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Abstract

We study deterministic Lindenmayer systems, and more generally string mor-
phisms, as mechanisms to capture the repetitiveness of string collections. In
particular, we define L-systems, which extend CPDO0L-systems with two param-
eters, d and n, to unambiguously determine a single string w = 7(p%(s))[1..n],
where ¢ is the morphism of the system, 7 is a coding, and s is its starting
symbol. We define ¢(w) as the size of the shortest description of an L-system
generating w, and show that ¢, which builds on the self-similarities that arise in
the sequence, is a relevant measure of repetitiveness.

We study the relation between ¢ and a better-established measure called ¢,
which builds on substring complexity. Our results show that ¢ and § are largely
orthogonal, in the sense that either can be larger than the other, depending on
the string family. In particular, £ can be ©(y/n) times smaller than &, whereas
{ is upper-bounded by the smallest context-free grammar that generates the
string, and thus can be only polylogarithmically larger than §. This suggests
that both mechanisms capture different kinds of regularities related to repeti-
tiveness.

We then combine the mechanisms of L-systems and of bidirectional macro
schemes, the smallest known representation scheme that captures substring
copies. We call the combination NU-systems, and show that they can be asymp-
totically strictly smaller than both mechanisms for the same fixed string family.
The size v of the smallest NU-system is a new minimal reachable repetitive-
ness measure, and it is also shown to be uncomparable with §. This shows that
combining morphism substitution with copy-paste mechanisms yields a stronger
approach to capture string repetitiveness.

We also study algorithmic problems on L-systems and NU-systems, such
as the cost of decompression and of accessing substrings of the encoded string
without fully decompressing it, and explore various simplifications of L-systems
that trade compression effectiveness by algorithmic efficiency to handle them.
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structures, Combinatorics on words

1. Introduction

In areas like Bioinformatics, it is often necessary to handle big collections of
highly repetitive data. For example, two human genomes share 99.9% of their
content [32]. In another scenario, for sequencing a genome, one extracts so-
called reads (short substrings) from it, with a “coverage” of up to 100X, which
means that each position appears on average in 100 readsE| There is a need
in science and industry to maintain those huge string collections in compressed
form. Traditional compressors based exclusively on Shannon’s entropy are not
suitable for repetitive data, as they only exploit bias in symbol frequencies for
compressing. Finding good measures of repetitiveness and also compressors
exploiting this repetitiveness has then become a relevant research problem.

A strong theoretical measure of string repetitiveness introduced by Kociu-
maka et al. [I8] is d, based on the substring complexity function. This measure
has several nice properties: it is computable in linear time, monotone, resistant
to string edits, insensitive to simple string transformations, and it lower-bounds
almost every other theoretical or ad-hoc repetitiveness measure considered in
the literature. Further, although O(d) space is unreachable (i.e., one cannot
encode every string in O(d) space), there exist O(dlog(n/d))-space representa-
tions that in addition support efficient pattern matching queries [I7), 18], and
this space is tight: no o(dlog(n/d))-space representation can exist [1§].

The idea that § is a sound lower bound for repetitiveness is reinforced by the
fact that it is always O(b), where b is the size of the smallest bidirectional macro
scheme (BMS) generating a string [37]. Those macro schemes arguably capture
every possible way of exploiting copy-paste regularities in the sequences.

In this paper we explore a source of repetitiveness that is more structural
and captured by string morphisms, and show that it can sharply break the lower
bound given by §. The simplest system we propose, which we call L-system,
builds upon deterministic Lindenmayer systems [21) 22], in particular on the
variant called CPDOL-systems. A CPDOL-system describes the language of the
images, under a coding 7, of the powers of a non-erasing morphism ¢ starting
from a string s (called the aziom), that is, the set {7(%(s))|i > 0}. L-systems
extend CPDO0L-systems with two parameters, d and n, so as to unambiguously
describe the string w = 7(¢%(s))[1..n]. The size of the shortest description
of an L-system generating w in this way is called ¢(w). Intuitively, ¢ captures
repetitiveness because any occurrence of a symbol a in ¢(s) expands to the
same string in @'t (s) for every j. The resulting repetitiveness is, however,
structured by the morphism ¢, instead of completely free as in BMSs.

Since ¢ is a reachable measure of repetitiveness (because the L-system is
a representation of w of size O({)), there are string families where § = o(¥).

Thttps://www.illumina.com/science/technology/next-generation-sequencing/
plan-experiments/coverage.html



Intriguingly, we show that £ is as small as O(d/+4/n) on other string families,
so (1) both measures are uncomparable and (2) the lower bound § does not
capture this kind of repetitiveness. On the other hand, we show that ¢ =
O(g), where g is the size of the smallest deterministic context-free grammar
generating only w. This bound is important because it implies that § can be
only polylogarithmically smaller than ¢, and places £ within the map of known
repetitiveness measures. Indeed, L-systems are similar to grammars, differing
in that they have no terminal symbols, so their expansion must be explicitly
stopped at level d and then possibly converted to terminals with 7.

We also introduce NU-systems, which combine the power of L-systems with
BMSs. The measure v(w), defined as the size of the smallest NU-system generat-
ing w, becomes a new minimal reachable repetitiveness measure. We show that
the smallest NU-system generating some string families strictly lower bounds
both the smallest L-system and the smallest BMS.

After presenting the basic concepts in Section [2} our concrete contributions
in the paper are the following:

1. In Section [3] we introduce L-systems as compression devices. We also
introduce the measure ¢, defined as the size of the smallest L-system gen-
erating the string. We show how to perform basic operations like decom-
pression or direct access on L-systems, and prove that they are monotone
to the appending of prefixes.

2. In Section we show that £ can be much smaller than §, by up to a ©(y/n)
factor. We also show that ¢ can be ©(d log n) in other string families, which
makes ¢ uncomparable to §. On the other hand, we show that ¢ is always
in O(g), which places ¢ in the map of known repetitiveness measures.

3. In Section [f] we expose string families where ¢ is larger than the output
of several repetitiveness-aware compressors like the size g,; of the smallest
run-length context-free grammar, the size z. of the greedy LZ-End parse
[19], and the number of runs r in the Burrows-Wheeler Transform of the
string [4]. We then conclude that £ is uncomparable to almost all measures
other than g, which suggests that the source of repetitiveness it captures
is largely orthogonal to the typical cut-and-paste of macro schemes.

4. In Section [f] we introduce macro-systems, which are a reformulation of
BMSs, in the sense that the size of the smallest (internal) macro system
is ©(b), where b is the size of the smallest BMS. This formulation makes
them easy to combine with L-systems in the following section.

5. In Section[7] we introduce NU-systems, which elegantly combine L-systems
and BMSs, and the measure v, defined as the size of the smallest NU-
system generating the string. We introduce a string family where v is
asymptotically strictly smaller than both ¢ and b, which shows that NU-
systems are indeed relevant and positions v as the unique smallest reach-
able repetitiveness measure to date that captures both kinds of repetitive-
ness in non-trivial ways. We also study how to decompress NU-systems
and its sensitivity to some operations on the string.
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Figure 1: Asymptotic relations between ¢, v, and other repetitiveness measures. A double
solid arrow from v; to vy means that it always holds that v; = O(v2), and there exists a
string family where v1 = o(v2). A dashed arrow from v; to vy means that there exists a
family where v1 = o(v2).

6. In Section [§, we study various ways of simplifying L-systems and show
that, in all the cases we considered, we end up with a weaker repetitiveness
measure. We also show that some of those weaker variants of ¢ can be
of independent interest, as they speed up some relevant processes like
decompression and direct access.

Finally, in Section [9] we present the conclusions and some open question
regarding L-systems, NU-systems, and alternative ways to exploit repetitiveness.

Overall, our results contribute to understanding how to measure repetitive-
ness and how to exploit it in order to build better compressors. Figure [1] shows
how our new measures ¢ and v relate to others in the literature.

This work is an extended version of articles published in SPIRE 2021 [26] and
CPM 2023 [27]. In this article, we improve various results and obtain several
new ones, give more detailed proofs, and provide a unified perspective.

2. Terminology

In this section we explain the basic terminology and concepts needed to
understand the rest of the paper, from strings and morphisms to relevant repet-
itiveness measures.

2.1. Strings

An alphabet is a finite set of symbols ¥ = {a1,...,a)x|}. An ordered alphabet
is an alphabet extended with a total order a; < --- < ax|. A (finite) string w
is a finite sequence w[l]w([2]---w[n] of symbols where w[i] € ¥ for i € [1..n],
and its length is denoted by |w| = n. The unique empty string, whose length
is 0, is denoted by €. The set of all finite strings over ¥ is denoted by ¥*. Let



x = z[1]---z[n] and y = y[1]---y[m] be strings; the concatenation operation
x -y (or just zy) yields the string x[1]---z[n] y[1]-- - y[m]. Let w = zyz. Then
y (resp., z, z) is a substring (resp., prefix, suffix) of w. It is proper if it is not
equal to w, and non-trivial if it is distinct from € and w. The notation wli. . j]
stands for the substring wiJw[i + 1]---w[j] if ¢ < j, and € otherwise. We also
use the conventions w[i..j] =w[l..j] if i <1, wi..j] =w[i..n]if j > n, and
wli..j] = ¢ ifi > nor j < 1. The reverse of w, denoted w’, is the string
wllw]] - wljw] —1]- - - wll].

A (right) infinite string w (we use boldface to emphasize them) over an
alphabet ¥ is a mapping from Z* to X, and its length is called w, which is
greater than n for any n € Z*. The concatenation z-y is defined when z is finite
and y infinite, as x -y = «[1] - - - 2[|z|]y[1]y[2] - - - . The definitions of substring,
prefix, and suffix carry over to infinite strings. Note that proper prefixes of
infinite strings are always finite strings, and suffixes are always infinite strings.
The notations w[i], w[i..j] and w[i..] = w[i]w[i + 1]--- also carry over to
infinite strings.

2.2. String Morphisms

The set * together with the (associative) concatenation operator and the
(identity) string e form a monoid structure (X*,-,€). A morphism on strings is
a function ¢ : X7 — X3 satisfying ¢(z - y) = ¢(x) - ¢(y) for all z and y (i.e.,
a function preserving the monoid structure), where X; and X5 are alphabets.
To define a morphism on strings, it is sufficient to define how it acts over the
symbols in its domain. The pairs (a, ¢(a)) for a € £4, usually denoted a — ¢(a),
are called the rules of the morphism, and there are |3;| of them. If ¥; = ¥,
then the morphism is called an endomorphism.

Let ¢ : ¥7 — X5 be a morphism on strings. Some useful definitions are
width(p) = maxees, |p(a)| and size(p) = 3,5, [v(a)]. A morphism is non-
erasing if Ya € X1, |p(a)| > 0, ezxpanding if Ya € X1, |p(a)| > 1, k-uniform if
Va € X1,]p(a)] = k > 1, and it is a coding if Va € X1, |p(a)| = 1 (sometimes
called a 1-uniform morphism).

Let ¢ : ¥* — ¥* be an endomorphism. Then ¢ is prolongable on a symbol
a if p(a) = ax for some string x # e. If this is the case, then for each i,
with 0 < i < j, it holds that ¢%(a) is a prefix of ¢J(a), and x = ¢“(a) =
arp(x)p?(x)--- is the unique infinite fixed-point of ¢ starting with the symbol
a. An infinite string w = ¢“(a) that is the fixed-point of a morphism is called
a purely morphic word, its image under a coding x = 7(w) is called a morphic
word, and if the morphism ¢ is k-uniform, then x is said to be k-automatic.

2.3. Repetitiveness measures

A repetitiveness measure p is a function from strings to numbers that ar-
guably captures the degree of repetitiveness of strings. The more repetitive is a
string w, the smaller the value p(w) should be. In general, a repetitive string is
understood as one containing many copies of the same substrings, but there is
no single agreed-upon measure of repetitiveness.



