for it to traverse ¢). Note also that P; cannot be included in ¢, since p; is the first on
the path from p; to the top level of P in traversing ¢. This also implies that pi, p» cannot descend from one

44

another, that is, they must be disjoint. Now observe that we have derived the following facts: p; and p» are
disjoint and included in ¢, p; 1s included in P;, and P; and P2 are not included in ¢. This is impossible, since
all these nodes belong to a single hierarchy (view), except if P, = P2, what we wanted to demonstrate. The
generalization to the case in which some p; has no parent is trivial.

Once we have this result, we show that with the method of artificial nodes, only O(logdp) (artificial or
original) nodes can traverse q. We reason as if the level of P under consideration was a binary tree (of depth
logdp), to show that at most 2 nodes of each level of P can traverse gq.

Suppose there were 3 nodes of a single level of the binary tree traversing ¢. If they are not contiguous, then
all nodes of the same level between the first and the last of the three must be included in ¢ also. Thus, there
are at least 3 contiguous nodes in a single level included in ¢. From those 3 nodes, two of them must have
the same parent (an artificial node), which extends from the start of the first one to the end of the second
one. Therefore, this parent node must also be included in ¢, moreover, properly included (because of the
third node). Then, this parent node should traverse ¢, and not its two children. A contradiction.

Now, the rest is easy. Since any node of @ is traversed by at most O(logdp) nodes, if we count the search
to determine each traversal, we have that the total work is O(ng logdp log dg). Summing this to the work
done by P nodes that do not traverse a) level, we have a total complexity of O(logdg(np + nglogdp)) =
O(nlog® d).

The easiest way to take switching into account (i.e. the fact that Operate can change the order between P
and Q) is to consider the total number of calls of the form Plus(P, @) and the total of the form Plus(Q, P).
Both totals are less than if all the calls were made by only one form, thus at worst we double the time (of
course this is not true, a better approximation is to say that summing both complexities we complete n log2 d,
but for our purposes it is the same). Therefore, the complexity remains the same if we see it in terms of d
and n.

To see that it is no less than O(nlogn), consider {{1,n — 1}, {n,n), {1,n =2}, (n — L,n— 1), .., {1, 1}, (2,2)} +
{1, 1),(2,2),...(n,) }.

Merge version: We merge both trees, at the top level first. When one segment is included in another, we
descend on the corresponding level to merge the included segments.

P + @ (merge version): Operate (P, Q, c0).result
Operate (P, Q,limit)

res «— A.
While min(7o(p;),To(q;)) < limit

p; < q;j: res<—res:p;. Pass i.
p; > q;: res<—res:q;. Pass j.
pi =¢q;j : res < res: (node(p;), Operate(query(p;), query(p;), o) .result). Pass i,j.
pi Cqj : Op<— Operate ({p;...}, query(q;), To(q;)+ 1) .
res «— res : (node(q;),Op.result). {p;...} — Op.rest. Pass j.
pi D ¢;j © Exchange {p;...} — {¢;...}.

Return (result = res,rest = nonempty list from {p;...} and {g;...}).

This algorithm is linear, which can be proven by a simple argument: at each comparison we make, at least one
element from P or () is solved and no longer compared. This way, we have O(np + ng) = O(n) time. To see
this, we can inductively assume that Operate is linear (which is true when no further recursive invocations
are made, since for each operation at least one element is eliminated from the problem), and observe that it
returns the part of the list on which it has not worked. This way, since the recursive invocations are linear
and the elements they consider are not reconsidered by the caller, we have total linear behavior.

To see that the algorithm is no less than O(n) consider {{1,1),(3,3), ..., 2n+ 1,2n+ 1)} + {(2,2), (4,4), ...,
(2n 4+ 2,2n+ 2)} (both flat trees).

45

“—” operator

Search-operate version: We select one tree to search it into the other. We delete elements from P if we

find them in @ also.

Observe that no overlaps are possible, since P and ¢ must be from the same view.

P — @ (search-operate version): Operate (P, Q)
Operate (P, Q)

If (size(P) < size(Q)) Minusi2 (P,Q).
else Minus21 (P, Q).

Minusi12 (P, @)

If |P|=1
(Q,b,t) — Search (node(p), Q).
Operate (query(p),{qs..¢:}) .
If (g =p) P — query(p).
else
(Q,b,t) — Searchi ((From(p1),To(piast)), @) -
Operate ({p1.-Phaif}, {qv--q¢}). Operate ({Phaif+1--Prast}, {g6--q:}) -

Minus21 (P, @)

If Q=1
(P,b,t) — Search (node(q), P).
Operate ({ps..p:}, query(q)).
If (q=py) P —{p1-po—1}:query(ps): {pe+1-..}-
else
(P,b,t) — Searchi ({(From(q),To(qiast)), P) .
Operate ({py..ps}, {q1--qnaif}). Operate ({ps..pi}, {qnair+1--Qrast}) -

The analysis of this algorithm is similar to the corresponding “+” operator, thus we have O(nlogd..n log? d).

Merge version: We traverse both trees in synchronization. When we find a match, we delete the corre-
sponding node from P. The inclusions among segments drive our movement through levels.

The algorithm is presented in the next page.

This algorithm 1s linear, which can be proven by an argument very similar as for “4+”: at each comparison,
at least one element is left out of the problem, Operate is linear and does not repeat the work done in its
recursive calls. Therefore, we have O(np + ng) = O(n) time.

To see that is no less than O(n) consider the same example as for “+”.

46

1

P — @ (merge version): Operate (P, Q, co).result

Operate (P, Q,plimit)

res «— A.
While To(p;) < plimit

p; < qj: res<—res:p;. Pass i.
p; > q; . Pass j.
pi=qj: Api-} — query(p;) : {pit1.-.}-
pi Cqj . Op < Operate ({p;...}, query(q;), To(q;) + 1).
res «— res : Op.result. {p;...} — Op.restp. Pass j.
pi Dg¢j: Op<— Operate (query(p;),{q;...},00).
res — res : (node(p;), Op.result).
{gj...} — Op.restq. Pass i.

Return (result = res,restp = {p;...}, restg = {g;...}) .

operator

Search-operate version: We select one tree to search it into the other. We mark elements of P when
find them in @) also, later we delete unmarked elements.

Observe that no overlaps are possible, since P and ¢ must be from the same view.

P is Q (search-operate version): Operate (P, Q)

we

Operate (P, Q)

MarkIs (P,Q).
Delete unmarked elements from P.

MarkIs (P,Q)

If (size(P) < size(Q)) MarkIsi2 (P,Q).
else MarkIs21 (P,Q).

MarkIsi2 (P, Q)

If |P|=1
(@,b,t) — Search (node(p),@). If (g, =p) Mark p.

MarkIs (query(p),{qs..q:})-
else

(Q,b,t) — Searchi ((From(p1),To(piast)), @) -
MarkIs ({pi..prais}, {a5--0:}). MarkIs ({praif+1--Prastt {¢--q:}) -

MarkIs21 (P, Q)

1t jQl=1
(P,b,t) — Search (node(q),P). If (¢=p;) Mark p;.

MarkIs ({ps..p:},query(q)) .
else

(P,b,t) — Searchi ({From(q1),To(qiast)), P) .
MarkIs ({py..pi},{q1--qnais}). MarkIs ({po..pi}, {qnaif+1--Qiase}) -

47

The analysis of this algorithm is much as for the corresponding “4” operator, except that we have to add
a O(np) to the complexity, for collecting marked nodes. Since this does not change the total, we have

O(nlogd..nlog”d).

Merge version: We traverse both trees in synchronization. When we find a match, we include the corre-
sponding node of P. The inclusions among segments drive our movement between levels.

P is Q (merge version): Operate (P, Q, o0).result
Operate (P, Q,plimit)

res «— A.
While To(p;) < plimit

p; < ¢;: Pass 1.
p; > q; . Pass j.
pi =¢q; : res — res: (node(p;),Operate(query(p;), query(g;), o) .result). Pass ¢,j.
pi Cqj: Op <« Operate ({p;...}, query(q;), To(g;) + 1) .
res « res: Op.result. {p;...} — Op.rest. Pass j.
else : {pi...} — query(pi) {pit1---}-

Return (result = res,rest = {p;...}).

This algorithm is O(np + ng) = O(n), again with the argument that any comparison deletes at least one
element from the problem.

To see that it is no less than O(n), we can use the same example of the “+” operator.

“same” operator

This operation is exactly like is, except in that we do not check for node equality but for segment equality.
In this case, overlaps are possible. This fact does not affect the algorithms (observe that the clause p; = ¢; of
the merge version is tested before p; C ¢;), but the analysis done for the search-operate version is no longer
valid, because of overlaps.

In this case, we analyze MarkIs12 as follows: each element of P can traverse a whole path of), making
logdg operations on each level; but it can never traverse more than the whole (). This way, we have
O(np min(ng, hg logdg)). MarkIs21 is similar, that is, O(ng min(np, hplogdp)). Thus, switching produces
O(nmin(n, hlogd)).

We can show that it can reach O(n?) with this example: {{1,n), (n + 1,n+ 1), (1,n — 1), (n,n),....(1,1),(2,2)}
same {(2,2n+ 1),(2,2n),....(2,n+ 2)}. All the nodes (i, ¢) traverse the whole chain of segments of @); and
this happens at least for ¢ € n..n/2 (because of switching).

However, observe that our analysis for the merge version does remain the same, that is, O(np +ng) = O(n).
“in” operator

Search-operate version: We can search each element of P in the top-level of @ to determine whether it
is included or not, in the last case we replace the P node by its children; or we can search each element of
the top-level of () into P to determine which nodes of P it includes, mark them, and later collect the marked
P-nodes.

Observe that overlaps are possible here, since P and) can be from different views.

48

P in @ (search-operate version): Operate (P, Q)
Operate (P, Q)
MarkIn (P,Q).

Delete unmarked elements from P (if a node is marked, its descendants are
considered marked).

MarkIn (P,Q)

If (size(P)log, |@Q] < |Q|logy(size(P))) MarkIni2 (P, Q).
else MarkIn21 (P,Q).

MarkIni2 (P, Q)

If |P|=1
Restrict b,¢ while ¢p_1 < p < ¢qr41.
If (p Cq) Mark p.

else MarkIn (query(p),{¢s..q:})-
else

Restrict b,¢t while q;_1 < (From(p1), To(piast)) < qi41-
MarkIn ({p1..praif},{¢s--q:}). MarkIn ({prais+1--Piast}, {qp--q+})

MarkIn21 (P, Q)

1t jQl=1
(P,b,t) — Searchi (node(q), P).
If (¢ overlaps py) MarkIn21 (query(py),{q}). b—b+1.
If (¢ overlaps p;) MarkIn2i (query(p:),{q}). t—1t—1.
Mark pp..pt.
else
(P,b,t) — Searchi ({From(q1),To(qiast)}, P) .
MarkIn ({py..p:}, {q1-qnarr}). MarkIn ({ps..p:}, {qnair41--Qrast}) -

The analysis of this algorithm is as follows.
The final deletion of unmarked nodes is O(np).

For MarkIni2, in the worst case we would have to process the whole P against the top-level of). This
implies that it is O(np logdg).

To see that MarkIn12 can reach O(nlogn) consider {{1,2n),{1,2n — 1),...{1,n+ 1)} in {{1,1},(2,2), ..., {(n, n) }.
Observe that in this analysis, dg stands in fact for the arity of the top-level, not the maximum arity.

For MarkIn21, we can use the same analysis done for “4”) since although we needed there to assume the
absence of overlaps to show that only the children of a single node (of @ in this case) could traverse a node
(of P in this case), and there may be overlaps here, we have only the top-level nodes in this case. Thus, it
also holds here that fact. The rest of the proof did not need the absence of overlaps, so we have that only
logdg nodes can traverse a given P node. If we add the nodes of dg that do not traverse a level in P, we

have a total of O(logdp(dg + nplogdg)) = O(nlog® d).

We have still not considered the marking done at each level by MarkIn21. Observe that the marking of the
range pp..p: is O(dp) in principle, but we can use a balanced binary tree, where the root stands for marking
P1..pa, its children for pi..pg/2 and pgjaq1..pa, etc. This way, marking involves traversing that binary tree
from the root to the leaves, a O(logdp) task, thus this marking is O(dglog dp) in total and does not affect
the whole result.

Again, we have not been able to show that it can reach O(n log® n), we can only reach O(n logn) by considering

49

the same example as for “47.

If faced to the problem of having best worst-case complexity, we use only MarkIni2 to achieve O(nlogd)
behavior.

This analysis does not change if P and @ are from the same view.

Merge version: We traverse the top levels of P and @, in synchronism. When a top-level node of P is
included in one of @), that subtree of P is included. When a top-level node of P includes one of @), we replace
the node of P by its children.

P in @ (merge version): Operate (P, Q)
Operate (P, Q)

res «— A.
While To(p;) < oo

p; < ¢;: Pass i.

p; > q;: Pass j.

p; Cqj: res<—res:p;. Pass i.

else : {pi...} — query(pi) : {pig1.--}-
Return res.

This algorithm is O(np 4+ ng) = O(n), which can be seen by observing that any element is considered at
most once.

We can refine this analysis as follows: each time a node of P is expanded is because it contains an element
of @ or because it overlaps with an element of @, thus each extreme of each segment of (the top-level of)
@ is compared, at most, with a complete path of P (length hp). That is because once we descend the first
level in P, the relevant list from the top-level of () has only one element (the original ¢;). At each level of
this path, the merge can take us dp comparisons, thus the cost is O(dghpdp) = O(d?h). That means, for
example, that in a model with constant d and balanced trees the operation takes O(logn).

This way, the complexity of this operator is O(min(np + ng,dghpdp)) = O(min(n, d*h)).

To see that it can reach O(n), we use the same example of “47.

This analysis does not change if P and @ are from the same view.
“beginin/endin” operators

Search-operate version: The idea is quite the same as for in. We use here a second mark, which means
that the node is marked but its children are not necessarily marked. Overlaps are also possible here.

MarkIni2 (P, Q)

If |P|=1
Restrict b,¢ while ¢p_1 < p < ¢qr41.
If (p C q) Mark p.
else
If (From/To(p) € qv/q:) Mark2 p.
MarkIn (query(p),{qs.-q+}).
else
Restrict b,¢t while q;_1 < (From(p1), To(piast)) < qi41-
MarkIn ({p1..praif},{¢s--q:}). MarkIn ({prais+1--Piast}, {qp--q+})

50

MarkIn21 (P, Q)

1t jQl=1
(P,b,t) — Search (node(q), P).
If ¢ overlaps py
[ONLY beginin] Mark2 p;.
MarkIn21 (query(ps),{¢}). b—0b+1.
If ¢ overlaps p;
[ONLY endin] Mark2 p;.
MarkIn21 (query(p:),{q¢}). t—1t—1.
Mark pp..pt.
else
(P,b,t) — Searchi ({From(q1),To(qiast)}, P) .
MarkIn ({py..p:}, {q1-qnarr}). MarkIn ({ps..p:}, {qnair41--Qrast}) -

Operate and MarkIn are almost the same, except when deleting unmarked nodes; when we keep the elements
with the second mark, but we go into their subtrees, since they are not automatically marked.

The analysis for these algorithms is exactly the same as for in.

Merge version: The algorithms are quite the same as for in.

P beginin Q (merge version): Operate (P, Q).result
Operate (P, Q)

res «— A.
While To(p;) < oo

Pi < ¢ Pass 1.
Pi > q; Pass j.
pi Cyqj: res «— res :p;. Pass 1.

From(p;) € qj : Op — Operate (query(p;),{¢;...}).
res < res : (node(p;), Op.result). {q;...} — Op.rest. Pass i.
else : {pi...} — query(pi) {pit1---}-

Return (result = res,rest = {g;...}).

P endin @ (merge version): Operate (P, Q)
Operate (P, Q)

res «— A.
While To(p;) < oo

p; < q;j: Pass 1.

p; > q; . Pass j.

pi Cqj: res<—res:p;. Pass i.

else : Op — Operate (query(pi),{q;..-}).
{gj...} — Op.rest. While (To(g;) < To(p;)) Pass j.
If (To(p:) € q;) res — res: (node(p;), Op.result).
else res «— res : Op.result.
Pass 1.

Return (result = res,rest = {g;...}).

The analysis of these algorithms is the same as for in. The only difference is that there is some extra work

51

in retraversing @ (i.e. the clause p; > ¢;). But observe that it is, in total, linear in the size of the top-level
of). Thus, we add O(dg), which does not affect the total.

To see that it can reach O(n), we use the same example as for “47.

If P and @ are from the same view, beginin/endin should be interpreted as in.
“[s] in/beginin/endin” operators

Search-operate: We can take each element of), search it into P, and mark the s-th immediate descendants.

Or we can take each element of P, search in @ its including nodes, and for each including node, we search
back in P its immediate descendant, marking the s-th ones. This is done until there are no more including
nodes of the P-node in @, or until the P-node is marked (each element in P is given its opportunity to be
marked). The used elements of @ are also marked, to avoid repeating work (we collect in an implicit list the
marked @ elements, to avoid traversing the whole @ to unmark it). Due to the form of traversing @, we
cannot use for a node of P a node of @) corresponding to a higher level of P (since when a P-node gives the
turn to its descendants, it has traversed in @ all the levels that corresponded to it).

Observe that overlaps are possible here, since P and) need not to be from the same view.

[s] P in @ (search-operate version): Operate (P, Q)
Operate (P, Q)

MarkIn (P,Q).
Delete unmarked elements from P, unmark elements of ().

MarkIn (P,Q)

If (size(P) < size(Q)) MarkIni2 (P,Q).
else MarkIn21 (P,Q).

MarkIni2 (P, Q)

Repeat
Restrict b,¢t while q;_1 < (From(p1), To(piast)) < qi41-
If (|P|=1) If p ¢ q» Break repeat.
else If ((From(p1),To(piast)) ¢ q») Break repeat.
If ¢q; is unmarked
Mark qp.
Restrict base,top while ppase_1 < ¢ < Ptop+1 -
[EXCEPT endin] If (q; overlaps ppqse) base «— base + 1.
[EXCEPT beginin] If (qp overlaps piop) top «—top—1.
For each m € base..top
If (pp 1is unmarked A m — base € s) Mark p,,.
Q — query(qp).
If (|P|=1) MarkIn (query(p), {9..q:}) -
else MarkIn ({p1..prais}, {¢s.-¢+}). MarkIn ({praif+1--Diast}, {qo--q¢}) .

52

MarkIn21 (P, Q)

1t Q=1
If ¢ is unmarked
(P,b,t) — Search (node(q), P).
Mark ¢. MarkIn ({p;..p:}, query(q)).
[EXCEPT endin] If (q; overlaps pp) b— b+ 1.
[EXCEPT beginin] If (g overlaps pi) t — 1 —1.
For each m € b..t
If (m—0b¢€s) Mark py,.
else
(P,b,t) — Searchi ({From(q1),To(qiast)}, P) .
MarkIn ({py..p:}, {q1-qnarr}). MarkIn ({ps..p:}, {qnair41--Qrast}) -

We analyze this algorithm by considering both alternatives separately. Note first that the final collection of
marked nodes is O(np) (although we have to unmark nodes of @ also, observe that the marked nodes of @
are kept in a list to unmark them, and the size of this list is < size(P)).

MarkIni2 can search, in total, on the whole @, so that part is O(np min(ng, hglogdg)) (recall same). Each
element of) can search on a level of P, and traverse the same level to mark its s-th children, thus we have
O(ng(logdp + dp)), yielding a total of O(np min(ng, hglogdg) + ngdp) = O(nmin(n, d + hlogd)).

MarkIn21, on the other hand, traverses P, thus we have O(ng min(np, hplogdp)), and each element can

mark on a single level of P, thus we have also O(ngdp), yielding O(np 4+ ng min(np,dp + hplogdp)) =
O(nmin(n,d + hlogd)), the same total as MarkIni2.

To see that both MarkIn12 and MarkIn21 can reach O(n?), consider the following example: [s] {(1,1),
(2,2), ..., {n,ny}in {(1,2n),{1,2n— 1}, ..., (1, n+ 1} }.

If P and @ are from the same view, the algorithm behaves better. Since the searches become O(nlog2 d)
(recall “47), we have that MarkIni2 is O(nplogdplogdg + ngdp) = O(nd). Similarly, MarkIn21 becomes
O(nglogdglogdp + ngdp) = O(ngdp) = O(nd). Then the whole algorithm is O(nd).

If P and @ are from the same view, [s]beginin/endin should be interpreted as [s]in.

The same example shown for the general case demonstrates that we can reach O(n?) even inside a single
view.

Merge version: This algorithm requires also marking of selected nodes. We traverse both trees in synchro-
nization. When we find a set of nodes of P included in one of), we include the s-ths of them, and then we
pass again over the included P-nodes, this time comparing them with the subtree of the -node. If| instead,
the node of P includes one of @), we follow the children of the P-node. We finally collect the marked nodes
of P.

The algorithm is presented in the next page. It is analyzed as follows.

