
A Textbook Solution for Dynamic Strings

Zsuzsanna Liptáka, Francesco Masillob, Gonzalo Navarroc

aDepartment of Informatics, University of Verona, Italy
bDepartment of Computer Science, Technical University of Dortmund, Germany
cCenter for Biotechnology and Bioengineering (CeBiB), Department of Computer

Science, University of Chile, Chile

Abstract

We consider the problem of maintaining a collection of strings while efficiently
supporting splits and concatenations on them, as well as comparing two
substrings, and computing the longest common prefix between two suffixes.
This problem can be solved in optimal time O(logN) whp for the updates
and O(1) worst-case time for the queries, where N is the total collection
size [Gawrychowski et al., SODA 2018]. We present here a much simpler
solution based on a forest of enhanced splay trees (FeST), where both the
updates and the substring comparison take O(log n) amortized time, n being
the sum of the lengths of the strings involved in the operation. The length ℓ
of the longest common prefix is computed in O(log n+log2 ℓ) amortized time.
Our query results are correct whp. Our simpler solution enables other more
general updates in O(log n) amortized time, such as reversing a substring
and/or mapping its symbols. We can also make FeST use compact space,
and extend it to regard substrings as circular or as their omega extension.

A C++-implementation of our FeST data structure is available at https:
//github.com/fmasillo/FeST.

Keywords: dynamic strings, binary search trees, splay trees, dynamic data
structures

1. Introduction

Consider the problem in which we have to maintain a collection of dy-
namic strings, that is, strings we want to modify over time. The modifications
may be edit operations such as insertion, deletion, or substitution of a single
character; inserting or deleting an entire substring (possibly creating a new

Preprint submitted to Theoretical Computer Science January 6, 2026

https://github.com/fmasillo/FeST
https://github.com/fmasillo/FeST

string from the deleted substring); adding a fresh string to the collection;
etc. In terms of queries, we may want to retrieve a symbol or substring of
a dynamic string, determine whether two substrings from anywhere in the
collection are equal, or even determine the longest prefix shared by two suf-
fixes in the collection (LCP). The collection must be maintained in such a
way that both updates and queries have little cost.

This setup is known in general as the dynamic strings problem. A par-
tial and fairly straightforward solution are the so-called ropes, or cords [7].
These are binary trees1 where the leaves store short substrings, whose left-to-
right concatenation forms the string. Ropes were introduced for the Cedar
programming language to speed up handling very long strings; a C implemen-
tation (termed cords) was also given in the same paper [7]. As the motivating
application of ropes/cords was that of implementing a text editor, they sup-
port edit operations and extraction/insertion of substrings to enable fast
typing and cut&paste, as well as retrieving substrings, but do not support
queries like substring equality or LCPs. The trees must be periodically rebal-
anced to maintain logarithmic times. Recently, a modified version of ropes
was implemented for the Ruby language as a basic data type [40]. This
variant supports the same updates but does not give theoretical guarantees.

The first solution we know of that enables equality tests, by Sundar
and Tarjan [49], supports splitting and concatenating whole sequences, and
whole-string equality in constant time, with updates taking O(

√
N logm +

logm) amortized time, where N is the total length of all the strings in the
collection and m is the number of updates so far. It is easy to see that
these three primitives encompass all the operations and queries above, ex-
cept for LCP (substring retrieval is often implicit). The update complexity
was soon improved by Mehlhorn et al. [39] to O(log2N) expected time with
a randomized data structure, and O(logN(logm log∗m+ logN)) worst-case
time with a deterministic one. The deterministic time complexity was later
improved by Alstrup et al. [1] to O(logN log∗N) (which holds with high
probability, whp), also computing LCPs in O(logN) worst-case time. Re-
cently, Gawrychowski et al. [23, 24] obtained O(logN) update time whp,
retaining constant time to compare substrings, and also decreasing the LCP

1The authors [7] actually state that they are DAGs and referring to them as binary
trees is just a simplification. The reason is that the nodes can have more than one parent,
so subtrees may be shared.

2

time to constant, among many other results. They also showed that the prob-
lem is essentially closed because just updates and substring equality require
Ω(logN) time even if allowing amortization. Nishimoto et al. [43, 44] showed
how to compute LCPs in worst-case time O(logN + log ℓ log∗N), where ℓ is
the LCP length, while inserting/deleting substrings of length ℓ in worst-case

time O((ℓ+ logN log∗N) (log logN)2

log log logN
). Table 1 summarizes these solutions.

All these results build on the idea of parsing a string hierarchically by
consistently cutting it into blocks, giving unique names to the blocks, and
passing the sequence of names to the next level of parsing. The string is
then represented by a parse tree of logarithmic height, whose root consists
of a single name, which can be compared to the name at the root of another
substring to determine string equality. While there is a general consensus on
the fact that those solutions are overly complicated, Gawrychowski et al. [24]
mention that

“We note that it is very simple to achieve O(log n) update time [...], if
we allow the equality queries to give an incorrect result with polynomially
small probability. We represent every string by a balanced search tree with
characters in the leaves and every node storing a fingerprint of the sequence
represented by its descendant leaves. However, it is not clear how to make
the answers always correct in this approach [...]. Furthermore, it seems that
both computing the longest common prefix of two strings of length n and
comparing them lexicographically requires Ω(log2 n) time in this approach.”

This suggestion, indeed, connects to the original idea of ropes [7]. Cardi-
nal and Iacono [12] built on the suggestion to develop a kind of tree dubbed
“Data Dependent Tree (DDT)”, which enables updates and LCP computa-
tion in O(logN) expected amortized time, yet with no errors. DDTs eliminate
the chance of errors by ensuring that the fingerprints have no collisions—
they simply rebuild all DDTs for all strings in the collectio, using a new hash
function, when this low-probability event occurs—and reduce the LCP com-
plexity to O(logN) by ensuring that subtrees representing the same string
have the same shape (so one can descend in the subtrees of both strings
synchronously).

In this paper we build on the same suggestion [24], but explore the use
of another kind of tree—an enhanced splay tree—which yields a beautifully
simple yet powerful data structure for maintaining dynamic string collections.
We obtain logarithmic amortized update times for most operations (our cost
to compute LCPs lies between logarithmic and squared-logarithmic, see later)

3

update time string eq. time LCP time

Sundar & Tarjan O(
√
N logm+ logm) O(logm) —

1990 [49]

Mehlhorn et al. O(log2N) randomized, or O(1) —
1997 [39] O(logN(logm log∗m+logN))

deterministic
Alstrup et al. O(logN log∗N) whp O(logN) O(logN)
2000 [1]

Gawrychowski et al. O(logN) whp O(1) O(1)
2018 [24]

Nishimoto et al. O((n+logN log∗N) (log logN)2

log log logN
) O(log n+ log ℓ log∗N) O(log n+ log ℓ log∗N)

2020 [44]
Cardinal and Iacono O(logN) exp. amortized O(logN) exp. am. O(logN) exp. am.
2021 [12]

this work O(log n) amortized O(log n) amortized
(correct whp)

O(log n + log2 ℓ) am.
(correct whp)

Table 1: Summary of existing solutions and the solution proposed in this paper. Here, N
is the total length of all the strings in the collection, m is the number of updates so far, n
is the length of the string(s) affected by the operation, and ℓ is the length of the LCP.

and our queries return correct answers whp. The ease of implementation of
splay trees makes our solution attractive to be included in a textbook for
undergraduate students.

An important consequence of using simpler data structures is that our
space usage is O(N), whereas the solutions based on parsings require in
addition O(logN) space per update performed, as each one adds a new
path to the parse tree. Since the previous parse tree is still available, those
structures are persistent: one can access any previous version. Our solution
is not persistent in principle, but we can make it persistent using O(log n)
extra space per update or query made so far (we cannot make direct use of
the techniques of Driscoll et al. [19]). These add only O(1) amortized time
to the operations.

It would not be hard to obtain worst-case times instead of amortized
ones, by choosing AVL, α-balanced, or other trees that guarantee logarithmic
height. One can indeed find the use of such binary trees for representing
strings in the literature [46, 16, 22]. Our solution using splay trees has the key
advantage of being very simple and easy to understand. The basic operations
of splitting and concatenating strings, using worst-case balanced trees, imply
attaching and detaching many subtrees, plus careful rebalancing, which is a

4

nightmare to explain and implement.2 Knuth, for example, considered them
too complicated to include in his book [34, p. 473] “Deletion, concatenation,
etc. It is possible to do many other things to balanced trees and maintain
the balance, but the algorithms are sufficiently lengthly that the details are
beyond the scope of this book.” Instead, he says [34, p. 478] “A much simpler
self-adjusting data structure called a splay tree was developed subsequently
[...] Splay trees, like the other kinds of balanced trees already mentioned,
support the operations of concatenation and splitting as well as insertion and
deletion, and in a particularly simple way.”

1.1. Other Related Work

A related but distinct line of work aims at maintaining a data structure
such that the solution to some particular problem on one or two strings can
be efficiently updated when these strings undergo an edit operation (dele-
tion, insertion, or substitution). Examples are longest common factor of two
strings [3, 4], optimal alignment of two strings [14], approximating the edit
distance [35], longest palindromic substring [21], longest square [2], or longest
Lyndon factor [51] of one string. The setup can be what is referred to as par-
tially dynamic, when the original string or strings are returned to their state
before the edit, or fully dynamic, when the edit operations are reflected on
the original string or strings. Clifford et al. [17] give lower bounds on various
problems of this kind when a single substitution is applied.

This setup, also referred to as dynamic strings, differs from ours in several
ways: (a) we are not only interested in solving one specific problem on strings;
(b) we have an entire collection of strings, and will want to ask queries on any
one or any pair of these; and (c) we allow various kinds of update operations.

Locally consistent parsings to maintain dynamic strings have been used
to support more complex problems, such as simulating suffix arrays [31, 32].

1.2. Our contribution

We use a splay tree [47], enhanced with additional information, to repre-
sent each string in the collection, where all the nodes contain string symbols
and Karp-Rabin-like fingerprints [30, 41] of the symbols in their subtree. We
refer to our data structure as a forest of enhanced splay trees, or FeST. As

2As an example, an efficient implementation [33] of Rytter’s AVL grammar [46] has
over 10,000 lines of C++ code considering only their “basic” variant.

5

we will see, we can create new strings in O(n) time, extract substrings of
length ℓ in O(ℓ+ log n) time, perform updates and (correctly whp) compare
substrings in O(log n) time, where n is the length of the strings involved—as
opposed to the total length N of all the strings—and the times are amor-
tized (the linear terms are also worst-case). Further, we can compute LCPs
correctly whp in amortized time O(log n + log2 ℓ), where ℓ is the length of
the returned LCP.

While our LCP time isO(log2 n) for long enough ℓ, LCPs are usually much
shorter than the suffixes. For example, in considerably general probabilistic
models [50], the maximum LCP value between any distinct suffixes of two
strings of length n is almost surely O(log n), in which case our algorithm
runs in O(log n) amortized time.