A measure p is reachable if we can represent every string w[l..n] within
O(u(w)) space (where the asymptotics refer to n). Space is usually measured
in O(logn)-bit words following the conventions of the transdichotomous RAM
model of computation. Hence, O(u(w)) space means O(u(w) logn) bits. We can
represent any symbol in the alphabet of w[l..n| using a constant number of
words as long as |X| = O(n?) for some d > 0.

A repetitiveness measure p is smaller or lower-bounds another measure o
if p1(w) = O(pe(w)) for every w(l..n] € ¥*. If, in addition, there is an infinite
string family F C ¥* where py(w) = o(pe(w)) for every w[l..n] € F, we
say that py is strictly smaller or strictly lower-bounds po. Two repetitiveness
measures p1 and ps are equivalent if each one is smaller than the other, and
uncomparable if none is (i.e., p1 = o(p2) on a string family F; and ps = o(uq)
on another string family F5).

In the following, we explain the most relevant repetitiveness measures to be
considered in the rest of the paper. All of them, except 6 and (possibly) ~, are
reachable because they are defined as the size of some compression method; in
all those cases the represented string w[l..n] can be decompressed in optimal
time, O(n). For a more in-depth review, see a recent survey [24].

2.3.1. Grammar-based measures

A context-free grammar (CFG) is a 4-tuple G = (V,X, R, S), where V is
a set of symbols called the variables, ¥ is an alphabet of terminals such that
VNI =0, RCV x (VUX)* is called the set of rules, and S € V is the initial
symbol. For readability, we write the rules (A4, z) as A — x. Let u,v € (VUX)*.
If A — x is a rule, then uAv yields uzv, denoted as uAv = uaxv. We say that u
derives v if u =* v, where =" is the reflexive-transitive closure of the relation
=. The language generated by the grammar G is L(G) = {w € Z* | S =* w},
that is, the strings of terminals that can be derived from the initial symbol.

A straight-line program (SLP) is a CFG G such that any rule is either a
terminal rule A — a with a € %, or a binary rule A — BC where B,C € V,
and satisfying that for each A € V and u € (VUX)*, if A =* u, then A does not
occur in u, that is, there are no cycles in the derivation of the grammar. These
conditions ensure that the language of the SLP G is a singleton L(G) = {w}.

Since there are no cycles, the variables of an SLP can always be given a
total order, so that if A — BC, then B,C < A. In this paper we will only
consider CFGs that admit such a total order, though the right-hand sides of
rules may have zero or more terminals and variables. That is, if A — aBf is
a rule, then B < A. Such CFGs are guaranteed to generate a unique string,
which is denoted exp(G) = w. We extend this notation to the unique strings
generated by the variables of the grammar.

The size of a CFG G = (V,X,R,S) is size(G) = Y {|z| | A — = € R},
the sum of the lengths of the right-hand sides of its rules. The repetitiveness
measure g(w) is defined as the least size of a CFG G generating w. Computing
g(w) is NP-hard [34] [5], though there exist log-approximations [12] [34].

Another measure related to CFGs that strictly lower-bounds g(w) is g, (w),
the least size of a run-length CFG (RLCFG) generating w [29]. RLCFGs extend



CFGs by allowing constant-size rules of the form A — B* for k > 1 and B €
V U X, and we again consider only RLCFGs that follow a total order in their
variables. RLCFGs can be a log-factor smaller than CFGs in some string families
like {a™ |n > 0}, where g = ©(logn) and g, = O(1).

Composition-systems [9] extend CFGs with constant-size extraction rules of
the form A — BJi : j] for some i,j € [1,|exp(B)|], which mean that exp(A) =
exp(B)[i..j]. Still, the symbols must be ordered and it must hold B < A for
such a rule to be valid. Collage-systems [16] extend CFGs with run-length rules
and extractions, thereby combining composition-systems and RLCFGs. The
size c(w) of the smallest collage-system deriving w strictly lower-bounds g,;(w).

2.3.2. Parsing-based measures

A parsing of size k produces a factorization of a string w into non-empty
phrases, w = wy - Wy - - - wy, where w; € X1 for 1 < i < k. Several compressors
work by parsing w in a way that just some summary information about the
phrases enables recovering w.

The Lempel-Ziv (LZ) parsing [20] processes a string greedily from left to
right, always forming the longest phrase that has a copy (called a source) starting
inside some previous phrase, or else forming an explicit phrase of length 1.
Lempel-Ziv compression encodes non-explicit phrases as pairs (p,l), where p
indicates where the source starts in w and [ is the phrase length. In LZ, the
source can overlap the new phrase. The LZ-no parsing, instead, does not allow
the source overlap the new phrase. The LZ-end parsing [19] requires, in addition,
that the source ends at a previous phrase boundary. All of these parsings can
be constructed in linear time, and their number of phrases are denoted by z,
Zno, and ze, respectively. While z and z,, are optimal among the parsings
satisfying their respective conditions, this is not always the case for z.. The
optimal factorization where each phrase w;4+1 appears as a suffix of wy ... w; for
some j < i is denoted by z.nq. Because of the optimality of z, z,,, and zenq, it
holds that z <z, < 2zeng < 2, for every string.

A bidirectional macro scheme (BMS) [37] is any parsing where each phrase of
length greater than 1 has a copy starting at a different position (to its left or to its
right) in such a way that the original string can be recovered by following these
pointers (assuming that the phrases of length 1 store their symbol explicitly).
The measure b(w) is defined as the size of the smallest BMS for w. It strictly
lower-bounds all the other reachable repetitiveness measures [25], except for the
ones we define in this paper. Computing b(w) is NP-hard [7].

Another interesting parsing-based measure is the size of the greedy lezico-
graphic parsing of w, denoted as v(w) [25]. This parsing processes w from left
to right, taking as the next phrase the longest common prefix between the un-
processed part of the string and a lexicographically smaller suffix starting inside
the processed part (a unique symbol $, smaller than the others, is assumed to
exist at the end of w). It forms an explicit phrase of length 1 if the longest
common prefix is empty or no predecessor exists.



2.8.3. Burrows- Wheeler transform

The Burrows-Wheeler transform (BWT) [4] is a reversible transformation
that usually makes a string more compressible. It is obtained by concatenating
the symbols preceding the sorted suffixes of w$. The BWT tends to produce
long runs of the same symbol a when a string is repetitive, and these (maximal)
runs of length k can be encoded as pairs (a, k). A repetitiveness measure, r(w),
based on this encoding is then the number of maximal runs in the BWT of
w. Although r is not ideal as a repetitiveness measure (e.g., its size can vary
significantly upon minor changes in the string) [I1], its size can be bounded in
terms of z [14].

2.8.4. String attractors: the measure ~y

Kempa and Prezza [15] introduced the notion of string attractor as a unifying
framework and lower bound for grammar-based and parsing-based compressors.

A string attractor for a string w[l..n] is a set of positions I" C [1..n] such
that for each substring wl[i..j] of w, there exist integers i’,j’ € [1..n] and
k € T, such that w[i..j] = w[i’..j] and i’ < k < j'. That is, every substring
of w has a copy covering a position in I'. The measure y(w) is defined as the
size of the smallest string attractor for w.

Computing v(w) is NP-hard. The measure « strictly lower-bounds b [2].
Yet, it is unknown whether space -, or even o(+ylog(n/7)), is reachable.

2.8.5. Substring complexity: the measure §

Let F,, (k) be the set of distinet substrings of w[l..n] of length k, F,, (k) =
{wli..i+k—1] |1 <i<n—k+1}. The substring complexity function of w is
defined as P, (k) = |F\(k)|. Kociumaka et al. [I8] introduced a repetitiveness
measure based on this function, defined as é(w) = max{P,(k)/k|k € [1..n]}.

The measure ¢ strictly lower-bounds almost every other repetitiveness mea-
sure considered in the literature, including ~. It also has several nice properties:
it is computable in linear time, monotone, insensitive to reversals, resistant to
small edits on w, and can be used to construct O(dlog(n/d))-space representa-
tions supporting efficient access and pattern matching queries [I8, [I7]. On the
other hand, o(dlog(n/J)) space is known to be unreachable [I§].

A recent mechanism called ISLPs [28] was proposed with the aim of showing
that there are reachable measures, which can even be efficiently accessed at
arbitrary positions, that can break the lower bound given by §. We believe that
the measures we propose here are more natural and of wider interest.

3. Deterministic L-systems and the Measure £

In this section we study a mechanism for generating infinite sequences called
deterministic Lindenmayer systems (L-systems) [21 [22], which build on string
morphisms. L-systems were initially utilized as a tool to model the growth of
plants and algae [2I) 22]. They also have been used to define infinite words
with interesting self-similarity and factor complexity properties [33]. For these



reasons, L-systems have been studied extensively from a practical and mathe-
matical point of view. We adapt L-systems to generate finite repetitive strings.
L-systems are, in essence, grammars with only non-terminals, which typically
generate longer and longer strings, in a levelwise fashion. For our purposes, we
will also specify at which level d to stop the generation process and the length
n of the string w to generate. The generated string w[l..n] is then the prefix
of length n of the sequence of variables obtained at level d.

We adapt, in particular, the variant called CPDO0OL-systems, though we will
use the generic name L-systems for simplicity. Formally, a CPDOL-system is a
4-tuple L = (X, ,7,s), where ¥ is the alphabet, ¢ is the set of rules (a non-
erasing endomorphism on ¥*), 7 is a coding on ¥*, and s € X is the initial
symbol or the aziom. The system generates the sequence (7(¢%(s)))aen. The
“DOL” stands for deterministic L-system with 0 interactions, which means that
the L-system has one rule per symbol and that rules are context-free. The “P”
stands for propagating, which means that ¢ is non-erasing. Finally, the “C”
stands for coding, which means that the system is extended with a coding. To
define a compressor based on CPDOL-systems, we extend them to 6-tuples by
fixing d and using another parameter n, so we can uniquely determine a string
of the sequence generated by the system and then extract a prefix from it.

Definition 1 (L-systems). An L-system is a 6-tuple L = (X, ¢, 7, s,d,n) where
Y is the alphabet, ¢ is the set of rules (a non-erasing endomorphism on X*),
T is a coding on X*, s € ¥ is the axiom, and d and n are two non-negative
integers. The string generated by L is w = 7(0%(s))[1..n].

We now define the size of an L-system and the measure /.

Definition 2 (Measure ¢). The size of an L-system L = (¥,¢,7,s,d,n) is
size(L) = size(p) + |X| + 3. The measure £(w) is defined as the size of the
smallest L-system generating w.

The size of an L-system accounts for the lengths of the right-hand sides of
the rules in ¢, the coding 7, the axiom symbol, and the values d and n, so we can
effectively represent the system using O(size(L)) space. Hence, the measure ¢
is reachable. As a convention, we always assume that d and |X| are in n@®),
Otherwise, our RAM machine would need w(1) ©(logn)-bit words to represent
the integer d or the symbols of the alphabet, and could not operate them in
constant time. We also assume that size(L) < 3n (and hence |X| < 3n), as
there is always a trivial L-system L = (X', {s — w}, id, s, 1,n) generating w, of
size n+|X’| 4+ 3, where ¥/ contains the symbols actually appearing in w, and id
is the identity function. A finer-grained analysis of the number of bits needed to
represent an L-system of size £ yields O(¢log |Z| 4 logn) bits, the second term
corresponding to d and n; note X contains the alphabet of w.

3.1. Decompression
The decompression of L-systems is, in principle, very similar to that of
context-free grammars, except that we must keep track of the level so as to



Algorithm 1: Decompressing L-system L = (X, p,7,s,d,n) in time
O(dn); invoke with decompress(s,d, n).

Input : Symbol a to expand, number of levels d, maximum length to output n > 0.
Output: The string 7(¢%(a))[1..n'] with n’ = min(n, |p%(a)|). Returns n — n’.