First, consider that we can traverse both P and () completely, and that the final deletion of unmarked nodes
is O(np). Observe that each element of) is deleted from the problem by doing at most O(dp) work (when
pi C ¢;), thus the algorithm is O(np + ngdp). But also observe that each element of P can be worked on by
at most a complete path of @, thus the algorithm is also O(ng + nphg). Then, the algorithm has the best
from both complexities, namely O(min(np + ngdp, ng + nphg)) = O(nmin(d, h)).

To see that it can reach O(n?), consider the same example as for search-operate
This analysis is not different if P and) are from the same view.

The algorithms for [s]beginin and [s]endin are quite similar to [s]in, the only difference being that we should
replace (in both places) the condition p; C ¢; by From(p;) € ¢; for beginin and by To(p;) € ¢; for endin.
The analysis 1s the same.

If P and @ are from the same view, [s]beginin/endin should be interpreted as [s]in.

53

[s] P in @ (merge version): Operate (P, Q)
Operate (P, Q)

Traverse (P, Q).
Delete unmarked P nodes.

Traverse (P, Q)

While max(To(p;), To(q;)) < oo

p; < q;: Pass i.
p; > q; . Pass j.
pi Cqj . Traverse ({p;...},query(q;)). pos—1.
While p; C ¢
If (p; is unmarked and pos € s) Mark p;.
Pass ¢. pos<— pos+1.
else : {gj...} — Traverse (query(p;),{¢;...}). Pass i.

Return {¢;...}.

“with(k)” operator

Search-operate version: We can take each element of (), search it into P, and increment the annotation of
the last P-node including it. The annotation is handled as follows: we store, for each node of P, how many
times it has been annotated. Then we traverse P, computing the total number of annotations in its subtrees
plus its own annotations, deleting the node if this total is < k.

Alternatively, we can take each element of P and determine how many elements of) it includes,; deleting
it if includes less than & nodes (by doing it bottom-up, we only count this for nodes without remaining
descendants, i.e. as long as a node is determined to pass the test, its ancestors are automatically included).
We cannot switch between the two algorithms for the subproblems as before, because they are difficult to
combine. Recall that we store the size of each subtree, although we do not detail how we keep it, because it
adds uninteresting overhead to the exposition. We also store the counter for each node, which is normally
zero.

Observe that overlaps are possible here, since P and) need not to be from the same view.

Note that we use parentp in MarkWith21. This information is not stored, but easily computed by Search.

P with(k) Q (search-operate version): Operate (P, Q)
Operate (P, Q)

If (size(P)(log,(size(®)) + min(k, size(Q))) < size(Q)log,(size(P))) Withi2 (P,@).
else With21 (P, Q).

With21 (P, Q)

MarkWith21 (P, (@, none).
Delete (P).

54

Delete (P)

tot — 0.
For each p;

parc — annot(p;)+ Delete(query(p;)).

tot — tot + parc. annot(p;) — 0.

Include p; only if parc > k (it is already a leaf if deleted now).
Return tot.

With12 (P, Q)

If |P|=1
(Q,b,t) — Searchi (node(p), Q).
tot — With12 (query(p),{qs.-q+}) -
If (tot < k) tot — CheckIncl (p,{qs..q:}, k)
If (tot < k) Delete p.
Return totf.
else
(Q,b,t) — Searchi ((From(p1),To(piast)), @) .
Return With12 ({p1..prais}, {¢s.-:}) + With12 ({prais+1--Piast}, {qs-.q:}) .

MarkWith21 (P, Q,top)

1t jQl=1
(P',b,t) — Search (node(q), P).
If (P # P') top — parentp(P’).
MarkWith21 ({p}..p}}, query(q),top).
If (top # none) annot(top) — annot(top)+ 1.
else
(P,b,t) — Searchi ({From(q1),To(qiast)}, P) .
MarkWith21 ({ps..p+},{¢1.-qrair}) . MarkWith2l ({ps..p:}, {qnatf+1--Qrast}) -

CheckIncl (p,Q,k)

Restrict b,¢ until (From(qs), To(q:)) C Segm(p).
n%k—(t—b—l—l).
For each m € b..t, while n >0

n—n—size(qm).
If (n<0) Return k.
If p overlaps qp_1

n«—n — CheckIncl (p,query(gp—1),n). If (n<0) Return k.
If p overlaps qi41

n—n — CheckIncl (p,query(qgi41),n). If (n<0) Return k.
Return k£ —n.

We analyze this algorithm by considering both alternatives separately.

With12 makes the search we have already analyzed for same, i.e. O(np min(ng, hglogdg)), but also, for each
element of P, it can execute CheckIncl, which cannot count more than k or ng elements, but can traverse a
path due to overlaps finding nothing, which adds min(ng, hg log dg) to its complexity. Thus, the complexity
of CheckInclis O(min(ng, k+ kg logdg)), so we have a total complexity of O(np min(ng, k+hglogdg)) =

O(nmin(n, k + hlogd)).

99

To see that it can reach O(n?), consider {(n,2n), (n,2n — 1), ..., (n,n+ 1)} with(1) {{1,n),(2,n), ..., (n,n)}
(which is also an O(n) example for CheckIncl).

With21 is much simpler, since it just makes the traversal we have analyzed for same, and collects P to select
the properly marked nodes, i.e. O(np + ng min(np, hplogdp)) = O(nmin(n, hlogd)).

To show that it can reach O(n?), consider the same example as for same.

We can use just use With21 if faced to the problem of having better worst case.

If P and @ are from the same view, the algorithm behaves better.

First, (as we saw for “47”), the searches into a set are O(nlog2 d) in total. Second, we show that now
CheckIncl can be made O(logdg).

Since there are not overlaps, CheckIncl is O(logdg + min(k, dg)). But we could form an (implicit) binary
tree on the levels of @, where nodes represent ranges 1..d,1..(d/2),(d/2+ 1)..d, ..., and store at each node
of the binary tree the total size of the interval it represents. In this case, the counting of nodes in a call to
CheckIncl is also O(logdg), regardless of k£, and thus the whole CheckIncl becomes O(logdg).

This way, With12 becomes O(np(logdplogdg + logdg)) = O(nplogdplogdg) = O(nlog®d). With21
becomes O(np + nglogdg logdp) = O(nlog® d), and the whole algorithm is O(n log® d).

As for “47 we have not found a O(n log” n) example. An O(n logn) example for With12is {(1,2n), (1,2n — 1),
o (L} with(n + D{(1,1),(2,2),...,{(n,n)}. An O(nlogn) example for With21 is {{1,1},(2,2),...,{n,n)}
with(1) {{(1,2n), (1,2n — 1), ..., {1, n) }.

Merge version: We traverse both trees synchronously, to determine, for each node of @, the last node of P
containing it, then incrementing its annotation.

P with(k) @Q (merge version): Operate (P, Q)
Operate (P, Q)

Annotate (P, (), none).
Delete (P).

Annotate (P, Q),last)
While To(q;) < (last # none ? To(last) +1 : oo)

p; < q;j: Pass 1.
pi > ¢q; : If (last # none) annot(last) — annot(last) + 1+ size(q;).

Pass j.
pi D¢j: {gj...} — Annotate (query(p;),{q;...}, pi) . restq.
else : If (last # none) annot(last) — annot(last) + 1.

{pi...} — Annotate ({p;...}, query(q;),last).restp. Pass j.

Return (restp = {p;...},restq = {g;...}).

This algorithm is O(np + ng) = O(n), what can be seen by considering again that each comparison leaves
at least one element out of the problem, and that the collection of properly marked nodes is O(np).

To see that it can reach O(n), we use the same example as for “47.

This algorithm is not better if P and @) are from the same view.
“withbegin/withend(k)” operators

These operations are similar to with, the necessary modifications follow.

If P and @ are from the same view, withbegin/withend(k) should be interpreted as with(k).

56

Search-operate version: We have to add in CheckIncl an instruction just after the definition of n, to say
If (p; overlaps qiy1/qs—1) n — n — 1. On the other hand, MarkWith21 must be modified to be as follows

MarkWith21 (P, Q,top)

1t jQl=1
(P b,t) — Searchi (node(q),P). If (P # P') top— parentp(p}).
MarkWith21 ({p}..p}}, query(q),top).
(P’ b,t) — Searchi ({(From/To(q), From/To(q)),{p},ri}) .
If (P # P') top — parentp(P’).
If (top # none) annot(top) — annot(top)+ 1.
else
(P',b,t) — Searchi ({(From(q1),To(qast)), P) If (P # P') top — parentp(p}).
MarkWith21 ({ps..p:+},{q1..qhair }, top) . MarkWith21l ({ps..p+}, {qnaif+1--Qrast), top) .

The analysis remains the same.

Merge version: The only difference is that we should change the segment whose annotation is incremented
in the else condition. In withbegin, if From(g;) € p; we increment the annotation of p;, not last. In
withend, if T'o(¢;) € p; we increment the annotation of p;, not last. The analysis is the same.

“[s]child” operator

Search-operate version: We can take each element of P and search its (view) parent in @, marking the
P-node if it is s-th child of its view parent and that view parent is in (); or we can take each element of () and
search its view children in P, marking its s-th view children. We can switch the algorithms for subproblems.

Observe that overlaps are not possible here, since P and ¢ must be from the same view.

[s] P child Q (search-operate version): Operate (P, Q)
Operate (P, Q)

Child (P, @, none).
Delete unmarked nodes from F.

Child (P, Q,par)

If (size(P)log,(size(Q)) < 2size(Q)log,(size(P))) Childi2 (P,Q,par).
else Child21 (P, Q).

Childi2 (P, Q,par)

If |Pl=1
|(Q|’, b,t) — Searchi (node(p),Q). If (Q# Q') par — parentg(q)).
If p is unmarked A par # none A parentyiew(p) = par A poSyiew(p) € s
Mark p.
Child (query(p),{q;..q;}, par).
else
(Q',b,t) — Searchi ({(From(pi),To(piast)), Q). If (Q# Q') par — parentg(qy).
Child ({pi.-prais},{¢p--qi}, par) . Child ({phaif+1--Prast}s 145--41}, par) .

57

Child21 (P,Q)

If Q=1

For each m € b..t

else

(P,b,t) — Searchi (node(q), P).

If (parentyicw(pm)=q A poSyicw(pm) € 8) Mark py,.
child ({ps..p:}, query(q), ¢) .

(P,b,t) — Searchi ({From(q1),To(qiast)}, P) .
Child ({ps..p:} {q1--qnais} par) . Child ({py..pi}, {qnats+1--Grast}, par) .

We analyze this algorithm by considering each alternative. The final deletion of unmarked nodes is O(np).
Child12 makes the traversal we analyzed for “4” thus it is O(np logdg..np logdp log dg) = O(nlogd..nlog” d).
To see that it can reach O(nlogn), consider [s] {(1,2n),(1,2n — 1), ..., (1, n+ 1)} child {{1,1},(2,2), ..., {(n, n) }.

Child21 does the same, but it may have to traverse linearly a level of P for each node of @, so it is

O(np + nde) = O(nd)

To see that it can reach O(n?), consider [s] {(1,1),(2,2), ..., (n,n)} child {(1,2n), (1,2n — 1), ..., (I,n+ 1)}.

Again, if we are faced to the problem of having low worst case behavior, we simply select Child12 always.

Merge version: We traverse both trees in synchronization, recalling the last -node including the current
P elements (par). When we find a P-node which descends from par, we test if it is an s-th view child of par,

in which case we collect it.

[s] P child,, @ (merge version): Operate (P, Q, par).result

Operate (P, Q,par)

res «— A.
pi <gqj:
pi > qj

pi 2 g5

pi Cgj:

While To(p;) < (par = none 7 oo : To(par)+ 1)

If par # none A parentyiew(p;) = par A poSyicw(pi) € 8
res — res : (node(p;), A).

Pass 1.

Pass j.

Op — Operate (query(pi),{q;...},par).

If par # none A parentyiew(p;) = par A poSyicw(pi) € 8
res — res : (node(p;), Op.result).

else res «— res: Op.result.

{gj...} — Op.restq. Pass i.

Op — Operate ({p;...}, query(q;), node(g;)) .

res « res: Op.resull. {p;...} — Op.restp. Pass j.

Return (result = res,restp = {p;...}, restg = {g;...}) .

This algorithm is O(np + ng) = O(n), what can be seen by considering again that each comparison leaves

one element out of the problem.

To show that it can reach O(n), we use the same example of “+7.

“parent(k)” operator

Search-operate version: We can take each element of P and search it in @), marking the P-node if it has
k or more of its children in Q. Or we can take each element of () and search its parent in P, incrementing

58

its annotation. Then, we delete the P-nodes whose annotation is less than k. We can switch algorithms for
subproblems.

Observe that overlaps are not possible here, since P and ¢ must be from the same view.

P parent(k) Q (search-operate version): Operate (P, Q)
Operate (P, Q)

Parent (P,Q).
Delete from P those nodes whose annot < k.

Parent (P,Q)

If (2size(P)logy(size(Q)) < size(Q)log,(size(P))) Parent12 (P, Q).
else For each p; Parent21 (query(p;),@,p;).

Parent12 (P, Q)

If |P|=1
(Q,b,1) — Searchi (node(p),Q).

Parent (query(p),{qs..q¢:}) -
Ift—-b+1>k%k
For each m € b..t, while annot(p) < k

If (p = parentyicw(gm)) annot(p) — annot(p) + 1.
else

(Q,b,t) — Searchi ((From(p1),To(piast)), @) .
Parent ({p1..phais},{¢s--q:}). Parent ({praift+1--Prastt, {qp--q:}) -

Parent21 (P, (Q,par)

1t jQl=1
(P b,t) — Searchi (node(q),P). If (p+# P') par — parentp(p).
Parent ({p}..p,}, query(q)).
If (par = parentyiew(q)) annot(par) — annot(par) + 1.
else
(P,b,t) — Searchi ({From(q1),To(qiast)}, P) .
Parent ({py..p:}, {q1--qnaiy}). Parent ({pp..p:}, {qnair41--Qrast})

We analyze this algorithm by considering each alternative. The final deletion of unmarked nodes is O(np).

Parent12 makes the traversal we analyzed for “+7,i.e. O(nplogdplogdg), but it can also traverse, for each
node of P, a level of), thus it is O(npdg) = O(nd) in total.

To see that it can reach O(n?), consider {(1,2n), (1,2n — 1), ..., (1,n+ 1)} parent(1) {(1,1),(2,2), ..., (n,n)},
if neither node of P is parent of a node of ().

Parent21 makes the same traversal, but nothing else, so it is O(np + (nglogdp..nglogdPlogdg)) =
O(nlogd..nlog” d).

To see that it can reach O(nlogn), consider {(1,1),(2,2}, ..., (n,n)} parent(1) {{1,2n),(1,2n— 1), ..., (I, n+ 1) }.

If faced to the problem of having best worst-case behavior, we can use only Parent21.

Merge version: We traverse both trees in synchronization. When we find in P the parent of a node of @,
we increment its annotation. Finally, we delete the P-nodes having < & children.

59

P parent(k) @ (merge version): Operate (P, Q)
Operate (P, Q)

Annotate (P, (), none).
Delete P-nodes whose annot < k.

Annotate (P, (Q,par)

While To(q;) < (par = none 7 oo : To(par)+1)

p; < ¢;: Pass 1.

pi > q; 0 If (par # none A parenty;ew(q;) = par) annot(par) — annot(par)+ 1.
Pass j.

pi D¢j: {g;...} — Annotate (query(p;),{q;...}, pi) . restq.
Pass 1.

pi Cqj 0 If (par # none A parentyiew(q;) = par) annot(par) — annot(par)+ 1.
{pi...} — Annotate ({p;...}, query(q;),none) .restp.
Pass j.

Return (restp = {p;...},restq = {g;...}).

This algorithmis O(np+ng) = O(n), which can be seen by considering that each time Annotate is recursively
invoked, the part of the problem it has traversed is never worked on again, and that at each iteration, at
least one element is deleted from the problem. Finally, the deletion of unmarked nodes is O(np).

To see that it can reach O(n), we use the same example of “47.

“before/after(k)(C)” operators

Search-operate version: We begin by solving before. We can take each element of P and search into
@) the adjacent corresponding range (which is passing the P-node, up to & points to the right, but can also
be limited by the minimal C-node containing the P-node), marking the P-node if we find something in Q
beginning within the range and with the same minimal C' including node (Findf). Or we can take each
element of (), compute its adjacent corresponding range (which is before the -node), and search it into P,
marking the corresponding nodes in P. Later, we delete the unmarked P-nodes. We cannot switch algorithms
at subproblems, since they are difficult to combine. If both minimal C' including nodes do not exist, they are
none and are considered to be equal and to include everything.

Observe that overlaps are possible here, since P, () and C' can be from different views.

We use an auxiliary procedure in the “12” version: Findf, which receives the range where to search, the
top-level @ candidates, and the minimal C including the P-node, and searches into the @ candidates for
someone included in the same minimal C-node. Except for the extremes, the rest of the top-level nodes are
guaranteed to be included in the C-node. One of the (perhaps overlapping) extremes can also be used to
make the P-node classify . Note that if a non-overlapping top-level Q)-node is included in another C-node
(which is then included in the original ('), then its subtree is also included in that new C'. The only cases in
which searching into subtrees of) is necessary is in overlapping extremes.

60

P before(k) Q (C) (search-operate version): Operate (P, Q,)

Operate (P,Q,C)

If (size(P)(logy(size(C)) + 2log,(size(Q))) <
size(Q)(log,(size(C)) + 2logy(size(P))) + size(Q))
Beforel2 (P,Q,C).
else Before21l (P,Q,C).

Before21 (P, Q,C)

MarkBefore21 (P,Q,C).
Delete unmarked nodes.

Before12 (P,Q,C)

If |P|=1
(C',db,dt) — Searchi (node(p),C).
s — (From(p),To(p) + k) N parentc(C).
(Q,b,t) — Search (s,Q).
Beforel2 (query(p),{qo..qt}, {cp--Cu}) -
If (= Findf ((To(p) + 1,To(s)), {qs..q:}, parentc(clyy))) P — query(P).
else
(C',db,dt) — Searchi ({From(pi),To(piast)), C).
s — (From(p1), To(prast) + k) N parentc(cy,).
(Q,b,t) — Search (s,Q).
Beforel2 ({p1..praif},1¢s--0+}, {cp--ch}) .
Beforel2 ({pnaif+i--Prast}s 1qo--q¢},{cy--Cpt)

Findf (s,Q,c¢)

(@, 00,10) — Search (s,Q).
b — (qpo overlaps s 7 b0+ 1 : b0).
t — (qeo overlaps s 7 10—1 : 10).
For each j € b..t

Restrict db,dt while query(c)a—1 < ¢j < query(c)gi -

If (¢; € query(c)s) Return true.
I 1041

Restrict db,dt while query(c)a—1 < qro < query(c)diy1 -

If g0 Cec

If (g0 € query(c)ay) Return true.

else If (Findf (s,query(qwo), (node(e),{cap..car}))) Return true.
If bO#£D

Restrict db,dt while query(c)ag—1 < qpo < query(c)at1 -

If (qpo € query(e)ay A Findf (s, query(quo), (node(c),{ca..car}))) Return true.
Return false.

61

MarkBefore21 (P,Q,C)

1t jQl=1
(C',db,dt) — Searchi (node(g),C).
s — (From(q)— k,To(q)) N parentc(cly).
(P,b,t) — Search (s,P).
MarkBefore21 ({pp..p:}, query(q), {cp--cnl) -
MarkInside ({From(s), From(q)—1),{ps..p+}, parentc(cly)) .
else
(C',db,dt) — Searchi ((From(q1),To(qiast)), C).
s — (From(q1) — k,To(qiast)) N parentc(cy,).
(P,b,t) — Search (s,P).
MarkBefore2l ({ps..p:}, {¢1--qhaif}, ¢y} -
MarkBefore2l ({ps..p:}, {qnair+1--Qrast}, {Cp--Cht) .

We use two auxiliary procedures here. MarkInside receives a range s, a top-level P-nodes candidates for
marking, and the minimal C' containing the marking ()-node. The P-nodes overlapping the range are traversed
recursively to find more candidates (one of the overlapping extremes can also be marked); and those nodes
wholly included in the range are sent to MarkFull. This procedure uses a second type of mark, mark2.
It traverses the whole subtree of the P-nodes, marking them, and stopping when a P-node descends from
a (-node included in the minimal C' containing the @)-node. This mark2 has another property that avoids
repeating work: if a node has been marked?2 once, there is no benefit in entering it again to mark it with other
@-node. The reason for this is that MarkBefore21 proceeds bottom-up and left-to-right. That guarantees
that any P-node subtree is MarkFull’ed first with the best ()-node to do it, since it is done only if the
P-node (and hence its subtree) is fully contained in the C-node, and with the minimal possible C-node;
since the C-node containing both the P-subtree and a higher or farther Q-node than the first one is surely
equal or larger than the first one. Observe that this is because MarkBefore21 marks P-nodes to its left, the
corresponding MarkAfter21 should invoke MarkInside also bottom-up but rigth-to-left.