The versatility of our FeST data structure allows us to easily support
other kinds of operations, such as reversing or complementing substrings, or
both. We can thus implement the reverse complementation of a substring
in a DNA or RNA sequence, whereby the substring is reversed and each
character is replaced by its Watson-Crick complement. Substring reversal
alone is used in classic problems on genome rearrangements where genomes
are represented as sequences of genes, and have to be sorted by reversals
(see, e.g., [52, 6, 10, 11, 45, 13], to cite just a few). Note that chromosomes
can be viewed either as permutations or as strings, when gene duplication
is taken into account, see Fertin et al. [20]; our FeST data structure ac-
commodates both. We can also implement signed reversals [28, 27], another
model of evolutionary operation used in genome rearrangements. In gen-
eral, we can combine reversals with any involution on the alphabet, of which
signed or Watson-Crick complementation are only examples. In order to sup-
port these operations in O(log n) amortized time, we only need to add new
constant-space annotations, further enhancing our splay trees while retaining
the running times for the other operations. The obvious solution of main-
taining modified copies of the strings (e.g., reversed, complemented, etc.) is
less attractive in practice due to the extra space and time needed to store
and update all the copies.

1.3. Operations supported

We maintain a collection of strings of total length N in O(N) space, and
support the following operations, where we distinguish the basic string data
type from dynamic strings (all times are amortized).

6

• make-string(w) creates a dynamic string s from a basic string w, in
O(|s|) time.

• access(s, i) returns the symbol s[i] in O(log |s|) time.

• retrieve(s, i, j) returns the basic string w[1..j − i + 1] = s[i..j], in
O(|w|+ log |s|) time.

• substitute(s, i, c), insert(s, i, c), and delete(s, i) perform the basic
edit operations on s: substituting s[i] by character c, inserting c at s[i],
and deleting s[i], respectively, all in O(log |s|) time. For appending c
at the end of s one can use insert(s, |s|+ 1, c).

• introduce(s1, i, s2) inserts s2 at position i of s1 (for 1 ≤ i ≤ |s1|+ 1),
converting s1 to s1[..i− 1] · s2 · s1[i..] and destroying s2, in O(log |s1s2|)
time.

• extract(s, i, j) creates dynamic string s′ = s[i..j], removing it from s,
in O(log |s|) time.

• equal(s1, i1, s2, i2, ℓ) determines the equality of substrings s1[i1..i1+ℓ−
1] and s2[i2..i2 + ℓ− 1] in O(log |s1s2|) time, correctly whp.

• lcp(s1, i1, s2, i2) computes the length ℓ of the longest common prefix
between suffixes s1[i1..] and s2[i2..], in O(log |s1s2| + log2 ℓ) time, cor-
rectly whp, and also tells which suffix is lexicographically smaller.

• reverse(s, i, j) reverses the substring s[i..j] of s, in O(log |s|) time.

• map(s, i, j) applies a fixed involution (a symbol mapping that is its own
inverse) to all the symbols of s[i..j], in O(log |s|) time.

We have not chosen a minimal set of primitives. For example, our opera-
tions introduce and extract are easily reducible to the more basic concat
and split used in the literature (the converse is also true, concat(s1, s2) =
introduce(s1, |s1|+1, s2) and split(s, i) = extract(s, i, |s|)). Further, with
those operations it suffices to support the queries retrieve and equal, as
well as the transformations reverse and map, on whole strings only. The
edit operations can also be simulated with make-string, concat, and split,
while access is a particular case of retrieve. We prefer the richer interface

7

because with splay trees we can give solutions that are less cumbersome than
building on the most basic primitives, even if equivalent in time complexity.

Thanks to the simplicity of our solution, our publicly available C++ im-
plementation (https://github.com/fmasillo/FeST) takes less than 1000
lines of code and includes all the operations presented on linear strings. It
does not depend on external libraries and uses only common C++ standard
library functions. The code itself closely follows the explanations reported
in this paper, in this way allowing the user to better understand the data
structure, as well as enabling them to possibly extend its functionalities by
adding custom applications.

1.4. Extensions

FeST uses O(N) space, that is, words of memory. This can be excessive
when the alphabet Σ of the strings is small; think for example of the ASCII
alphabet (which needs one byte per string symbol) or DNA (where two bits
suffice). We show how FeST can be adadpted to use essentially O(N log |Σ|)
bits of space, which is truly proportional to the size of the string data, while
retaining all the complexities described above. Once again, there exist so-
lutions for dynamic strings using N log2 |Σ| + o(N log |Σ|) bits, and even
compressed space, that implement most of the operations we support with
worst-case time guarantees [42], but these are overly complicated.

Our data structure also enables easy implementation of other features,
such as handling circular strings. This is an important and emerging topic [5,
15, 25, 26, 29], as many current sequence collections, in particular in com-
putational biology, consist of circular rather than linear strings. Recent data
structures built for circular strings [8, 9], based on the extended Burrows-
Wheeler Transform (eBWT) [38], avoid the detour via the linearization and
handle the circular input strings directly. Finally, FeST also allows queries
on the omega extensions of strings, that is, on the infinite concatenation
sω = s · s · s · · · . These occur, for example, in the context of the eBWT,
which is based on the so-called omega-order.

1.5. Overview of paper

The rest of the paper is organized as follows. In the next section, we give
the necessary technical background (Section 2). In Section 3, we introduce
our FeST data structure and standard operations such as creating a new
dynamic string, introducing or extracting substrings, or testing substring
equality. The following section treats more complex operations such as LCP

8

https://github.com/fmasillo/FeST

or substring reversals (Section 4). Then, in Section 5 we show how to reduce
the space of our FeST data structure so that it uses compact space. In
Section 6 we extend our operations to circular strings and omega extensions
of linear strings. This section also includes some open problems on circular
strings. We close with some conclusions in Section 7.

This is an extended version of the conference paper [36]. Apart from ex-
panded explanations, we have added new results on compact representation,
circular strings, omega extensions, and a reference implementation.

2. Basic concepts

2.1. Strings

We use array-based notation for strings, indexing from 1, so a string s
is a finite sequence over a finite ordered alphabet Σ, written s = s[1..n] =
s[1]s[2] · · · s[n], for some n ≥ 0. We assume that the alphabet Σ is integer.
The length of s is denoted |s|, and ε denotes the empty string, the unique
string of length 0. For 1 ≤ i, j ≤ |s|, we write s[i..j] = s[i]s[i + 1] · · · s[j]
for the substring from i to j, where s[i..j] = ε if i > j. We write prefixes
as s[..i] = s[1..i] and suffixes as s[i..] = s[i..|s|]. Given two strings s, t,
their concatenation is written s · t or simply st, and sk denotes the k-fold
concatenation of s, with s0 = ε. A substring (prefix, suffix) of s is called
proper if it does not equal s.

The longest common prefix (LCP) of two strings s and t is defined as the
longest string u that is both a prefix of s and t, and lcp(s, t) = |u| as its
length. One can define the lexicographic order based on the lcp: s <lex t if s
is a proper prefix of t, or otherwise if s[ℓ+ 1] < t[ℓ+ 1], where ℓ = lcp(s, t).

2.2. Splay trees

The splay tree [47] is a binary search tree that guarantees that a sequence
of insertions, deletions, and node accesses costs O(log n) amortized time per
operation on a tree of n nodes that starts initially empty. In addition, splay
trees support splitting and joining trees, both in O(log n) amortized time,
where n is the total number of nodes involved in the operation.

In the context of binary trees, an edge rotation is a transformation that
involves two nodes connected by a single parent–child edge, and flips that
edge so that the parent becomes the child or vice versa, while preserving the
tree order of all keys. In order to keep the logarithmic amortized time for
every operation, splay trees apply a function called splay after every query

9

z

y

x

A

D

C

B

rotate y − z

x

A B

z

C D

y

rotate x− y

x

A

B
z

C D

y

Figure 1: Scheme of the zig-zig subroutine applied on node x.

z

y

x
A

D

B C

rotate x− y

z

y

x

A

D

B

zy

x

A DB

rotate x− z

C

C

Figure 2: Scheme of the zig-zag subroutine applied on node x.

or update on the tree. This operation moves a tree node x to the root
by a sequence of so-called “rotations” named zig, zig-zig, zig-zag, and their
symmetric versions, each composed of a constant number of edge rotations.

Formally, given a splay tree T , the splay(x) function returns a modified
splay tree T ′, where the node x is the root of T ′. The tree T ′ is obtained
deterministically by applying a sequence of rotations, as follows. Let x(A,B)
denote a tree rooted at x with left and right subtrees A and B, then the
rotation zig-zig converts z(y(x(A,B), C), D) into x(A, y(B, z(C,D)), while
the rotation zig-zag converts z(y(A, x(B,C)), D) into x(y(A,B), z(C,D)).
Whether zig-zig or zig-zag (or their symmetric variants zag-zig or zag-zag) is
applied to x depends on its relative position w.r.t. its grandparent. Figures 1
and 2 illustrate these two rotations. Note that both of these operations are
composed by two edge rotations. The rotations are repated on x as long as

10

possible. Finally, operation zig, which is only applied if x is a child of the
root, converts y(x(A,B), C) into x(A, y(B,C)) (operation zag is symmetric).
Because only edge rotations are involved, splaying preserves the in-order
values of the affected nodes.

Every access or update on the tree is thus followed by a splay on the
deepest reached node. In particular, after finding a node x in a downward
traversal, we do splay(x) to make x the tree root. The goal is that the costs
of all the operations are proportional to the cost of all the related splay
operations performed, so we can focus on analyzing only the splays. Many of
the splay tree properties can be derived from a general “access lemma” [47,
Lem. 1].

Lemma 1 (Access Lemma [47]). Let us assign any positive weight w(x) to
the nodes x of a splay tree T , and define sw(x) as the sum of the weights of
all the nodes in the subtree rooted at x. Then, the amortized time of splay(x)
is O(log(W/sw(x))) ⊆ O(log(W/w(x))), where W =

∑
x∈T w(x).

The result is obtained by defining r(x) = log sw(x) (all our logarithms
are in base 2) and Φ(T) =

∑
x∈T r(x) as the potential function for the splay

tree T . If we choose w(x) = 1 for all x, then W = n on a splay tree of n
nodes, and thus we obtain O(log n) amortized cost for each operation. By
choosing other functions w(x), one can prove splay tree properties like static
optimality, the static finger property, and the working set property [47].

The update operations supported by splay trees include inserting new
nodes, deleting nodes, joining two trees (where all the nodes in the second
tree go to the right of the nodes in the first tree), and splitting a tree into two
at some node (where all the nodes to its right become a second tree). The
times of those operations are ruled by the “balance theorem with updates”
[47, Thm. 6].

Lemma 2 (Balance Theorem with Updates [47]). Any sequence of access,
insert, delete, join and split operations on a collection of initially empty splay
trees has an amortized cost of O(log n) per operation, where n is the size of
the tree(s) where the operation is carried out.

This theorem is proved with the potential function that assigns w(x) = 1
to every node x. Note the theorem considers a forest of splay trees, whose
potential function is the sum of the functions Φ(T) over the trees T in the
forest. For details, see the original paper [47].