1 function decompress(a,d,n)

2 if d =0 then

3 output 7(a)

4 L return n — 1

5 leta—0b,-- b €9

6 for i < 1 to k do

7 n < decompress(b;,d — 1,n)
8 L if n =0 then return 0

9 | return n

output 7(a) when we reach a symbol a at level d. We must also keep track of
the number of symbols already output so as to stop when they reach n.

This simple procedure, depicted in Algorithm [1} takes time O(dn); consider
the example system L = ({a,b,c},{a — ab,b — ¢,c — b}, 7,2a,d,n). The root
of this inefficiency is the cycle b <+ ¢, which allows the string not to grow with
d. Removing “unary” symbols, that is, with right-hand side of length 1, is not
as simple as with CFGs, but it is possible and yields better decompression time.

To properly eliminate unary symbols, we define the function f : ¥ — 3 such
that f(a) = b iff the rule for a starts with b, @ — b---. In our example, f(a) = a,
f(b) =c, and f(c) =Db. A representation of function f can be built in O(|X])
time and space so that f(a) can be computed in constant time for any h > 0
[23]. We also define function g as g(a) = min ({h > 0 | f"(a) is not unary} U
{+00}). In our example, g(a) = 0 and g(b) = g(c) = +o0. It is an easy exercise
to build function g in time O(|X|), by trying, for each a not already visited, a,
f(a), f*(a), ... until finding the first non-unary symbol f”(a), and then filling
g(f*(a)) = h —k for all 0 < k < h, or 400 for all of them if we fall in a loop of
unary symbols.

Algorithm [2] shows the improved procedure. Every unary path in the deriva-
tion of the output is now traversed in constant time. The nodes of the recursion
tree then have at least two children, except for those on the rightmost path,
which may have only one child included in the prefix of length n. Since the re-
cursion tree has n leaves and depth d, it has O(n+d) nodes, the term n counting
the leaves and their non-unary ancestors, and d counting those rightmost nodes
that are possibly unary. The bound is tight; consider our example L-system with
small n and large d. The total decompression time is then O(|3|+n+d), where
O(]X]) counts the time to build f and g. Recall we can assume |Z| = O(n).

Theorem 1. Given an L-system L = (X, p,7,s,d,n), we can compute its rep-
resented string in time O(n + d).
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Algorithm 2: Decompressing L-systems L = (X, ¢,7,s,d,n) in time
O(n + d); invoke with decompress(s,d,n).

Input : Symbol a to expand, number of levels d, maximum length to output n > 0.
Output: The string 7(¢%(a))[1..n'] with n’ = min(n, |p%(a)|). Returns n — n’.

1 function decompress(a,d,n)

2 h « g(a)

3 if h > d then

4 output 7(f%(a))

5 L return n — 1

6 | b f(a)

7 letb—>by---bp €

8 for i < 1 to k do

9 n < decompress(b;,d — h — 1,n)
L if n =0 then return 0

11 return n

In case d is significantly larger than n, the following solution that decom-
presses in time O(|X] 4+ nlogd) may be of interest. With functions f and g,
we follow a procedure similar to one used on CFGs [10] for decompressing in
real time: To decompress a symbol a with d levels, we first output f%(a). Now

let b= f91(a) and b — aby---by. We recursively decompress bo, ..., b, with
d = 0. Now let ¢ = f42(a) and ¢ — bcy---c,.. We recursively decompress
c2,...,¢. with d = 1, and so on. The procedure finishes when we have output

n symbols or we have completely expanded a with d levels.

This algorithm outputs a symbol per unit of work done, except when we try
c = f"(a) for some h =d —1,...,0 and ¢ is unary. Those unary symbols that
we visit as we return from level d take one unit of work and yield no symbols.
To avoid wasting time on them, we use function g. Instead of trying out all the
values of h from d — 1 to 0, we use binary search to skip the unary nodes; see
Algorithm [3| The binary search is possible because, if g(f%?(a)) > d/2, then
the largest 0 < h < d with a non-unary symbol is in [0..d/2 — 1], otherwise it
is in [d/2..d — 1]. In the worst case, this poses a penalty of O(logd) to every
symbol output. The bound is tight even if we use doubling search; consider the
L-system L = ({a,b,c},{a — ba,b — c,c = b}, 7,a,d,n) with large d.

Theorem 2. Given an L-system L = (X, p,1,s,d,n), we can compute its rep-
resented string in time O(nlogd).

3.2. Access

A more ambitious goal in compression formats is to provide direct access
to the represented string w, that is, being able to retrieve wi .. j] without the
need to decompress the whole w. This can be done in time O(j — i + logn) on
grammar-based representations [3], but not on Lempel-Ziv-like parsings.
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Algorithm 3: Decompressing L-systems L = (X, ¢,7,s,d,n) in time
O(nlogd); invoke with decompress(s,d,n).

Input : Symbol a to expand, number of levels d, maximum length to output n > 0.
Output: The string 7(¢%(a))[1..n'] with n’ = min(n, |p%(a)|). Returns n — n’.

1 function decompress(a,d,n)

2 output 7(f%(a))

3 n+<n-—1

4 if n =0 then return 0

5 h+<—d-1

6 while h > 0 do

7 b < f(a)

8 let b —01---bp €

9 for j + 2 to k do

10 L n < decompress(bj,d —h —1,n)
11 if n =0 then return 0

12 h + max ({k € [0..h—1] | k+g(f*(a)) < h}U{—1}) (binsearch)
13 return n

We first focus on accessing the single symbol w[i]. For any a € 3, we define
a' = ¢!(a) as the string obtained by iterating [ times the morphlsm @ on a.
Now let a — by --- by € ¢, then we define pl,(t) = SL_ o] for 0 <t < k.

We begin the extraction of wli] from the axiom ag = s, with ig = i. Let
ro > 1 be such that an(T’O —1) <ip < pao(ro) and ag — by---bx € p. Then
wli] = 7(a$ '[i1]), with a; = by, and iy = ig — ro — 1). After continuing for
d levels, we finally have w[i] = 7(aq). Algorlthm shows the process.

With binary search, the algorithm takes time O(dlog |p|). We can improve it
by using instead interval-biased search trees [3] on the sequences pl,. With those
trees, the search for x on a sequence of values i; < --- < i; within a universe of
size u takes time O(log(u/(ir41 — ir)), if 4p <z < ir+1~ By pruning the values
of the sequences pfl to a maximum of n, we have that the first search, on s, will
take time O(log(n/[ad"!])), the second one O(log(|ai™!|/|a$~?])), and so on,
which telescopes to O(d +1logn). Note that n < |p|?, so d+logn = O(dlog |p|)
and it could be less.

Let us now consider how to preprocess the L-system to compute pl,. We
define the |3| x |X| matrix M., so that M [a][b] is the number of times b appears
in the right-hand side of the rule for a (cf. [35]). Formally, if a — by --- bx € ¢,
then M, [a][b] = |{r | b, = b}|. Now note that the vector Ly = M, x [1---1]T is
such that L [a] = |a'|, and in general, L; = M. x [1---1]7 satisfies L;[a] = |a'].
Since M, contains only |¢| nonzero entries, We can compute all the vectors
L; by defining Ly = [1---1]7 and each L; = M, x L;_y for | = 1,....d, in
O(d(Jel +12])) = O(d]p]|) total time and O(|¢| + d|X]) space. Once the vectors
L; are obtained, we can compute the functions p!, in O(d|p|) space and time.
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Algorithm 4: Accessing w[i] from L-system L = (3,¢,7,s,d,n) in
time O(d 4 logn); invoke with access(s,d, ).

Input : Axiom s to expand, number of levels d, position to access 1 < i < n.
Output: The symbol 7(¢%(s)[d]).

1 function access(s,d, )

2 let p!, be precomputed for alla € ¥, 1 € [0..d — 1]

3 | a+s

4 for [ < d downto 1 do

5 leta—b---bp €p

6 let 7 be such that p! (r — 1) < i < p,(r) (interval-biased search)
7 i< i—pl(r—1)

8 a<+ b,

©

| return 7(a)

The interval-biased search trees are built in linear time and space, which adds
up to O(d|y|) in our case.

Theorem 3. After O(d|p|) space and time preprocessing of an L-system L =
(2,0, 7,8,d,n) representing w, we can extract any substring wli..j| in time
O —i+d+logn).

Proof. We have already described the preprocessing and how to access an indi-
vidual cell. Assume we access w(i] and w(j]. Their paths along Algorithm [4| may
coincide for some levels, until they diverge on the right-hand side of some rule
a — by --- by at some level [. From levels ¢t =[..d, the access to w[i] computes
values r; = r from the right-hand sides of the rules of a; in line 6. Similarly, the
access to w[j] computes values r; and a}. We then output the following strings,
in this order, which form w[i.. j]:

1. 7(p4 (b)), T(? by, 1)), - .., withay — by ---, fort =d,d—1,...,1+1.
2. 7(@" (br41))s -+ T(0"Hbr 1))
3. 7(@? (b)), (@ (b —1)), with @) — by -+ for t = 14+1,1+2,...,d.

Each of those whole subtrees, say for symbols b, are decompressed in optimal
time using function decompress(b,l’, [b'| = L;/[b]) from Algorithm Since the
algorithm decompress the whole symbol, its recursion tree has |bl,| leaves and
then it has maximum height |b"'|; therefore it runs in optimal time O(|p|). O

The extraction time O(j —i+logn) is near-optimal for any representation of
size O(g) [38], which we show to be the case of L-systems in Section[d] The extra
term O(d), which is related to the height of the grammar, has been removed (or
reduced to O(logn)) on grammars via heavy-path decomposition of the parse
tree [3] or by balancing the grammar [§]. Applying either technique to L-systems
is an interesting challenge. Another relevant challenge is to decrease our heavy
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preprocessing space and time of O(d|p|), even if we can perform it once and
then answer many extraction queries.

In this sense, the closest result to ours, by Salomaa [35], precomputes the
characteristic function of the matrix M, which allows computing |¢%(s)| in time
O(|Z]log d) (the function has |X| terms that include polynomials and exponents
on d). By precomputing the function for every possible initial symbol a € X,
we use O(|X|?) space (which typically compares favorably to our space O(d|¢p|))
and can compute any value p!, in time O(|%|log d); this yields an extraction time
of O(j —i+(d+logn)|X|logn). The precomputation time for the |X| symbols is
O(|X|>7) arithmetic operations, dominated by the time to find the characteristic
function on integer matrices [13]. Shallit and Swart [36] aim to remove the O(d)
term from the extraction time, by using the cycles in the grammar in order to
jump near the desired level. They manage to compute any ¢%(a)[i] in time
bounded by a polynomial (yet of degree 10) in |X|, width(y),logd and log:.

3.8. Sensitivity to string transformations

When considering repetitiveness measures, it is often useful to know how
they can change after applying relevant string transformations on the input. In
the case of the measure ¢/, we can show that this measure is monotone with
respect to prepending symbols.

Proposition 1. Let w € X% and a symbol a. It holds that {(aw) < £(w)+O(1).

Proof. Assume first that a € 3. Let L = (X, ¢, 7, 8,d, n) be a minimal L-system
representing w, and two new distinct symbols b,s" € ¥. Let the L-system
L' = (¥, ¢,7,¢,d,n), with ¥ = XU {b,s}, ¢ = pU{b — b s — bs},
T'=7U{b—>a,s = s}, d=d+1,and n’ =n+ 1. Clearly L’ generates aw
and its size is size(L) + 5. Thus, (aw) < l(w) + 5. If a € ¥ then we just let
b = a and the claim follows. O

On the other hand, basic edit operations like the insertion, deletion, or
substitution of a single symbol at an arbitrary position (or even just at the
end of the string) are not straightforward to handle. More complex operations
like reversing w, or applying to it a string morphism different from ¢, are also
non-trivial to analyze.

4. Breaking the Repetitiveness Lower Bound §

The measure § is a (strict) lower-bound to all the other usually considered
repetitiveness measures [I8, 24]. It is also a lower bound to the k-th order
empirical entropy, which is a lower bound for statistical compression [24]. This
implies that § is an asymptotic lower bound to the size of almost every existing
compressor and compressibility measure to date.