MarkInside (s, P, c)

(P,b,t) — Search (s, P).
b0 — (b<t—1 A py overlaps s 7 b+1 : b).
t0 — (pr overlaps s 7 t—1 : t).
MarkFull ({pso..pro}, query(c)).
If b#b0 A pp is unmarked2
Restrict b/ ¢ while query(c)y—_1 < pp < query(c)y 41 .
If (¢ D pp € query(c)y) Mark pp.
MarkInside (s,query(ps), (node(c),{query(c)y ..query(c)y})).
If t#t0 A p; is unmarked2
Restrict ' t' while query(c)y_1 < pr < query(c)yy1.-
MarkInside (s,query(p:), (node(c), {query(e)p ..query(c)y})).

MarkFull (P,C)

If |P|=1
If p is unmarked2
Restrict b,¢ while cp_1 < p < ¢ty1-
If (pZcp) Mark2 p. MarkFull (query(p),{cy..c:})
else
(C,b,1) — searchi ((From(p1),To(piast +k)),C).
MarkFull ({p1..praif},{cs..c:}). MarkFull ({phraif41--Prast}; {cp..ct}).

62

We analyze this algorithm by considering each alternative.

Beforel2 traverses C' as we analyzed for same, so this part is O(np min(n¢, e logdce)). Although it does
something somewhat different for ¢ (we search not for the nodes, but for their extension by s), we have
anyway O(npmin(ng, hglogdg)) for that part. Finally, Findf, which is called for all P-nodes, can traverse
a complete path of the tree, and at each level we traverse we search its dg nodes into another level (of C').
This leads us to O(min(ng, hgdg) logde) for Findf.

But note that we can replace the loop For j € b..t by a binary tree strategy similar to artificial nodes,
searching for (From(qy), T'0(q.)), then for (Frrom(qy), To(qes14)/2)) and (From(q4e)/2+1), To(qe)), ete. The
total complexity in this case is O(dg + d¢) instead of O(dglogdc). To see this, consider first that each
partition of the @ level cuts the C level by half, then we have log d+2log(d/2)+ ...+ 2% log(d/2)+...+d log 1,
which is O(d). We can also show that the worst case occurs when we partition by half the searched level,
since if the partition is with proportion « we have

log,d ¢

Z Z (;) log, (o (1 —) ™%) = (2d — 1)log, d + log, (a(1 — a))(dlog, d — d + 1)

i=0 k=0
which is maximized when o = 1/2, to yield 2d — log, d — 1.

Therefore, the complexity of Findf can be reduced to min(ng logde, hg(de + dg)) (it cannot be worse than
ng log dc, since the search done with the binary tree approach can never be more than if each node searched
in a whole level). This way, we have a total complexity of O(np(min(nc, ke log de) + min(ng, hglogde) +
min(ng logde, ho(de + dg)))) = O(nmin(nlogd, hd)).

To see that it can reach O(n?logn), consider {(1,2n), (2,2n), ..., (n, 2n)} before(n+1) {(1,3n), (1,3n — 1), ...,
(L2n+ 1), 2n+ 1, 2n+ 1)} ({{1,3n+ 1), {n,n),{(n+ 1,n+1},...,(3n,3n)}) which is also an O(nlogn) ex-
ample for Findf.

MarkBefore21 uses marking, so we must add O(np). It traverses C' as we analyzed for same, so that part is
O(ng min(ne, he logde)). By the same reasons as before, the search into P is also O(ng min(np, hplogdp)).
MarkInside is called for each (-node, and i1t can traverse a complete path, searching into a level of ' each
time, thus it is O(hp logd¢) if we do not count the calls to MarkFull, which can be invoked at each level.
MarkFull can, in whole, traverse the complete tree (because of mark2), searching into a level of C' for
each element, thus it is O(np logdc). Therefore, we have a total complexity of O(ng(min(ne, he logde) +
min(np, hplogdp) + hplogde) + nplogde) = O(nhlogd).

To see that it can reach O(n?logn), consider {(n,3n),(n,3n—1),...,(n,2n+ 1)} before(n + 1) {(n, 2n),
(n,2n—1), .., {(n,m)} ({{1,3n+1),(n,n),(n+1,n+1),....,(3n,3n)}).

If faced to the problem of having better worst case behavior, we prefer to use only Before21.

If P, @ and C are from the same view, the algorithm behaves a little better. The searches into C' are now
O(nplogdplogdc) in total, but the rest of the procedures involve s, that can still cause overlaps, and then
their complexity remains the same. This way, the total complexity of Before12 becomes O(np(logdp logde+
min(ng, hglogdg) + min(ng logde, ho(de + dg)))) = O(nmin(nlogd, hd)), a little change. The total com-
plexity of Before21 becomes O(ng(log dp log de+min(np, hplogdp)+hplogde)+np logde) = O(nhlogd),
also a little change.

The same example given for the general case can show that even inside the same view the algorithm is

O(n?logn).

The idea for after(k)(C') is the same as for before, only some details differ. The complexity is also the same.

Merge version: We begin by solving before. We traverse both trees in synchronization, determining for
each node of P if there is a node of () under the same minimal C-node, after the P-node, at a distance < k.

63

P before(k) Q (C) (merge version): Operate (P, Q)
Operate (P, Q)

Traverse (P, Q).
Delete unmarked elements from P.

Traverse (P, Q)

While To(p;) < oo

p; > q; . Pass j.
else : (¢,lc) — SearchC (node(p;)) .
s—{To(p;)+ 1, To(p;)+ k) N e.
{gj...} — Traverse (query(p;),{g;...}).
While (To(¢;) < From(s)) Pass j.
If (Determ ({g;...}, s, To(e),le) .tomark) Mark (p;).
Pass 1.

Return ({g;...}).

SearchC searches for the minimal element of C' including its argument. To achieve total O(nh) behavior
for SearchC, it uses a global array G where the current position of the search at each level of C' is kept, to
traverse at most one path at each invocation (note that P is traversed in depth-first order).

SearchC (p;)

Call U a special segment containing all.
Call (G the global array, L the current level.
Initially Gy =U,Gy=c¢,L=1.

While (p; Z Gr_1) L—L—-1.
Repeat
While (G #end A To(Gr) < From(p;)) Pass Gr. Gpy1 — none.
If Gp#end N p; CGL
L —L+1.
If (G = none) Gp — first(query(Gr-1)). Gr41 < none.
else Return (Gp_1,Gr).

Determ searches for an element in) included in the same minimal C' node, and at the proper direction and
distance.

Determ ({g;...}, s, qlim, {c;})

If From(g;) < From(s)
(tomark, {c;...}) — Determ(query(q;), s, glim, {c;...}) .
If (tomark) Return (true,A) else Pass j.

While From(q;) < To(s) ATo(g;) < qlim

¢ 2q;: Pass j.

{ci < gq;j: Pass 1.
else : Return (frue,A).

If (From(g;) <To(s)) Return Determ(query(y;),s,qlim, {c;...}).
Return (false, {c¢;...}).

64

This algorithm is analyzed as follows.

First, observe that throughout the whole execution, SearchC works O(nche) time, since the total number
of times that the “Pass (Gp” instruction is executed is O(n¢), because a node passed that way is never
reconsidered again (due to the depth-first traversal of P); and on the other hand, we can traverse the whole
tree up and down at each call, thus achieving a total O(nh) behavior.

To see that SearchCis no better than O(n?), consider C' = {(1,2n), (1,2n—1),...,(I,n+ 1)}, P = {(n,2n + 1),
(n,n),in+1,2n+ 1), (n+1,n+1),(n+2,2n+1),...}.

Determ is O(min(ng, dohg)), since it works O(dg) at each iteration, and only the first time it can get into
both recursive calls. Since at each iteration it descends one level in), we have it is O(dghg). On the other
hand, it cannot traverse more than the whole), so it is O(min(ng, dghg)). Note that it traverses also a
level of C, but this level is traversed only once along the whole path, so it adds O(d¢) at each invocation
from outside.

To see that Determ can reach O(n), consider Determ ({{1,n),{2,n},...,{(n,n)}, {(n,2n),{c;...}).

The number of times ¢; is advanced without progressing in P is O(dg) in total (i.e. the top-level of Q).
Finally, each p; is left out of the problem by executing Determ, i.e. this part is O(np(dc +min(ng, dghg))).

Therefore, the total complexity is O(nche + np(de + min(ng, dohg))) = O(nmin(n, dh)).

To see that it can reach O(n?), consider the following example: {(1,1),(2,2),...,{(n,n)} before(n + 1)
{n+1ln+1),{(n+2,n+2),....,2n,2n)} ({{1,2n), (n +1,2n)}).

If P, @ and C' are from the same view, the algorithm behaves a little better. The reason is that now SearchC
makes a single traversal on C along the whole execution, since the worst that can happen is that C' is wholly
traversed in depth-first order. Not existing overlaps, it is not possible to repeat a path. The whole complexity
is then O(ne + np(de + min(ng, dghg))) = O(nmin(n, dh)), a little improvement.

The same example of the general case shows that we can reach O(n?) even inside a single view.

The idea for after(k)(C') is the same as for before, only some details differ. The complexity is also the same.

“before/after(C)” operators

Search-operate version: We begin by solving before. We can take each element of (), compute its adjacent
corresponding range (which is before the @-node, limited by the minimal C-node including the @-node), and
search 1t in P, marking the node in P which is nearest the one of (). Later, we delete the unmarked P-nodes.
Or we can take each element of P and search in @ the adjacent corresponding segment (which is passing the
P-node), selecting from @ the node which is nearest to the P-node. Then, we search the @-node back in
P, to determine the P-node that that @-node should mark. Since the best candidate for marking a P-node
is its nearest (J-node, and each P-node gets its best opportunity to be marked, it suffices to mark only on
()-nodes selected as the best for each P-node (note that if the “best” @-node for a given P-node does not
mark it, then neither will, since that means that there is another P-node which is preferred by the @-node,
and that one will be preferred by any farther node). We also mark the already used nodes of @ to avoid
repeating work.

We cannot switch algorithms at subproblems, since they are difficult to combine. Observe that overlaps are
possible here, since P, () and C' can be from different views.

65

P before @ (C) (search-operate version): Operate (P,Q,C)

Operate (P, Q)

If (2size(P)log,y(size(Q)) < size(Q)log,(size(P))) BeforeMini2 (P,Q, ().
else MarkBeforeMin21 (P, Q, ().
Delete unmarked nodes from P.

BeforeMini2 (P, Q,C)

MarkBeforeMini2 (P, P,Q,C).
Unmark nodes of ().

MarkBeforeMini2 (Pr, P,Q,C)

If |P|=1
(C',db,dt) — Searchi (node(p),C).
s — (From(p),00) N parentc(cy,).
(@,b,t) — Search (s,Q). (Pr, b t')— Search (s, Pr).
MarkBeforeMini2 ({Pry..Pru}, query(p), {qs..q:}, {chp--cn 1) .
If p is unmarked
B — SearchMinf ((To(p)+ 1,To(s)),{qs..q¢}, parentc(c'db)) .
If B#none A B is unmarked
Mark B. s« (From(s)—1, From(B)—1).
r «— SearchMint (s, {Pry..Pry}, parentc(cly)) .
If (r # none) Mark r.
else
(C',db,dt) — Searchi ({From(pi),To(piast)), C).
(Q,b,t) — Search ({From(p1),o0),@).
(Pr, b/ t")y — Search ({From(p1),o0), Pr).
MarkBeforeMini2 ({Pry..Pru}, {p1..Prais }, 1q6--0¢}, {¢pp--che }) -
MarkBeforeMini2 ({Pry..Pry}, {Phatf+1--Plastts 1qo--qe}, {cp--Clp 1) -

MarkBeforeMin21 (P,(Q,(C")

1t jQl=1
(C',db,dt) — Searchi (node(g),C).
s — (1, To(q)) N parentc(cy,).
(P,b,t) — Search (s,P).
MarkBeforeMin21 ({pp..p:}, query(q), {c/y..ch}) .
r < SearchMint ((From(s), From(q)— 1), {ps..p+}, parentc(ly)) .
If (r # none) Mark r.
else
(C',db,dt) — Searchi ((From(q1),To(qiast)), C).
(P,b,t) — Search ({1,To(qiast)}, P) .
MarkBeforeMin21 ({ps..p:}, {q1--qnais}, {¢p--ch}) .
MarkBeforeMin21 ({ps..p:}, {qnatf+1--Qrast}, 1 t)

66

SearchMinf/SearchMint (s, P,c)

(P,b,t) — Search (s, P).
If pys: overlaps s
Restrict O',t while query(c)y—1 < pyjs < query(c)yi1.
If pyye € query(c)y
7« SearchMinf/SearchMint (s, query(ps:), (node(c), {query(c)y ..query(c)y})) .
If (r # none) Return r.
b—b+1/t—t—1.
For each i € b..t/t..b
Restrict b/ t’ while query(c)y—_1 < p; < query(c)yy1.-
If (p; € query(c)y) Return p;.
Return none.

We analyze this algorithm by considering each alternative. The final deletion of unmarked nodes is O(np).

MarkBeforeMin21 traverses C, in the form we analyzed for same, i.e. O(ngmin(ne, helogde)). It also
traverses P, and as explained for before(k)(C), it is also O(ng min(np, hplogdp)). Finally, it invokes
SearchMint for each node. This routine can traverse a complete path, and for each level it can traverse it
wholly; it also searches in a level of C' for each element it traverses, so it is O(min(np, hpdp)logdc). But we
can modify it with the same technique used for Findf, with a binary tree, to achieve O(min(np logde, hp(dp+
dc))). This leads to a total complexity of O(np + ng(min(ne, helogde) +min(np logde, hp(dp +de)))) =
O(n min(n logd, hd)).

To see that it can reach O(n?logn), we use the same example as for Before21. To see that SearchMin can
reach O(nlogn), consider SearchMin ({(1,n+ 1), {(2,2n+ 1),(2,2n), ..., (2,n+2)}, {{2,2),(3,3), ..., {(n+ 1,
n+1)}1).

MarkBeforeMin12 is more complex, since it traverses C', @ and the same P (since the @-node is searched
back into P). All this contributes with O(nmin(n, hlogd)) (we have to add O(np min(np, hplogdp)) for
each element of P, that searches into the same P). The two calls to SearchMin complete the analysis, to
leave us also with O(np(min(nc, he logde)+min(np logde, hp(dp+de))+min(hg(dg+de), ng logde))) =
O(n min(n logd, hd)).

We can use the same example as for Before21 to show it can reach O(n?logn).
If P, @ and C are from the same view, the complexity changes exactly as it does in before(£)(C).

The idea for after(C') is the same as for before(C'), only some details differ. The complexity is also the
same.

Merge version: For each element of P, we search for the nearest element in) which is in the same minimal
C-node and we mark it. We traverse P in depth-first order, so if a () node is the candidate to mark a P
node p, but it was also previously selected by another p’, we must unmark the older (and farther) p’. To
achieve this, the “mark” field of @ elements (called marked to ease reading) point to the (last and hence the
only valid) P element they marked, if any. This way, the P node can be accessed and unmarked if it gets
displaced by a newer one. Later, we collect the marked nodes of P.

67

P before @ (C) (merge version): Operate (P, Q)

Operate (P, Q)

Traverse (P, Q).
Delete unmarked elements from P.

Traverse (P, Q)

While To(p;) < oo

p; > q; . Pass j.
else : (¢,lc) — SearchC (node(p;)).
s —(To(p;)+1,00) N e.
{gj...} — Traverse (query(p;),{g;...}).
While (To(¢;) < From(s)) Pass j.
Qmarker — Mark ({g;...},s, lc) . marker.
If Qmarker # none
If (marked(Qmarker) # none) Unmark marked(Qmarker).
Mark p;. marked(Qmarker) — p;.
Pass 1.

Return {¢;...}.

Mark i1s which selects the minimum-distance candidate.

Mark ({g;...},s, {ci})

If From(g;) < From(s)
(marker, {¢;...}) — Mark(query(q;),s,{c;...}) .
If (marker # none) Return (marker,A) else Pass j.

While To(g;) < To(s)

¢; <q; : Pass i.
¢ 2q;: Pass j.
else : Return (g;,A).

If (From(g;) <To(s)) Return Mark(query(q;),s, {c;...}).
Return (none, {c¢;...}).

This algorithm is analyzed as follows. The final deletion of unmarked nodes is O(np). SearchCis O(nche)
in total as before. Mark is much like Determ, in the sense that it traverses a level of C' in the whole invocation
from Traverse, and of O(dg) @-nodes at each level of (); and after the first time, just one of the two recursive
calls can succeed, thus achieving O(de + dghg), or O(de + ng) by observing that each element is worked
on at most once. On the other hand, Mark is invoked once for each element of P, and the total number of
Pass j performed is O(dg) (the top-level of Q). Thus, we have O(nche +dg + np(de +min(ng, dghg))) =

O(nmin(n, dh)) cost.
To see that it can reach O(n?), consider the same example of before(k).

If P, @ and C are from the same view, the complexity changes exactly as it does in before(£)(C).

The idea for after(C') is the same as for before(C'), only some details differ. The complexity is also the

salme.

68

5.2.2 Lazy Evaluation

The idea of lazy evaluation, which we mentioned briefly at the beginning of this chapter and in Section 5.1,
is as follows. Instead of making an operation and obtaining the full tree, we represent that result as the
operation to perform and the representation of the operands, that is (X op V'), will be converted to a tree
with root op and subtrees X and Y with no more computation. This technique would convert the evaluation
of a query to just its syntax tree, except because the final result has to be obtained. To expand the final
result, we begin by obtaining its top-level nodes. Suppose that we want to expand (X op V). We define
algorithms to get the answer step by step, that is, to convert (X op Y) to the top-level nodes ry..r; with
children (X3 op ¥7)..(X; op Y7). Of course that algorithm would need some information on X and ¥, which
is obtained by expanding the expressions that define them, node by node. Once we have the top-level nodes,
we obtain their children, and then the children of each child, and so on, until obtaining the whole answer.
Hopefully, not all the sets involved in the expression need to be fully evaluated (see for example [GT87]).
This mechanism is not new, for example is of widespread use in lazy functional languages [Dav92].

5.2.2.1 Mechanism of Expansion

The type of our trees is now more complex, since they can be not expanded. For each view V| we have the
type of lazy trees L1y over V:

LTy = NonFEvaluatedy U Evaluatedy

NonFEvaluatedy = U op X LT{;’““?J(OP)
opeEOP

Fvaluatedy = LSubtree},

LSubtreey = Ny x LTy

where OP is the set of our operators, each one with its arity. Note that EFvaluated means evaluated at least
one level. Note also that Ty, C LTy .

Suppose we have defined all our operations to obtain the first-level descendants of (X op V), and that we
are given the syntax tree of a query. Then we present a procedure to obtain the expanded tree, expanding
when necessary (and only when necessary) the subexpressions.

We use the following notation here:

o (rooty(T1)..rooty(Ty)) is an (Fvaluated) lazy tree with those root; nodes comprising its first-level
expansion, and 7; its descendants.

o op(X1, ..., Xp) is a (NonFvaluated) lazy tree.
e expand : LTy — Ty 1s our expansion function.
e expandLevel : LTy — FEvaluatedy expands, if it 1s not already expanded, one level of the lazy tree.

o perform : OP x LTy, — Evaluatedy , performs the operation on the arguments, to expand one level
of the lazy tree.

Now, our procedure is defined as follows

expand((r1(T1)..rx(Ty))) = (ri(expand(Th))..rp(expand(Ty)))

expand(op(X1, .., X)) = expand(expand Level(op(X1, .., X1)))
expandLevel((r1(T1)..rx(Th))) = (ri(Th)..rx(Th))

expandLevel(op(X1, .., X1)) = per form(op, expandLevel(X1), .., expand Level(X}))

69

Note that expandLevel 1s prepared to be invoked on an already evaluated tree. The reason for this is that
the query tree is not necessarily a tree, it may well be a DAG. This way, an operation can be invoked on an
operand which is already semievaluated by a previous operation, so that no expansion is made twice.

Observe that this idea is well-suited for interactive systems that combine querying with navigation (e.g.
[Mac91, Mac90]). We can use expandLevel instead of expand, to obtain just the top-level list of the answer.
This list can be presented to the user, who may want to discard parts of it and to enter into others. At this
point we call expandLevel in the nodes the user wants to get in. This way, we can save significant work.

5.2.2.2 Implementation Considerations

Some considerations arise here. Observe that, since the flow of control of expansions is not easily predictable
with lazy evaluation, it is hard to know when an element will no longer be used, since the operations carried
out on it do not begin and end at predictable moments, but evolve as long as the values are needed. This
implies that no deallocation can be done in advance, and thus that there is no benefit in modifying operations,
since they are applicable if one knows that the operand is not referenced from elsewhere. The only situation
in which one can assure that is when the operand is used only for one operation. The best option would be,
therefore, to use modifying versions of operators in this last case and generating versions elsewhere. Under
this schema, all remaining nodes can only be deallocated when the whole evaluation completes (but recall
our comments about the need for a serious study of this problem).

Another problem is regarding swapping policy, if we keep some operands on disk. In lazy evaluation, it is too
difficult to decide which nodes are good for swapping out, while in full evaluation it is easy to know which
operands are to be needed later than which. This problem can be alleviated by the fact that lazy evaluation
1s likely to reclaim less space than full evaluation.