11

2.3. Karp-Rabin fingerprinting

Our queries will be correct “with high probability” (whp), meaning a
probability of at least 1− 1/N c for an arbitrarily large constant c, where N
is the total size of the collection. This will come from the use of a variant
of the original Karp-Rabin fingerprint [30] (cf. [41]) defined as follows. Let
[1..a] be the alphabet of our strings and p ≥ a a prime number. We choose a
random base b uniformly from [1..p− 1]. The fingerprint κ of string s[1..n] is
defined as κ(s) =

(∑n−1
i=0 s[n− i] · bi

)
mod p. We say that two strings s ̸= s′

of the same length n collide through κ if κ(s) = κ(s′), that is, κ(s′′) = 0
where s′′ = s − s′ is the string defined by s′′[i] = (s[i] − s′[i]) mod p. Since
κ(s′′) is a polynomial, in the variable b, of degree at most n− 1 over the field
Zp, it has at most n − 1 roots. The probability of a collision between two
strings of length n is then bounded by (n− 1)/(p− 1) because b is uniformly
chosen in [1..p − 1]. By choosing p ∈ Θ(N c+1) for any desired constant c,
we obtain that κ is collision-free on any s ̸= s′ whp. We will actually choose
p ∈ Θ(N c+2) because some of our operations perform O(polylogN) string
comparisons, not just one. Since N varies over time, we can use instead
a fixed upper bound, like the total amount of main memory. We use the
RAM machine model where logical and arithmetic operations on Θ(logN)-
bit machine words take constant time.

Two fingerprints κ(s) and κ(s′) can then be composed in constant time
to form κ(s′ · s) = (κ(s′) · b|s| + κ(s)) mod p. To avoid the O(log |s|) time
for modular exponentiation, we will maintain the value b|s| mod p together
with κ(s). The corresponding value for s′ · s is (b|s

′| · b|s|) mod p, so we can
maintain those powers in constant time upon concatenations.

3. Our data structure and standard operations

In this section we describe our data structure called FeST (Forest of
enhanced Splay Trees), composed of a collection of (enhanced) splay trees,
and then show it implements classical operations on dynamic strings. We
will discuss less standard operations in the next section.

3.1. The data structure

We will use a FeST for maintaining the collection of strings, one splay
tree per string. A dynamic string s[1..n] is encoded in a splay tree with n
nodes such that s[k] is stored in the node x with in-order k (the in-order of a
node is the position in which it is listed if we recursively traverse first the left

12

subtree, then the node, and finally the right subtree). We will say that node
x represents the substring s[i..j], where [i..j] is the range of the in-orders of
all the nodes in the subtree rooted at x. Let T be the splay tree representing
string s, then for 1 ≤ i ≤ |s|, we call node(i) the node with in-order i, and
for a node x of T , we call pos(x) the in-order of node x. The root of T is
denoted root(T); we sometimes identifiy root(T) with T .

For the amortized analysis of our FeST, our potential function Φ will be
the sum of the potential functions Φ(T) over all the splay trees T representing
our string collection. The collection starts initially empty, with Φ = 0.
New strings are added to the collection with make-string; then edited with
substitute, insert, and delete, and redistributed with introduce and
extract.

3.1.1. Information stored at nodes

A node x of the splay tree representing s[i..j] will contain pointers to its
left and right children, called x.left and x.right, its symbol x.char = s[pos(x)],
its subtree size x.size = j − i + 1, its fingerprint x.fp = κ(s[i..j]), and the
value x.power = bj−i+1 mod p. These fields are recomputed in constant time
whenever a node x acquires new children x.left and/or x.right (e.g., during
the splay rotations) with the following formulas: (1) x.size = x.left.size+1+
x.right.size, (2) x.fp = ((x.left.fp·b+x.char)·x.right.power+x.right.fp) mod p,
and (3) x.power = (x.left.power · b · x.right.power) mod p, as explained in
Section 2.3. For the formula to be complete when the left and/or right child
is null, we assume null.size = 0, null.fp = 0, and null.power = 1. We will
later incorporate other fields.

Subtree sizes allow us identify node(i) given i, in the splay tree T rep-
resenting string s, in O(log |s|) amortized time. This means we can answer
access(s, i) in O(log |s|) amortized time, since s[i] = node(i).char. Find-
ing node(i) is done in the usual way, with the recursive function find(i) =
find(T, i) that returns the ith smallest element in the subtree rooted at the
given node. More precisely, find(x, i) = x if i = x.left.size + 1, find(x, i) =
find(x.left, i) if i < x.left.size+1, and find(x, i) = find(x.right, i−(x.left.size+
1)) if i > x.left.size + 1. To obtain logarithmic amortized time, find splays
the node it returns, thus pos(root(T)) = i holds after calling find(T, i).

3.1.2. Isolating substrings

We will make use of another primitive we call isolate(i, j), for 1 ≤ i, j ≤
|s| and i ≤ j+1, on a tree T representing string s. This operation rearranges

13

T in such a way that s[i..j] becomes represented by one subtree, and returns
this subtree’s root y.

If i = 1 and j = |s|, then y = root(T) and we are done. If i = 1 and
j < |s|, then we find (and splay) node(j+1) using find(j+1); this will move
node(j + 1) to the root, and s[i..j] will be represented by the left subtree of
the root, so y = root(T).left. Similarly, if 1 < i and j = |s|, then we perform
find(i− 1), so node(i− 1) is splayed to the root and s[i..j] is represented by
the right subtree of the root, thus y = root(T).right.

Finally, if 1 < i, j < |s|, then splaying first node(j+1) and then node(i−
1) will typically result in node(i − 1) being the root and node(j + 1) its
right child, thus the left subtree of node(j + 1) contains s[i..j], that is, y =
root(T).right.left. The only exception arises if the last splay operation on
node(i−1) is a zig-zig, as in this case node(j+1) would become a grandchild,
not a child, of the root. Therefore, in this case, we modify the last splay
operation: if node(i − 1) is a grandchild of the root and a zig-zig must be
applied, we perform instead two consecutive zig operations on node(i− 1) in
a bottom-up manner, that is, we first rotate the edge between node(i − 1)
and its parent, and then the edge between node(i − 1) and its new parent
(former grandparent), see Fig. 3.

We now consider the effect of the modified zig-zig operation on the po-
tential. In the proof of Lemma 1 [47, Lem. 1], Sleator and Tarjan show that
the zig-zig and the zig-zag cases contribute 3(r′(x)− r(x)) to the amortized
cost, where r′(x) is the new value of r(x) after the operation. The sum then
telescopes to 3(r(t) − r(x)) = 3 log(sw(t)/sw(x)) along an upward path to-
wards a root node t. The zig rotation, instead, contributes 1 + r′(x)− r(x),
where the 1 would be problematic if it was not applied only once in the
path. Our new zig-zig may, at most one time in the path, cost like two zig’s,
2 + 2(r′(x) − r(x)), which raises the cost bound of the whole splay opera-
tion from 1+ 3 log(sw(t)/sw(x)) to 2 + 3 log(sw(t)/sw(x)). This retains the
amortized complexity, that is, the amortized time for isolate is O(log |s|).

3.2. Creating a new dynamic string

Given a basic string w[1..n], operation make-string(w) creates a new dy-
namic string s[1..n] with the same content as w, which is added to the FeST.
While this can be accomplished in O(n log n) amortized time via successive
insert operations on an initially empty string, we describe a “bulk-loading”
technique that achieves linear worst-case (and amortized) time.

14

j

splay
node(j + 1) i

splay
node(i− 1)

i − 1

j + 1

i j

i

j + 1

(a) General sequence of operations for isolate(i, j).

j + 1

p

i− 1

A

D

B C

rotate
(node(i− 1),p)

i− 1

A B

j + 1

C

D

p
rotate
(node(i− 1),
node(j + 1))

i− 1

BA

j + 1

C D

p

i j

i j i j

(b) Case of zig-zag as the last splaying operation for isolate(i, j).

j + 1

y

i− 1

A

D

C

B

rotate
(node(i− 1),y)

i− 1

A

B

j + 1

C

D

y
rotate
(node(i− 1),
node(j + 1))

i− 1

A

B

j + 1

C

D
y

i

j

i j i j

(c) Case of the modified zig-zig as the last splaying operation for isolate(i, j).

Figure 3: Scheme of the isolate(i, j) operation applied on a splay tree. Subfigures 3b
and 3c show two cases of the last splay operation of isolate(i, j), yielding a single (shaded)
subtree that represents the substring s[i..j].

15

The idea is to create, in O(n) time, a perfectly balanced splay tree us-
ing the standard recursive procedure. As we show in the next lemma, this
shape of the tree adds only O(n) to the potential function, and therefore the
amortized time of this procedure is also O(n).

Lemma 3. The potential Φ(T) of a perfectly balanced splay tree T with n
nodes is at most 2n+O(log2 n) ⊆ O(n).

Proof. Let d be the depth of the deepest leaves in a perfectly balanced binary
tree, and call l = d− d′+1 the level of any node of depth d′. It is easy to see
that there are at most 1+n/2l subtrees of level l. Those subtrees have at most
2l − 1 nodes. Separating the sum Φ(T) =

∑
x∈T r(x) by levels l and using

the bound sw(x) < 2l if x is of level l, we get Φ(T) <
∑logn

l=1

(
1 + n

2l

)
log 2l =

2n+O(log2 n).

Once the tree is created and the fields x.char are assigned in in-order, we
perform a post-order traversal to compute the other fields. This is done in
constant time per node using the formulas given in Section 3.1.

3.3. Retrieving a substring

Given a string s in the FeST and two indices 1 ≤ i ≤ j ≤ |s|, operation
retrieve(s, i, j) extracts the substring s[i..j] and returns it as a basic string.
The special case i = j is given by access(s, i), which finds node(i), splays
it, and returns root(T).char, recall Section 3.1. If i < j, we perform y =
isolate(i, j) and then we return s[i..j] with an in-order traversal of the
subtree rooted at y. Overall, the operation retrieve(s, i, j) takes O(log |s|)
amortized time for isolate, and then O(j − i + 1) worst case time for the
traversal of the subtree.

3.4. Edit operations

Let s be a string in the FeST, i an index of s, and c a character. The
simplest edit operation, substitute(s, i, c) writes c at s[i], that is, s becomes
s′ = s[..i−1] ·c ·s[i+1..]. It is implemented by doing find(i) in the splay tree
T of s, in O(log |s|) amortized time. After the operation, node(i) is the root,
so we set root(T).char = c and recompute (only) its fingerprint as explained
in Section 3.1.

Now consider operation insert(s, i, c), which converts s into s′ = s[..i−
1] · c · s[i..]. This corresponds to the standard insertion of a node in the splay
tree, at in-order position i. We first use find(i) in order to make x = node(i)

16

the tree root, and then create a new root node y, with y.left = x.left and
y.right = x. We then set x.left = null and recompute the other fields of x as
shown in Section 3.1. Finally, we set y.char = c and also compute its other
fields. By Lemma 2, the amortized cost for an insertion is O(log |s|).

Finally, the operation delete(s, i) converts s into s′ = s[..i−1] · s[i+1..].
This corresponds to standard deletion in the splay tree: we first do find(i)
in the tree T of s, so that x = node(i) becomes the root, and then join the
splay trees of x.left and x.right, isolating the root node x and freeing it. The
joined tree now represents s′; the amortized cost is O(log |s|).