Since ¢ is unreachable in general [I§], we cannot expect to find a reachable
measure smaller than 4. We are interested, instead, in reachable measures
that also capture repetitiveness and go below § in some restricted but relevant
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scenarios. While it is always possible to design a measure that breaks § on some
specific string families, we require this measure to be competitive, meaning that
it is at least as good as other better established measures like z, g, or r.

As we show next, the repetitiveness measure ¢ satisfies those conditions.
Indeed, we show that § and ¢ are uncomparable. We first show that ¢ can be
larger than ¢ by a logarithmic factor.

Lemma 1. There exist string families where £ = Q(dlogn).

Proof. Kociumaka et al. [I8] exhibit a string family of 29(°&" ") elements with
§ = O(1), so it needs Q(log®n) = Q(5log®n) bits to be represented with any
method. On the other hand, an L-system of size ¢ is described with (at most)
O(¢logn) bits. Therefore £ = Q(logn) = Q(dlogn) in this family. O

On the other hand, £ is a competitive repetitiveness measure: the smallest L-
system for a string is always asymptotically smaller than the smallest grammar.
This shows that the measure ¢ is always reasonable for repetitive strings.

Lemma 2. It always holds that £ = O(g).

Proof. Consider a grammar G = (V, X, R, S) of height h generating w[l..n]. If
there are rules A — ¢, remove them and remove A from all right-hand sides,
iterating until all those rules disappear. We now define the equivalent L-system
L= (WVUXR 71,5 h,n), where R’ contains all the rules in R plus the rules
a — a for all a € ¥. The coding is set to 7 = id.

It is clear that this L-system produces the same derivation tree of GG, reaching
terminals a at some level. Those remain intact up to the last level, h, thanks
to the rules @ — a. At this point the L-system has derived w[l..n].

The size of the L-system is that of G plus O(|X]), which is of the same order
of the size of G because every symbol a € ¥ appears on the right-hand side of
some rule (if not, we can remove a from ). O

We now exhibit a string family where § is ©(y/n) times bigger than the
smallest L-system. That is, £ can perform much better than ¢ in some scenarios.

Lemma 3. There exists a string family where § = O(€y/n).

Proof. Consider an L-system Lq = (%, ¢, T, $,d, n), where

¥ ={a,b,c}
p={a—a,b— ab,c — cb}
T =1id
s=c

dd+1
ne1+ (2+ )
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Ss3= c¢c b a b a a b

Ss=— ¢c b a b a a b a a a b aa a a b a a a a a b

Figure 2: All the substrings of length 6 of the string s¢ of Lemma [3] starting inside some
position ¢ < |s3| = 7 are distinct, because the runs of a’s considered have all different and
increasing lengths, and d is big enough. The last of the substrings considered is underlined.
Extending these substrings one position to the left yields |s3| different strings of length 7, so
the claim holds for even and odd values of d > 2.

for any d > 0. By iterating the morphism ¢ we obtain the words sq = p%(s):

p'(c) =c

p'(c) =cb

©*(c) = cbab

¢*(c) = cbabaab

¢*(c) = cbabaabaaab
¢°(c) = cbabaabaaabaaaab

and so on, from which we extract as a prefix the whole word. It is easy to check
by induction that, for each d > 0, the string generated by the system L4 is
Sqg=-¢c H?;()laib, which has length 1 + @.

It holds that £ is ©(1) in this family: the system is essentially the same for
every string in the family; the only changes are the integers d and n, which
always fit in constant space.

On the other hand, the first |s|4/2/| = 14 [d/2](|d/2] + 1)/2 substrings of
length d of sq (for d > 2) are completely determined by the b’s they cross, and
the number of a’s at their extremes, so they are all distinct. An example can
be seen in Figure 2]

This gives the lower bound § = Q(d) = Q(y/n). The upper bound O(y/n)
holds trivially for run-length grammars, as the strings considered have ©(y/n)
runs of a’s followed by b’s, so § = O(gr;) = O(y/n). Thereore, it holds § =
O(y/n) = O(¢y/n) in this string family. O

The strings of Lemma[3]are easy to describe, yet hard to represent with copy-
paste mechanisms. Intuitively, the simplicity of the sequence relies on the fact
that many substrings can be structurally described in terms of previous ones, so
it is arguably highly repetitive, though not via copy-paste. The repetitiveness
in this family is better captured by an L-system, instead.

As a corollary of Lemmas [l| and |3} we obtain that ¢ and § are uncomparable
as repetitiveness measures.

Corollary 1. The measures £ and § are uncomparable.
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5. Uncomparability of £ with other Repetitiveness Measures

Given the uncomparability of ¢ and §, a natural question is which other
measures are also uncomparable to £. We show in this section that this holds
for almost every other repetitiveness measure. To do so, we first recall the string
family of Kociumaka et al. [I8], which needs Q(log®n) bits to be represented
with any method. This string family will be crucial in the following proofs.

Definition 3 ([I8]). The string family KC is formed by all the infinite strings s
over {a, b} constructed as follows:

1. Let s[1] = ».
2. For any i > 2, choose a position j; in [2-4°72 + 1,41 and set s[j;] = b.
3. If j > 1 and j # j; for any i > 2, let s[j] = a.

The family IC,, for n > 0 is formed by all the prefizes of length n of some string
in IC.

It is easy to see that the strings in the family K,, have ©(logn) symbol b’s.
Also, note that with the possible exception of the first two positions, there are
no consecutive b’s.

We are now ready to prove that, in general, it does not hold that ¢ = O(g,.),
making L-systems uncomparable to RLCFGs.

Lemma 4. There exists a string family where £ = Q(g,; logn/loglogn).

Proof. Consider the string family K,, needing Q(log® n) bits (or Q(logn) space)
to be represented with any method [18]. Strings in K,, have O(log n) runs of a’s
separated by b’s, so it is easy to see that g,; = O(logn) in this family. Because
of this, and because g,; is a reachable measure, it holds that g, = ©(logn) in
K. On the other hand, the minimal L-system for a string in this family can
be represented with O(¢log |X| + logn) C O(Llogl + logn) bits, which must
be in Q(log®n) bits because the L-system is also reachable. It follows that
¢ = Q(log? n/loglogn), since otherwise

Clog ¢ = o((log® n/ log log n) log(log® n/loglogn)) = o(log® n),

which contradicts ¢ being reachable. Therefore, in this string family it holds
that £ = Q(g,; logn/loglogn). O

The same result holds for LZ-like parsings. Even the greedy LZ-End pars-
ing (the largest of them) can be asymptotically smaller than ¢ in some string
families.

Lemma 5. There exists a string family where £ = Q(z.logn/loglogn).

Proof. Take each string in KC,, and prepend a” to it. This new family of strings
still needs Q(log2 n) bits to be represented with any method because the size of
the family is the same, and n just doubled. Just as in Lemma [4] it holds that
¢ = Q(log® n/loglogn) in this family. On the other hand, the LZ-End parsing
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needs O(logn) phrases only to represent the prefix a”b, and then for each run
of a’s followed by b, its source is aligned with a"b, so z, = ©(logn). Thus,
£ = Q(zelogn/loglogn). O

The same result also holds for the number of equal-letter runs of the Burrows-
Wheeler transform of a string.

Lemma 6. There exists a string family where £ = Q(rlogn/loglogn).

Proof. Consider the family IC,, again. Clearly r = Q(logn), because r is reach-
able. Because a string in this family has O(logn) b’s, its BWT has also
O(logn) runs of a’s separated by b’s (or the unique $). Therefore, it holds
that » = ©(logn) and £ = Q(rlogn/loglogn) in this string family. O

We conclude that the measure ¢ is uncomparable to almost every other
repetitiveness measure. We summarize these results in the following theorem.

Theorem 4. The measure ¢ is uncomparable to the repetitiveness measures ¢,
Vs b7 U, C, Grly, 2, Zno; Zend; e, and 1.

Proof. There exist string families where £ = 0(¢). In these families, it holds
¢ = o(p) where p is any of the measures considered above, because § lower-
bounds them all. On the other hand, all the measures above are upper-bounded
by at least one of z., gy, or v, which by Lemmas [4 5] and [6] respectively, can
be asymptotically smaller than ¢ for some string families. O

This shows that ¢, although reachable and competitive, captures the reg-
ularities in strings in a form that is largely orthogonal to other repetitiveness
measures.

6. Macro-systems

In this section we give a first step in combining L-systems with bidirectional
macro schemes (BMSs) [37], by redefining BMSs in a way that makes them
compatible with L-systems. This will allow us combining them in a straightfor-
ward manner. In our way, we obtain a generalization of BMSs. In Section [7] we
combine macro-systems with L-systems, showing that mixing morphisms and
copy-paste is more powerful than the sum of its parts.

We use the following formalism for BMSs.

Definition 4. A bidirectional macro scheme (BMS) for w[l..n] is a parse
(21,81),...,(xp, 8p) of non-empty phrases, where w = 1 ---xp and the second
component is as follows: if x; = a is a single symbol, then it will be represented
explicitly and s; = L; otherwise s; is a position in w such that w[s; ..s; + |z;| —
1] = x;, indicating where we can copy xz; from. The BMS takes O(b) space, by
representing the pairs (z;, s;) implicitly as (|z;],s;) if |x;| > 1, and explicitly as
(x4, L) if |z;] = 1. We say that the size of the BMS is b.
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To decompress a BMS, we define the function ¢(j) that tells where to copy
w[j] from: let e; = S°_, |2 and let p be such that e, ;1 < j < e, that is, j
belongs to the component (x,,s,) of the parse. Then, ¢(j) =L if |z,| =1 (an
explicit symbol) and otherwise ¢(j) = (s, — 1) + (j — €p—1)-

A BMS is wvalid if for each j there exists k > 0 such that ¢*(j) = L, and
thus w[j] = w[¢*~1(j)] if k£ > 0, and an explicit symbol if k = 0. We can then
obtain w[l..n] in O(n) time by:

1. Marking every cell as unknown, w[j] < ? for all 1 < j < n.

2. Computing all e; = e;—1 + |z¢| and assigning all the explicit symbols,

wley] < xy when |z, =1, for all 1 < ¢ <hb.

3. For each remaining unknown cell w[j] = ? on a left-to-right pass over

w, find the smallest k such that w[¢¥(j)] # ? in time O(k) and then fill
wlg" ()] + w[pk(4)] for all 0 < r < k.

We now define and study macro-systems.

Definition 5. A macro-system is a tuple M = (V, 3, R, S), where V is a finite
set of symbols called the variables, ¥ is a finite set of symbols disjoint from V
called the terminals, R is the set of rules (exactly one per variable)

R:V = (VUSU{A[i:j]| A€ V,i,j € N},

and S € V is the initial variable. If R(A) = « is the rule for A, we also write
A — a. The symbols Ali : j] are called extraction symbols. The rule A — ¢ is

permitted only for A =S. The size of a macro-system is the sum of the lengths
of the right-hand sides of the rules, size(M) = 3" 1.\, |R(A)].

We now define the string generated by a macro-system as the expansion of
its initial symbol, exp(S). Such expansions are defined as follows.

Definition 6. Let M = (V,X, R, S) be a macro-system. The expansion of a
symbol is a string over X* defined inductively as follows:

e Ifa € X then exp(a) = a.

o IfS — e, then exp(S) =e.

e If A— By --- By is a rule, then exp(A) = exp(B1) ---exp(Bg).
o exp(A[i + j]) = exp(A)fi. . ).

We say that the macro-system is valid if there is exactly one solution w € ¥*
for exp(S). We only admit valid macro-systems, and say they generate w.