5.2.2.3 Description of the Algorithms

We now present the lazy version of our algorithms. Not that some choices we had for full evaluation are
unavailable here, since we have to expand in a fixed order. We use in general a modification of the merge
approach, but in some cases we lose efficiency in the process. Sometimes we must elect between redoing a
little of work or expanding parts that perhaps will never be needed. We have systematically preferred to
expand as little as possible.

“4” operator

The idea is the same as the merge version of full evaluation, the difference being that the subproblems are
left to be solved later. This makes the evaluation of the whole tree not so efficient, but this is compensated
by the possibility of not evaluating the whole tree. Observe that we need additional information when we left
the operation for later. We write that information as a subscript of the operator (it is initially {imit = o0).

Recall that no overlaps are possible, since P and () must be from the same view. We present the algorithm
in the next page.

This algorithm is not linear as its full version, because it is not longer valid that at each comparison at
least one element from P or (@) is solved and no longer compared. Observe that now, when p; C ¢;, we pass
through the p;’s which will be the operands of the next level in order to continue the merge at the current
level. Indeed, we may pass through them many times, each time the list descends one level. By observing
each element of P, we see that it can be compared at most h times. By observing each element of), we see
that it can traverse a level of P just once, that is O(d). Thus, the algorithm is O(n min(d, k)), i.e. O(n?) in
the worst case. We cannot refine the analysis in terms of the sizes of P and @, because of the switching in
the case p; D ¢;.

To see that it can reach O(n?) consider {(1,1),(2,2),....(n,n)} + {(1,2n),(1,2n—1),...,{1,n+ 1)}.
On the other hand, we work O(dp + dg) = O(d) per lazy invocation to this operator. Observe that it does

70

not force any further expansion of the subtrees.

P +iimit @ (lazy version): Operate (P, Q, limit)
Operate (P, Q,limit)

res «— A.
While min(7o(p;),To(q;)) < limit

p; < qj: res<—res:p;. Pass i.

p; > qj: res<res:iq;. Pass j.

pi =q;: res<—res: (node(p;), +oo(query(p:), query(q;))). Pass i,j.

pi Cqj: res —res:(node(q;), +ro(g)+1(1pi -}, query(q;))). Pass j.
While (p; C ¢;) Pass ¢.

p; D q; : Exchange P < Q).

Return res.

“—” operator

The i1dea is the same as for the merge version of full evaluation, the difference being that the subproblems are
left to be solved later. This makes the evaluation of the whole tree not so efficient, but this is compensated
by the possibility of not evaluating the whole tree.

Recall that no overlaps are possible, since P and ¢ must be from the same view.

P — @ (lazy version): Operate (P, Q, co).result
Operate (P, Q,plimit)

res «— A.
While To(p;) < plimit

p; < qj: res<—res:p;. Pass i.

p; > q; . Pass j.

pi =¢q;j © pi — expandLevel(p;). {pi...} — query(p;) : {pit1...}.

pi Cqj: q; — expandLevel(q;). Op — Operate ({p;...}, query(q;),To(g;) +1).
res « res : Op.result. {p;...} — Op.rest. Pass j.

pi Dgqj: res<—res: (node(p;), —(query(p:),{q;...})). Pass 1.

Return (result = res,rest = {p;...}).

This algorithm is not linear as its full version. The argument is almost the same as with “+”, this time the
case which produces the problem is p; D ¢;. The complexity is then O(min(np + nghp,ng + npdg)) =
O(nmin(d, k)).

To see that it can reach O(n?) consider {(1,2n—1),(2n,2n),(1,2n —2),(2n —1,2n—1),...,{1,n), (n + 1,
n+ D} — {{1,1),(2,2),...,{n,n)}.

This operator can force the full trees to be expanded, for example if P = (), thus it can work up to
O(np + ng) = O(n) in a single lazy invocation (as the full merge “—").

“is/same” operators

The idea for is is the same as for the merge version of full evaluation, the difference being that the subproblems
are left to be solved later. This does not introduce inefficiencies.

71

Recall that no overlaps are possible, since P and ¢ must be from the same view.

P is Q (lazy version): Operate (P, Q, o0).result
Operate (P, Q,plimit)

res «— A.
While To(p;) < oo

p; < q;: Pass i.

p; > q; . Pass j.

pi =¢q; . res<—res: (node(p;), is (query(p;), query(q;))). Pass ¢,j.

pi Cqj: q; — expandLevel(q;). Op — Operate ({p;...}, query(q;),To(g;) +1).
res « res : Op.result. {p;...} — Op.rest. Pass j.

else : p; — expandLevel(p;). {pi...} — query(p;) : {pit1.--}-

Return (result = res,rest = {p;...}).

This algorithm is linear as its full version, with the same argument: each comparison eliminates at least one
element from the problem. The difference with “—” is that each time we leave something for later, it is a
whole subtree, which we do not need to re-traverse.

To see that it can reach O(n), we use the same example of the full version.

This operator can work O(np + ng) = O(n) in a single lazy call, making the full trees to be expanded.
Consider for example {{1,n 4+ 1), {1, n), ..., (1,2} is {(1,2n 4+ 1), (1, 2n}, ..., (1, n+ 2), {1, 1} }.

The same operation is exactly like is, except in that we do not check for node equality but for segment
equality. In this case, overlaps are possible, so we use the same algorithm as for is, the else clause standing
also for overlaps. The complexity is also the same.

“in” operator

The idea is the same as the merge version of full evaluation, the difference being that the subproblems are
left to be solved later. This does not introduce inefficiencies. The algorithm is exactly as in the full merge
version, just inserting p; — expandLevel(p;) as the first instruction of the else clause.

Recall that overlaps are possible here, since P and) can be from different views.

This algorithm is analyzed exactly as its full version, in fact it is identical except for the expandLevel. Note
that it will never make) expand more than the first level, although it can cause the full P to be expanded,
thus it can be O(min(np + ng,dpdghp)) = O(min(n,d*h)) in a single lazy call. Consider for example

{In), {(Ln=1), . (1,1} in {(1, 1}}.

The algorithm is not better if P and @) are from the same view.
“beginin/endin” operators

The idea is the same as for in. Recall that overlaps are possible here, since P and) can be from different
Views.

72

P beginin Q (lazy version): Operate (P, Q)
Operate (P, Q)

res «— A.
While To(p;) < oo

Pi < qj: Pass i.

Pi > g Pass j.

pi Cgj: res «— res :p;. Pass 1.

From(p;) € q; : res — res : (node(p;), beginin (query(p;),{¢;...})). Pass i.
else : pi — query(expandLevel(p;)) : {pit1.--}-

Return res.

P endin @ (lazy version): Operate (P, Q)
Operate (P, Q)

res «— A.
While To(p;) < oo

p; < q;: Pass i.
p; > q; . Pass j.
p; Cq;j: res<—res:p;. Pass i.

else : oldji — j. While (To(g;) < To(p;)) Pass j.
It (To(pi) € q;) res — res: (node(p;), endin (query(p;), {qoigi---1))-
else

p; — expandLevel(p;).

res — res : Operate (query(p:),{qoig-..}) .
Pass 1.

Return res.

These algorithms are not linear as their full versions. Observe that the top-level of @) can be retraversed
many times, more exactly, for a complete path of P (then we do O(hpdg) work in Q). By adding the O(np)
traversal of P, we have O(np + hpdg). On the other hand, both algorithms are O(dpdghp) as their full
versions, thus the final complexity is O(min(np + hpdg,dpdghp)) = O(min(n + dh, d*h)).

To see that they can reach O(n?), consider {(1,2n — 1), (2n,2n),(1,2n —2), (2n —1,2n—1),..(1,n), (n + 1,
n+ 1)} beginin {(1,1),(2,2),....(n,n)}, and {{1,2n),(1,2n —1),...,(1,n)} endin {(1,1), (2,2), ..., {n,n}}.
These algorithms never force @ to be expanded, but they can expand the whole P. beginin can work
O(min(np+ng,dpdghp)) = O(min(n, d*h)) per call, consider for example {(1,2n + 1), (1,2n), ..., (1,n)} be-
ginin {(2,2),(3,3),...,(n+ 1,n+ 1)}. endin can work O(min(np + hpdq,dpdghp)) = O(min(n + dh, d*h))

per call, the same example shows that it can reach O(n?).

If P and @ are from the same view, beginin/endin should be interpreted as in.
“[s]lin/beginin/endin” operators

The idea for in is the same as the merge version of full evaluation, the difference being that the subproblems
are left to be solved later. This does introduce some inefficiencies. The important modifications are in that
we need two marks for lazy deletion of unmarked nodes (the second mark means that the descendants of a
node have some opportunity to be included).

Recall that overlaps are possible here, since P and) need not to be from the same view.

73

[s] P in @ (lazy version): Operate (P, Q)
Operate (P, Q)

Traverse (P, Q).
res «— A.

While To(p;) < oo
If p; is marked
If (p; is marked2) res < res: p;.
else res — res : (node(p;), A).
else
If (p; is marked2) res — res : query(expandLevel(p;)).
Pass 1.

Return res.

Traverse (P, Q)

While max(To(p;), To(q;)) < oo

p; < ¢;: Pass 1.
p; > q; . Pass j.
pi Cqj: q; — expandLevel(q;). pos — 1.
Traverse ({p;...}, query(y;)).
While p; C ¢
If (p; is unmarked and pos € s) Mark p;.
Pass ¢. pos<— pos+1.
else : query(p;) — [slin (query(p;), {g;...}).
Mark2 p;. Pass :.

This algorithm is analyzed almost as for its full version. In this case, it is also possible to repeat work on a
level of @, thus the total = O(min(nphg +ng,ngdp +np)+min(nghp+np,npdg+ng)) = O(nmin(h, d)).

To see that it can reach O(n?) and that both P and @ can be fully expanded in a single call (thus being
O(min(nphg + ng,ngdp + np)) = O(nmin(h, d)) in a single lazy call), consider [s] {(1,2n), (1,2n —1), ...,
(Lin+1),(1,1),{(2,2), .., {n,m)} in {{1,3n),{1,3n— 1}, ..., {1,2n+ 1) }.

This algorithm is not better if P and @) are from the same view.

The [s]beginin and [s]endin operations are quite the same as [s]in, the only difference being that we should
replace (in both places) the condition p; C ¢; by From(p;) € ¢; for beginin and by To(p;) € ¢; for endin.
The analysis 1s the same.

If P and @ are from the same view, [s]beginin/endin should be interpreted as [s]in.
“with/withbegin/withend(k)” operators

We begin by solving with. This operation is quite complicated to perform in a lazy fashion, mainly because
we cannot know the size of the operands, since they are not computed yet. Moreover, we cannot even
have the size computed for the expanded part of operands, since they are shared and a policy of immediate
actualization of all pointers to a query is expensive and contrary to the spirit of lazy evaluation. Thus, we
have a computed size, which is only guaranteed to be less than the real size. In order to expand the minimum
possible of @), we make up to three passes on the interesting part: counting the computed size at the top
level, traversing the whole expanded part to actualize the computed size, and expanding if necessary. To
avoid traversing a tree to expand any remaining node when we already know that it is fully expanded, we
use an additional flag compl.

74

P with(k) Q (lazy version): Operate (P, Q).result
Operate (P, Q,plimit)

res «— A.
While To(p;) < plimit

p; < q;: Pass i.

p; > q; . Pass j.

pi Cqj: q; — expandLevel(q;).
Op — Operate ({p;...}, query(q;), To(q;)+ 1) .
res « res: Op.result. {p;...} — Op.rest.

else : If Determ(node(p;),{q;...}, k)
res — res : (node(p;), with(k) (query(p:),{q¢;..-})).
Pass 1.

Return (result = res,rest = {p;...}).

Determ determines if P contains k or more (J-nodes, making up to three passes if necessary. The list [can
be made implicit, to avoid the space overhead.

Actual traverses (), counting the nodes of the already expanded part, until no more nodes are found or until
it finds k& nodes included in p. It also actualizes the information of size, and returns a list of pointers where
expansion can be made if necessary.

Expand expands (), until there are no more nodes or it finds k£ nodes included in p.

Determ (p,@Q,k)

pass 1:
t—0. oldj—j. If (¢; overlaps p) Pass j.
While ¢; C p
k—k—1. t—t+size(q;).
If (¢t > k) Return true.
Pass j.
pass 2:
je—oldj. sz—0. l—AX.
While ¢; # p

(t,nl) — Actual(query(q;). k —sz,p,q; Cp)
sz —sz+t. [l—1l:nl. Pass j.
If (sz > k) Return true.
pass 3:
k—k—sz. sz+<0.
For each [; €
sz «— sz + Expand (l;,k—sz,p).
If (sz > k) Return true.
Return false.

75

Actual (Q,k,p,incl)

If () is expanded
If (incl A (Q.complV size(Q) > k)) Return (size(Q),A).
sz—0. [—A.
While (¢; < p) Pass j.
While (¢; #p A sz <k)
(t,nl) — Actual (query(q;), k—sz—1,p,q¢; Cp).
sz—sz+t. l—1:nl
If (¢; Cp) sz —sz+1.
if (size(Q) < sz) size(Q) — sz.
If (the While traversed the whole query(Q) A inel A [=2X) Q.compl — true.
If (sz>k) [— A.
Return (sz,l).
else Return (0,{@}).

Expand (Q,k,p)

Q) — expandLevel(Q). t—0.
While ¢; #p A 1<k

q; <p: Pass j.
¢ Cp: t—t + 1 + Expand (¢;,k—t—1,p). Pass j.
else : t —1t + Expand (¢;,k—7,p). Pass j.

Return t¢.

Expand expands a node, completely or until it finds £ nodes. Actual traverses the tree, searching for already
expanded nodes, completely or until it finds & nodes, and actualizes the computed sizes if appropriate. Determ
traverses @, stopping when it finds & nodes or more.

It may be argued that Expand can cause expansion of an unbounded number of nodes that result in empty
queries that do not reduce k. But observe that for each unexpanded query included in the list that Expand
processes; there is an expanded parent which has been counted. If the counted nodes before calling to Expand
did not reach k, then the length of the list is < k + 2. We add 2 for the possibility of overlapping nodes
that add an element to the list without being counted. Therefore, Expand cannot be invoked more than O(k)
times from outside.

If at each recursive call, Expand reduced k by one, then the total work done by Expand would be O(k), but
it can also expand nodes that overlap with p, what does not reduce k. This can be done for a complete path
of @, and makes it traverse the levels. This way, Expand is O(k + dghg) for the whole set of invocations for
a single p node. Since it cannot traverse more than the whole), it is in fact O(min(ng, k + dghg)).

Actual is quite similar: cannot work more than O(k) time, except for overlaps, what makes it O(min(ng, k+
dghq)) for the whole set of invocations for a single p node.

This way, Determ is also O(min(ng, k + dghg)), and the whole algorithm is O(npmin(ng, k + dohg)) =
O(nmin(n, k + dh)).

To show that it can reach O(n?), we present the following example: {(1,2n), (1,2n — 1), ..., (1,n+ 1)} with(n)
{1, 1),(2,2), ..., {n,n}}.

This operation cannot cause further expansion in P, since if a P node is not included, its subtree is neither
included. But it can expand @ wholly. At each lazy call, the algorithm can work O(min(n,d(k + dh))). To
see this, consider that, on the one hand, we work only on the top-level of P, thus the argument we used for

the full expansion shows that (replacing np by dp) we can work at most O(dp(k + dghg)) (not considering
the ng bound yet). On the other hand, consider that in the whole execution of the lazy call, Determ cannot

76

touch a @ node more than twice (since no more than two top-level P nodes can contain or overlap the Q
node), thus we can take a better minimum: O(min(ng + dp, dp(k + dohg))) = O(min(n, d(k + dh))).

To see that it can reach O(n), consider the same example as for “47.

If P and @ are from the same view, this algorithm performs better. The reason is that now Expand, Actual
and Determ are really O(min(ng, k), thus the whole algorithm is O(np min(ng, k)) = O(nmin(n, k)). The
maximum amount of work done at each call is also smaller, since we can eliminate the dghg added because
of overlaps, to reach O(min(ng + dp, dpk)) = O(min(n, kd)).

The same examples of the general case can be used to show that even when P and () are from the same view,

the whole complexity can reach O(n?) and the complexity per call can reach O(n).

The operations withbegin/withend(k) are similar to with(k), we need minimal changes to the algorithm.
These are: in both Actual and Expand, the condition ¢; C p; should change to From/To(g;) € p;; and in
the “pass 17 of Determ we should, for withbegin, add an instruction after the While block, namely “If
(q; overlaps p) k—k—1. If (t> k) Return true”; and for withend, do also “k «— k — 17 if the first
If holds. The analysis 1s the same.

If P and @ are from the same view, withbegin/withend(k) should be interpreted as with(k).
“[s]child”

The 1dea is the same as the merge version of full evaluation, the difference being that the subproblems are left
to be solved later. This does not introduce inefficiencies. Recall that initially par = none, and that overlaps
are not possible here, since P and () must be from the same view.

[s] P child,., @ (lazy version): Operate (P, Q, par).result
Operate (P, Q,par)

res «— A.
While To(p;) < (par = none 7 oo : To(par)+ 1)

pi < gqj : If par # none A parentyiew(pi) = par A posvicw(pi) € s
res — res : (node(p;), A).
Pass 1.
p; > q; . Pass j.
pi Dq; : If par # none A parentyiew(pi) = par A posvicw(pi) € s
res «— res : (node(p;), [s]childyq,(query(p:), {g;...})).
While (p; D ¢;) Pass j.
else
p; — expandLevel(p;).
Op — Operate (query(pi),{q;..-}, par).
res «— res : Op.result. {g;...} — Op.restq.
Pass 1.
pi Cqj: q; — expandLevel(q;).
Op — Operate ({p;...}, query(q;), node(g;)) .
res « res: Op.resull. {p;...} — Op.restp. Pass j.

Return (result = res,restp = {p;...}, restg = {g;...}) .

This algorithm is O(np + ng) = O(n) as its full version, despite it looks like other O(n?) operations. The
possible problem here is the case p; D g¢;, since it traverses some ¢;’s again after having processed them. But
the difference 1s that the list of (J-children of a @-node is re-traversed only once in the whole process, namely
when we find the view children of @ in P (since all children of a node are in a single level in any possible
query tree), thus it adds O(n) to the whole process.

77

To see that it can reach O(n) consider the same example of the full version.

It is also possible to work O(np +ng) = O(n) at a single lazy call, and to expand fully P and), consider for
example [s]{{1,2n),{1,2n— 1), ..., (I, n+ 1), (1, 1)} child {{1,n),(1,n —1},...,{1,2)}, when no parent/child
relationship holds.

“parent(k)” operator

The idea 1s the same as for the merge version of full evaluation, but leaving subproblems for later. Since this
time we have to traverse the children of a P-node to determine which of them are children in the view (to
know if it remains or not), we introduce an inefficiency, since the children have to be traversed later for the
descendants of the P-node.

Recall that overlaps are not possible here, since P and () must be from the same view.

P parent(k) Q (lazy version): Operate (P, Q, o0).result
Operate (P, Q,plimit)

res «— A.
While To(p;) < plimit

p; < ¢;: Pass 1.
p; > q; . Pass j.
p; D q;: children —0. oldj —j.
While p; D g;
If (parentyiew(q;) = pi) children — children+ 1.
Pass j.
If children < k
p; — expandLevel(p;).
res «— res : Operate (query(pi),{qoig...},00) . result.
else res — res: (node(p;),parent(k) (query(pi), {qoig-..}))-
Pass 1.
pi Cqj: q; — expandLevel(q;).
Op — Operate ({p;...}, query(q;), To(q;)+ 1) .
res « res: Op.result. {p;...} — Op.rest. Pass j.

Return (result = res,rest = {p;...}).

This algorithm is not linear as its full version, since it can pass many times over the same (J-nodes. Observe
that for each P-node one can work at most O(dg), and that on the other hand, one cannot repeat the work on a
single (-node more than O(hp) times. This way, we obtain O(min(ng+npdg,np+nghp)) = O(nmin(d, h)).
To see that it can reach O(n?), consider {(1,2n), (1,2n —1),...,(1,n+ 1)} parent(1) {(1,1),(2,2), ..., (n, n) }.
This operation can force P and @ to be fully expanded, and can work O(min(ng + npdg,np + nghp)) =

O(nmin(d, h)) at a single lazy call. To see this, consider {{1,2n},(1,2n—1),...,({1,n+ 1}} parent(l)
{1,3n),(1,3n—1), ..., {1,2n+ 1}, (1,1),(2,2), ..., {n,n) }, when no parent/child relationship holds.

“before/after(k)(C)” operator

We begin by before. The idea is exactly as in the full merge version, but leaving subproblems for later. This
force us to retraverse some () nodes that in the full version are advanced by the children of the node, and
this makes marking not worth anymore. The initial value for glimit is oco. Recall that overlaps are possible
here, since P,) and C' can be from different views.