3.5. Introducing and extracting substrings

Given two strings s1 and s2 represented by trees T1 and T2 in the FeST,
and an insertion position i in s1, operation introduce(s1, i, s2) generates a
new string s = s1[..i − 1] · s2 · s1[i..] (the original strings are not anymore
available). We implement this operation by first doing y = isolate(i, i− 1)
on the tree T1. Note that in this case y will be a null node, whose in-order
position is between i− 1 and i. We then replace this null node by (the root
of) the tree T2. As shown in Section 3.1, the node y that we replace has at
most two ancestors in T1, say x1 (the root) and x2. We must then recompute
the fields of x2 and then of x1.

Apart from the O(log |s1|) amortized time for isolate, the other opera-
tions take constant time. We must consider the change in the potential intro-
duced by connecting T2 to T1. In the potential Φ, the summands log sw(x1)
and log sw(x2) will increase to log(sw(x1)+ |s2|) and log(sw(x2)+ |s2|), thus
the increase is O(log |s2|). The total amortized time is thus O(log |s1| +
log |s2|) = O(log |s1s2|).

Let s be a string represented by tree T in the FeST and i ≤ j indices in s.
Function extract(s, i, j) removes s[i..j] from s and creates a new dynamic
string s′ from it. This can be carried out by first doing y = isolate(i, j)
on T , then detaching y from its parent in T to make it the root of the
tree that will represent s′, and finally recomputing the fields of the (former)
ancestors x2 and x1 of y. The change in potential is negative, as log sw(x1)
and log sw(x2) decrease by up to O(log(j− i+1)). The total amortized time
is then O(log |s|).

3.6. Substring equality

Let s1[i1..i1 + ℓ − 1] and s2[i2..i2 + ℓ − 1] be two substrings, where pos-
sibly s1 = s2. Per Section 2.3, we can compute equal whp by comparing

17

κ(s1[i1..i1+ℓ−1]) and κ(s2[i2..i2+ℓ−1]). We compute y1 = isolate(i1, i1+
ℓ − 1) on the tree of s1 and y2 = isolate(i2, i2 + ℓ − 1) on the tree of s2.
Once node y1 represents s1[i1..i1 + ℓ− 1] and y2 represents s2[i2..i2 + ℓ− 1],
we compare y1.fp = κ(s1[i1..i1 + ℓ− 1]) with y2.fp = κ(s2[i2..i2 + ℓ− 1]).

The splay operations take O(log |s1s2|) amortized time, while the com-
parison of the fingerprints takes constant time and returns the correct answer
whp. Note this is a one-sided error; if the method answers negatively, the
strings are distinct.

3.7. String uniqueness

Our string collections allow the existence of repeated dynamic strings.
While debatable in a static scenario, this makes all the sense in the dynamic
case, since those strings that are equal at some moment may undergo different
updates later. If for some reason we wanted to ensure uniqueness (whp), we
could maintain a balanced tree with the root fingerprints root(T).fp of all the
trees T of the FeST. Every string creation or update would then check the
tree for uniqueness, increasing the cost by O(logM), where M ≤ N is the
number of strings in the collection.

4. Extended operations

In this section we consider less standard operations of dynamic strings,
including the computation of LCPs and others we have not seen addressed
before.

4.1. Longest common prefixes

Operation lcp(s1, i1, s2, i2) computes lcp(s1[i1..], s2[i2..]) correctly whp,
by exponentially searching for the maximum value ℓ such that s1[i1..i1 + ℓ−
1] = s2[i2..i2+ ℓ−1]. The exponential search requires O(log ℓ) equality tests,
which are done using equal operations. The amortized cost of this basic
solution is then O(log |s1s2| log ℓ); we now improve it.

We note that all the accesses the exponential search performs in s1 and
s2 are at distance O(ℓ) from s1[i1] and s2[i2]. We could then use the dynamic
finger property [18] to show, with some care, that the amortized time is
O(log |s1s2|+ log2 ℓ). This property, however, uses a different mechanism of

18

ℓ′

extract(s1, i1, i1+ℓ′−1)

ℓ′

exponential search

ℓ′

ℓi1

re-introduce

Figure 4: Scheme of operations for lcp shown on one of the two strings.

potential functions where trees cannot be joined or split.3 We then use an
alternative approach. The main idea is that, if we could bound ℓ beforehand,
we could isolate those areas so that the accesses inside them would cost
O(log ℓ) and then we could reach the desired amortized time. Bounding
ℓ in less than O(log ℓ) accesses (i.e., O(log |s1s2| log ℓ) time) is challenging,
however. Assuming for now that s1 ̸= s2 (we later handle the case s1 = s2),
our plan is as follows (see Fig. 4):

1. Find a (crude) upper bound ℓ′ ≥ ℓ.

2. Extract substrings s′1 = s1[i1..i1 + ℓ′ − 1] and s′2 = s2[i2..s2 + ℓ′ − 1].

3. Run the basic exponential search for ℓ between s′1[1..] and s′2[1..].

4. Reinsert substrings s′1 and s′2 into s1 and s2.

Steps 2 and 4 are carried out in O(log |s1s2|) amortized time using the
operations extract and introduce, respectively. Step 3 will still require
O(log ℓ) substring comparisons, but since they will be carried out on the
shorter substrings s′1 and s′2, they will take O(log ℓ log ℓ′) amortized time.
The main challenge is to balance the cost to find ℓ′ in Step 1 with the quality
of the approximation of ℓ′ so that log ℓ′ is not much larger than log ℓ.

Consider the following strategy for Step 1. Let n = |s1s2| and n′ =
min(|s1| − i1 + 1, |s2| − i2 + 1). We first check a few border cases that we
handle in O(log n) amortized time: if s1[i1..i1+n′−1] = s2[i2..i2+n′−1] we

3The static finger property cannot be used either, because we need new fingers every
time an LCP is computed. Extending the “unified theorem” [47, Thm. 5] to m fingers (to
support m LCP operations in the sequence) introduces an O(logm) additive amortized
time in the operations, since now W = Θ(m).

19

finish with the answer ℓ = n′, or else if s1[i1..i1 + 1] ̸= s2[i2..i2 + 1] we finish
with the answer ℓ = 0 or ℓ = 1. Otherwise, we define the sequence ℓ0 = 2 and
ℓi = min(n′, ℓ 2i−1) and try out the values ℓi for i = 1, 2, . . ., until we obtain
s1[i1..i1+ℓi−1] ̸= s2[i2..i2+ℓi−1]. This implies that ℓi−1 ≤ ℓ < ℓi, so we can
use ℓ′ = ℓi ≤ ℓ2. This yields O(log ℓ log ℓ′) = O(log2 ℓ) amortized time for
Step 3. On the other hand, since ℓ ≥ ℓi−1 = 22

i−1
, it holds i ≤ 1 + log log ℓ.

Since each of the i values is tried out in O(log n) time with equal, the
amortized cost of Step 1 is O(log n log log ℓ) and the total cost to compute
lcp is O(log n log log ℓ+log2 ℓ). In particular, this is O(log2 ℓ) when ℓ is large
enough, log ℓ = Ω(

√
log n log log n).

4.1.1. Hitting twice

To obtain our desired time O(log n + log2 ℓ) for every value of log ℓ, we

will apply our general strategy twice. First, we will set ℓ′′ = 2log
2/3 n and

determine whether s1[i1..i1+ℓ′′−1] = s2[i2..i2+ℓ′′−1]. If they are equal, then
log ℓ = Ω(log2/3 n) and we can apply the strategy of the previous paragraph
verbatim, obtaining amortized time O(log2 ℓ). If they are not equal, then
we know that ℓ′′ > ℓ, so we extract s′′1 = s1[i1..i1 + ℓ′′ − 1] and s′′2 =
s2[i2..i2 + ℓ′′ − 1] to complete the search for ℓ′ inside those (note we are still
in Step 1). We use the same sequence ℓi of the previous paragraph, with
the only difference that the accesses are done on trees of size ℓ′′ and not n;
therefore each step costs O(log ℓ′′) = O(log2/3 n) instead of O(log n). After
finally finding ℓ′, we introduce back s′′1 and s′′2 into s1 and s2. Step 1 then
completes in amortized time O(log n+ log2/3 n log log ℓ) = O(log n). Having
found ℓ′ ≤ ℓ2, we proceed with Step 2 onwards as above, taking O(log2 ℓ)
additional time.

4.1.2. When the strings are the same

In the case s1 = s2, assume w.l.o.g. i1 < i2. We can still carry out Step 1
and, if i1 + ℓ′ ≤ i2, proceed with the plan in the same way, extracting s′1 and
s′2 from the same string and later reintroducing them. In case i1 + ℓ′ > i2,
however, both substrings overlap. In this case we extract just one substring,
s′ = s1[i1..i2 + ℓ′ − 1], which is of length at most 2ℓ′, and run the basic
exponential search between s′[1..] and s′[i2 − i1 + 1..] still in amortized time
O(log ℓ log ℓ′). We finally reintroduce s′ in s1. The same is done if we need
to extract s′′1 and s′′2: if both come from the same string and i1 + ℓ′′ > i2,
then we extract just one single string s′′ = s[i1..i2 + ℓ′′ − 1] and obtain the
same asymptotic times.

20

4.1.3. Lexicographic comparisons

Once we know that (whp) the LCP of the suffixes is of length ℓ, we
can determine which is smaller by accessing (using access) the symbols
at positions s1[i1 + ℓ] and s2[i2 + ℓ] and comparing them, in O(log |s1s2|)
additional amortized time.

4.2. Substring reversals

Operation reverse(s, i, j) changes s to s[..i−1]s[j]s[j−1] · · · s[i+1]s[i]s[j+
1..]. Reflecting it directly in our current structure requires Ω(j− i+1) time,
which is potentially Ω(|s|). Our strategy, instead, is to just “mark” the sub-
trees where the reversal should be carried out, and de-amortize its cost across
future operations, materializing it progressively as we traverse the marked
subtrees. To this end, we extend our FeST data structure with a new Boolean
field x.rev in each node x, which indicates that its whole subtree should be
regarded as reversed, that is, its descending nodes should be read right-to-
left, but that this update has not yet been carried out. This field is set to
false on newly created nodes. We also add a field x.fprev, so that if x rep-
resents s[i..j], then x.fprev = κ(s[j]s[j − 1] · · · s[i + 1]s[i]) is the fingerprint
of the reversed string. When x.rev is true, the fields of x (including x.fp and
x.fprev) still do not reflect the reversal.

The fields x.fprev must be maintained in the same way as the fields
x.fp. Concretely, upon every update where the children of node x change,
we not only recompute x.fp as shown in Section 3.1, but also x.fprev =
((x.right.fprev · b+ x.char) · x.left.power + x.left.fprev) mod p.

In order to apply the described reversal to a substring s[i..j], we first
compute y = isolate(i, j) on the tree of s, and then toggle the Boolean
value y.rev = ¬ y.rev (note that, if y had already an unprocessed reversal,
this is undone without ever materializing it). The operation reverse then
takes O(log |s|) amortized time, dominated by the cost of isolate(i, j). We
must, however, handle potentially reversed nodes.