There are several reasons why a macro-system can be invalid. For example,
the equations for exp(S) may have infinite solutions, asin S — S or S — S[1 : 2].
It might also have no solutions, as in S — a.S or S — S[2 : 3]. On the other
hand, there can be valid solutions involving overlaps, like S — a S[1 : 3], which
solves to (only) exp(S) = aaaa.
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Note that a macro-system looks very similar to a composition-system. The
difference is that the latter impose an order to the variables so that each rule
references only previous variables. Further, a run-length rule A — B! can be
translated in macro-systems as A — B A[1: (t —1) - | exp(B)|], therefore macro-
systems are at least as powerful as collage-systems [16]. The following example
shows that they can be asymptotically strictly smaller.

Example 1. The smallest collage-system generating the Fibonacci string Fy,
(where Fy = b, Fs = a, and Fyqo = F11F}) is of size ©(log | Fx|) [23, Thm. 32].
Instead, we can mimic a BMS of size 4 [25, Lem. 35] with a constant-sized
macro-system generating Fy, as follows (with fr = |F|):

S — S[fk,Q + 1, fx — 2} ba S[fk,Q + 1,2f;€,2] if k is odd,
S = S[fe—a+1,fk—2] abS[fe_a+1,2fk_2] if k is even.

We now show how to decompress a macro-system. We note that, because
there is no clear decompression order among the variables, expansion rules must
be applied carefully for decompression, so that we expand only what is needed
from the referenced variables.

Theorem 5. A macro-system M = (V,3, R, S) can be decompressed, or deter-
mined to be invalid, in O(N) time and space, where N =,y | exp(A)].

Proof. We first determine the expansion lengths of all the variables, using the
recurrence:

o |exp(a)] =1ifa € X.
o |exp(A)| = |exp(B1)|+ -+ |exp(Bg)| if A — By --- By.
o Jexp(Ali: )| =j—i+1

The expansion lengths are computed in time O(size(M)) by a simple proce-
dure that recurses on the case A — Bj --- By. If this procedure falls in a loop,
then the system is invalid. The reason is that we do not recurse on the extrac-
tions exp(Ali : j]). Therefore, if we arrive again to exp(A) along the recursive
expansion to compute |exp(4)|, then A —* X . A .Y for some k > 0, so ei-
ther |exp(XY')| > 0 and then the expansion of A is infinite, or |exp(XY)| =0
and exp(A) can be any string. In either case, M is invalid (not that an invalid
system like S — S[2 : 3] will still pass this test, however).

Once the lengths are calculated, we create strings E[l..|exp(A4)]|] for all
A € V, with all their cells marked as unknown, E4[r] < 7 for all . The
decompression process will fill all the necessary cells so that Eg has no unknown
positions, at which point the decompressed string is exp(S) = Eg.

We successively define the symbols Eg[1] to Es[|exp(S)|], which will trigger
other definitions. The definition of a symbol V[r] proceeds recursively, as shown
in Algorithm Note that we mark the traversed positions with | to detect
loops that flag the system as invalid. More importantly, although the recursion
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Algorithm 5: Defining a symbol when decompressing a macro-system.

Input : Terminal or variable A and position r to define from exp(A).
Output: Obtains exp(A)[r] and assigns it to E4[r], as well as any other position
discovered along the process.

1 function define(A,r)

2 if r ¢ [1..|exp(A)|] then return “invalid system” (out of bounds)
3 if E4lr] =1 then return “invalid system” (loop detected)

4 if E4[r] #7 then return E4[r] (already known)

5 if A=a (a terminal) then return a

6 E4[r] + L (will be defined in the process)

7 if A— By By (a variable) then

8

9

let p be such that Z?il |exp( Ol <r < Z?:l | exp(B;)|
E4lr] < define(B,,r — Z \exp( )

10 else if A Bli: j] (an extraction) then
11 | Ea[r] + define(B,i+r—1)

12 return E4[r]

may visit many cells to define some F4[r] = ¢, all those visited cells get assigned
the value ¢ as we return from the recursion. Since we define some new cell per
unit of work, the total decompression cost is O(N), which absorbs O(size(M)).

Line 8 of Algorithm [5] might suggest that we need a logarithmic-time bi-
nary search. We can, instead, precompute arrays Pa[l..|exp(A)|] for every
A — Bj--- By, so that we assign 1 to P4[l..|exp(B1)|], 2 to Pal|exp(B1)| +
1..|exp(B1)| + |exp(B2)]], and so on. After this O(N) space and time prepro-
cessing, line 8 boils down to p < Pa[r]. The sum of line 9 can be similarly
precomputed in an array C4 of size k < |exp(A)| for every A. O

Example 2. Now we show how to recover the string F; from the macro-system
with rules

S — S[6:11]ABS[6:10],A — a, B — b.

We first determine the expansion lengths of the variables of the macro-system:
lexp(A)] = 1, |exp(B)| = 1, and |exp(S)| = 13. Then, we precompute the
arrays

Pg[1..13] =1,1,1,1,1,1,2,3,4,4,4,4,4] and Cg[1..4] =[6,7,8,13].
With these arrays precomputed, we initialize the array

Es[1..13]=[7,7,7,2,2,2,7,7,7,2,2,2,7].
In a left-to-right fashion, we run Algom'thm@ to recover Egli] for i € [1..13].

We start by running define(S, 1), which sets Eg[l] to L, meaning that this
cell is in the process of being defined (if possible). As S is a variable, we fall
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in line 7 of the algorithm. We obtain p < Pg[l] = 1 and continue recur-
sively with define(S[6..11],1). The algorithm then falls in line 10, and calls
define(S,6). This call falls in line 7, hence we get p = Pgl6] = 1, and re-
cursively call define(S[6 : 11],6). In this call, we fall again in line 10, which
recursively calls define(S,11). The next recursive call is for define(S,8). At
this point the array Eg is

Es[l..13] =[L1,7,2,2,2,1,2,1,2,7,1,2,7].
The call for define(S,8) obtains p = 3 and calls define(B, 1), which in turn
calls define(d, 1), which in line 5 returns b. This is assigned to Eg[l] when
we return to define(B,1), in line 9. As we return from the recursion to
define(S,8), define(S,11), define(S,6), and finally define(S, 1), the array
Eg becomes

Es[l..13] = [6,2,7,2,2,5,2,5,2,2, 5,2, 7.

We now continue with define(S,2), which sets Eg[l] = Eg[7] = E4[l] = a.
The next call, for define(S,3), calls define(S,8), which this time returns b in
line 4, as its value was already uncovered. The state of Eg is now

Eg[1..13] =[b,a,b,7,7,b,a,b,7,7, 5,7, 7.
We leave the completion of the other entries to the reader.

We now compare macro-systems, which can be decompressed in time O(N),
with BMSs, which can be decompressed in time O(n). We define a restricted
class of macro-systems we call internal, which turn out to be equivalent to BMSs,
and can also be decompressed in time O(n).

Definition 7. A macro-system M = (V,X, R, S) generating w is internal if ev-
ery variable is reachable from S in the graph G(V, E) where, if A — By --- By €
R, it holds that (A, B,) € E for every variable (not terminal or extraction) B,.
We call m(w) the size of the smallest internal macro-system representing w.

Intuitively, in an internal macro-system, the expansion exp(A) of every vari-
able A occurs in the string represented by the system. We first show the equiva-
lence between internal macro-systems and BMSs; we show later how to decom-
press them in optimal time.

Theorem 6. Given a BMS of size b generating w, there exists an internal
macro-system of size b generating w.

Proof. Let (x1,81),...,(zp, sp) be the BMS generating w = 1 - - - x,. We con-
struct an internal macro-system M = ({S},%, R, S) with the single rule S —
S1 Sy, where S; is the single terminal z; if s; = 1, and the extraction sym-
bol S[s;, s; + |x;| — 1] if not. The system is valid because its only solution, for
each j, is the explicit value of w[j] if ¢(j) = L, or else w[j] = w[¢*~1(j)] where
#*(j) = L and thus w[¢F~1(5)] is explicit in the macro-system. O
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Theorem 7. For every internal macro-system M = (V, X, R, S) of size m gen-
erating w, there is a BMS of size at most m generating w.

Proof. We first compute |exp(A)| for every variable A € R as done in the proof
of Theorem [} We then build a pruned parse tree for the macro-system, as fol-
lows. We start by creating the root and labeling it with the tuple (S, 1, | exp(S)]).
The first time we create a node labeled (A,l,r) € V, with A — B;--- By € R,
we create k children of the node, label them

<B1,l,l + ‘EXP(Bl)| — 1>,
(Ba, 1+ |exp(B1)|,l + [exp(B1)| + [exp(Bg)| — 1),.. .,
(Bg,r — |exp(Bg)| + 1, 1),

and visit them recursively, left to right. In all other cases, that is, when A is a
terminal symbol, an extraction symbol, or not the first occurrence of a variable,
those nodes are leaves of the tree. If the macro-system is valid, this procedure
will finish in time O(m) as in Theorem [5| and if the system is internal it will
produce exactly one internal node per variable A € V. It is then easy to see
that the pruned parse tree has m + 1 nodes, |V| of which are internal.

The procedure maintains the invariant that, if (A,[,r) labels a node of the
pruned parse tree, then wll..r] = exp(A); we say that pos(A4) = I and note that
this is the leftmost substring of w derived from A. The leaves of the pruned
parse tree, (X1,l1,71),...,(Xp, lp,7p) read from left to right, define a parse of
w (note that X; can be a variable, a terminal, or an extraction symbol).

Finally, we build a BMS for w, with one phrase per leaf label (X, l;, ). If
X; = a is a terminal, then the phrase is (a, L), recording the explicit symbol.
If X; = A is a variable, then the phrase is (exp(A),pos(A)), pointing to the
leftmost substring derived from A. Finally, if X; = A[i : j] is an extraction
symbol, then the phrase is (exp(A)[i..j],pos(A4) + i — 1), also pointing inside
the leftmost substring of w derived from A (we detect that the macro-system is
invalid if j > |exp(4)]).

The resulting BMS represents w and cannot have loops; otherwise there
would be more no solution, or more than one solution, to the macro-system M
and it would be invalid. The size of the BMS is b < m. O

That is, BMSs are equivalent to internal macro-systems. General macro-
systems could be smaller in principle, though we have not found an example
where this happens. (There exists an analogous situation with internal collage-
systems [25].) It is now immediate that we can decompress internal macro-
systems in linear time.

Corollary 2. Given an internal macro-system M = (V. X, R, S) representing
string w[l..n], we can compute w in time O(n).

Proof. The proof of Theorem [7]shows that we can produce, in time O(size(M)),
the parse (X1,01,71),...{(Xp,lp, 7). From it, we build a macro-system M’ =
({S},%, R/, S) equivalent to M, that is, generating w, with the single rule R’ =
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{S — S1---Sp}. The symbols S; are only terminals and extractions: S; = a
if X; = a is a terminal, S; = S[pos(A) : pos(A) + |exp(4)| — 1] if X; = A
is a variable, and S; = S[pos(A) +i — 1 : pos(A) +j — 1] if X; = A[i : j]
is an extraction symbol. We can now apply the decompression technique of
Theorem [5| on M’, which takes time O(N), as in M’ it holds that N = n. In
an internal macro-system it also holds that size(M) < n because |exp(A)| > k
if A— Bj--- Bg. The total time is then O(n). O

7. NU-systems

AN U—systerrﬂ is a formalism that generates a unique string in a way similar
to an L-system, in the sense that terminals are not distinguished from variables
and termination is defined by levels. The key difference is that, on the right-
hand side of rules, a NU-system can have special extraction symbols of the form
A(l)[i : 4], similar to the extractions symbols in macro-systems, whose meaning
is to generate the [-th level from A, and then extract the substring starting at
position ¢ and ending at position j.

Definition 8. A NU-system is a tuple U = (V,R,T',S), where V is a set
of variables, S € V s the initial symbol, T' : V — V is a coding, and R

is a set of rules where the right-hand sides may contain extractions, that is,
R:V = (VUE)" with

E={A)[i:j]| AcVALeNA(i,jeNV —i,—j e N)}.