78

P beforeginm: (k) Q (C) (lazy version): Operate (P, Q, glimit)
Operate (P, Q,qlimat)

res «— A.
While To(p;) < oo

p; > q; . Pass j.
else : (¢,lc) —SearchC (node(p;)).
lim — min(qlimit, To(c)).
s—{(To(p;)+ L, To(p:) + k) N {(1,lim).
oldj — j. While (To(g;) < From(s)) Pass j.
It (Determ ({g;...}, s, lim,lc) .tomark)
res < res : (node(p;), beforeyn, (k) (query(p:),{qoq-.-})(lc). Pass i.
else {p;...} — query(expandLevel(p;)) : {pit1.--}-

Return res.

SearchC and Determ are exactly the same as their full merge versions, just taking care of invoking expand Level
on a node prior to using its query.

This algorithm is analyzed almost as its full version. The only change is that the total number of times “Pass

J7 is executed can be now O(hpdg), not O(dg) as before, but this does not change the total.

We can, in a single lazy call, work O(nche + np(de + min(ng, hgdg))) = O(nmin(n, dh)). To see this,
consider the same example as for the merge version.

It can also fully expand P, @ and C. To see this, consider {{1,n),{1,n—1),...,(1,1})} before {{1,2n},
(L2n=1), .., {(Ln+ 1)} ({{1,3n),(1,3n—1),....,{1,2n+ 1} }).

The change experimented by the complexity when P, () and C' are from the same view is exactly as for the
merge version. The examples presented for the general case show that the maximum amount of work and
expansion per lazy call does not change either, since the example can occur in a single hierarchy.

The idea for the after(k)(C') operator is similar to before(k)(C'), except in some details. The complexity is
also the same.

“before/after(C)” operators

We have not been able to develop a real lazy version for these operations, since the obtention of the first level
requires a global computation involving the whole tree, and what happens with a node depends on its siblings
and their descendants, so there is no foreseeable way to separate subproblems for later expansion. Anyway,
although we have to obtain the whole answer, it is possible to delete nodes without expanding them, which
is the purpose of lazy evaluation. The algorithm is, thus, the same, taking care of invoking ezpandLevel on
a node prior to using its query. The complexity 1s of course the same as its full merge version.

5.2.3 Analysis Summary

In this section we summarize the space and time complexity results discussed in the presentation of algorithms.

5.2.4 Space for Queries

Since the representation of a set of @-nodes (i.e. the answer to a query or subquery) is dynamic, it uses, for
each node, a pointer to the view (log, |Nv| bits), a pointer to its children (log, |Q| bits, if they are stored
contiguously), the number of children (log, |@Q]) and the size of the subtree (log, |@]). Since some algorithms
rely on marks, we really need more information. The space requirements for marks range from 1 to log, | Ny|
bits. Thus, ignoring marks, we need

79

Sq = [Q|(log, [Nv | + 3log, |Q[) < 4[Nv|[log, [Nv |

bits per query result. If we consider |@| & | Ny |/|Cy| (which is reasonable), we need

N
So ~ I (4 log, | | - 3log, [Ci)
|Cv|
bits. This formula is the same if we use a linked list for the level of the tree, since in that case we replace

the number-of-children field by a next-sibling field (both are log, |Q).
Measured in words, Sg = 4|Q|. If we include the mark field, we have Sg = 5(Q)|.

During the resolution of a query, we need to keep many results at the same time. We saw 1n section 5.2.1.2
how to minimize space utilization if we use a tree for the query syntax (if we use a DAG it is much harder to
predict the space utilization). If we have a query with a syntax tree of ¢ nodes, the worst that can happen
is that the tree is balanced. Suppose all operators are of arity a (a > 2, since unary operators do not force
us to store more nodes), then by following the principle of solving the heaviest node first, we will have in the
worst case a — 1 computed answers per level, thus needing a total space less than

Sq (14 (a —1)log,(14¢(a —1))) = O(Sgalog, q)

Note that in most cases a = 2. In that case, the exact answer is

Sq (1+logy(1+q))) = O (Sqlogq)

In lazy evaluation we cannot predict how much space we will need, since we have normally all internal nodes
partially computed.

If we use a DAG we may have to keep also space for all shared nodes.

5.2.5 Running Time of Operations

Since we have already analyzed the operations when we described them, we summarize and comment here
the results.

As we can see in Table 5.1, the merge approach is better in general if we look at the worst case behavior.
However, we must take into account other aspects of the problem. For example, the search-operate approach
could be very good if the two operands are very distinct in size, we test this in the simulations. The lazy
approach can also be better than the full one, because although it is less efficient in producing the whole
trees, it can deliver the answer generating the intermediate solutions only to a partial degree.

We have not included here the operators to enhance the pattern-matching sublanguage, since they are quite
easy to implement and normally linear. We have not included also the implementation of the View and
Constr queries, since they are discussed in the section about indexing, and their performance depends on
the index. Anyway, most implementations of Constr and View are linear in the size of the result.

These good complexity results are possible thanks to our approach of coupling nodes with segments, which
allows us to readily apply divide-and-conquer techniques for obtaining the whole set of solutions to a query.
The i1deas of a set-oriented query language, coupling nodes with segments, using a data structure in which we
can easily separate ranges of segments, and a language which reduces all queries to operations on proximal
nodes lead us to an implementation where the amortized cost per retrieved element is, in many cases, constant.

In order to compare the efficiency of our approach to that of the other considered models, we must define
how we measure the efficiency of those models.

The three simpler models (the hybrid model [BY94], PAT expressions [ST92] and overlapped lists [CCB95a])
have to manage sequential lists (no nesting) in their intermediate results, thus they are susceptible of an

80

Operation Search-Operate Merge Lazy Lazy
(in whole) (per call)
+ nlogd..nlog®d n nmin(d, h) n
- nlogd..nlog®d n nmin(d, h) n
is nlogd..nlogd n n n
same nmin(n, hlogd) n n n
[nlogd..nlog? d]
in nlogd min(n, d?h) min(n, d?h) min(n, d?h)
beginin nlogd min(n, d?h) | min(n + dh, d*h) min(n, d?h)
endin nlogd min(n, d?h) | min(n + dh,d*h) | min(n + dh,d*h)
[s]*in nmin(n,d + hlogd) | nmin(d,h) nmin(d, h) nmin(d, h)
fnd]
with*(k) nmin(n, hlogd) n nmin(n, k + dh) | min(n, d(k + dh))
[nlogd..nlog? d] [n min(n, k)] [min(n, kd)]
[s]child nlogd..nlog” d n n n
parent(k) nlogd..nlog®d n nmin(d, h) nmin(d, h)
after/before(k)(C) nhlogd nmin(n, dh) nmin(n, dh) nmin(n, dh)
after /before(C) nmin(nlogd, dh) nmin(n, dh) nmin(n, dh) nmin(n, dh)

Table 5.1: Complexity results for all versions of the operations. When the complexity can be better if the
operands are in a single view, the better complexity is indicated below the general value, in square brackets.

implementation in which all operators are linear (a merge-like approach). They can also be implemented
in a search-operate-like manner, i.e. searching each segment into the other set. This approach makes most
operations O(nlogn), but as search-operate, could be preferred in certain cases (see, however, the exper-
imental results). Since the actual implementations are not a property of the models and not always are
available (some of them are commercial products), we decide to consider these models as if they had a linear
implementation (i.e. the best) for all operands, i.e. slightly better than ours.

The lists-of-references model is quite complex and hence has problems about efficiency [Mac91, Mac90].
However, since we are taking the part of the model similar to ours (i.e. discarding attributes and hypertext
management), we only take into account the implementation of this subset. From the cited papers we can
infer that the implementation of that subset makes most operations O(nlogn), so we use that complexity.

The more complex models, instead, cannot have that good implementation. The tree matching model [KM93]
involves a number of NP-Complete problems, especially regarding logical variables and unordered inclusion.
Only ordered tree inclusion without variables can be similar in efficiency to our approach, but this is a too
restricted version of the model. On the other hand, there is no data about the efficiency of p-strings, but
many operations must be O(n?) (because of the cardinality of the result set). Moreover, there are some data
about the times required to process the SOED that indicate that the implementation is not very efficient.
Thus, we treat these complex models as being much less efficient than ours.

81

Chapter 6

A Prototype

In this chapter we describe a prototype that implements our model, following the system architecture proposed
earlier. We have used this prototype to measure average time and space used, and to test different heuristics.

6.1 Implementation

Our prototype provides two main facilities

Indexing: each document is indexed in two separate forms: an index for text and another for structure.
The index for text is provided by the text search engine we use. The index for structure can be built
by any mechanism; for example we have implemented parsers for some markup languages and a tool to
convert parse trees to the index format.

Querying: a search module implementing all representative operations is provided. This module has three
implementations, one for each version of the algorithms. Pattern-matching subqueries are redirected
to the text search engine that we use.

See Figures 6.1 and 6.2 for diagrams of the software architecture of our prototype. Observe how the general
architecture described in Section 3.4 is mapped into this one. Currently, the interface layer is very primitive,
and the document layer does not exist. There is no query parser yet, we manually write the query plans.

Currently, our text search engine is the APT of SearchCity [Ars92], which is based on the use of PAT arrays
[FBY92, chapter 5] (also called suffix arrays [MM90]), and partially implements the hybrid model [BY94].
PAT arrays allow to find all occurrences of a given prefix in log, n time, where n is the number of index points
of the text. Its space requirement is n words. The matching sublanguage supported by the API includes:
whole words, ranges, wildcards in any place but the beginning, proximity search, boolean operators, etc. It
also has tools to define fields (much like [BY94]), but we do not use them. It provides a number of document
management facilities, so the “document layer” of our architecture could in fact be implemented with the
same API.

The API also allows to filter the raw text, by applying a character normalization filter, a synonyms and
stopwords filter, and a format filter. This last filter allows to use files in other formats different from ASCII
(e.g. Word), without copying their filtered form into a new file. All format-related (i.e. non-searchable)
portions of the file are filtered out, so that queries can only see the true contents of the file. The API
provides a tool to add new format filters.

We use that filtering tool to incorpore texts whose structure is embedded in their content, this way allowing
only the contents to be searchable, and using the marking to parse the structure and generate a view index.
This way, we have an index for matches and a separate index per view. The PAT array can be seen as a
generic index for the text view. Recall that we do not want to allow users to see the markup, since all what
they should do with 1t should be done through the operators to query on structure.

82

[-~ 7‘
! Document layer: none |
L I [1
Query Set of
plan segments
Constructor
name
Singl Query engine:
Ing !lE array y engine: Segment Text contents
full index our algorithms
—_—
Set of
segments Textual List of
query segments
Search
Text engine: PAT array
SearchCity API . Text contents
Results

Figure 6.1: The architecture of our prototype regarding querying. Dashed components indicate that their
implementation is still missing or rudimentary.

Thus, for each document format we add, we need to build a filter for the API, allowing it to discard the
non-searchabe portion of the document (i.e. markup); and a parser to build the tree precisely from that
discarded markup. That tree is converted to the index format we use for structure (i.e. the view array),
by another tool that we implemented which eases this step. That tool isolates the problem of obtaining the
structure from the problem of generating the index.

For some formats, we have not been able to truly filter the native files, being thus forced to create a new,
filtered, copy of the originally marked file in the process of parsing. The reason for this i1s that the filters of
the API of SearchCity are not powerful enough in some cases: a filter must be able to be set at any character
of the file and to filter the text from there on in an automata-like fashion; and some markup systems would
need an unbounded amount of memory per state (a stack, in fact) in order to do this.

At this moment, we have implemented simplified filters for some markup systems. They are simplified in the
sense that they recognize some components of the markup, not all of it. The markup systems incorporated
until now follow.

SGML [ISO86]: Stands for Standard Generalized Markup Language. It is the ISO standard on markup,
so the ability to incorpore documents marked this way should give our system access to an important
set of documents, especially if SGML becomes commonplace. We can recognize the structure of any
markup system compliant with SGML. Since SGML allows complicated markup systems, in which
things can be mentioned without really appearing in the document (by means of entities, etc.), we
prefer to use a public parser, sgmls V1.1, to solve all those complications and to work on an easily
interpretable version of the original file. We then parse that output file, obtaining a final file with only
contents (to be indexed and queried as text) and a view file, with the corresponding structure. We do
not analyze the semantics of SGML documents in depth, but only recognize structuring, subdocuments
and commands, taking all them simply as constructors. Since the file we work on is not the original
but a filtered version, there is no point in keeping it as a native file, thus we make a filtered copy from
it.

83

Add
document

Add Add
files files
Single array Writeindex | Structure indexer: Text engine: | Write index
. - . —= | PATarray
full index ad-hoc programs SearchCity API

N/

Figure 6.2: The architecture of our prototype regarding indexing. Dashed components indicate that their
implementation is still missing or rudimentary.

DBTpX[Lam86]: Is a markup system oriented to define the structural and presentation aspects of books
and articles, commonplace in the academic world. Recognizing IWTpX documents allows us to test the
kind of structures likely to be found in books, for example. We recognize only the markup related to
structuring the document. The rest of the commands, related to style and symbols, is ignored and not
filtered. An interesting enhancement is to add a separate view for style commands and eliminating
them from the text, while symbols are probably best dealed with by leaving them as they appear. Our
parser assumes that the file has no structuring errors. Due to the complexity of the parsing process
and to the exposed limitations of the filtering mechanism provided by the API, we build a new, filtered
copy of the file, instead of making a filter for the native INIX file. A more space-efficient solution is
to have a file of bits, saying which characters of the original file should be seen. No automata-based
mechanism (such as the one provided by the APT) with fixed amount of memory per state can deal with
the problem of accessing an arbitrary character of the file and telling whether it should be included or
not.

C code [KR78]: In this case, there is no markup (then no filtering is necessary), but the structure must be
extracted by parsing the C language. Including C language structuring allows us to test our prototype
on much finer-grain structures, likely to be found in most programming languages. We adapted a
parser from a software visualization system developed at this department [BYJQ92], to obtain a parse
tree augmented with segment information. The only simplification made here 1s that the files must be
preprocessed (i.e. macros expanded, etc.), because the parser does not handle preprocessor directives
(they cannot be simply ignored, since type information is necessary to succesfully parse a file, and it
can be in other #included file). A more sophisticated version should use the preprocessor file and line
information to allow using the original file instead of the preprocessed one. But this feature demands
multiple files management, an option that our prototype lacks. Since SearchCity allows multiple files,
adding such a feature is a matter of better integration.

DDIF [Dig91]: Stands for Digital Document Interchange Format. It is a markup system designed by DEC
and intended, among other things, to structure documents. The DDIF structure is normally quite

84

fine-grain. We do not parse DDIF directly, but use the output of ddis2ascii V3.03, a program that
outputs a readable version of a DDIF-marked document. We recognize the structuring commands and
their scope, although we do not make a more complex semantic analysis, which would be required to
capture the full power of the language. We filter the native file, not creating a copy.

We implemented the simplest version of the structure index, i.e. the full index in memory, together with
procedures to load it from and save 1t to disk. A real application should use some of the solutions we propose
for keeping the index on disk.

The operators we have implemented cover all interesting problems and algorithms: View, Constr, Match,

+, —, is, same, in, [s]in, with(k), [s]child, parent(k), before(k)(C), and before(C).

Text views are implemented by creating, for each match on queries; an index array, where one entry per node
of the resulting tree is created. This is not the smartest way to do it, but it is simple enough for a prototype.
This text view is deallocated when the query disappears.

The language for sequences (recall [s]in, [s]child, etc.) is as follows: one can express a finite number of
ranges from three classes: from position i to j, from position last — ¢ to last — j, and from position ¢ to
last — j. We believe it is expressive enough for most normal cases. That means, for example, that we cannot
select all even chapters, or all prime-numbered sections.

For the search-operate version, we implement the set of children of a node as a sorted array, in which we
can easily perform binary or interpolation search. The problem is that many operations, if we consider the
necessary merge of arrays or deletion of nodes, become O(n?) in the worst case. A real implementation
should use a data structure as described earlier, to make all those operations in O(log d) time. We have not
implemented also the binary split method to create artificial nodes, which assures that the worst case cannot
reach O(n?). We instead search for each node of the level in sequence. Although a real application should
implement binary split, the difference in the average case is negligible except for very deep trees (which are
unlikely to appear in practice), while we can benefit in speed due to simpler code.

These two simplifications have been tested and found reasonable. On the one hand, we show in the tests that
the behavior of search-operate is no different as a proportion of merge for “—” and is operations, in which
“—” does only search but is does a lot of node deletion. On the other hand, we tested in the same examples of
“—7 (which do only searches) the strategy of artificial nodes vs the simpler code, and found them equivalent.

All search-operate versions destroy one or both operands (i.e. they are implemented as modifying operations).

For the merge and lazy versions, instead, we use sorted linked lists, which are efficient for merging operations
(we do not search for elements here, we just traverse sets). Merge operators are also implemented as modifying
operations.

Lazy evaluation is efficiently implemented by storing, as the identifier of the operator to apply, the address of
its procedure (all procedures are normalized to receive the same type of parameters). The procedures used
in the full-evaluate versions solve the queries and obtain the answers, while in lazy evaluation they just build
the tree that indicates the operations to perform. Another procedure is invoked later to force expansion of
the result.

A problem related to lazy evaluation is the need of a garbage collection mechanism for shared nodes. Since
there are no circular references, either reference count or mark&sweep mechanisms can be used [Coh81].
While the first one deallocates immediately unused memory, the second one takes place only upon memory
exhaustion and can be slower, stopping the execution for a long time and making evaluation time more
unpredictable. On the other hand, mark&sweep can easily collect complex structures, including cycles.

Since we share lists of queries in a complex way (i.e. it is possible to point to the middle of a list), we
prefer the mark&sweep style. We implement a pool of shared objects to deallocate all objects after the whole
evaluation of a query. A real application should either adapt the reference count mechanism to deal with our
lists, or use the pool to implement a mark&sweep garbage collection scheme, that upon memory exhaustion
marks all what is reachable from the query that initially triggered the expansion, and then frees all what is
in the pool and is not marked.

85

Lazy operations are not implemented as modifying but as generating operations (i.e. they do not destroy
their operands). This is the only feasible alternative for shared objects. We can share queries and lists of
queries independently, and we can even share parts of lists.

6.2 Experiments

In this section we present the results obtained with the prototype. We first present a list of questions that
these tests help to answer, then we expose the tests we made and their results, and finally we extract some
conclusions from experimental data.

6.2.1 Motivation

The list of questions the tests should help us to answer is:

e Which are the average times of the operators?

e The search-operate versions have normally two alternatives: search the first operand into the second or
vice versa (“12” or “21”). Under which condition should each alternative be selected?

e Under which condition should one use merge or search-operate versions? We must compare running
times to determine a global heuristic that selects to merge or to search-operate depending on the size
characteristics of the operands (in this case, we should unify the data structures, probably by using a
binary tree to arrange the nodes of each level).

e How much do we save by using lazy evaluation in terms of time? And in terms of space? Is it worth
paying the overhead?

e Is it advisable to use interpolation instead of binary search in search-operate algorithms?

e How does the shape, depth and width of the structure affect the previous measures?

6.2.2 Tests

All tests were run on a Sun SparcClassic, with 16 Mb of RAM, running SunOS 4.1.3_U1l. The CPU speed of
this machine 1s approximately 26 SpecMark.

We use three main document formats in our texts: IATRpX documents, which provide us with a sample
representative of the distribution likely to be found in books and texts: relatively coarse-grain, shallow and
wide; and C code, SGML and DDIF, which are much finer-grain, deeper and not so wide. On each document
type we have only one hierarchy, thus we had no overlap cases to include in our tests. We provided these
cases by means of text operations, that generate segments overlapping with structural components.

As explained in the initial exposition of the model, there is no good probabilistic modellization of the dis-
tribution of hierarchies, what prevents us to run a sound test and obtain results about mean, variance and
confidence intervals. We instead selected a number of appropriate examples, to have an idea of the measures
that we want to obtain. As it is shown later, this is enough for our purposes.

We conducted three main tests:

An operator-wise test: It is the most extense. Its aim is to obtain average values for all versions of all
representative operators, answering then the questions about average times, and about which algorithms
are better in each case. Details follow:

e The operators tested were: “4+7, “=” is, in, [s] in, with(k), [s] child, parent(k), before(k) and
before.

86

e For each operator, we tested the five versions of the algorithms: lazy, full merge and three versions
of search-operate: using the heuristic to select between “12” and “21” versions, using always “12”
and using always “217.

e We ran the algorithms for nine different sizes of operands, i.e. for all combinations of sizes 102,
103 and 10* for both operands. The time for smaller sets was negligible. We used such a gross
scale because of what we mentioned about the difficulty to run more precise tests.

e Each run was made on flat and deep operands, to see how the structure influenced the results.

o Finally, for each operation, algorithm version, size combination and flat/deep selection, five differ-
ent operand pairs were selected, intended to represent a range of possible values on that case.

e Some special cases: in both before operations, two different values for C' were tested: zero and
103, to see how it influenced the times. For before(k), we use k = 10 and k = 500. Finally, with
was used with k& = 5, except for the lazy version, that was also run with & = 100, since it was
likely to be affected by k. All other k and [s] parameters do not affect performance.

We performed about 1300 tests in total, each one run on five different examples.