4.2.1. Fixing marked nodes

Every time we access a tree node, if it is marked as reversed, we fix it,
after which it can be treated as a regular node because its fields will already
reflect the reversal of its represented string (though some descendant nodes
may still need fixing).

Fixing a node involves exchanging its left and right children, toggling their
reverse marks, and updating the node fingerprint. More precisely, we define

21

x

A B

x.rev = true

toggle rev

x

A B

root(A).rev =
¬root(A).rev

swap left-right
and x.fp with x.fprev

x

B A

x.rev = false

root(B).rev =
¬root(B).rev

x.fp ↔ x.fprev

Figure 5: Scheme of the fix operation on node x.

the primitive fix(x) as follows: if x.rev is true, then (i) set x.rev = false,
x.left.rev = ¬ x.left.rev, x.right.rev = ¬ x.right.rev, (ii) swap x.left with
x.right, and (iii) swap x.fp with x.fprev. See Fig. 5 for an example. It is easy
to see that fix maintains the invariants about the meaning of the reverse
fields.

Because all the operations in splay trees, including the splay, are done
along paths that are first traversed downwards from the root, it suffices that
we run fix(x) on every node x we find as we descend from the root (for
example, on every node x where we perform find(x, i)), before taking any
other action on the node. This ensures that all the accesses and structural
changes to the splay tree are performed over fixed nodes, and therefore no
algorithm needs further changes. For example, when we perform splay(x),
all the ancestors of x are already fixed. As another example, if we run equal

as in Section 3.6, the nodes y1 and y2 will already be fixed by the time we
read their fingerprint fields. As a third example, if we run retrieve(s, i, j)
as in Section 3.3 and the subtree of y has reversed nodes inside, we will
progressively fix all those nodes as we traverse the subtree, therefore correctly
retrieving s[i..j] within O(j − i+ 1) time.

Note that fix takes constant time per node and does not change the
potential function Φ, so no time complexities change due to our adjustments.
The new fields also enable other queries, for example to decide whether a
string is a palindrome.

4.3. Involutions

We support the operation map(s, i, j) analogously to substring reversals,
that is, isolating s[i..j] in a node y = isolate(i, j) and then marking that
the substring covered by node y is mapped using a new Boolean field y.map,
which is set to true. This will indicate that every symbol s[k], for i ≤
k ≤ j, must be interpreted as f(s[k]), but that the change has not yet
been materialized. Similarly to reverse, this information will be propagated

22

downwards as we descend into a subtree, otherwise it is maintained in the
subtree’s root only. The operation will then take O(log |s|) amortized time.

To manage the mapping and deamortize its linear cost across subsequent
operations, we will also store fields x.mfp = κ(f(s[i])f(s[i+1]) · · · f(s[j])) and
x.mfprev = κ(f(s[j])f(s[j − 1]) · · · f(s[i])), which maintain the fingerprint
of the mapped string, and its reverse, represented by x. Those are main-
tained analogously as the previous fingerprints: (1) x.mfp = ((x.left.mfp ·
b + f(x.char)) · x.right.power + x.right.mfp) mod p, and (2) x.mfprev =
((x.right.mfprev · b+ f(x.char)) · x.left.power + x.left.mfprev) mod p.

As for string reversals, every time we access a tree node, if it is marked
as mapped, we unmark it and toggle the mapped mark of its children, be-
fore proceeding with any other action. Precisely, we define the primitive
fixm(x) as follows: if x.map is true, then (i) set x.map = false, x.left.map =
¬ x.left.map, x.right.map = ¬ x.right.map, (ii) set x.char = f(x.char), and
(iii) swap x.fp with x.mfp, and x.fprev with x.mfprev. We note that, in addi-
tion, the fix operation defined in Section 4.2 must also exchange x.mfp with
x.mfprev if we also support involutions. Note how, as for reversals, two ap-
plications of f cancel each other, which is correct because f is an involution.
Operation fixm is applied in the same way as fix along tree traversals.

4.3.1. Reverse complementation

By combining string reversals and involutions, we can for example support
the application of reverse complementation of substrings in DNA sequences,
where a substring s[i..j] is reversed and in addition its symbols are replaced by
their Watson-Crick complement, applying the involution f(A) = T, f(T) = A,
f(C) = G, and f(G) = C. In case we only want to perform reverse comple-
mentation (and not reversals and involutions independently), we can sim-
plify our fields and maintain only a Boolean field x.rc and the fingerprint
x.mfprev in addition to x.fp. Fixing a node consists of: if x.rc is true, then
(i) set x.rc = false, x.left.rc = ¬ x.left.rc, x.right.rc = ¬ x.right.rc, (ii)
set x.char = f(x.char), (iii) swap x.left with x.right, (iv) swap x.fp with
x.mfprev.

5. Using compact space

A disadvantage of our scheme is that it uses O(N) words of space to
represent a set of strings of total length N . This is excessive when the
alphabet size |Σ| of the strings is small compared to the number of bits, w, of

23

the computer word: theM strings can be represented usingMw+N⌈log2 |Σ|⌉
bits, while our representation is usingO(Nw) bits. In this section we offer the
same functionality we have described using essentiallyO(Mw+N log |Σ|) bits
of space. We prioritize simplicity in our presentation, retaining the desired
time complexities but ignoring possible programming speedups.

Precisely, on a RAM machine of w bits, we will be able to represent M
strings of total length N over alphabet Σ, using O(M +(N log |Σ|)/w+2αw)
space, for any fixed constant 0 < α < 1, so that we will retain the times
of all the operations obtained with the basic approach. We will need a
preprocessing time and space of O(2αw) for building some “universal” tables
that do not depend on the string collection. That preprocessing time and
space is, in practice, insignificant; for example, with α = 1/2 and under
the usual assumption that w = Θ(logN), it is just O(

√
N). The key idea

to achieve compact space is to regard s as a shorter string on an enlarged
alphabet, exploiting the fact that the space and time of FeST is insensitive
to the alphabet size as long as symbols fit in a computer word.

5.1. Working on packed strings

We define a variant of FeST that regards s as a sequence of short strings
we call “chunks”, whose length is in Θ(w/ log |Σ|). Concretely, for a constant
0 < α < 1, the chunks will range from length lmin = ⌊(α/2)w/⌈log2 |Σ|⌉⌋ to
lmax = ⌊αw/⌈log2 |Σ|⌉⌋ (if lmin = 0, then we already obtain compact space
with the basic FeST using no chunking). Only the first and last chunks of
the string can be shorter than lmin.

Given a partition of s into chunks, the “packed” version s̃ of s is a string
where each chunk is seen as a single symbol over alphabet Σ̃ = ∪lmax

l=lmin
Σl,

which is of size ≤ 2αw. We represent them as numbers of lmax ·⌈log2 |Σ|⌉ ≤ αw
bits, where each symbol of Σ is represented in ⌈log2 |Σ|⌉ bits. Symbols of Σ̃
still fit in one computer word, so they can be manipulated in constant time;
in particular we can extract any symbol of Σ from any chunk in O(1) time.

If we have M strings s of total length N , the length of all the M packed
strings s̃ is O(M +N log |Σ|/w), and the total space used by FeST on those
packed strings is O(Mw+N log |Σ|) bits. That is, we achieve compact space.

We can create the tree T̃ that represents string s̃ in time O(|s|), by first
building s̃ as a sequence of chunks of s of length, say, ⌊(lmin + lmax)/2⌋ (with
the last one being possibly shorter), and then creating T̃ on s̃.

In the rest of the section, we show how we simulate all the operations on
strings s using the tree T̃ that represents their packed version s̃. To do so, we

24

add a new field to the FeST nodes x, called x.len, which stores the sum of the
lengths of the chunks that are stored in the subtree rooted at x (instead, x.size
counts the number of chunks). It is easy to maintain x.len upon rotations
and attachment/detachment of subtrees by storing an array L of 2αw entries,
such that L[x.char] is the length of the chunk x.char: when the children of x
change we recompute x.len = x.left.len + L[x.char] + x.right.len. This must
also be updated upon changes to x.char (as in operations substitute on s̃,
for example).

Because chunks have variable lengths, the same strings can be represented
by different sequences of chunks. We cannot then rely on an arbitrary fin-
gerprint κ built on Σ̃, but must instead ensure that κ(c̃) = κ(c1 · · · cl) when
c̃ = c1 · · · cl (i.e., c̃must be regarded as a string of symbols in Σ). We will have
a table K of 2αw cells with K[c̃] = κ(c̃) precomputed. Further, we will pre-
compute a small table B of lmax entries, so that B[l] = bl mod p and redefine
x.power = bx.len mod p. When the children of x change, we then recompute
x.fp = ((x.left.fp ·B[L[x.char]]+K[x.char]) ·x.right.power+x.right.fp) mod p
and x.power = (x.left.power ·B[L[x.char]] · x.right.power) mod p.

Tables like L and K (and several others of 2αw entries we will introduce in
the sequel) are easily built in time O(2αw): each entry representing a chunk
of l symbols is built in constant time from another representing l−1 symbols.

5.2. Implementing access and retrieve

With the field x.len, we easily implement the primitive cfind(T̃ , i), which
returns the inorder of the node x of the tree T̃ of s̃ whose chunk x.char
contains s[i], the chunk x.char, and the offset of i within that chunk: starting
from x = root(T̃), if i ≤ x.left.len, then cfind(x, i) = cfind(x.left, i); if
i > x.left.len + L[x.char], then cfind(x, i) = cfind(x.right, i − x.left.len −
L[x.char]); otherwise cfind(x, i) = (x.left.size + 1, x.char, i− x.left.len). We
then apply splay(x) on the final node x reached along the recursion.

We implement access(s, i) by first computing (i′, c̃, o) = cfind(T̃ , i) and
then extracting extracting the oth symbol of c̃. The cost is asymptotically
the same as that of performing access(s̃, i′).

To implement retrieve(s, i, j), we first find (i′, c̃1, o1) = cfind(T̃ , i) and
(j′, c̃2, o2) = cfind(T̃ , j). If j′−i′ ≤ 1, we have sufficient information to com-
plete the operation in O(j− i+1) additional time, by extracting the desired
symbols from c̃1 and c̃2. Otherwise, we must also extract the intermediate
chunks, from the (i′ + 1)th to the (j′ − 1)th, with retrieve(s̃, i′ + 1, j′ − 1).

25

5.3. Implementing edit operations

Let us now consider the edit operations. The easiest to implement is
substitute(s, i, c), for which we first compute (i′, c̃, o) = cfind(T̃ , i). We
then replace, in constant time, the oth position of the chunk c̃ by the new
symbol c, obtaining the new chunk c̃′. Finally, we issue substitute(s̃, i′, c̃′).