The symbol A(1)[i : j] is materialized by expanding symbol A forl levels to obtain
Al and then replacing A(1)[i : §] by the substring A'fi. . j] if i and j are positive,
or by A'|AY| —i+1..|AY —j+1] if they are negative. Note that this may imply
recursively materializing other extractions. We use A(1)[: j] as a shorthand for
AL = 4] if § is positive, and A(l)[i :] as a shorthand for A(D)[i : —1] if @ is
negative. The string represented by U is then T'(S!).

Just as macro-systems, we will only consider valid NU-systems whose circu-
lar references can be solved by our decompression algorithm. This implies, by
definition, that the size of a NU-system is reachable.

7.1. Decompression algorithm

The decompression process is akin to that of macro-systems, except that
now we have several levels [ for the same symbol A.
For every extraction A(I)[i : j] in R we will prepare the strings A%, A!,... Al
_ . l . .
where A° = A, and their reverses A%, AL ..., AL . Our goal is to determine
Let

S'. We can determine the lengths of all the first levels, |[A!| = |AL,|:
A = By --- By, then it holds |A'] = Y2F_ |B,|, where |B,| = 1 if B, € V and

2This is an enhanced version of the NU-systems defined in the conference version of this
work [206], 27], and should be taken as the definitive one.
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|Br| = j—i+1if B, = B(I')[i : j] € E. The lengths of the following levels cannot
be determined yet, as they depend on how the extractions will expand (we might
never need to determine some of them along the decompression process).

We now define every A and A}, as follows. We start with an empty string
Al and consider By to B,. If B, € V, we append B, to A'. If, instead,
B, = B(I')i : j], we append B'[i]- BV [i+1]--- B''[j] if i and j are positive, and
B [=j]- Bl [—j+1]--- Bt [—i] if they are negative. We call these symbols
references. We define Al,, analogously, putting the symbols and references in
reverse order. If I’ =1 in a reference, it might be that some B'[k] or B}, [k] is
already defined, in which case we replace the reference by its value. For every
remaining reference A[t]/AL  [t] = BY[k]/BL,,, we set a pointer from the cell

rTev rev?

Bl/[k]/Bl/ to AL[t]/AL. [t]. This pointer will be used later to copy the value

rTev rev

of BU'[k]/BL,, onto A'[t]/AL,,[t] when the former becomes known.

rev Tev

Once the strings A' and A!,, are defined in this way for all A € V, we start
defining the strings A% and A2%_,. From left to right, for every Al[t] = B € V,
we append B! to A2. Note that B! includes symbols and references; both are
appended to A% and the corresponding pointers to cells of A% are added (there
may be several pointers leaving from a single cell). The process of scanning
Al to form A? finishes when we hit some A'[t] that is a reference, because we
do not yet know how it expands. Analogously, we define the maximal possible
prefix of A2, by scanning AL, left to right. From the parts of A2 and A2, we
could define, we also expand a maximal prefix of A% and A2, , and so on until
defining as much as possible from A’ and Al .

In the process, every time we define any symbol A¥[t] € V or AF  [t] € V,
we check the possible pointers leaving that cell, and propagate the symbol to
those cells. Those defined cells can trigger, recursively, further propagations
by pointers, and also further expansions of prefixes, where we had stopped
expanding because we had hit a reference that now has became a regular symbol.

We continue this process until either we completely define S' without ref-
erences, or we have no further expansions to make and have not fully defined
S1. In the latter case, the NU-system is invalid. Because we define some cell of
some AF for each unit of work performed, we have the following result.

Theorem 8. A NU-system U = (V, R,T', S) can be decompressed, or determined
to be invalid, in time O(N), where N =3 1y, ZLA:O |A¥|, A¥ is the expansion
of A after k levels, and l4 is the mazimum | value for an extraction A(l)[i : j]
found in R (with 14 = 0 if no extraction for A exists).

A simplified bound for the extraction time is given by N = lmax Y 4y | A,
where [, = maxacy [4. Compared to the time to decompress a macro-system
(Theorem , the time is now multiplied by the number of levels used.
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Example 3. Consider the NU-system with rules

A — AB

B — B

S — AT(2)2:4 SB)1:3T
T — S[B:7TB)[1:3]

We will omit the reversed symbols because there are no negative offsets. We first
generate the level 1 as follows:

A' = AB

B' = B

S' = A T2 T3] T?[4] S*[1] S®[2] S*[3] T
T = S5 S'6] SH[7) T3[1] T3[2) T3[3]

We now expand as much as possible the next levels, as follows (we omit A and
B, which are trivial as they do not participate in extractions):

S?2 = AB ---
S = ABB---

Since there are references to those new symbols, we can further complete S*:
St = AT?*2 T*3]T*4 ABBT
And those newly defined symbols are referenced from T, which now becomes:
' = A B BT 132 T%3]
This enables defining prefizes of T? and T3:

7> = ABBB ---
78 = ABBBB ---

With those, we can now complete S*:
S' = ABBBABBT

The string represented by the NU-system is then T(ABBBABBT). Note that
we could have decompressed the represented string even if there was a circular
reference that did not affect S'; for example if the rule for T was T — S(1)[5 :
7) T(3)[1:3] T(1)[7:8].

7.2. The measure v

The smallest NU-system generating a string will define a new reachable
measure of repetitiveness we call v.
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Definition 9. The size of the NU-system U = (V, R, T, S) is size(U) = |V| +
14+ acy |[R(A)|, where the size of an expansion is taken as 4 when computing
|R(A)|. We call v =v(w) the size of the smallest NU-system generating w.

A first result stems from the fact that NU-systems encompass macro-systems
and L-systems.

Theorem 9. It always holds that v = O(min(4, m)).

Proof. Given an L-system L = (X,¢,7,s,d,n), we can define a NU-system
U= (V,R,T,S) as follows. Let V =X U{S}, where S ¢ 3, and I" = 7, and
let R = o U{S — s(d)[1 : n]}. The NU-system will then expand d levels of
s and extract the first n symbols to form S!, and finally will apply I = 7 to
St = pd(s)[1..n]. It is clear that U is valid, as it does not contain circular
references. It then holds that v = O(¥).

Consider now an internal macro-system M = (V,3X, R,S). By the proof of
Corollary 2| we can convert M into a system with a single rule S — Sy ---.Sp,
where S, is either a symbol of V or an extraction S[i : j]. We then construct a
NU-system U = ({S"} UX,R,T",S') where I' = id and R’ = {S' — S{--- S} }:
if S, = a € 3, then S, = q; if instead S, = S[i : j], then S, = S'(1)[i : j]. It is
clear that U generates the same string as M, and it is valid iff the macro-system
M is valid. Tt then holds that v = O(b) = O(m). O

An immediate corollary is that v is uncomparable with ¢.

Corollary 3. The measures 6 and v are uncomparable.

Proof. Tt follows because v = O(f) and ¢ = o(d) on some string families
(Lemma [3]), while on the other hand § is unreachable on some string families
and v is always reachable. O

Finally, we show that NU-systems exploit the features of L-systems and
macro-systems in a way that, for some string families, can reach sizes that are
unreachable for both L-systems and BMSs independently.

Theorem 10. There exists a family of strings where v = o(min(¢, b)).

Proof. Let I, be the family of strings of length m defined by Kociumaka et al.
[18], needing (log® m) bits to be represented with any method (Def. , now
over the alphabet {0, 1}. We construct a new family F = {z-y[1..m]|z € K, },
where y is the infinite fixed point generated by the L-system utilized in Lemma/[3]
Hence, the strings in F have length n = 2m, and belong to {0,1,a,b,c}*.

As shown in Lemma [4] it holds that ¢ = Q(log?n/loglogn) in K,,. The
same bound then holds on F: if there is an L-system that generates an element
in F, we generate the corresponding prefix of K, by changing the L-system
prefix length from n to m. On the other hand, b = Q(y/n) on F, because
6 = Q(y/n) on prefixes of y by Lemma and ¢ is monotone with respect to the
appending of prefixes or suffixes.
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We now build a smaller NU-system for F. Let x be a string in &C,,, with &
symbols 1. Let i; be the number of 0’s in = between the (j — 1)-th and the j-th
1’s, for j € [2,k]. Also, let i1 and ik be the number of 0’s at the left and right
extremes of z. We construct the NU-system U = (V, R,T', S) as follows:

vV = {0,1,a,b,¢c,S}
R = {0—00,1—1,a—ab—ab,c— cb}

U {S — o(m)[: i1]10(m)[: i2]1...0(m)[: ix]10(m)[: igs1]c(m)[: m]}
r = {0—-0,1—>1a—ab—>bc—c}

By construction, this NU-system generates the string « - y[: m] of length n,
and its axiom has size 4(k 4+ 2) + k, where k = ©(logn). Hence, it holds that
v is O(logn) for these strings. Thus, v = o(min(¢, b)) in the family F we have
constructed. O

NU-systems can then be smaller representations than those produced by any
other compression method exploiting repetitiveness. This shows that combining
copy-paste mechanisms with iterated morphisms is able, at least in principle,
to further improve compression. On the other hand, finding the smallest NU-
system is very likely NP-hard, and its extraction time is not bounded in terms
of the size of the string that is generated.

7.3. Properties

We now study sensitivity, monotonicity, and other properties of NU-systems.
We start showing that NU-systems grow nicely upon concatenations.

Proposition 2. If wy,ws € ¥*, then v(wy - wa) = O(v(wy) + v(ws)).

Proof. Let Uy = (21, R1,11,51) and Uy = (X9, Re,T'3, S2) be (minimal) NU-
systems generating w; and ws, respectively. Note that »; might be not disjoint
from Y5. Then a NU-system U = (3, R,T, S) generating w; - wy can be built
as follows. First, let £} = {(k,a) | a € Xy}, for k = 1,2, be marked versions
of the alphabets 37 and Yo, so that ¥} N2, = (). The alphabet of U is then
Y =3 U3 U] UX,U{S}, where S is a new initial symbol. For k = 1,2,
let R}, be identical to Ry, except that each occurrence of a € Xy is replaced by
(k,a) € X}.. The rules of U are then the set

R =Ry UR,U{S — (1, S1)()[1: [{1,51)"[] (2, S2)(1)[1 = [(2, S2)'[]}-

Note that the lengths [(1,5;)!] = |Si| and [(2,S2)!| = |S3| are known because
Uy and U are valid NU-systems. Finally, for k = 1,2, let I'}, : £} — Xy, so
that I', ((k,a)) =T'x(a), and then T =T UT5 U{a — a | a € £, UX, U{S}}.
It is easy to see that U generates wy - wy, and then v(w; - we) < size(U) =
O(size(Uy) + size(Uz)) = O(v(wy) + v(w2)). O

This proposition shows, in particular, that NU-systems behave well upon
appending and prepending of symbols.
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Corollary 4. Ifa € ¥ and w € ¥*, then v(aw) < v(w) + O(1) and v(wa) <
v(w) +O(1).

Proof. Tt is (almost) a particular case of Proposition [2) where either v(w;) =
O(1) or v(wy) = O(1) because w1 = a or we = a. Instead of creating full new
alphabets 37 and X}, we retain the alphabet of w and only create a special
symbol for a (say, (a)) and the rule (a) — (a), so that it is not modified along
the derivation of w. The coding is then extended with the rule (a) — a. O

We now show that NU-systems are essentially monotonic, that is, one cannot
obtain a smaller NU-system representing an extension of a string, except for
constant additive factors.

Proposition 3. Ifw € ¥* and 1 <1i < j < |w|, thenv(w[i..j]) < v(w)+O(1).

Proof. Given U = (%, R,T, S) generating w, the system U’ = (¥, R',T,5")
generates wli..j|, where S’ ¢ ¥ is a new initial symbol, ¥’ = YU {S'}, R’ =
RU{S —» S()[i:j]},and IV =T U{S" — S’} O

Those results imply that NU-systems behave well under edits on the repre-
sented string.

Corollary 5. If w € ¥* and w' is obtained from w by applying one edit opera-
tion (insertion, deletion, or substitution of a symbol), then v(w') < v(w)+O(1).