A test for lazy vs merge: Its aim is to determine the average expansion of the trees made by the lazy
algorithms, and to compare times against full merge. The time comparison was also done in the first
test, but in this case we selected 10 queries of different complexity, on C code (observe that the queries
of the first test are all of one operator only). The idea was to know what is the percentage of expansion
in a real query (i.e. with more than one operation involved), where lazy evaluation is likely to behave
better, and what performance can we expect in queries involving many operations.

A test for binary vs interpolation search: Its aim is to determine how close is the real distribution to
a uniform one, to decide whether interpolation search is a good idea. We tested it for sizes between 10
and 10*%, in each case with ten pairs of flat operands selected from the documents. These case were run

as a “—” operation, since being different the operands, the process would involve just search time.

The detailed results of the tests are shown in Appendix C. Figures 6.3 and 6.4 show some typical results.

10 + search-operate
8
5 05 merge
3 lazy

01 |

0.05+

0.01 | | |

' ' ! operand
100 1000 10000 .
size

Figure 6.3: Typical times for equal-sized flat operands. Observe that we use a logarithmic scale.

87

" 20 4 search-operate
S
c
Q
§ 104
lazy

05 + merge

01 |

0.051

0.01 | | |

operand
100 1000 10000 P

size

Figure 6.4: Typical times for equal-sized deep operands. Observe that we use a logarithmic scale.

6.2.3 Results
From the results of the tests, we can strongly conclude a number of important facts:

e The merge algorithms are by far better than their search-operate counterparts. Although both versions
are similar for sizes of 103 or less, merge algorithms are much better for larger sets, for example by
a factor between 2 and 3 for operands of size 10*. This difference cannot be attributed to memory
management, since it remains even in tests where no modification of the operands occur.

e The merge algorithms are strongly linear in most cases, depending only on the size of the operands.
Search-operate algorithms, on the other hand, are not linear and get much worse when we jump from
103 to 10*. Moreover, they are extremely unstable, depending a lot on internal details of the structure
of operands.

e This unstability is not only bad for interactive activities, but also prevents from drawing reasonable
heuristics to apply “12” or “21”. The algorithms that allow switching between “12” and “21” in
subproblems are even more unstable, and can be even definitely worse than using “12” or “21” alone.
This is because they can take the wrong decision not only the first time, but also in subproblems.

e However, this issue is not that important, since the “12” and “21” versions are not too different, even
when run on sets of very different size. This is the reason because we define our heuristics by complexity
and some intuitive considerations in the definition of the algorithms: it is difficult to make it better,
and does not make a big difference.

e The running time of merge algorithms is normally easy to predict, except in some cases (especially the
C' of before seems to affect retrieval times in unpredictable ways). For most operations, the times
indicate that near 50.000 nodes per second are processed in this machine.

e Although in one-operator queries the lazy algorithms are roughly equivalent to full merge ones, the lazy
approach 1s normally better in more complex queries, but its times are quite unstable. As we may

88

expect, its performance is very dependent upon how much does it need to expand, and this is close
related to the internal structure of trees and the kind of operations we are performing.

e In the real queries tested, the lazy algorithm behaved in a very variable way. Its percentage of expansion
ranged from 40% to almost 100%, depending on the structure and sizes of the operands and intermediate
results.

e The speed of merge algorithms in the complex queries was proportional to the sum of the sizes of all
internal results. The constant for our machine is between [1.5 .. 2.5] x 1077 seconds per node, or between
[4 .. 7] x 10* nodes per second. The time for lazy evaluation was normally half the time for merge,
being a common range a fraction of [0.25 .. 0.90].

e It is important to note another difference between full and lazy evaluation: we implemented modifying
versions of full algorithms and generating versions of lazy ones. Modifying algorithms are better if the
results are a big portion of the operand, generating algorithms are better otherwise. This aspect was
not foreseen in the theoretical analysis, but emerges as an important practical consideration, since the
results indicate that generating algorithms are much better in practice.

e A deeper structure of operands affects negatively the mean and variance of most operators in all versions,
although merge algorithms are less affected.

e On the tests run for binary vs interpolation search, interpolation performed much worse than binary
search.

These facts raise some general conclusions to learn from the tests:

e We should concentrate on merge and lazy algorithms and discard the search-operate version. This
involves more complex algorithms, it is more difficult to analyze, is very unstable and nonlinear (also
in practice) and has definitely worse performance. Merge is strongly linear, predictable, efficient and
simpler.

e A rough estimation for the time taken by merge algorithms to process a query whose syntax tree has ¢
nodes is (2¢ — 1) x (average operand size). The constant depends on the machine, for example in our
case it is & 2 x 107% seconds per node (50.000 nodes per second).

e Lazy operations presents a high variance compared to merge, expanding between 40% and 100% of the
query and taking between 25% and 90% of the time merge needs to retrieve the result. It is probably
worth to extend the lazy mechanism to expand only some children of a node, since its advantage is
related to how much it has to expand.

e The problem of modifying vs generating algorithms should be separated from full vs lazy evaluation, and
deeply studied in the context of query optimization and query plan generation, because they strongly
influence practical times. Mixed strategies, such as modifying operations plus garbage collection to
avoid processing the nodes to be deleted, should be studied.

89

Chapter 7

Conclusions and Future Work

7.1 Summary

The problem of querying a textual database on both its contents and structure has been analyzed. We found
the existing approaches to be either not very expressive or inefficient.

Then, we have defined a model for structuring documents and a query language that are expressive and
efficiently implementable.

To evaluate expressivity we have compared our model with other known ones, showing which aspects of each
one can be represented with the other; and we defined a framework in which to evaluate any similar model,
situating known approaches.

To evaluate efficiency we have implemented our model, and analyzed the behavior of our algorithms in terms
of both space and time. We also implemented a prototype to draw average measures and to test different
alternative solutions to some problems.

7.2 Conclusions

The results of this work are a new model for structuring and querying textual databases which has an
efficient implementation and good expressivity, a framework to compare expressivity and an analysis of the
expressivity of the new model, an implementation of the operations, and a theoretical and practical study of
their behavior in terms of both time and space.

The main idea of this work is that a set-oriented query language based on operations on nearby nodes is very
expressive and efficiently implementable. The strong relation imposed between nodes and segments allows
us to index the nodes in a tree, based on their left-to-right and including relations. This way, at the moment
of operating two sets, we can easily apply divide-and conquer techniques, thus avoiding costly all-against-all
matching algorithms such as those studied in [KM92, KM95]. On the other hand, most interesting operations
can be carried out by operating nearby nodes.

We developed two main strategies to solve queries. A full-evaluation approach computes the whole set of
answers, while a lazy-evaluation one computes only what is needed to obtain the final result. Both strategies
are competitive for set-oriented languages. Additionally, lazy evaluation can be adapted to interactive systems
that combine querying and navigation, by expanding only the top-level and thereafter expanding the nodes
the user wants to see more closely.

The structuring model and operations defined for the language are shown to be competitive in expressivity,
getting closer in expressivity to models that have not an efficient implementation. On the other hand, the
merge and lazy algorithms developed show good and predictable performance, both in their analysis and in
the tests, what situates this model closer in efficiency to those which have much less expressivity.

90

While a number of operations can be added to the language keeping the high efficiency, the work shows that
some other features cannot be added without significantly complicating the implementation and degrading
the performance. For example, more expressivity can be obtained by dissociating nodes and segments (as in
[GT87]), or by including non-proximal operations (like semijoin), but at the cost of losing efficiency.

Finally, recall that the proposed language is an operational algebra, not necessarily intended to be accessed by
the final user, as the relational algebra is not used by the users of the database. It serves as an intermediate
representation of the operations.

See Figure 7.1 for a graphical (and informal) comparison of similar models when taking into account both
efficiency and expressivity. Note that we have included p-strings in this drawing, assuming an expressivity
superior to all the languages we have analyzed. Note also that only a part of the lists-of-references model is
considered. Note that, as any quantization of concepts this comparison is busjective. Nevertheless, it does
give an idea of where our model is.

Hybrid Overlapped

g mode lists

D ® 06 O

é’ oAT Our model
[

LLl expressions @

Lists of references

p-strings

Tree matching

Expressivity

Figure 7.1: A comparison between similar models, regarding both efficiency and expressivity.

This work makes a step in the direction of obtaining a unifying perspective on how a query language for
textual databases should be, how much expressive power should it have and how well can 1t be implemented.
All this is necessary to put the emerging area of textual databases in the place it deserves in Computer
Science.

7.3 Future Work

There are a number of research directions related to this work:

e To explore the possibilities offered by the data structures in order to find more interesting operators
which are efficiently implementable. The capabilities of the proposed data structure are by no means

91

fully exploited. On the other hand, we should find a set of operators which is simple, elegant and
expressive, as for example the relational algebra. In this work we focused only in showing which things
could be expressed with our approach, but not in a single and simple language.

e Toimprove the lazy mechanism, by allowing to expand only parts of levels, since as it is, the mechanism
expands complete levels and that is not good for shallow trees (and most of them are).

e To implement the proposed techniques for maintaining the index and operands on disk, to study the
behavior of different approaches and policies. We have disregarded this problem here, implementing
the index and operands in memory.

e To design swapping policies for when the operands do not fit in memory. We have disregarded this
problem here, having all operands in memory all the time.

e To design a query parser that generates smart query plans, implementing the proposed techniques (trees,
DAGs, and deallocation policies), to experimentally study their behavior. We have not implemented
the query parser, but generate manually the query plans.

e Related to the previous is the need to find a good way to avoid processing nodes that must be deleted,
and to draw a general heuristic in the use of modifying or generating algorithms.

e To implement parsers and filters to index new types of structuring mechanisms.
e To define a query language suitable for end users, possibly visual, to map onto our operational algebra.

e To enhance the prototype, to convert it into a real application, with management of indices on disk,
swapping, query plan generation, etc. An interesting possibility i1s to use the lazy mechanism as the
engine of a system combining set-oriented queries with navigational tools.

e To prove formally the correctness of our algorithms, which we have done only informally.

e To study an extension to our model that allows manipulating the results of queries as new views, as in
relational databases.

7.4 Open Problems

Finally, we point out a number of problems raised by this work, which deserve a separate and deep study
and attention:

e The design of query optimization techniques for our language. Once the query plan generator is written,
there is a large number of possible optimizations, by using algebraic identities that allow transformation
of an expression to a cheaper one. Another direction is to make some compound operations atomic,
which may be cheaper to implement that way (a typical example is P — (P such that...)). Some ideas
and theoretical results about optimization can be found in [CM94].

e An interesting area is the integration between this kind of model and others, such as the relational or
the traditional IR ones. This issue has not been considered here, since we focused on the structure
problem. See [SDAMZ94] for some ideas on this area. A promising direction to manipulate tuples in
our language is to convert all operators of the kind “select nodes of P which are related in such way
with a node of Q7 to “select pairs (p, q) from P x @ related in a such way”.

e As the research in this area matures, it is possible that a reasonable probabilistic model for the structure
of documents emerges, at least for restricted areas. In that case, an average-case study of the behavior
of our algorithms in both space and time would be of most interest.

e The generalization of the problem to manage non-hierarchical structures, such as a hypertext network.
The design of a good and efficient query language for this case has not been studied, to our knowledge.

92

e A formal framework in which to compare expressivity is needed. We have done one step forward in that
direction in this work, but the long-term goal should be a formal and sound hierarchy like what can be
found in the area of formal languages (see [CM95, GPG89] for some examples). Related to this is the
problem of finding lower bounds for the complexity of the operations related to structure, in order to
know when we have found the best algorithms.

e Finally, we need not only a formal but also a practical standard of expressivity. Currently, a wide
diversity of expressivity models exist, and no consensus about what one would like to express. Finding
a unified view on this subject is a matter of maturing.

93

Bibliography

[Ars92]
[ASUS6]

[BBT92]

[BGT91]

[BRGSS]

[Bur92a]

[Bur92b]

[BY94]

[BYJQ92]

[CACS94]

[CCBY95a]

[CCBY5b)

[CGG*88]

[CMO3]

Ars Innovandi, Santiago, Chile. Search City 1.1. Text Retrieval for Windows Power Users, 1992.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley,
Reading, Massachusetts, 1986.

G. Blake, T. Bray, and F. Tompa. Shortening the OED: Experience with a grammar-defined
database. ACM Transactions on Information Systems, 10(3):213-232, July 1992.

D. Berg, G. Gonnet, and F. Tompa. The new Oxford English Dictionary project at the University
of Waterloo. In A. Zampolli, editor, Computational Issues in Lexicology and Linguistics, Special
Issue in Honour of Bernard Quemada, Pisa, 1991. Giardiana Editori.

E. Bertino, F. Rabitti, and S. Gibbs. Query processing in a multimedia document system. ACM
Transactions on Office Information Systems, 6(1):1-41, January 1988.

F. Burkowski. An algebra for hierarchically organized text-dominated databases. Information

Processing & Management, 28(3):333-348, 1992.

F. Burkowski. Retrieval activities in a database consisting of heterogeneous collections of struc-
tured text. In N. Belkin, P. Ingwersen, and A. Pejtersen, editors, Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
pages 112-125. ACM Press, June 1992.

R. Baeza-Yates. An hybrid query model for full text retrieval systems. Technical Report DCC-
1994-2, Department of Computer Science, University of Chile, 1994.

R. Baeza-Yates, L. Jara, and G. Quezada. VCC: Automatic animation of C programs. COM-
PUGRAPHICS 92, Lisboa, Portugal 1992.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents to novel
query facilities. In Proceedings of the ACM-SIGMOD 1994 Annual Conference on Management
of Data, pages 313-324, 1994.

C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text search and a framework
for its implementation. The Computer Journal, 1995. To appear. An early version can be found
as University of Waterloo Computer Science Department Technical Report CS-94-30.

C. Clarke, G. Cormack, and F. Burkowski. Schema-independent retrieval from heterogeneous
structured text. In Proceedings of the jth Annual Symposium on Document Analysis and Infor-
mation Retrieval, Las Vegas, Nevada, April 1995.

B. Char, K. Geddes, G. Gonnet, M. Monagan, and S. Watt. Maple Reference Manual, 5th
Edition. Waterloo, 1988.

M. Consens and A. Mendelzon. HyT: A hygraph-based query and visualization system. In
Proceedings of the ACM-SIGMOD 1993 Annual Conference on Management of Data, pages
511-516, 1993. Video presentation summary.

94

[CMY4]

[CMO5]

[Coh81]

[Con87T]

[Dat95]

[Dav92]

[DGSS6]

[Dig91]

[DWL92]

[Faw89]

[FBY92]

[GI79]

[Gol90]
[Gon87]

[GPG8Y]

[GT87]

[HKS87]

[HU7Y]

[1SO86]

M. Consens and T. Milo. Optimizing queries on files. In Proceedings of the ACM-SIGMOD 1994
Annual Conference on Management of Data, pages 301-312, 1994.

M. Consens and T. Milo. Algebras for querying text regions. In Proceedings of the 14th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), 1995. Cal-

ifornia.

J. Cohen. Garbage collection of linked data structures. Computing Surveys, 13(3):341-367,
September 1981.

J. Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17-41, September
1987.

C. Date. An Introduction to Database Systems. The Systems Programming Series. Addison-
Wesley, Reading, Massachusetts, 6th edition, 1995.

A. Davie. An introduction to functional programming systems using Haskell chapter 7 and 8.
Cambridge University Press, 1992. Cambridge Computer Science Texts No. 27.

B. Desai, P. Goyal, and S. Sadri. A data model for use with formatted and textual data. Journal
of the American Society for Information Science, 37(3):158-165, 1986.

Digital Equipment Corporation, Maynard, Massachusetts. CDA - DDIF Technical Specification,
June 1991. Order Number: AA-PHK3A-TE.

S. Deerwester, K. Waclena, and M. LaMar. A textual object management system. In N. Belkin,
P. Ingwersen, and A. Pejtersen, editors, Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval pages 126-139. ACM
Press, June 1992.

H. Fawcett. PAT 3.3 User’s Guide. UW Centre for the New OED and Text Research, University
of Waterloo, 1989.

W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures and Algorithms.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1992.

M. Garey and D. Johnson. Computers and Intractability. W. Freeman and Company, San
Francisco, 1979.

C. Goldfarb. The SGML Handbook. Oxford, 1990.

G. Gonnet. Examples of PAT applied to the Oxford English Dictionary. Technical Report
OED-87-02, UW Centre for the New OED and Text Research, University of Waterloo, 1987.

M. Gyssens, J. Paredaens, and D. Van Gucht. A grammar-based approach towards unifying
hierarchical data models. In Proceedings of the ACM-SIGMOD 1989 International Conference
on Management of Data, pages 263-272, 1989.

G. Gonnet and F. Tompa. Mind Your Grammar: a new approach to modelling text. In Pro-
ceedings of the 13th International Conference on Very Large Data Bases, pages 339-346, 1987.

R. Hull and R. King. Semantic database modelling: Survey, applications and research issues.

ACM Computing Surveys, 19(3):201-260, 1987.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1979.

International Standards Organization. Information Processing — Text and Office Systems —

Standard Generalized Markup Language (SGML), 1986. ISO 8879-1986.

95

[Kil92]

[KL39)]

[KM92]

[KM93]

[KM95]

[KR78]

[Lam86]

[Loe94]

[Mac90]

[Mac91]

[MM90]

[RTW93]

[Salg6]

[SDAMZ94]

[SM83]

[SM89]

[SSL*83]

[ST92]

P. Kilpelainen. Tree matching problems with applications to structured text databases. Technical
Report A-1992-6, Department of Computer Science, University of Helsinki, Helsinki, Finland,
November 1992.

W. Kim and F. Lochovski, editors. Object-Oriented Concepts, Databases and Applications.
Addison-Wesley, Reading, Massachusetts, 1989.

P. Kilpelainen and H. Mannila. Grammatical tree matching. In A. Apostolico, M. Crochemore,
7. Galil, and U. Manber, editors, Proceedings of the 3rd Annual Symposium on Combinatorial
Pattern Matching, pages 162-174. Springer-Verlag, 1992.

P. Kilpelainen and H. Mannila. Retrieval from hierarchical texts by partial patterns. In R. Ko-
rfhage, E. Rasmussen, and P. Willett, editors, SIGIR 93 — Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
pages 214-222 New York, 1993. ACM Press.

P. Kilpelainen and H. Mannila. Ordered and unordered tree inclusion. SIAM Journal on Com-

puting, 24(2):340-356, April 1995.

B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall, Englewood Cliffs
NI, 1978.

L. Lamport. INTpX: A Document Preparation System. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1986.

A. Loeffen. Text databases: A survey of text models and systems. ACM SIGMOD’94 Record,
23(1):97-106, March 1994.

I. MacLeod. Storage and retrieval of structured documents. Information Processing & Manage-

ment, 26(2):197-208, 1990.

I. MacLeod. A query language for retrieving information from hierarchic text structures. The

Computer Journal, 34(3):254-264, 1991.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In Proceedings
of the 1st ACM-STAM Symposium on Discrete Algorithms, pages 319-327, San Francisco, CA,
January 1990.

D. Raymond, F. Tompa, and D. Wood. Markup reconsidered. Technical Report OED-93-01,
UW Centre for the New Oxford English Dictionary, April 1993.

G. Salton. Another look at automatic text retrieval systems. Communications of the ACM,

29:648-656, 1986.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel. Database systems for structured documents.
In Proceedings of the International Symposium on Advanced Database Technologies and Their
Implementation, ADTI’9}, pages 272-283, Nara, Japan, 1994.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New
York, 1983.

G. Salton and M. McGill. Automatic text processing. Addison-Wesley, Reading, Massachusetts,
1989.

M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman. Document processing in a
relational database system. ACM Transactions on Office Information Systems, 1(2):143-158,
April 1983.

A. Salminen and F. Tompa. PAT expressions: an algebra for text search. In Papers in Compu-

tational Lexicography: COMPLEX’92, pages 309-332, 1992.

96

[SW87]

J. Smith and S. Weiss. Formatting texts accessed randomly. Software Practice and Ezperience,

17(1):5-16, January 1987.
[TSMY1]

J. Tague, A. Salminen, and C. McClellan. Complete formal model for information retrieval

systems. In Proceedings of the 14th Annual International ACM/SIGIR Conference on Research
and Development wn Information Retrieval, pages 14-20, 1991.

97

Appendix A

Formal Syntax and Semantics

We first define the syntax of our expressions (Expr) by an annotated abstract syntax. In this definition, we
use N as the set of natural numbers, Z as the integers, M as the set of pattern-matching expressions, S as
the language for denoting positions, and E, Fq, Ey, Fs € Expr.

Some compositions are not allowed when the operands are from different views. We could address this
problem formally, but it would be cumbersome, so we prefer to indicate at the right side of each alternative,
the conditions on the views of the operands and the view of the result, between brackets. The view of the
result is expressed as a function 7: Fxpr — V.