The procedure for the operations insert(s, i, c) and delete(s, i) differs
only in how we modify c̃ to obtain c̃′, requiring constant-time bit shifting and
masking on computer words. There is a problem, however, if the resulting
chunk c̃′ exceeds lmax symbols upon insert, or falls below lmin symbols upon
delete. In the first case, we split c̃′ into c̃′1 and c̃′2, holding lmin + 1 and
lmax − lmin symbols, and issue substitute(s̃, i′, c̃′1) and insert(s̃, i′ + 1, c̃′2).
In the second case, we obtain the next chunk4, c̃′′ = access(s̃, i′ + 1), and
distribute the symbols of c̃′ and c̃′′ into two new chunks c̃′1 and c̃′2 of permitted
lengths, ending with substitute(s̃, i′, c̃′1) and substitute(s̃, i′ + 1, c̃′2). If
this is not possible because the length of c̃′′ is already lmin, we concatenate c̃

′

and c̃′′ into c̃′′′, which is below the maximum length lmax, and issue instead
substitute(s̃, i′, c̃′′′) and delete(s̃, i′ + 1).

5.4. Implementing introduce and extract

To implement these operations, and several that follow, we must imple-
ment the equivalent of isolate on T̃ . Concretely, primitive cisolate(T̃ , i, j)
rearranges T̃ so that s[i..j] (note this is the original string) becomes repre-
sented by one subtree of T̃ , and returns that subtree’s root y.

The basic plan to implement cisolate(T̃ , i, j) is as follows:

1. We compute (i′, c̃1, o1) = cfind(T̃ , i). If o1 > 1 (i.e., c̃1 does not start
at s[i]) we split, as done for overflows in insert, c̃1 into c̃′ (holding
the first o1 − 1 symbols of c̃1) and c̃′′ (holding the rest); then we do
substitute(T̃ , i′, c̃′) and insert(T̃ , i′ + 1, c̃′′), and increment i′.

2. We compute (j′, c̃2, o2) = cfind(T̃ , j). If o2 < L[c̃2] (i.e., c̃2 does not
end at s[j]) we split c̃2 into c̃′ (holding the first o2 symbols of c̃2) and c̃′′

(with the rest), and then substitute(T̃ , j′, c̃′) and insert(T̃ , j′+1, c̃′′).

3. Now that s[i..j] spans a sequence of whole chunks, s̃[i′..j′], we execute
y = isolate(T̃ , i′, j′) and return y.

4If i′ is the last position of s̃, we can allow c̃′ be shorter than lmin.

26

This basic plan needs some fixes in case the resulting chunks c̃′ and c̃′′ are
too short. In points 1 and 2 above, if c̃′ is too short and not the first symbol
in s̃, we merge it with the preceding chunk (and re-split them if needed) as
done for delete; if c̃′′ is too short and not the last symbol in s̃, we merge it
with the following chunk (and re-split them if needed). An exception occurs
if, in point 2 above, c̃′ is too short but it is the unique chunk spanning s[i..j];
in this case we let it be short (this is illegal in T̃ , but it will be fixed soon in
the operations that use cisolate). Note that values i′ and j′ may have to
be updated upon chunk merges not followed by re-splits.

We now easily implement introduce(s1, i, s2), where each s̃i is repre-
sented by T̃i: we call y = cisolate(T̃1, i, i − 1) and replace node y (which
contains an empty chunk) by the root of T̃2. If the first or last chunks of T̃2

were too short (which was allowed), we must fix this by merging them with
their new preceding or following chunk, respectively, and possibly re-splitting.

For extract(s,i, j) with s̃ represented by T̃ , we call y = cisolate(T̃ , i, j),
detach y from T̃ , and return it as the root of the tree representing s[i..j].

5.5. Implementing equal and lcp

To implement equal(s1, i1, s2, i2, ℓ), we distinguish two cases. If ℓ ≤ lmax,
we materialize chunks corresponding to s1[i1..i1 + ℓ − 1] and to s2[i2..i2 +
ℓ − 1], doing as follows for each one: we obtain c̃1 and c̃2 with cfind, as
done for retrieve, and use bit shifting and masking to produce, in constant
additional time, the chunk from c̃1 and c̃2 (it might also be that c̃1 = c̃2
and the desired chunk is inside it). We then compare the two materialized
chunks, without error.

If, instead, ℓ > lmax, we resort to fingerprinting and can err with low prob-
ability. We use y1 = cisolate(T̃1, i1, i1+ℓ−1) and y2 = cisolate(T̃2, i2, i2+
ℓ− 1), and compare y1.fp with y2.fp.

The computation of ℓ = lcp(s1, i1, s2, i2) is built on top of equal, and as
such can be implemented verbatim on the trees T̃1 and T̃2 that represent s̃1
and s̃2, in time O(log n+ log2 ℓ).

5.6. Implementing reversals and involutions

To implement reverse(s, i, j), we compute y = cisolate(T̃ , i, j) and set
the flag y.rev. Those flags are fixed upon traversals, just as in the original so-
lution, including when we apply the new operation cfind on T̃ . A difference
with the original fix operation is that, this time, fix(x) must also reverse the
chunk x.char. To do this in constant time, we maintain a table R with 2αw

27

entries, so that R[x.char] is the reversed string of x.char. We also maintain
the fields x.fprev analogously to x.fp, using that κ(cl · · · c1) = K[R[c1 · · · cl]].

For implementing map(s, i, j), we will have another precomputed table F
of 2αw entries, so that F [c̃] = f(c1) · · · f(cl) for every chunk c̃ = c1 · · · cl. To
apply f over s[i..j], we compute y = cisolate(T̃ , i, j) and set the flag y.map.
The operation fixm(x) used to fix the mapping works as before, except that
we set x.char = F [x.char] instead of x.char = f(x.char). We again maintain
the fields x.mfp using that κ(f(c1) · · · f(cl)) = K[F [c1 · · · cl]].

An exception in both cases arises when j − i + 1 < lmin, as in this case
the node y obtained from cisolate is too short. In such a case, instead of
the above procedures, we directly update y.char to R[y.char] or F [y.char],
and then apply the same procedure used by equal when a chunk becomes
too short.

6. Circular strings and omega extensions

In this section, we explain how to extend our data structure to circular
strings and to omega extensions of strings (i.e., to the infinite string that
results from concatenating a finite string an infinite number of times).

A new routine, called rotate, will be fundamental in handling circular
strings; it allows us linearize the circular string starting at any of its in-
dices. By carefully using this primitive, along with a slight modification
for the computation of fingerprints, we can support every operation that we
presented on linear strings with the same time bounds. By supporting oper-
ations on circular strings, we can also handle the omega extension of strings,
and will see that here, too, we are able to meet the same time bounds on
every operation as on linear strings.

We start by introducing further terminology needed in this section.

6.1. Additional definitions

A string s is periodic with period r if s[i+ r] = s[i] for all 1 ≤ i ≤ |s| − r.
Two strings s, t are conjugates if there exist strings u, v, possibly empty, such
that s = uv and t = vu. Conjugacy is an equivalence; the equivalence classes
[s] are also called circular strings, and any t ∈ [s] is called a linearization of
this circular string. Abusing notation, any linear string s can be viewed as a
circular string, in which case it is taken as a representative of its conjugacy
class. A substring of a circular string s is any prefix of any t ∈ [s], or,
equivalently, a string of the form s[i..j] for 1 ≤ i, j ≤ |s| (a linear substring),

28

s = mississippi

m

s

s p

i i

s

i

s

i

p

extract(s, 9, 11)

s = mississi
s′ = ppi

m

s

s

p

i i

s

i

s

i

p introduce(s, 1, s′)

m

i

i

s

s

s

s = ppimississi

p

i

p

i

s

Figure 6: Cycle-rotation operation: rotate(s, 9) moves s[9..] to the left of s[..8]. After the
rotation the string becomes s[9..]s[..8].

or s[i..]s[..j], where j < i. A necklace is a string s with the property that
s ≤lex t for all t ∈ [s]. Every conjugacy class contains exactly one necklace.

When the dynamic strings in our collection are to be interpreted as cir-
cular strings, we need to adjust some of our operations. Our model is that
we will maintain a canonical representative ŝ of the class of rotations of s.
All the indices of the operations refer to positions in ŝ. Internally, we may
store in the FeST another representative s of the class, not necessarily ŝ.

6.2. Circular strings

Our general approach to handle operations on ŝ regarding it as circular is
to rotate it conveniently before accessing it. The splay tree T of ŝ will then
maintain some (string) rotation s = ŝ[r..]ŝ[..r− 1] of ŝ, and we will maintain
a field start(ŝ) = r so that we can map any index ŝ[i] referred to in update
or query operations to s[((|s|+ i− start(ŝ)) mod |s|) + 1].

When we want to change the rotation of ŝ to another index r′, so that we
now store s′ = ŝ[r′..]ŝ[..r′ − 1], we make use of a new operation rotate(s, i),
which rotates s so that its splay tree represents s[i..]s[..i− 1]. This is imple-
mented as extract(s, i, |s|), which splits the substring s′ = s[i..|s|] from s
producing two distinct trees, followed by introduce(s, 1, s′). See Fig. 6 for
an example. We then move from rotation r to r′ in O(log |s|) amortized time
by doing rotate(s, r′− r+1) if r′ > r, or rotate(s, |s|+ r′− r+1) if r′ < r.
We then set start(ŝ) = r′.

Operation s = make-string(w) stays as before, in the understanding
that ŝ = w will be seen as the canonical representation of the class, so we
set start(ŝ) = 1; this can be changed later with a string rotation if desired.

29

All the operations that address a single position ŝ[i], like access and the
edit operations, are implemented verbatim by just shifting the index i using
start(ŝ) as explained. Instead, the operations retrieve, extract, equal,
reverse, and map, which act on a range ŝ[i..j], may give trouble when i > j,
as in this case the substring is ŝ[i..]ŝ[..j] by circularity. In this case, those
operations will be preceded by a change of rotation from the current one,
r = start(ŝ), to r′ = 1, using rotate as explained. This guard will get rid of
those cases. Note that, in the case of equal, we may need to rotate both s1
and s2, independently, to compute each of the two signatures.

The two remaining operations deserve some consideration. Operation
introduce(s1, i, s2) could be implemented verbatim (with the shifting of i),
but in this case it would introduce in ŝ1[i] the current rotation of s2, instead
of ŝ2 as one would expect. Therefore, we precede the operation by a change of
rotation in s2 to r

′ = 1, which makes the splay tree store ŝ2 with start(ŝ2) = 1.
Finally, in operation lcp(s1, i1, s2, i2) we do not know for how long the

LCP will extend, so we precede it by changes of rotations in both s1 and s2
that make them start at position 1 of ŝ1 and ŝ2. In case s1 = s2, however, this
trick cannot be used. One simple solution is to rotate the string every time
we call equal during Step 1; recall Section 4.1. This will be needed as long
as the accesses are done on s1 and s2; as soon as we extract the substrings of
length ℓ′′ (and, later, ℓ′ for Step 3), we work only on the extracted strings.
While the complexity is preserved, rotating the string every time can be too
cumbersome. We can use an alternative way to compute signatures of circular
substrings, κ(s[i..]s[..j]): we compute as in Section 3.6 σ = κ(s[i..]) and
τ = κ(s[..j]), as well as bj mod p, which comes for free with the computation
of τ ; then κ(s[i..]s[..j]) = (σ · bj + τ) mod p.

Overall, we maintain for all the operations the same asymptotic running
times given in the Introduction when the strings are interpreted as circular.