Proof. All the edits on w[l..n] can be expressed in terms of concatenating
symbols or substrings of w: deleting the position i yields w[l..i—1]-w[i+1..n],
substituting it by a yields w[l..i—1]-a-w[i+1..n], and inserting a at position
i yields w[l..i — 1] - a - w[i..n]. Corollary [4] and Proposition [3| show how to
build NU-systems of size v(w) + O(1) for all those expressions. For example, to
insert a at position ¢ we create rule S’ — S(1)[1: 4 — 1] {(a) S(1)[i : n] for a new
initial symbol S’ and treat (a) as in Corollary O

Proposition 4. If w[l..n] € ¥£* and w' = wln]---w[l] is its reversal, then
v(w') =v(w).

Proof. We reverse all the rules, as well as the extractions A(I)[i : j], which are
reversed as A'(I)[—j : —i], where A’ denotes the reverse of A. By the symmetry
of the decompression process, it is clear that the reversed system is valid as long
as the original one is. O

8. Variants of L-systems and the Measure ¢

In this section we study which features of L-systems are key for their com-
pression power, and which are superfluous. We define and compare several
classes of restricted L-systems and their corresponding compressibility mea-
sures. It turns out that all the natural restrictions to the L-system we consider
yield reduced compression power.

First, we define the restricted classes of L-systems under scope.
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Definition 10. Let L = (X, ¢, 7, s,d,n) be an L-system. We say L is expanding
when ¢ is expanding. We say L is k-uniform for some k > 2, or just uniform,
when ¢ is k-uniform. We say L is prolongable, if ¢ is prolongable on s (i.e.,
if s = sx is a rule, with x # ¢). We say L is codingless if T = id.

We define some compressibility measures based on L-systems that satisfy
some of those restrictions.

Definition 11. The measure {.(w) (resp., £, (w)) denotes the size of the small-
est expanding (resp., uniform) L-system generating w. The measure £,(w) de-
notes the size of the smallest prolongable L-system generating w. The mea-
sure L.(w) denotes the size of the smallest codingless L-system generating w.
The measure £,.(w) denotes the size of the smallest prolongable and codingless
L-system generating w. The measure lp,(w) denotes the size of the smallest
prolongable and uniform L-system gemerating w.

It is known that different classes of L-systems produce different classes of lan-
guages and infinite words [30]. Some of these classes also differ in the factor com-
plexity of the sequences they can generate [31]. It is interesting to understand
how these differences in terms of expressive power and factor complexity trans-
late into the compression power of the L-systems. In particular, prolongable
L-systems generate a class of infinite words called morphic words; codingless
and prolongable L-systems generate the class of purely morphic words; and pro-
longable uniform L-systems generate the so-called automatic words [I]. So even
if restricting L-systems reduces their compression power, they still can be useful
to compress prefixes of infinite words in these classes, and working on them may
be more efficient than on general L-systems.

For example, in a prolongable system (i.e., using O(¢,) space), Algorithm |§|
shows how to decompress the represented string in real time (i.e., each successive
symbol of w is written in O(1) time). As another example, in an expanding
system (i.e., using O(f,) space) we can always limit the depth to [log, n], by
starting from the axiom f4-M1°8271(s), and obtain optimal O(n) decompression
time using just Algorithm The cost for extracting w[i..j] we obtained in
Section is also reduced, to O(|¢|logn) preprocessing space and time, and
O(j — i + logn) extraction time. Further, if a system is k-uniform (i.e., using
O(¢,,) space), then we know easily the size to which every symbol expands
after [ levels, in which case we can efficiently extract w[i..j] without need of
any preprocessing or extra space: in lines 6-7 of Algorithm [4] we simply use
r « [i/k'] and i < 1+ ((i — 1) mod k). The time is then O(j — i + d).
Further, if d > [log; n], we can slightly modify the L-system so that its axiom
is fa=Mosin1(s), as explained, and obtain extraction time O(j — i + log, n).

As a consequence, we can upper bound the size g of the smallest grammar
with respect to the measure £, (and ¢,). To do so, we observe that we can
always simulate an L-system L with depth d, with a CFG of size O(d-size(L)).
As the value d can be bounded for expanding and uniform L-systems, we obtain
the following result.
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Algorithm 6: Decompressing in real time the prolongable L-system
L= (%, ¢,71,s,d,n); invoke with decompress(s,n).

Input : Axiom s to expand, length to output n > 0.
Output: The string 7(p%(s))[1..n] with d large enough.

1 function decompress(s,n)
2 wl[l] s

3 r+1

4 p+1

5 while true do
6 let wir] = by1---by €9

7 r—r+1

8 for 1 <+ 1 to k do

10 output 7(b;)

11 if p = n then return
12 p—p+1

Lemma 7. For any L-system L, there exists a CFG G of size |G| = O(d -
size(L)) generating the same string. Further, it always holds that g = O(L, logn).

Proof. Let L = (X, ¢, 7,8,d,n) be an L-system generating w[l..n]. Consider
the derivation tree of L, which is obtained as follows: the root is a node labeled
s at depth 0. If A is a node at depth ¢ € [0..d — 2], then the children of A
at depth ¢ + 1 are the symbols in ¢(A) read from left to right. For i = d — 1,
the children of A are the symbols in 7(p(A)) read from left to right. The
nodes at each depth ¢ spell out a string L;, where Ly = s and Ly = w. We
create a CFG G = (V, X, R, S) that simulates L as follows. The set V' contains,
for each variable A € ¥ of the L-system, d nonterminals Ag,...,Agq_1. The
terminals of the grammar are the set of L-system variables, that is, 3. Then,
for each L-system rule A — Bj --- By, appearing at depth 0 < ¢ < d — 2 of the
L-system, we add A; — (B1)it1 - (Bg)it+1 to the set of rules R. Further, for
each rule A — Bj --- By appearing at depth d — 1 in L, we add the grammar
rule Ag_; — 7(By) - 7(Bg) to R (this is well defined because each B; belongs
to ¥). Finally, the initial symbol of G is S = sg. Note that the derivation
trees of G and L are topologically identical and spell the same string at depth
d. Hence, the grammar G is of size at most (d + 1) - size(L) and generates a
string w*, of which the desired string w[1..n] is a prefix.

We now modify G to generate exactly w[l..n]. The idea is to create a new
nonterminal per level L; that will expand to a prefix of the string some nontermi-
nal of that level expands to. Our new initial symbol (of level 0) will be S’ = s,
whose expansion must be pruned to length [j = n. In general, given a nontermi-
nal A; = (B1)it+1 - (Bg)it+1 whose expansion must be pruned to length ;, we
define k; as the maximum position j < k such that |exp((B1)it1 -+ (Bj)it1)] <
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;. We then need to fully expand the symbols (By);y1--- (B, )it1, and then
expand a prefix of length l;11 = I; — [exp((B1)it1 - (B, )i+1)| of (Br,+1)i+1-
We therefore create a new rule A] = (B1)iy1--- (Bk,)it1 - (Bk,41)j41. and re-
cursively continue in level i + 1 with the task of creating a variant (Bg,41)j,,
of (Bk,+1)i+1 whose expansion is pruned to length [;11. In the process we at
most double the size of G, which is thus of size O(d - size(L)).

For the second claim, if an L-system is expanding and d > logn, then the
prefix w[l..n] of Ly is generated from the first symbol of Ly_iog,7, Which can
then be made the axiom and d reduced to [logn]. In this case, the grammar G
produced is of size O(size(L)logn). Thus, g = O({. logn). O

As L. = O(g) by Lemma |2| (the coding used in the proof has 7 = id), and
g = O(L.logn) by Lemma [7} we obtain the following corollary.

Corollary 6. It always holds that £. = O(L.logn).

Surprisingly, all the restricted L-systems (except possibly uniform systems)
outperform § on some string family. We already showed this for £,. (and thus ¢,
and £.) in Lemma [3] where the L-system we used was prolongable and without
coding. The next lemma proves that the same holds for £,.

Lemma 8. There exists a string family where £, = O(1) and 6 = Q(logn).

Proof. We use a small modification of the DOL-sequence described by Ehren-
feucht et al. [6, Lemma 5]. For simplicity, let d be a power of 16, and define the
following expanding L-system:

L= ({a,b,c},
{a = a% b — b'® ¢ — cbab},
T =1id,
s=c,

)

n = plos DT (s))).

By definition ¢, = O(1) in this family of strings (where we vary d; by the
formula of n, the distinct elements of the family are obtained for values of d
that are powers of 16). Let = bab. The string generated by this system is
w = cxp(x)p?(z)---¢'°82%(x). Note that we use prefix truncation to obtain
a string that is orders of magnitude shorter than %(s). We do this to ensure
that the value d is large enough with respect to n. Now consider the images of
the form ¢*(x) for i > 1. First note that ¢'(z) = b'0"a?'b'%" and its length is
2-16°4-2¢. The length of the string w is then n = 1+210=g12 d(2~ 16 +2%) = O(d*).
Therefore, d = O(¥/n).

We now show that § = Q(logd). To do so, we get a lower bound on the
number of length-d substrings of the form b”a®"b?. The string ¢’(z) is a sub-
string of w, for 7 € [1..log, d]. In particular, a length-d factor of the required
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form can appear inside ¢’(z) only if |¢?(z)| > d. This condition is verified if
i > logygd. Observe that (!°8169(x) contains 218164 = (8162 < d a’s, that
©'°829(z) contains d a’s, and that both strings contain at least d b’s at each
side of the a’s. Hence, for each i € [logd..log, d] we can slide a window of
length d containing a?" starting at every possible position, surrounded by b’s.
This yields

log, d

> (d—2'+1) =06(dlogd)

i=logg d
distinct substrings of length d. Thus, 6 = Q(logd) = Q(log v/n) = Q(logn). O

In the rest of the section we show that, despite still breaking the barrier of §
for some string families, each of the restrictions we can put to L-systems reduces
their compression power, so all the features we have included in L-systems are
needed to reach the measure /.

We start by showing that ¢ can be asymptotically strictly smaller than Z,.
That is, restricting L-systems to be prolongable yields a weaker measure. We
will actually prove that ¢, can be asymptotically larger than /., the L-systems
without codings.

Lemma 9. There exists a string family where €, = Q({;logn/loglogn).

Proof. Let F = {a" 'b|n > 1}. Clearly, /. is constant in this string family:
the L-system L,, = (X, p, 7,s,d,n) where ¥ = {a,b},o = {a — a,b — ab},7 =
id,s = b, and d = n — 1 produces each string in F by changing only the value
of n accordingly. Note that these L-systems are not prolongable.

Now let L, = (X, ¢n,Tn,S,dn,n) be the smallest prolongable L-system
generating a" 1b. Let k = |%,| and ¢t = width(p,) > 1. Observe that it is
only necessary to have one symbol ¢ € ¥,, with 7,(c) = b because there is
only one b in a"~'b, so w.l.o.g. assume that b € ¥,, and 7,(b) = b. As the
system is prolongable, each level is a prefix of the next one. This implies that
the morphism should be iterated until b appears for the first time, and then
we can safely extract the prefix. This must happen in the first k iterations of
the morphism; otherwise, b is not reachable from s. The reason is that, if an
iteration does not yield a new symbol, then no new symbols will appear since
then, and there are no more than k symbols. Once b appears, it cannot be
deleted in the following levels, so it cannot appear before position n. Hence,
tF > n, implying k > log, n. By definition, ¢, > k > log,n and ¢, > t, so £, >
max(t,log, n). This is Q(logn/loglogn): if ¢ < logn/loglogn, then log, n >
logn/loglogn. Thus, £, = Q({.logn/loglogn) in this string family. O

We can prove a similar result for uniform systems.

Lemma 10. There ezists a string family where £, = Q(¢, logn/loglogn).