Expr — View(V) [V eV -—{Vi},r=V]

Constr(c) [e € C — {Ci}, 7 =V/e € Cy]

Match(m) [m € M, = V]

(F; collapse/subtract/intersect £) [r = 7(EF1) = 7(F2) = V4]
Jjoin/complement(F) [r = 7(F) = V4]

move(i,j) By (F2)) [{,j € Z, 7 =1(F1) = V4]

(Ey to Ey (E3)) [r=7(E1) = 7(F2) = Vi

toplevel(F) [r = V}]

(E1 —|— Ez) [T = T(El) = T(E
By = By [r=7(E1) = 7(Ey) # Vi
E1 1s Ez) [T = T(El) = Ez) ;é Vt]
Fy same Ej) [r = 1(FE1)]
Ey Wlth(k’) Ez) []C eEN, ™= T(El)]
By
By
By

2) # Vil

withbegin/withend(k) F2) [k € N, 7 = 7(F1) # 7(E2)]
in Fs) [r = 7(E1)]
beginin/endin Ey) [r = 7(F) # 7(Fs)]

[s] F1in Fy) [s € S, 7 = 1(FE1)]

[s] F1 beginin/endin Fs) [s € S, 7 = 7(F,) # 7(F2)]

Fy parent(k) Fq) [k € N, 7= 7(F1) = 7(F2) # V]

[s] F1 child Es) [s € S, 7= 7(FE1) = 7(F3) # V]

Fy after/before Fy (F3)) [r = 7(F1)]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| F after/before(k) B2 (E3)) [k € N, 7 = 7(FE})]

(
(
(
(
(
(
(
(
(
(
(
(
(

Now, the function 7 is defined inductively as:
e 7(View(V)) = Ny.
e I(Constr(c)) = {z € N/Constr(z) = c}.
e Suppose m is a pattern-matching expression, whose result is a set of segments (ay,b1)..(ag, by). Then,

I(m) = {ts, p./7 € [1..k]}.

98

(P collapse Q) = {tay 5. /FHar b tan s, €ET(P) U Z(Q)/(Vi, by < ajp1) AN Btpy € I(P) U I(Q) —
{lar,yeta 0}/ (@, 9) 01 (a1, b) # 0},

Z(join P) ={ta, ,./Fta, by--tan s, €EL(P)/(Vi,ai01 = b+ 1) A Aoy € I(P)/(x =bp+1Vy=a1—1)}.
Z(P intersect Q) = {ta /Moy € L(P), t.w €Z(Q)/(x,y) N (2, w) =1ap # 0},

I(complement P) = {t,;/a <b A Hyo1,toq19 € Z(P)U{too,tr+1,74+1}}-

Z(P minus @) = Z(P intersect (complement Q))).

I(toplevel P) = {t, /3¢ € mazim(Z(P))/Segm(z) = (a,b)}. Here we use mazim : p(N) — p(N),
defined as maxim(X) = {x € X/ Ax' € X/2' D x} (on chains, it returns singletons).

I(move(n,m) P (C)) = {tap/d <V A Tp € I(P)/Segm(p) = (a,b) AN (a +n,b+m)N
Segm(minim(z € Z(C)/p C z)) = (d/,V)}. Here we use minim : p(N) — p(N), defined as
minim(X) = {# € X/ Az’ € X/ D «'} (on chains, it returns singletons, that we interpret here
as their only element).

I(P to @ (C)) = mzmm{ta afa < d AN Tz € I(P)/Segm(z) = (a,b) A Ty € I(Q)/Segm(y) =
(e,d) A minim({z € Z(C)/x C z}) = minim({z € Z(C)/y C z})}.

P+ Q)=I(P)UI(Q).

P - Q)=1(P)-1(Q).

Pis Q) =Z(P)NI(Q).

P same Q) = {z € Z(P)/3y € I(Q)/Segm(x) = Segm(y)}.

P with(k) Q) = {x € Z(P)/{y € Z(Q)/y C z}| > k}.

P withbegin(k) Q) = {x € Z(P)/|{y € Z(Q)/From(y) € Segm(x)}| > k}.
P withend(k) Q) = {z € Z(P)/{y € Z(Q)/To(y) € Segm(x)}| > k}.
Pin Q) ={z € Z(P)/3y € Z(Q)/x C y}-

P beginin Q) = {z € I(P)/3y € Z(Q)/ From(x) € Segm(y)}.

I(P endin Q) = {z € Z(P)/3y € Z(Q)/To(x) € Segm(y)}.

I([s] P in Q) = Uyezq)iz € 2y/8(s,x,Z,)}. Here, § © 5 x N x p(N) — {true, false} is the
interpretation of the position language S, which says whether the left-to-right position of the segment
of a node in the segments of a set of nodes is acceptable by the specification of s. This position
is only well defined when none of the segments includes another, which is the case in Z,. Finally,
Zy={zx€PlzCy AN z€maxim(z € P/lzCy V y¢ 2)}.

I
I
I
I
I
I
I
I
I
(

I([s] P beginin Q) = U, cz(g)ix € Z,/S(s,x, Zy)}. Here, Z, = {x € P/From(x) € Segm(y) A « €
maxim(z € P/Segm(z) D Segm(y))}.

I([s] P endin Q) = UyeI(Q){x € 2,/8(s,x,2,)}. Here, Z, = {x € P/To(x) € Segm(y) A z €
maxim(z € P/Segm(z) D Segm(y))}.

Z(P parent(k) Q) = {x € Z(P)/{y € Z(Q)/x — y}| = k}.
[s] Pchild Q)= {2z €Z(P)/FyeZ(Q)/y — 2 AS(s,z,{z € Ny — z})}.

A
I(P after(k) @ (C)) ={x € Z(P)/Iy € Z(Q)/0 < From(z) — To(y) < k AN minim({z € Z(C)/x C
z}) = minim({z € Z(C)/y C z})}.

99

o I(P after Q (C) = Uyez(q) first{z € Z(P)/From(z) > To(y) A minim({z € Z(C)/z C z}) =
minim({z € Z(C)/y C z})}). Here, first : p(N) — N selects the node in the set with lowest value
of F'rom, and if there are more than one, the maximal. If all the nodes are from the same view, this
criterion gives exactly one node.

e T(P before(k) Q (C)) ={x € Z(P)/Iy € Z(Q)/0 < From(y) — To(x) < k A minim({z € Z(C)/x C
z}) = minim({z € Z(C)/y C z})}.

o I(P before Q (C)) = Uyez(g) last({z € Z(P)/From(y) > To(x) A minim({z € Z(C)/x C z}) =
minim({z € Z(C)/y C z)})}. last is analogous to first, selecting the highest value of To, or the
maximal if they are the same.

100

Appendix B

Translation Formulas

B.1 Hybrid Model

We depict here functions D and M, to translate from the hybrid model to ours, and the function R, to do
the converse. We begin with the parallel definition of D and M.

e Matching expressions m: we do not enter into details here. They return a set of size-1 text segments.

Although we do not define M(m), it holds D(m) = DV with M(m).
e P + / or (Q makes the union of match points and documents of P and Q:
- M(P 4/ or Q) = M(P) collapse M(Q).
—D(P +/orQ)=D(P)+D(Q).

e P — (@) subtracts the matches of @) from the matches of P. The resulting D component are documents
which contain some resulting match.

- M(P — Q) = M(P) subtract M(Q).
~ D(P = Q)= DV with M(P — Q).

o P&(Q intersects the matches of () with the matches of P. The resulting D component are documents
which contain some resulting match.

- M(P&Q) = M(P) same M(Q).
— D(P&Q) = DV with M(P&Q).

e ~ P takes all match points except those present in P. The resulting D component are documents which
contain some resulting match.

— M(~ P) = “¥” subtract M(P). We assume here that we have in the matching sublanguage a
query “*” to retrieve all points of the text (which is quite problable).

— D(~ P) = DV with M(~ P).

e P and @ intersects the documents of P and (). The resuling match points are those which appear in
P orin @ (inside the resulting documents).

— M(P and Q) = (M(P) collapse M(Q)) in D(P and Q).
— D(P and Q) = D(P) is D(Q).

e P butnot @) subtracts the document of) from the documents of P. The resulting matches are those of
the remaining P documents.

101

— M(P butnot Q) = M(P) subtract (M(P) in D(Q)).
— D(P butnot Q) = D(P) —D(Q).

e not P returns all documents except those included in P, and an empty set of matches.

— M(not P)= “*" subtract “*” or any mechanism to obtain an empty text query.

— D(not P) =DV —D(P).

e P in f restricts the match points of P to those appearing inside a field f. The set of documents is
restricted to those containing some resulting match point.

— M(P in f) = (M(P)in fi) collapse ... collapse (M(P) in f,).
~ D(P in f) = D(P) with M(P in f).

e f with P returns matches corresponding to the beginnings of fields f containing some match of P, and
the documents containing those beginnings.

— M(f with P) = (beginnings (fi, with M(P))) collapse ... collapse (beginnings (f, with
M(P))).
— D(f with P)= DV with M(f with P).

This completes the representation, except for some, whose syntax is someg(q1, ..., ¢m), with 1 <k <m and
¢; queries. It means that a document is retrieved only if at least & of the m queries retrieve it. The only
simulation we can offer for some is of length k() = O(m2™), by rewriting
somer (g1, ..., qm) = orq”#,“#qlkE{qumqu}(qil and ... and ¢;,)
The definition of the converse function, R, follows.
R(Constr(c)) = ¢ with “*”.
o R(View(V)) = (c1 with “*”)+ ...+ (¢, with “*”), where Cy = {e1,...,¢r}.
e R(Match(m)). We left this unspecified.
(
(

e R(P+Q)=R(P)+R(Q).

e R(P—Q)=R(P)—R(Q).

e R(P is/same Q) = R(P) &R(Q). Recall that since no two segments begin at the same position, is =
same.

e R(P beginin @}) = R(P) in ¢. This works only if @ = Constr(e) (it is not compositional). If @ =
Constr(ci) + ...+ Constr(c,), it can be translated into (R(P) in ¢1) + ... + (R(P) in ¢,).

e R(P in/endin @) can be translated as before, with the additional constraint that the hierarchy must
be strict.

e R([s] P in/beginin/endin @) cannot be represented.
e R(P parent/[s] child Q): the concept does not exist.

e R(P withbegin Q) = ¢ with R(Q). This works only if P = Constr(c) and k& = 1. Again, if Q =
Constr(ci) + ...+ Constr(c,), it can be translated into (¢; with R(Q)) + ... + (¢r with R(Q)).

o R(P with/withend Q) can be translated as before, with the additional constraint that the hierarchy
must be strict.

o R(P after/before(k) Q (C)) = R(P) after/before.k R(Q). This only works if C' = none. Notice also

that after/before measure from segment start to segment start, so the semantics is in fact different.

e R(P after/before) (C')) cannot be represented.

102

B.2 PAT Expressions

We depict here the function 7, to translate from PAT expressions to our model, and the function P, to do
the converse. We begin with the definition of 7.

e Matching expressions m: we disregard this issue here, assuming we get a set of match points (size-1
text segments).
e reg is the set of all areas corresponding to reg, thus Z(reg) = toplevel (V;..,).

e P within @ is the set of areas of P whose start point is in some area of @, thus Z(P within Q) = Z(P)
beginin 7(Q).

e P including.n @ is the set of areas of P including at least n start points from areas of @, thus

I(P including.n Q) = Z(P) withbegin(n) Z7(Q).

e P 4+) makes the union of areas, but if they overlap, all areas are converted to their start points,
thus Z(P 4+ Q) = Z(P) collapse Z(Q) if it does not cause overlaps, else (beginnings Z(P)) collapse

(beginnings 7(Q)).
e P — () makes set difference, thus Z(P — Q) = Z(P) subtract 7(Q).
e P A () makes set intersection, thus Z(P A Q) = Z(P) same Z(Q).

e P fby.n @ is the set of areas of P starting at most n points before the start of an area of (), thus
I(P fby.n Q) =Z(P) before(n)Z(Q) (none), except because we count from the end points of P, not
from starts. In fact, the same [ST92] recognizes that this is not so good. If .n is not present, we use
before (c0).

e P near.n @ is as fby, but the @ area can be before or after P, thus Z(P near.n Q) = (Z(P) before(n)
Z(Q) (none)) collapse (Z(P) after(n) Z(Q) (none)), with the same special cases as before.

e P not op @ (a metarrule for all operators op allowing a not clause) retrieves the elements of P not
retrieved by P op @, thus Z(P not op Q) = Z(P) subtract Z(P op Q).

The definition of the converse function, P, follows.

o P(View(V)) = rege, + ...+ reg.,, where Cy = {c1,...,¢r}.

(P)+P(Q)
(P) = P(Q)

P is/same Q) = P(P

P
P

AP(Q). Since regions and their segments are exactly the same, is = same.

—_ ~—

P beginin Q) = P(P) within P(Q).
P in/endin @) is the same as before, but only works if the views do not overlap.

[s] P in/beginin/endin) cannot be represented.
e P(P withbegin(k) Q) = P(P) including .k P(Q).

103

e P(P before(k) Q (C)) = P(P) fby.k P(Q), only if C = none. The same comment about measuring

from start to start instead of from end to start.

o P(P after(k) @ (C)) cannot be translated (observe that near — fby does not work, since a P node that

classifies because it has a () node before it and another after it should be included, but 1t is eliminated
by near — fby).

e P(P after/before) (C)) cannot be translated.

B.3 Overlapped Lists

We depict here the function H, to translate from overlapped lists to our model, and the function W, to do
the converse. We begin with the definition of K.

Matching expressions m: we disregard this issue here, assuming we get a set of disjoint segments.
reg is the set of all areas corresponding to reg, thus H(reg) = toplevel (V,.,).

P < @ is the set of areas of P included in some area of @, thus H(P <1 Q)= H(P) in H(Q).

P 4 @ is the opposite, thus H(P 4 Q) = H(P) subtract (H(P) in H(Q)).

P 1> @ is the set of areas of P including in some area of @, thus H(P > Q)= H(P) with H(Q).
P} @ is the opposite, thus H(P } Q) = H(P) subtract (H(P) with H(Q)).

P 7 @ is the union of the sets, eliminating nesting (we also collapse segments when overlaps result),

thus H(P 7 Q) = H(P) collapse H(Q).

P & @ are segments that extend from P to) elements such that P is before @, selecting the minimal
ones. Thus, H(P & Q) = H(P) to H(Q) (none).

P A Qis(P<OQ)+(Q < P), but it causes overlaps. So we represent it by collapsing: H(P A Q) =
(H(P) to H(Q) (none)) collapse (H(Q) to H(FP) (none)).

n A (Ag, ..., Am—1) is proposed as a generalization of A and 57. For each set of matches of 4q v/
Aq... 7 Apn—1, it selects any possible subset of size m and returns the concatenation of its elements.
Although the only representation we could do for this operator is exponential in length, observe that
since we cannot represent the overlaps, our answer is the same as for 4g v A1... ¥ An—1.

n words returns all segments formed by n words. This query obviously produces overlapping segments
for n > 1, and cannot be represented. It makes no sense to represent all the segments by collapsing
them. This query 1s used to restrict the size and distance of other queries.

The definition of the converse function, W, follows.

W(Constr(c)) = reg.. It cannot return nested elements, if there are nested elements, the innermost
are returned.

View(V)) = rege, ... V rege,, where Cy = {e1, ..., ¢, }. The same observation as before.
Match(m)), we disregard this point here.
P+ Q)=W(P)v W(Q). Only minimal segments are returned.

P — Q) cannot be expressed, except in very special cases (with the help of 4 and §).

104

e W(P is/same Q) = (W(P) < W(Q)) >W(Q). This works thanks to not having nested elements in
. Observe that is = same in this model, since nodes are just segments. If two nodes could have the
same segment, is would not be expressible.

W(P in Q) = W(P) < W(Q).
o W

P beginin/endin @) is the same as before, but only works if the elements do not overlap.

é

W(
(
([s] P in/beginin/endin Q) cannot be represented.
o W(P with(k) Q) = W(P) > (W(Q)C...0W(Q)) (k times).

(

(

(

e W(P withbegin/withend Q) is the same as before, but only works if the elements do not overlap.

=

P parent/[s] child @): the concept does not exist.
W(P after/before Q (C)) = (W(P) O W(Q)) < W(C). This works because there is no nesting in

e W(P after/before(k) @ (C)) = (W(P) OW(Q)) < k words) <« W(C'). words are like our symbols,

can be words, characters, etc. The same comment as before about nesting in C'.

B.4 Lists of References

We depict here the function X, to translate from lists of references to our model, and the function Y, to
do the converse. We begin with the definition of X'. We use a simplified version of the syntax presented in
[Mac91], which is too complex.

o Text matching expressions can be used to restrict nodes to retrieve. We do not address this issue here.
They are translated into our text matching expressions in some way.

e constr is a constructor name, thus X' (constr) = [1..last] Constr(constr) in V (recall that V is the
name of the only hierarchy we have). The positional inclusion is used to select the top-level components.

e constriist.constr allows to traverse a path in the hierarchy. There are two possibilities:

— If constr can be parent of the last element in constrlist, then X (constrlist.constr) = [1..last] (V
parent X (constrlist)) in V.

— If constr can be a child of the last element in constrlist, then X (constrlist.constr) = Constr(constr)
child X (constrlist).

The two situations are not exclussive, but the paper says that things must be arranged in the indexing
to avoid ambiguities.

e any n P, when not used after having, selects the n first components of P, thus X'(any n P) = [l..n] P
in Constr(archive). archive is a constructor related to storage organization, and all answers of a
query are from the same archive. In some situations, the positions must be measured from within
another constructor (this can be syntactically determined), chich can also be represented by replacing
archive.

e P union @) makes the union of both sets, if they are from the same constructor, else it is the empty
set (this can be syntactically determined). If they are from the same constructor, then A'(P union
Q) = X(P)+ X (Q), else any way to obtain an empty set can be used (e.g. V — V).

e P intersection @ makes the intersection of both sets, so X (P intersection) = X (P) is X (Q).
e P difference () takes the difference, with the same comments about different constructors. X' (P

difference @) = XY(P) — X(Q).

105

e P of () selects elements of P which descend from a @) element, keeping only the top-level results. Thus,

X(Pof Q) =[l.last](X(P)in X(Q)) in V.

e P from () selects the elements of P that are children of an element of Q. Thus, X (P from Q) = X (P)

child X(Q).

e P where cond selects elements of P satisfying cond. That cond can refer to the element itself or to a

descendant. Thus,

— X (P where
— X (P where

¢1 and ¢2)) = X((P where ¢1) where ¢3)
¢1 or ¢3)) = X(P where ¢1) + X (P where ¢3)

(
(

— X(P where (Q in constr)) = X(P) with (Constr(constr) with X(Q)). Here @ can be a text

matching expression.

— X(P where (@ notin constr)) = X(P) — (XY (P) with (Constr(constr) with X'(Q))). Here Q

can be a text matching expression.

e P having any n @ selects elements of P including at least n elements of @, thus X'(P

Q) = X (P) with(k) X (Q).

having any n

e P having all @ selects elements of P such that all constr included in them are in). Here, constr is

the constructor of the elements in @ (which can be syntactically determined). Thus,

Q) = X(P) — (X (P) with (Constr(constr) — X(Q))).

e P having all n @) also restricts P elements to include exactly n elements of), thus

n Q) = X(P having all Q) is (X (P) with(n) X(Q)) — (X(P) with(n+ 1) X(Q))).

e The same for not having, thus X(P not having ... Q) = Y(P)— X(P having... Q).

X (P having all

X (P having all

e P @ (pos) selects pos-th elements of P. The language of positions is similar to ours, so X(P @
(pos)) = [pos] X(P) in Constr(archive). archive is as before, and again can be replaced by another

constructor.

Now the converse. Some restrictions apply here: we can represent only one hierarchy, we can represent only
the top-level of the answers, and we cannot merge elements from different constructors. We define now the
Y function. Observe that beginin, endin, withbegin and withend are not applicable, since only one

hierarchy exists.

e Text pattern matching expressions are translated in some way that we do not cover here, but in this

model text matches can only be used to restrict other answers, not directly returned.

e V(P + Q) = Y(P) union Y(@), but only works if P and @ are from the same constructor and the

result has no nested components.
e V(P — Q) = Y(P) difference Y(Q).
Y(P is Q) = Y(P) intersection Y(Q).

e V(P same Q) cannot be represented.

e Y(Pin Q) =Y(P) of Y(Q).

oV

o V(P with(k) Q) = Y(P) having any k Y(Q).
¢ Y([s] P child Q) = [s] Y(P) from Y(Q).

I
(
(
([s] P in Q) = [s] Y(P) of Y(Q).
(
(
(

Y(P parent(k) Q) = Y(P) intersect Y(Q).parent. Actually, parent cannot be said, but it is necessary
to give the constructor name. Thus, this only works if the constructor of () has always the same

constructor as parent and there is no confusion with children of the same constructor.

e after and before cannot be represented.

106

B.5 Tree Matching
The definition of the K x function follows.

e Kx(Constr(c)) = X :c.

e Kx(View(V)) =X :¢1; ...; X :¢,. Note that the language of [KM93] does not have “” (or), but it
says it should, so we use it freely.

o Kx(Match(m)): we disregard this issue here. The results can only be used to restrict other queries.

e Kx(Pin Q)=Kx(P), Ky (Q), (Y :c1(X); ...; YV :¢.(X)). beginin and endin are not different

from in in a single view.
e Kx([s] P in/beginin/endin @) cannot be expressed.

o Kx(P with(k) Q) =Kx(P), Kv,(Q), ..., Ky, (Q), V1<i<ji<k)Yi£Y;, X:aa(Y1); ..; X
(Y1), oy (X :aa(Ys); o3 X :ep(Yy)). Note that we need the # predicate for £ > 1. withbegin
and withend are the same as with in a single view.

e Kx(P parent/[s] child @) cannot be expressed. Only transitive relationships can be seen, this is
encouraged in [KM93] to support data independence.

o Kx(P after/before @)) cannot be expressed, except what can be done with ordered inclusion in few
cases.

e Kx(P+Q)=Kx(P); Kx(Q).
e Kx(P — @) cannot be expressed.
I]CX(P 1s Q) =]Cx(P) ,]CX(Q).

e It is not clear whether same can be expressed or not.