6.2.1. Signed reversals on circular strings

By combining reversals and involutions, we can support signed reversals
on circular strings, too. Note that the original paper in which reversals
were introduced [52] used circular chromosomes. In this application, circular
chromosomes can be viewed as circular strings over an integer alphabet,
where each gene in the chromosome has its own gene identifier taken from
Σ, for example chromosome = 162534 and Σ = {1, 2, 3, 4, 5, 6}. To perform
a signed reversal, we do this in the same way as for linear strings, namely
by doubling the alphabet Σ of gene identifiers such that each gene i has a

30

negated version −i, and using the involution f(i) = −i (and f(−i) = i).

6.3. Omega extensions

Circular dynamic strings allow us to implement operations that act on the
omega extensions of the underlying strings. Recall that for a (linear) string
s, the infinite string sω is defined as the infinite concatenation sω = s · s ·
s · · · . These are, for example, used in the definition of the extended Burrows-
Wheeler Transform (eBWT) of Mantaci et al. [38], where the underlying
string order is based on omega extensions. In this case, comparisons of
substrings may need to be made whose length exceeds the shorter of the
two strings s1 and s2. We therefore introduce a generalization of circular
substrings as follows: t is called an omega-substring of s if t = s[i..]sks[..j] for
some j < i− 1 and k ≥ 0. Note that the suffix s[i..] and the prefix s[..j] may
also be empty. Thus, t is an omega-substring of s if and only if t = vkv[..j]
for some k ≥ 1 and some conjugate v of s.

An important tool in this section will be the famous Fine and Wilf
Lemma [37], which states that if a string w has two periods r, q and |w| ≥
r + q − gcd(r, q), then w is also periodic with period gcd(r, q) (a string s is
called periodic with period r if s[i + r] = s[i] for all 1 ≤ i ≤ |s| − r). The
following is a known corollary, a different formulation of which was proven,
e.g., in [38]; we reprove it here for completeness.

Lemma 4. Let u, v be two strings. If lcp(uω, vω) ≥ |u| + |v| − gcd(|u|, |v|),
then uω = vω.

Proof. Let ℓ = lcp(uω, vω) ≥ |u| + |v| − gcd(|u|, |v|). Then the string t =
sω1 [..ℓ] is periodic both with period |u| and with period |v|, and thus, by
the Fine and Wilf lemma, it is also periodic with period gcd(|u|, |v|). Since
gcd(|u|, |v|) ≤ |u|, |v|, this implies that both u and v are powers of the same
string x, of length gcd(|u|, |v|) and therefore, uω = xω = vω.

We further observe that the fingerprint of strings of the form uk can be
computed from the fingerprint of string u. More precisely, let u be a string,
π = κ(u) its fingerprint, and k ≥ 1. Then, calling d = b|u| mod p (which we
also obtain in the field y.power when computing κ(u)), it holds

κ(uk) = (π · dk−1 + π · dk−2 + · · ·+ π · d+ π) mod p

= (π · (dk−1 + dk−2 + · · ·+ 1)) mod p, (1)

31

where geomsum(d, k − 1) = (dk−1 + dk−2 + · · · + 1) mod p can be computed
in O(log k) time using the identity d2k+1 + d2k + · · · + 1 = (d+ 1) · ((d2)k +
(d2)k−1 + · · ·+ 1), as follows5 (all modulo p):

geomsum(d, 0) = 1

geomsum(d, 2k + 1) = (d+ 1) · geomsum(d2, k) (2)

geomsum(d, 2k) = d · geomsum(d, 2k − 1) + 1

6.3.1. Extended substring equality

We devise at least two ways in which our equal query can be extended
to omega extensions. First, consider the query equalω(s1, i1, s2, i2, ℓ) =
equal(sω1 , i1, s

ω
2 , i2, ℓ), that is, the normal substring equality interpreted on

the omega extensions of s1 and s2. We let v1 = rotate(s1, i1) and v2 =
rotate(s2, i2). Then we have sω1 [i1..i1+ℓ−1] = vk11 v1[..j1], where k1 = ⌊ℓ/|s1|⌋
and j1 = ℓ mod |s1|. If k1 = 0, we simply compute κ1 = κ(sω1 [i1..i1+ℓ−1]) =
κ(v1[..j1]). Otherwise, we compute κ1 = κ(sω1 [i1..i1 + ℓ − 1]) by applying
Eq. (1) as follows:

κ1 = (κ(v1) · (dk1−1 + · · ·+ 1) · bj1 + κ(v1[..j1])) mod p. (3)

There are various components to compute in this formula apart from the
fingerprints themselves. First, note that d = b|s1| mod p = b|v1| mod p =
root(T1).power for the tree T1 of s1 (or v1), so we have it in constant time.
Second, bj1 mod p is the field y.power after we compute κ(v1[..j1]) via y =
isolate(v1, 1, j1) after completion of rotate(s1, i1), thus we also have it in
constant time. Third, dk1−1+ · · ·+1 = geomsum(d, k1− 1) is computed with
Eq. (2) in time O(log k1) ⊆ O(log ℓ).

By Lemma 4 we can define ℓω = |s1| + |s2| and, if ℓ ≥ ℓω, run the
equalω query with ℓω instead of ℓ. The lemma shows that s1[i1..i1+ ℓ− 1] =
s2[i2..i2 + ℓ − 1] iff s1[i1..i1 + ℓω − 1] = s2[i2..i2 + ℓω − 1]. This limits ℓ to
|s1|+ |s2| in our query and therefore the cost O(log ℓ) is in O(log |s1s2|).

We compute κ2 analogously, and return true if and only if κ1 = κ2, after
undoing the rotations to get back the original strings s1 and s2. The total

5This technique seems to be folklore. Note that the better known formula
geomsum(d, k) = ((dk+1−1) · (d−1)−1) mod p requires computing multiplicative inverses,
which takes O(logN) time using the extended Euclid’s algorithm, or O(log logN) with
faster algorithms [48]; those terms would not be absorbed by others in our cost formula.

32

amortized time for operation equalω is then O(log |s1s2|). Note that our
results still hold whp because we are deciding on fingerprints of strings of
length O(N), not O(ℓ) (which is in principle unbounded).

A second extension of equal is equalωω(s1, i1, ℓ1, s2, i2, ℓ2), interpreted as
(sω1 [i1..i1 + ℓ1 − 1])ω = (sω2 [i2..i2 + ℓ2 − 1])ω, that is, the omega extension of
sω1 [i1..i1 + ℓ1 − 1] is equal to the omega extension of sω2 [i2..i2 + ℓ2 − 1]. By
Lemma 4, this is equivalent to (sω1 [i1..i1+ℓ1−1])ℓ2 = (sω2 [i2..i2+ℓ2−1])ℓ1 . So
we first compute κ1 = κ(sω1 [i1..i1 + ℓ1 − 1]) and κ2 = κ(sω2 [i2..i2 + ℓ2 − 1]) as
above, compute d1 = bℓ1 mod p and d2 = bℓ2 mod p, and then return whether
(κ1 ·(dℓ2−1

1 +· · ·+1)) mod p = (κ2 ·(dℓ1−1
2 +· · ·+1)) mod p. Operation equalωω

is then also computed in amortized time O(log |s1s2|).

6.3.2. Extended longest common prefix

We are also able to extend LCPs to omega extensions: the operation
lcpω(s1, i1, s2, i2) computes, for the corresponding rotations v1 = rotate(s1, i1)
and v2 = rotate(s2, i2), the longest common prefix length lcp(vω1 , v

ω
2), as well

as the lexicographic order of vω1 and vω2 . That this can be done efficiently
follows again from Lemma 4. We first compare their omega-substrings of
length ℓω = |s1|+ |s2|. If equalω(s1, i1, s2, i2, ℓω) answers true, then it follows
that lcp(s1, i1, s2, i2) is ∞. Otherwise, we run a close variant of the algo-
rithm described in Section 4.1; note that ℓω can be considerably larger than
one of s1 or s2. For Step 1, we define n′ = n = |s1s2|; the other formulas
do not change. We run the equalω computations on s1 and s2 using Eq. (3)
to compute the fingerprints. We extract the substrings of length ℓ′ in Step
3 (analogously, ℓ′′ in Step 1) using the extract for circular strings, but do
so only if ℓ′ ≤ |s1| (resp., ℓ′ ≤ |s2|); otherwise we keep accessing the original
string using Eq. (3). The total amortized time to compute LCPs on omega
extensions is thus O(log |s1s2|).

6.4. Future work on circular strings

One feature that we would like to add to our data structure is allowing
identification of conjugates. The rationale behind this is that a circular string
can be represented by any of its linearizations, so these should all be regarded
as equivalent. Furthermore, when the collection contains several conjugates
of the same string, then this may be just an artifact caused by the data
acquisition process.

This could be solved by replacing each circular string with its necklace
representative, that is, the unique conjugate that is lexicographically minimal

33

in the conjugacy class, before applying make-string; this representative is
computable in linear time in the string length [37]. However, updates can
change the lexicographic relationship of the rotations, and thus the necklace
representative of the conjugacy class. Recomputing the necklace rotation
of s after each update would add worst-case O(|s|) time to our running
times, which is not acceptable. Computing the necklace rotation after an
edit operation, or more in general, after any one of our update operations, is
an interesting research question, which to the best of our knowledge has not
yet been addressed.

7. Conclusion

We presented a new data structure, a forest of enhanced splay trees
(FeST), to handle collections of dynamic strings. Our solution is much sim-
pler than those offering the best theoretical results, while still having loga-
rithmic amortized times for most update and query operations. We answer
queries correctly whp, and updates are always correct.

To build our data structure, we employ an approach that differs from the-
oretical solutions: we use a splay tree for representing each string, enhancing
it with additional annotations. The use of binary trees to represent dynamic
strings is not new, but exploiting the simplicity of splay trees for attach-
ing and detaching subtrees is. As our FeST is easy to understand, explain,
and implement, we believe that it offers the opportunity of wide usability and
can become a textbook implementation of dynamic strings. Further, we have
found nontrivial—yet perfectly implementable—solutions to relevant queries,
like computing the length ℓ of the longest common prefix of two suffixes in
time O(log n+ log2 ℓ) instead of the trivial O(log2 n). The simplicity of our
solution enables new features, like the possibility of reversing a substring, or
reverse-complementing it, to be easily implemented in logarithmic amortized
time. Our data structure can be implemented within compact space—that
is, proportional to the size of the represented data—and can be extended
to handle circular strings and omega-extensions of strings—, features that
competing solutions have not explored.

We have implemented our FeST data structure and all operations on lin-
ear strings presented in Sections 3 and 4. Our C++-implementation is freely
available at https://github.com/fmasillo/FeST. The complete code con-
sists of fewer than 1000 lines, evidencing the simplicity of our solution.

34

https://github.com/fmasillo/FeST

We believe that the FeST data structure is sufficiently simple but at the
same time powerful enough to be an excellent candidate for a data struc-
ture course. It is simple enough that it can be given as a coding project for
advanced undergraduate students. At the same time, it allows introducing
several non-trivial concepts such as dynamicity, amortized analysis, tree bal-
ancing operations, and hashing. It is also highly efficient, getting close to
theoretically optimal solutions, and can thus be used in practical settings,
by programmers who wish to implement data structures for dynamic text
collections.