Proof. 1t is not difficult to see that ¢, is constant in the family {anb |k > 0}
consider the axiom s = ¢ and the rules ¢ — ab, a — aa, b — bb, the level d = k
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and the prefix length n = 2* + 1. The same argument as in Lemma |§| yields
that ¢, = Q(¢, logn/loglogn) for this string family. O

We now show that if we remove the coding from prolongable L-systems
(which corresponds to the variant ¢,.) we end with a much worse measure. We
change the usual alphabet for clarity of presentation.

Lemma 11. There exists a string family where {p. = Q(Lp/n).

Proof. We prove that £,. = O(n) on F = {0"~!1|n > 2}, whereas £, = O(y/n).
Any minimal codingless prolongable L-system generating 0" '1 must contain
the rule 0 — 0”71, which implies £,. = ©(n). This is because if the L-system
is prolongable and the coding is the identity: i) the initial symbol must be s = 0
as it will appear as a prefix of all the following iterations; ii) in the prolongable
rule 0 — 0z, if |¢(0)] < n, then the non-empty string = can contain only Os
and 1s, otherwise undesired symbols would appear in the final string. If  does
not contain 1s, then 1 is unreachable from 0, which is a contradiction. So, it
must be the case that x contains a least one 1, and the first of them has to be
at position n.

On the other hand, we can construct a prolongable L-system for 0711,
with its coding defined as 7(1) = 1 and 7(¢) = 0 for every other symbol ¢ # 1
as follows: Let n — 1 = k|v/n—1] +j with |[vVn—1] > 3,k > 1, and 0 <
Jj < |vn—1] (k and j are integers). We assume n is sufficiently big so the
constraints are satisfied. Then, we define the following rules

a— ab

b— c"ld

c— OL‘/"T”_1

d — OL\/HJ—S-H'L
and set the initial symbol s = a. The first four levels of the L-system before
applying the coding 7 are

0

a

¢ (a)
o'(a)
¢ (a)

%(a

a
ab
abck 14

03 (a) = abch~ a0V =D (=) [VA=T|=3+jq
and it can be verified that
@) =34+ (k-1 +(|Vn—1]-Dk-1)+(|Vn-1]-3+j)+1=n.

Moreover, we can deduce from the observation above that 7(¢3(a)) = 0”711, as
only the symbol 1 is mapped to 1 by the coding. The claimed L-system is then
L = ({a,b,c,d,0,1},¢,7,5 = a,3,n}), and it generates 0"~ '1 as required, for
n bigger than some constant. The size of the L-system is clearly ©(y/n). O
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By using the same family above, the following corollary holds.
Corollary 7. There exists a string family where £pe = Q(€en).
Proof. Just note that £, is constant in the family used in Lemma O

It is surprising that this weak measure ¢,, can be much smaller than § for
some string families, as mentioned before. On the other hand, it does not hold
that £,. = O(g) for every string family, because g = ©(logn) on {0"~11|n > 1}.

Corollary 8. The measure £y, is uncomparable to the measures 6 and g.

If we restrict L-systems to be expanding, we also end up with a weaker
measure. This shows that, in general, it is not possible to transform L-systems
into expanding ones without incurring an increase in size.

Proposition 5. There exists a string family where £, = Q(yc/n/logn).

Proof. Such a family is the one of Lemma (3| In this family, £, = O(1). On the
other hand, from Lemma 7} it holds that ¢, = Q(g/logn) C Q(5/logn). Recall
that § = ©(y/n) in this string family, so g = Q(y/n). (Further, a grammar of size
g = O(y/n) is easily obtained by setting Ay — b, A;11 — a A;, and the initial
rule S — cAgA; --- Ag_1.) Hence, £, = Q(y/n/logn) = Q(lpc/n/logn). O

Finally, we show that L-systems can be asymptotically strictly smaller than
codingless L-systems on some string families.

Lemma 12. There exists a string family where £ = o({,).

Proof. Let F = {bbakbazk |k > 1}. The L-system L; = (%}, ¢, 7, d, k, 28 +k+2)
where

a — a a — a

b — b b — b
¥ ={a,b,c,d} o1 T

c = cc c = a

d ~ bbabcc d — b

can generate each word in F by changing k. Hence, £ = O(1) in this family.

We now show that any codingless L-system generating bba*ba?" has size
w(1). Assume for the sake of contradiction that a constant-size codingless L-
system L = (X, ¢,1id,s,d,n) generates w = bba¥ba?*. Then, there exists a
constant « such that [¥] < a and width(p) < «. The longest string L could
generate would have length a. Hence, d = Q(logn) = Q(k).

Let b, b, ..., bg be the sequence of the first symbols of (s), for 0 <i < d
(so by = s). By the pigeonhole principle, for sufficiently big values of k (and
consequently big values of d), this sequence has a period of length ¢ starting
from by, with p+¢ < a < d. Then there exist indexes ¢ and j such that t = d—jq
and p <t < p+ q. By the ¢g-periodicity of the sequence starting at b;, it holds
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that ¢%(b;) = b for some (possibly empty) string x. Moreover, as there is no
coding, it must be that b; = by = b.

Let us then define a new L-system L' = (XU{s'},¢’,id,s',d’, n), with a new
(initial) symbol 8" — !(s) and otherwise ¢’ = p?; moreover d’' = 1+ ((d—t)/q).
Clearly, L’ generates w and there is also a constant o such that |X|+1 < o’ and
width(¢') < o'. There are two possibilities: (i) |¢'(b)| > 1 or (ii) |¢'(b)] = 1. In
case (i), we have ¢'(b) = bbx for a possibly empty string = of bounded length,
because (¢')%[2] =b = ¢'(b)[2]. As there is no coding and ¢’ is prolongable on
b, the image ¢’ (b) is a prefix of ¢'¥ ('), and so is ¢'2(b) = bbabbzy’(z). This is
a contradiction for large enough k, as the third b appears after just a constant
number of symbols. Therefore the only possible case is (ii), that is, ¢’(b) = b.
This implies that b is part of a cycle in the original morphism .

We now reason analogously on the third symbol of the derivation from s’. Let

0, b1, ..., bl be the sequence of the third symbols of (¢')*(s’), for 0 < i < d'.
Then, since ' is a constant, there must exist a period of length ¢’ starting at
by, with p’ 4+ ¢’ < o’ < d’, and the corresponding values ¢ = d' — j’¢’ and
p <t < p + ¢, so that (@) (b,) = b2’ for some possibly empty string

z’. Because there is no coding, it must be that b}, = a and that z is a prefix

of a¥~1ba?". If = were non-empty, it would still have its length bounded by
a constant. Hence, for sufficiently big values of k, it must be that z = a” for
some r > 1. Therefore, ¢7'7 (a) yields Q(2¢) a’s in the first run, which is a
contradiction. Thus, (¢')? (a) = a. This also implies that a belongs to a cycle
in the original morphism ¢.

We shift our attention again to the morphism . We now prove that d =
O(k). We note that % (s) must contain a run of exactly k a’s. Since |¢’(a)| =1
for every j, there must be some other symbol c in the derivation of the run
such that, for some constant ¢, ¢*(c) contains at least one a and at least one c;
otherwise the constant-sized system cannot generate an arbitrary number of a’s.
But then, there are Q(d/t) = Q(d) occurrences of a in the run; hence d = O(k).

In the following we use some definitions and known results by Salomaa [35],
who studied the growth rates of DOL-systems. A letter ¢ is said to be expanding
on ¢ if there exists j such that ¢’(c) = xcycz. A codingless L-system has
exponential growth with d if and only if an expanding letter appears in its
derivation [35] Thm. 1]. For convenience, we extend this definition so that a
letter ¢ is also expanding when ¢’ (c) = zc’y for some j, and ¢ is expanding,
that is, if we consider ¢ as the axiom of the system, then it has exponential
growth. This extension implies that any expanding symbol contains at least
one expanding symbol in its image under ¢. As d = ©(k), the only way this
system could possibly generate a string of length over 2%, is that the system uses
an expanding letter in its derivation. Hence, s has to be expanding using our
extended definition. Note also that a and b are not expanding, as they belong
to single-symbol cycles.

We construct two sequences, ¢, cy,...,cq and x1,...,xq, such that ¢y = s,
¢; is expanding, x; does not contain expanding letters, and ¢(c¢;) = Ti+1Ci+1Yit1
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Figure 3: Asymptotic relations between the measure ¢ and its variants, the measure v, and
other relevant state-of-the-art repetitiveness measures. A solid arrow from a measure vy to
a measure vz means that it always holds that v1 = O(v2). A double solid arrow from v; to
v2 means that it also exists a string family where v1 = o(v2). A dashed arrow from vy to va
means that there exists a family where v1 = o(v2).
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©

(i.e., ¢i+1 is the first expanding symbol in the image of ¢;). It is clear that

d—l( d—2( d—2(

¢l(s) = T M @) (@2) - p(2a1)-(zarcarya) (Yar) - 2 (y2) 0" (1)
Note that the strings x; have length bounded by the constant width(y) and no
expanding symbols. Hence, ¢ grows polynomially on them. On the other hand,
cq is an expanding symbol, hence distinct from a and b, appearing at a position

0(2%). This yields a contradiction for sufficiently big values of k. O

We have shown that imposing restrictions on the length of the rules of an
L-system, forcing them to be prolongable, or removing the coding, does im-
pact their compression power. On the other hand, these restricted L-systems
may simplify and speed up some relevant processes like decompressing or direct
accessing the represented string. We summarize the results of this section in
Figure [3] which also includes the measure v from Section [6]

9. Conclusions and Further Work

We have contributed to the study of string repetitiveness, by introducing and
studying repetitiveness measures that are related to string morphisms. Our first
measure, the size £ of the smallest L-system that generates the string, captures
in a sense structured repetitiveness, as introduced by the repeated application of
a string morphism. Surprisingly, while on some string families ¢ can be (slightly)
larger than various copy-paste-based measures of repetitiveness, like the size of
Lempel-Ziv parses or the number of runs in the Burrows-Wheeler Transform,
in others it can outperform them all by a large margin, ©(y/n). This suggests
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that the structured repetitiveness captured by £ is out of the reach of current
measures. On the other hand, ¢ is upper bounded by the size of any context-
free grammar that generates the string, so it is never excessively larger than
copy-paste methods (which are all related by a polylogarithmic factor). We also
show that L-systems allow efficient access to random positions of the string they
represent, and that several simplifications or restrictions of L-systems lead to
weaker measures. We believe that computing the size £ of the smallest L-system
is NP-hard, but the question is left open, as well as approximating ¢. Another
question is whether we can build string indices of size O(¢ polylogn). We also
leave open other questions on L-systems, like whether £, = Q(J) (where £, is
the size of the smallest uniform L-system) and whether g can be o(¢. logn) in
some string family (where £, is the size of the smallest expanding L-system).

We also combined L-systems with the best reachable copy-paste mechanism,
the bidirectional macro schemes, into a new formalism we call NU-systems,
whose minimum size v is a new measure of repetitiveness that strictly outper-
forms both. While NU-systems are possibly too powerful to enable efficient
random access, they can still be decompressed with reasonable efficiency (that
is, related to the set of strings it generates, one of which is the output string).

There are several open questions related to NU-systems and v, starting
from whether computing v is NP-hard and whether it can be approximated.
Another question is whether we can decompress NU-systems in time related
to the length of the decompressed string. Other questions are whether v =
Q(¢loglogn/logn), or v = Q(d/+/n), for every string family, and whether is v is
O(7), or at least o(-ylog(n/7)), for every string family (recall that o(+ylog(n/v))
space is unknown to be reachable [15]).

In a more general perspective, this paper pushes a little further the discussion
of what we understand by repetitiveness. Intuitively, repetitiveness is about
copies, and bidirectional macro schemes arguably capture those copies as much
as possible, but there are other repetitions that can be captured better than by
explicit copies. L-systems capture a kind of structured copies, and NU-systems
capture those structured and arbitrary copies. What other regularities could we
exploit when compressing strings, keeping the representation simple to handle
and the associated repetitiveness measure (hopefully efficiently) computable?
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