It is interesting to observe that —, [s] in, child and parent could all be expressible if the language included
a closed-world not (ala Prolog).

107

Appendix C

Experimental Results

We present here our experimental results in detail. This appendix is divided into three sections, one for
each type of experiment. We begin each section by commenting the specific conclusions derived from the
experiments, and then present the tables. More general conclusions are presented in the body of this work.

C.1 An Operator-Wise Test

We present one table for each operator tested. This summarizes fourteen tables, since before is tested with
|C| = 0 and |C| = 1000, and before(k) also with &k = 10 and & = 500. For each operator, the five different
algorithms are presented, each one for different values for their first and second operand, and for flat and
deep operands.

We extract the following specific results from the numbers:

e While the merge and lazy algorithms are roughly linear, the times for all search-operate algorithms grow
faster.

e The search-operate algorithms are, for sizes exceeding n = 1000, uniformly worse than the other versions.
They have also higher variance.

e The merge and lazy algorithms are roughly equivalent, although the lazy ones present higher variance.
Both versions depend more heavily on the first operand than on the second (except “+”, which is
symmetric).

e The times for the merge versions indicate that approximately 50.000 nodes per second are processed.

e This equivalence between the merge and lazy versions must be studied for more complex queries, what
is done in the next section. We should also notice that some differences are because the merge version
uses modifying algorithms and the lazy version uses generating ones.

e Except for before the “12” and “21” versions are not too different, and it is hard to predict what
should be applied based on simple measures such as size.

e Almost all times are worse for deep operands than for flat, having larger mean and variance. However,
the merge algorithms are the less affected.

e When the “12” vs “21” heuristic can be changed for subproblems, the mixed search-operate version has
larger variance, and can be better or even worse than any of its “12” or “21” counterparts.

e The “12” version for with is uniformly worse than its “12” counterpart and therefore should be dis-

carded.

108

The lazy version of with seems to work better for larger values of k. This could indicate that it is more
efficient to expand wholly the second operand and compute its sizes than initially avoiding expansion
and then having to expand small pieces. This deserves further study.

In the before and before(k) algorithms, a larger C' affects mean and variance, generally for worse. In
a few cases 1t helps by narrowing the search.

In the before(k) algorithms, & does not affect too much the performance. These algorithms are a little
worse than those for before.

“4” operator:

Version Flat operands Deep operands
opl \op2 || 10* 10° 10* 102 10° 10?
10% 0.00 0.02 0.14 || 0.00 0.02 0.1
merge 103 0.02 0.03 0.17 || 0.02 0.03 0.20
10% 0.14 0.17 0.35 | 0.15 0.20 0.53

102 0.00 0.01 0.24] 0.00 0.03 0.23
lazy 103 0.01 0.03 0.26] 003 0.06 0.35
10* 024 026 0.69] 023 035 0.74

10% 0.01 0.01 0.69 || 0.01 0.02 1.50
search-operate 103 0.02 0.06 0.72 1 0.02 0.04 1.52
104 0.69 072 1.19 || 1.50 1.52 2.23

102 0.01 0.01 0.67] 001 0.02 1.50
“12” 103 0.02 0.06 0.711] 002 0.06 151
10* 0.69 075 1.21] 150 1.56 2.18

102 0.01 0.02 0.71] 001 0.03 1.50
“217 103 0.01 0.07 0.75] 002 0.04 1.58
10* 0.69 070 1.18] 149 150 221

“—” operator:

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10 10
102 0.01 0.02 0.14 || 0.01 0.02 0.16
merge 103 0.02 0.03 0.151 0.02 0.03 0.25
10% 0.14 0.15 0.35 | 0.15 0.18 0.55

102 0.00 0.00 0.03] 0.00 0.01 0.05
lazy 103 0.01 0.01 0.05] 0.03 0.04 0.17
10* 0.11 0.12 0.50 || 0.06 0.11 0.62

10% 0.01 0.02 0.69 | 0.01 0.02 151
search-operate 103 0.02 0.07 0.70 || 0.01 0.04 1.53
104 0.65 0.71 1.15 | 1.47 152 191

102 0.0l 0.02 0.67] 001 0.01 1.50
“197 108 0.03 0.06 0.72] 0.03 0.04 1.52
10% 076 0.82 1.02 | 1.55 1.60 2.07

102 0.00 0.02 0.72] 001 0.02 151
“217 103 0.01 0.05 0.751 0.01 0.03 1.53
10* 0.64 068 1.18] 149 1.53 2.02

109

“is” operator:

“in” operator:

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10° 10%
102 0.00 0.02 0.16 || 0.01 0.02 0.16
merge 103 0.03 0.04 0.17 || 0.03 0.03 0.24
104 0.26 0.26 0.46 || 0.28 0.29 0.56
102 0.00 0.00 0.011] 0.02 0.04 0.07
lazy 103 0.00 0.00 0.031] 0.03 0.04 0.14
104 0.03 0.03 0.36 1] 0.03 0.14 0.58
102 0.00 0.02 0.69] 0.01 0.01 1.50
search-operate 103 0.02 0.06 0.69 || 0.01 0.04 1.51
104 0.82 0.85 1.01] 162 1.64 2.06
102 0.01 0.01 0.63] 0.01 0.01 143
“127 103 0.02 0.06 0.69] 0.02 0.04 1.52
104 0.82 0.84 1.04]| 157 1.63 2.36
102 0.00 0.02 0.84 1] 0.01 0.01 1.59
“217 103 0.02 0.0 0.8 0.00 0.02 1.59
10% 072 072 094 1.49 149 1.93

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10° 10%
102 0.00 0.01 0.15] 0.00 0.02 0.16
merge 103 0.01 0.03 0.16 || 0.03 0.06 0.18
104 0.15 0.25 0.431] 0.28 0.29 0.53
102 0.00 0.00 0.031] 0.00 0.02 0.02
lazy 103 0.00 0.00 0.041] 0.01 0.03 0.04
104 0.12 0.13 0.33]/ 0.04 0.14 0.50
102 0.01 0.01 0.68] 0.00 0.02 1.49
search-operate 103 0.01 0.06 0.72]| 0.02 0.03 1.49
104 069 0.81 1.17] 1.63 1.64 1.93
102 0.01 0.01 0.68] 0.00 0.01 147
“127 103 0.01 0.04 0.69] 0.03 0.03 1.49
104 069 094 1201 169 1.73 1.93
102 0.01 0.01 0.72] 0.00 0.01 1.62
“217 103 0.01 0.06 0.841] 0.02 0.02 1.65
104 0.69 071 1.15| 1.45 150 1.84

110

“[s] in” operator: s = 1..3

Version Flat operands Deep operands

opl \op2 || 10* 10° 10* 102 10° 10?

102 0.00 0.01 0.14 | 0.00 0.02 0.15
merge 103 0.03 0.03 0.16 || 0.03 0.03 0.20
104 022 024 0.40] 023 0.25 0.57

102 0.00 0.00 0.03] 0.00 0.01 0.07
lazy 103 0.00 0.00 0.04] 0.03 0.05 0.16
10* 0.07 0.08 0.65] 0.12 0.30 0.69

10% 0.00 0.01 0.68 || 0.00 0.01 1.45
search-operate 103 0.01 0.06 0.71 1 0.01 0.03 1.49
104 0.71 0.72 092 | 1.50 1.53 2.13

102 0.00 0.01 0.68] 0.00 0.01 1.45
“12” 103 0.02 006 0.71] 0.02 0.02 1.49
10* 0.86 086 0.92] 159 1.66 1.89

102 0.00 0.01 0.80] 0.00 0.02 1.58
“217 103 0.01 0.05 0.83] 001 0.05 1.66
10* 0.71 072 1.18] 1.50 1.53 2.13

“with(k)” operator: k=5

Version Flat operands Deep operands

opl\op2 || 102 10° 107 102 10 10*%

10% 0.00 0.01 0.14 | 0.00 0.02 0.16
merge 103 0.02 0.03 0.17 || 0.04 0.05 0.21
10% 0.26 0.26 0.45 | 027 0.32 0.66

102 0.00 0.01 0.03] 0.00 0.02 0.04
lazy (k =5) 103 0.01 0.00 0.04] 002 0.03 0.13
10* 0.04 0.04 0.33] 002 0.08 0.65

102 0.00 0.00 0.01] 0.00 0.01 0.05
lazy (k = 100) 103 0.00 0.01 0.05] 0.00 0.02 0.12
10* 0.01 0.03 0.19] 0.03 0.06 0.39

102 0.00 0.01 0.69 | 0.00 0.04 1.70
search-operate 103 0.02 0.06 1.07 || 0.01 0.07 2.34
104 0.74 0.76 1.20 || 1.b3 1.7 2.72

107 0.00 0.01 0.69] 0.06 0.07 1.70
“12” 103 0.08 0.14 1.07] 011 0.26 2.34
10* 0.97 1.27v 152 244 249 271

102 0.00 0.02 0.86] 0.00 0.02 1.62
“217 103 0.02 0.06 0.88] 001 0.04 1.69
10* 0.74 076 1.20 | 163 1.57 281

111

“parent(k)” operator: k=1

Version Flat operands Deep operands

opl \op2 || 10* 10° 10* 102 10° 10?

10% 0.00 0.00 0.15 | 0.00 0.02 0.16
merge 103 0.02 0.04 0.17 || 0.03 0.03 0.20
10% 0.22 022 048 0.23 0.25 0.60

102 0.00 0.01 0.03] 0.00 0.01 0.10
lazy 103 0.01 0.01 0.05] 001 0.03 0.11
10* 0.01 0.03 0.62] 003 0.13 0.68

10% 0.00 0.01 0.69 || 0.00 0.01 1.47
search-operate 103 0.01 0.06 0.76 || 0.01 0.06 1.49
10% 0.81 0.86 1.22] 1.64 1.76 2.39

102 0.00 0.00 0.69] 0.00 0.01 1.49
“12” 103 0.01 0.06 0.72] 0.02 0.03 1.50
10* 0.86 086 1.14 | 1561 1.83 2.13

102 0.00 0.01 0.82] 0.00 0.02 151
“217 103 0.01 0.05 0.90 | 0.02 0.03 1.55
10* 0.76 077 1.15] 1.560 1.53 2.56

“[s] child” operator: s = 1..3

Version Flat operands Deep operands

opl\op2 || 102 103 107 102 10 10

10% 0.00 0.01 0.12]| 0.00 0.02 0.18
merge 103 0.02 0.04 0.17 || 0.03 0.04 0.20
10% 0.24 028 0.40 || 0.28 0.30 0.56

102 0.00 0.00 0.01] 0.00 0.00 0.04
lazy 103 0.00 0.00 0.03 1] 002 0.04 0.16
10* 0.03 0.03 0.37] 005 0.12 0.58

102 0.00 0.01 0.73]| 0.00 0.02 1.47
search-operate 103 0.01 0.06 0.77 || 0.02 0.04 1.60
104 0.81 0.85 1.08 | 1.63 1.63 231

102 0.00 0.01 0.66 | 0.01 0.01 1.47
“12” 103 0.01 0.05 0.69] 002 0.04 1.49
10* 0.85 0.88 1.04 | 1.656 1.67 2.43

107 0.00 0.02 0.81] 0.00 0.01 1.57
“217 103 0.00 0.05 0.84] 0.01 0.03 1.60
10* 0.74 076 098] 1564 1.56 2.03

112

“before” operator: |C| =0

“before” operator: |C| = 1000

Version Flat operands Deep operands
opl \op2 || 10* 10° 10* 102 10° 10?
10% 0.00 0.01 0.14 || 0.00 0.03 0.1
merge 103 0.03 0.04 0.17 || 0.06 0.06 0.21
10% 0.31 0.34 046 | 0.34 0.40 0.64
10% 0.00 0.00 0.03 || 0.00 0.02 0.03
lazy 103 0.02 0.02 0.05] 0.03 0.04 0.05
10% 0.28 0.28 0.50 || 0.30 0.33 0.68
10% 0.00 0.01 0.68 || 0.00 0.02 0.77
search-operate 103 0.02 0.06 0.68 || 0.01 0.0b 1.00
104 0.81 085 1.79 | 1.00 1.22 2.38
10% 0.00 0.01 0.68 || 0.00 0.02 0.77
“127 103 0.04 0.07 0.68 || 0.06 0.07 1.00
10% .13 1.14 1.79 || 1.93 1.99 2.38
10% 0.00 0.03 0.85] 0.00 0.03 1.61
“217 103 0.02 0.06 0.97 | 0.01 0.056 1.83
10% 0.81 0.85 144 1.00 1.22 3.89

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10 10
10% 0.01 0.03 0.19] 0.02 0.04 0.19
merge 103 0.05 0.06 0.43 || 0.07 0.09 0.46
104 0.35 039 0.55 1 0.39 044 0.65
10% 0.00 0.01 0.05] 0.01 0.03 0.05
lazy 103 0.03 0.06 0.06 || 0.0b 0.06 0.08
104 0.34 035 0.62] 035 038 0.72
102 0.04 0.06 0.90 | 0.04 0.04 0.84
search-operate 103 0.04 0.11 1.34 1 0.02 0.11 1.13
10% 0.86 1.04 197 | 1.17 134 3.76
102 0.04 0.06 0.90 | 0.05 0.04 0.84
“127 103 0.08 0.08 1.34 0.09 0.15 1.13
10% 1.28 1.75 1.97 || 2.17 220 3.76
102 0.04 0.08 0.96 || 0.04 0.05 1.63
“217 103 0.04 0.12 168 0.02 0.11 1.79
10% 0.86 1.04 268 | 1.17 1.34 5.05

113

“before(k)” operator: k = 10,|C| =0

Version Flat operands Deep operands
opl \op2 || 10* 10° 10* 102 10° 10?
10% 0.00 0.01 0.14 || 0.00 0.02 0.16
merge 103 0.02 0.03 0.17 || 0.03 0.07 0.21
104 0.30 031 0.42] 030 0.32 0.62
10% 0.00 0.01 0.04 || 0.00 0.01 0.05
lazy 103 0.02 0.02 0.08 || 0.07 0.09 0.23
104 0.26 0.30 0.55 || 0.27 0.29 0.63
10% 0.00 0.01 0.62 || 0.00 0.01 0.68
search-operate 103 0.01 0.06 0.81 1 0.01 0.06 1.06
10% 0.81 0.84 1211093 1.14 239
10% 0.00 0.01 0.62 || 0.00 0.01 0.68
“127 103 0.03 0.06 0.81] 0.03 0.08 1.06
10% 1.03 1.11 1.21 || 1.80 1.81 2.39
10% 0.00 0.02 0.84 || 0.00 0.02 1.63
“217 103 0.01 0.06 0.86 | 0.01 0.06 1.70
104 0.81 0.84 143093 1.14 2.69

“before(k)” operator: k = 10, |C'| = 1000

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10 10
10% 0.01 0.02 0.15] 0.02 0.02 0.19
merge 103 0.04 0.05 0.20 || 0.06 0.09 0.22
10% 0.26 028 0.46 || 0.32 0.33 0.66
10% 0.00 0.00 0.03 | 0.01 0.03 0.05
lazy 103 0.02 0.03 0.08 | 0.04 0.07 0.21
104 0.34 036 0.54 | 0.34 0.34 0.68
102 0.04 0.05 0.78 || 0.03 0.04 0.80
search-operate 103 0.04 0.07 0.79 || 0.06 0.11 1.11
104 0.89 098 145 096 1.15 242
102 0.04 0.05 0.78 || 0.04 0.04 0.80
“127 103 0.06 0.07 0.79] 0.06 0.10 1.11
10% 1.20 1.27 1.45 | 1.90 1.95 2.42
102 0.04 0.06 1.00 | 0.03 0.07 1.69
“217 103 0.04 0.07 1.02 1 0.06 0.11 1.81
104 0.89 098 1.76 | 096 1.15 3.11

114

“before(k)” operator: k = 500,|C|=0

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10 10
10% 0.00 0.01 0.12 || 0.00 0.02 0.16
merge 103 0.02 0.03 0.16 || 0.06 0.10 0.18
10% 0.26 028 0.36 || 0.33 0.43 0.59

102 0.00 0.01 0.03] 0.01 0.03 0.04
lazy 103 0.03 006 0.13] 0.04 0.17 0.27
10* 032 035 059035 043 0.64

102 0.00 0.01 0.63 || 0.00 0.02 0.78
search-operate 103 0.01 0.07 0.70 || 0.02 0.06 1.05
104 0.83 0.88 1.150.92 1.17 2.29

102 0.00 0.01 0.63 | 0.00 0.02 0.78
“12” 103 0.02 007 0.70] 0.04 0.04 1.05
10* 097 1.12 1.15 1.89 1.93 229

107 0.00 0.03 0.85] 0.00 0.03 1.73
“217 103 0.01 007 0.88] 002 0.06 1.74
10* 0.83 088 1.201 092 1.17 3.05

“before(k)” operator: k = 500, |C| = 1000

Version Flat operands Deep operands
opl\op2 || 102 103 107 102 10 10
102 0.00 0.03 0.18 || 0.01 0.03 0.19
merge 103 0.04 0.06 0.22] 0.07 0.11 0.24
104 0.33 035 0.48] 0.35 0.38 0.62

102 0.00 0.00 0.04) 0.01 0.05 0.04
lazy 103 0.04 0.07 0.10 || 0.06 0.09 0.22
10* 031 036 0.62] 036 042 0.71

102 0.04 0.04 0.81] 0.03 0.06 0.81
search-operate 103 0.04 0.08 0.88 1 0.03 0.11 1.10
104 0.90 1.04 1451 0.99 1.23 240

102 0.04 004 0.811] 003 0.06 0381
“12” 103 0.06 0.08 0.88] 0.06 0.10 1.10
10* 120 1.27 1.45 | 1.96 215 240

102 0.04 007 0.99] 001 0.07 1.84
“217 103 0.04 0.07 1.07] 003 0.11 1.98
10* 0.90 1.04 1.67] 099 1.23 3.77

C.2 A Test for Lazy vs Merge Algorithms

In this case, we select from a sample file with C code a number of “real-life” queries. For each query we
present, we detail the total size of leaves, the total number of nodes from all leaves and intermediate results,
the size of the final results, the number of operators in the query, the times taken by the merge and lazy
algorithms to evaluate the query, the percentage lazy time / merge time, and the percentage of expansion
forced by the lazy algorithm, as a fraction of the whole number of nodes that full evaluation forces to compute.
To be fair, we do not compute twice repeated operands for full evaluation, since reuse can be accomplished
by using generating algorithms.

115

The specific conclusions we extract are:

e In real cases, lazy algorithms seem to be better than merge ones, although due to the large variance of
the first ones, the fraction is somewhere between 0.25 and 0.90.

e The percentage expanded by lazy evaluation has also large variance, lying somewhere between 40% and
100%, depending on a number of subtle parameters. Some of them are the flatness of the sets, and the
relation between initial operand sizes and final result size.

e The total time of evaluation is, in both cases, proportional to the total number of nodes processed, or
more roughly, to the sizes of the leaves and the number of operations to perform. That means, for the
merge version, between [1.5 .. 2.5] x 1075 seconds per node.

e It seems that, in practice, generating algorithms are better than modifying ones. This is perhaps
because final sizes tend to be small in comparison with leaves sizes. This point deserves further study.

Leaves | Total | Final | number of | merge | lazy | lazy/merge | lazy/merge
size size size operators | time | time time expansion
1167 1167 | 1167 0 0.00 | 0.00 100% 100%
1641 1863 222 1 0.02 | 0.02 100% 85%
2329 2932 603 1 0.05 | 0.02 98% 40%
1395 1457 27 2 0.04 | 0.01 25% 35%
2350 3704 605 2 0.05 | 0.04 57% 80%
2422 3273 338 2 0.07 | 0.08 114% 95%
2104 2648 29 3 0.06 | 0.04 67% 78%
8196 9440 16 3 0.23 | 0.08 34% 39%
7164 9316 | 1076 3 0.36 | 0.14 39% 100%
9117 | 16832 | 311 3 0.46 | 0.20 44% 36%

14174 | 18260 | 188 8 0.42 | 0.33 78% 2%

C.3 A Test for Binary vs Interpolation Search

In this case we took, for sizes 10, 102, 103 and 10*, 10 samples of each size. Each sample consisted of two flat
operands of that size, which we operated (doing just search) using binary and interpolation search. The result
is that interpolation search is normally not advisable under the distributions likely to appear in practice.

| Size | Binary | Interpolation |

10 0.00 0.01
102 0.00 0.01
103 0.06 0.09
104 1.12 2.87

116