Acknowledgements

We thank the reviewers for their constructive comments, in particu-
lar for the suggestion to achieve compact space. Zs.L. partially funded
by the Italian Ministry of University and Research (MUR) PRIN Project
PINC, Pangenome INformatiCs: from Theory to Applications (Grant No.
2022YRB97K), and by the INdAM - GNCS Project CUP E53C24001950001.
G.N. was supported in part by Basal Funds FB0001 and AFB240001, as well
as Fondecyt Grant 1-230755, ANID, Chile.

References

[1] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern
matching in dynamic texts. In Proc. 11th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 819–828, 2000.

[2] Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan
Kondratovsky. Repetition detection in a dynamic string. In Proc.
27th Annual European Symposium on Algorithms (ESA), pages 5:1–5:18,
2019.

[3] Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos,
Solon P. Pissis, and Jakub Radoszewski. Longest common factor after
one edit operation. In Proc. 24th International Symposium on String
Processing and Information Retrieval (SPIRE), pages 14–26, 2017.

[4] Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and
Jakub Radoszewski. Dynamic and internal longest common substring.
Algorithmica, 82(12):3707–3743, 2020.

35

[5] Lorraine A.K. Ayad and Solon P. Pissis. MARS: Improving multiple
circular sequence alignment using refined sequences. BMC Genomics,
18(1):1–10, 2017.

[6] Vineet Bafna and Pavel A. Pevzner. Genome rearrangements and sort-
ing by reversals. In Proc. 34th Annual Symposium on Foundations of
Computer Science (FOCS), pages 148–157, 1993.

[7] Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass.
Ropes: An alternative to strings. Software Practice and Experience,
25(12):1315–1330, 1995.

[8] Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano
Rossi, and Marinella Sciortino. Computing the original eBWT faster,
simpler, and with less memory. In Proc. 28th International Symposium
on String Processing and Information Retrieval (SPIRE), pages 129–
142, 2021.

[9] Christina Boucher, Davide Cenzato, Zsuzsanna Lipták, Massimiliano
Rossi, and Marinella Sciortino. r-indexing the eBWT. Information and
Computation, 298:105155, 2024.

[10] Alberto Caprara. Sorting by reversals is difficult. In Proc. 1st Annual
International Conference on Research in Computational Molecular Bi-
ology (RECOMB), pages 75–83, 1997.

[11] Alberto Caprara and Romeo Rizzi. Improved approximation for break-
point graph decomposition and sorting by reversals. Journal of Combi-
natorial Optimization, 6(2):157–182, 2002.

[12] Jean Cardinal and John Iacono. Modular subset sum, dynamic strings,
and zero-sum sets. In Proc. 4th Symposium on Simplicity in Algorithms
(SOSA), pages 45–56. SIAM, 2021.

[13] Giulio Cerbai and Luca S. Ferrari. Permutation patterns in genome
rearrangement problems: The reversal model. Discrete Applied Mathe-
matics, 279:34–48, 2020.

[14] Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes.
Dynamic string alignment. In Proc. 31st Annual Symposium on Com-
binatorial Pattern Matching (CPM), pages 9:1–9:13, 2020.

36

[15] Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Solon P. Pissis, Wojciech Rytter, Tomasz Walen, and Wiktor Zuba.
Approximate circular pattern matching. In Proc. 30th Annual European
Symposium on Algorithms (ESA), pages 35:1–35:19, 2022.

[16] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-
hakaran, Amit Sahai, and Abhi Shelat. The smallest grammar problem.
IEEE Transactions on Information Theory, 51(7):2554–2576, 2005.

[17] Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana
Starikovskaya. Upper and lower bounds for dynamic data structures on
strings. In Proc. 35th Symposium on Theoretical Aspects of Computer
Science (STACS), pages 22:1–22:14, 2018.

[18] Richard Cole. On the dynamic finger conjecture for splay trees. Part II:
The proof. SIAM Journal on Computing, 30(1):44–85, 2000.

[19] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert En-
dre Tarjan. Making data structures persistent. In Proc. 18th Annual
ACM Symposium on Theory of Computing (STOC), pages 109–121,
1986.

[20] Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and
Stéphane Vialette. Combinatorics of Genome Rearrangements. MIT
Press, 2009.

[21] Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda. Longest substring palindrome after edit. In Proc.
29th Annual Symposium on Combinatorial Pattern Matching (CPM),
pages 12:1–12:14, 2018.

[22] Pawel Gawrychowski. Pattern matching in Lempel-Ziv compressed
strings: Fast, simple, and deterministic. In Proc. 19th Annual Euro-
pean Symposium on Algorithms (ESA), pages 421–432, 2011.

[23] Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub
Lacki, and Piotr Sankowski. Optimal dynamic strings. CoRR,
abs/1511.02612, 2015.

[24] Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub
Lacki, and Piotr Sankowski. Optimal dynamic strings. In Proc. 29th

37

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1509–1528, 2018.

[25] Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, Wing-
Kin Sung, and Wiktor Zuba. Finding the cyclic covers of a string. In
Proc. 17th International Conference and Workshops on Algorithms and
Computation (WALCOM), pages 139–150, 2023.

[26] Roberto Grossi, Costas S Iliopoulos, Robert Mercas, Nadia Pisanti,
Solon P Pissis, Ahmad Retha, and Fatima Vayani. Circular sequence
comparison: algorithms and applications. Algorithms for Molecular Bi-
ology, 11(1):1–14, 2016.

[27] Yijie Han. Improving the efficiency of sorting by reversals. In Proc.
International Conference on Bioinformatics & Computational Biology
(BIOCOMP), pages 406–409, 2006.

[28] Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into
turnip: Polynomial algorithm for sorting signed permutations by rever-
sals. In Proc. 27th Annual ACM Symposium on Theory of Computing
(STOC), pages 178–189, 1995.

[29] Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech
Rytter, Tomasz Walen, and Wiktor Zuba. Linear-time computation of
cyclic roots and cyclic covers of a string. In Proc. 34th Annual Sym-
posium on Combinatorial Pattern Matching (CPM), pages 15:1–15:15,
2023.

[30] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development,
31(2):249–260, 1987.

[31] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with
polylogarithmic queries and updates. In Proc. 54th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 1657–
1670. ACM, 2022.

[32] Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with
polylogarithmic queries and updates. CoRR, abs/2201.01285, 2022.
URL: https://arxiv.org/abs/2201.01285, arXiv:2201.01285.

38

https://arxiv.org/abs/2201.01285
https://arxiv.org/abs/2201.01285

[33] Dominik Kempa and Ben Langmead. Fast and space-efficient construc-
tion of AVL grammars from the LZ77 parsing. In Proc. 29th Annual
European Symposium on Algorithms (ESA), volume 204, pages 56:1–
56:14, 2021.

[34] Donald E. Knuth. The Art of Computer Programming, volume 3: Sort-
ing and Searching. Addison-Wesley, 2nd edition, 1998.

[35] Tomasz Kociumaka, Anish Mukherjee, and Barna Saha. Approximating
edit distance in the fully dynamic model. In Proc. 64th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 1628–
1638. IEEE, 2023.

[36] Zsuzsanna Lipták, Francesco Masillo, and Gonzalo Navarro. A textbook
solution for dynamic strings. In Proc. 32nd Annual European Symposium
on Algorithms, (ESA), volume 308, pages 86:1–86:16, 2024.

[37] M. Lothaire. Applied Combinatorics on Words. Cambridge University
Press, 2005.

[38] Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella
Sciortino. An extension of the Burrows-Wheeler transform. Theoret-
ical Computer Science, 387(3):298–312, 2007.

[39] Kurt Mehlhorn, Rajamani Sundar, and Christian Uhrig. Maintaining
dynamic sequences under equality tests in polylogarithmic time. Algo-
rithmica, 17(2):183–198, 1997.

[40] Kevin Menard, Chris Seaton, and Benoit Daloze. Specializing ropes for
ruby. In Proc. 15th International Conference on Managed Languages &
Runtimes (ManLang), pages 10:1–10:7, 2018.

[41] Gonzalo Navarro and Nicola Prezza. Universal compressed text index-
ing. Theoretical Computer Science, 762:41–50, 2019.

[42] Gonzalo Navarro and Kunihiko Sadakane. Fully-functional static and
dynamic succinct trees. ACM Transactions on Algorithms, 10(3):article
16, 2014.

39

[43] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Fully dynamic data structure for LCE queries in com-
pressed space. In Proc. 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 72:1–72:14, 2016.

[44] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Dynamic index and LZ factorization in compressed
space. Discrete Applied Mathematics, 274:116–129, 2020.

[45] Andre Rodrigues Oliveira, Ulisses Dias, and Zanoni Dias. On the sorting
by reversals and transpositions problem. Journal of Universal Computer
Science, 23(9):868–906, 2017.

[46] Wojciech Rytter. Application of Lempel-Ziv factorization to the approx-
imation of grammar-based compression. Theoretical Computer Science,
302(1-3):211–222, 2003.

[47] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. Journal of the ACM, 32(3):652–686, 1985.

[48] Damien Stehlé and Paul Zimmermann. A binary recursive gcd algo-
rithm. In Proc. 6th International Symposium on Algorithmic Number
Theory (ANTS), pages 411–425, 2004.

[49] Rajamani Sundar and Robert E. Tarjan. Unique binary-search-tree rep-
resentations and equality testing of sets and sequences. SIAM Journal
on Computing, 23(1):24–44, 1994.

[50] Wojciech Szpankowski. A generalized suffix tree and its (un)expected
asymptotic behaviors. SIAM Journal on Computing, 22(6):1176–1198,
1993.

[51] Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Longest Lyndon substring after edit. In Proc. 29th
Annual Symposium on Combinatorial Pattern Matching (CPM), pages
19:1–19:10, 2018.

[52] Geoffrey A. Watterson, Warren J. Ewens, Thomas Eric Hall, and
Alexander Morgan. The chromosome inversion problem. Journal of
Theoretical Biology, 99:1–7, 1982.

40

	Introduction
	Other Related Work
	Our contribution
	Operations supported
	Extensions
	Overview of paper

	Basic concepts
	Strings
	Splay trees
	Karp-Rabin fingerprinting

	Our data structure and standard operations
	The data structure
	Information stored at nodes
	Isolating substrings

	Creating a new dynamic string
	Retrieving a substring
	Edit operations
	Introducing and extracting substrings
	Substring equality
	String uniqueness

	Extended operations
	Longest common prefixes
	Hitting twice
	When the strings are the same
	Lexicographic comparisons

	Substring reversals
	Fixing marked nodes

	Involutions
	Reverse complementation

	Using compact space
	Working on packed strings
	Implementing access and retrieve
	Implementing edit operations
	Implementing introduce and extract
	Implementing equal and lcp
	Implementing reversals and involutions

	Circular strings and omega extensions
	Additional definitions
	Circular strings
	Signed reversals on circular strings

	Omega extensions
	Extended substring equality
	Extended longest common prefix

	Future work on circular strings

	Conclusion

