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Abstract

For many kinds of prefix-free codes there are efficient and compact alterna-
tives to the traditional tree-based representation. Since these put the codes
into canonical form, however, they can only be used when we can choose the
order in which codewords are assigned to symbols. In this paper we first
show how, given a probability distribution over an alphabet of σ symbols, we
can store an optimal alphabetic prefix-free code in O(σ lgL) bits such that
we can encode and decode any codeword of length ` in O(min(`, lgL)) time,

where L is the maximum codeword length. With O
(
2L

ε
)

further bits, for

any constant ε > 0, we can encode and decode O(lg `) time. We then show
how to store a nearly optimal alphabetic prefix-free code in o(σ) bits such
that we can encode and decode in constant time. We also consider a kind
of optimal prefix-free code introduced recently where the codewords’ lengths
are non-decreasing if arranged in lexicographic order of their reverses. We
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reduce their storage space to O(σ lgL) while maintaining encoding and de-

coding times in O(`). We also show how, with O
(
2εL
)

further bits, we can
encode and decode in constant time. All of our results hold in the word-RAM
model.

Keywords: compact data structures, prefix-free codes, alphabetic codes,
wavelet matrix
2010 MSC: 68P05, 68P30, 94A45

1. Introduction1

Prefix-free codes are a fundamental tool in data compression; they are2

used in one form or another in almost every compression tool. Prefix-free3

codes allow assigning variable-length codewords to symbols according to their4

probabilities in a way that the encoded stream can be decoded unambiguously5

[2, Ch. 5]. Their best-known representative, Huffman codes [3], yield the6

optimal encoded file size for a given probability distribution. Fast encoding7

and decoding algorithms for prefix-free codes are then of utmost relevance.8

When the source alphabet is large (e.g., in word-based natural language9

compression [4, 5], East Asian or numeric alphabets) or when the text is10

short compared to the alphabet (e.g., for compression boosting [6] or adaptive11

compression [7]), a second concern is the space spent in storing the codewords12

of all the source symbols, because it could outweigh the compression savings.13

The classical encoding and decoding algorithms for a codeword of length14

` ≤ L take in the word-RAM model O(1) and O(`) time, respectively, using15

O(σL) bits of space, where σ is the size of the source alphabet and L is16

the maximum codeword length. For encoding we just store each codeword17

in plain form, whereas for decoding we use a binary tree B where each leaf18

corresponds to a symbol and the path from the root to the leaf spells out its19

code, if we interpret going left as a 0 and going right as a 1. Faster decoding20

is possible if we use the so-called canonical codes, where the leaves are sorted21

left-to-right by depth, and by symbol upon ties [8]. Canonical codes enable22

O(lgL)-time encoding and decoding while usingO(σ lg σ) bits of space, again23

in the word-RAM model. In theory, both encoding and decoding can be done24

even in constant time with canonical codes [9].25

Both the original and the canonical Huffman codes achieve optimality by26

reordering the leaves as necessary. There are applications for which the codes27

must be so-called alphabetic, that is, the leaves must respect, left-to-right, the28
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alphabetic order of the source symbols. This allows lexicographically com-29

paring strings directly in compressed form, which enables lexicographic data30

structures on the compressed strings [10, 11] and compressed data structures31

that represent point sets as sequences of coordinates [12]. Optimal alphabetic32

(prefix-free) codes achieve codeword lengths close to those of Huffman codes33

[13]. Interestingly, since the mapping between symbols and leaves is fixed,34

alphabetic codes need only store the topology of the binary tree B used for35

decoding, which can be represented more succinctly than optimal prefix-free36

codes, in O(σ) bits [14], so that encoding and decoding can still be done in37

time O(`) [9]. As far as we know, there are no equivalents to the fast and38

compact representations of canonical codes for alphabetic codes.39

There are other cases where canonical prefix-free codes cannot be used.40

Wavelet matrices, for example, serve as compressed representations of dis-41

crete grids and sequences over large alphabets [15]. They are compressed with42

an optimal prefix-free code where the codewords’ lengths are non-decreasing43

if arranged in lexicographic order of their reverses. They represent the code44

in O(σL) bits, and encode and decode a codeword of length ` in time O(`).45

Our contributions. In Section 3 we show how, given a probability distribu-46

tion, we can store an optimal alphabetic prefix-free code inO(σ lgL) bits such47

that we can encode and decode any codeword of length ` in O(min(`, lgL))48

time. This time decreases to O(lg `) if we use O
(
2L

ε
)

additional bits, for any49

constant ε > 0. We then show in Section 4 how to store a nearly optimal50

alphabetic prefix-free code in o(σ) bits such that we can encode and decode51

in constant time. These, and all of our results, hold in the word-RAM model.52

In Section 5 we consider the optimal prefix-free codes used for wavelet53

matrices [15]. We show how to store such a code in O(σ lgL) bits and still54

encode and decode any symbol inO(`) time. We also show that, usingO
(
2εL
)

55

further bits, we can encode and decode in constant time. Our first variant56

is simple enough to be implementable. Our experiments show that on large57

alphabets it uses 20–30 times less space than a classical implementation, at58

the price of being 10–20 times slower at encoding and 10–30 at decoding.59

An early version of this paper appeared in Proc. SPIRE 2016 [1]. This60

extended version includes much more detailed explanations as well as new61

results for fast encoding and decoding of optimal alphabetic codes (Section 3).62
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2. Basic Concepts63

2.1. Assumptions64

Our results hold in the word-RAM model, where the computer word has65

w bits and all the basic arithmetic and logical operations can be carried out66

in constant time. We assume for simplicity that the maximum codeword67

length is L = O(w), so that any codeword can be accessed in O(1) time. We68

assume binary codewords, which are the most popular because they provide69

the best compression, though our results generalize to larger alphabets.70

We generally express the space in bits, but when we say O(x) space, we71

mean O(x) words of space, that is, O(xw) bits.72

By lg we denote the logarithm to the base 2 by default.73

2.2. Basic data structures74

Predecessors. This predecessor problem consists in building a data structure75

on the integers 0 ≤ x1 < x2 < · · · < xn < U such that later, given an76

integer y, we return the largest i such that xi ≤ y. In the RAM model,77

with lgU = O(w), it can be solved with structures using O(n lgU) bits in78

O(lg lgU) time, as well as in O(lgw n) time, among other tradeoffs [16]. It is79

also possible to find the answer in time O(lg i) using exponential search.80

Bitmaps. A bitmap B[1..n] is an array of n bits that supports two operations:81

rankb(B, i) counts the number of bits b ∈ {0, 1} in B[1..i], and selectb(B, j)82

gives the position of the jth b in B (we use b = 1 by default). Both operations83

can be supported in constant time if we store o(n) bits on top of the n bits84

used for B itself [17, 18]. When B has m 1s and m� n or n−m� n, it can85

be represented in compressed form, using m lg(n/m) + O(m + n/ lgc n) bits86

in total for any c, so that rank and select are supported in time O(c) [19].87

All these results require the RAM model of computation with lg n = O(w).88

Variable-length arrays. An array storing n nonempty strings of lengths l1, l2,89

. . . , ln can be stored by concatenating the strings and adding a bitmap of90

the same length of the concatenation, B = 1 0l1−1 1 0l2−1 · · · 1 0ln−1. We can91

then determine in constant time that the ith string lies between positions92

select(B, i) and select(B, i+ 1)− 1 in the concatenated sequence.93
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Wavelet trees. A wavelet tree [20] is a binary tree used to represent a sequence94

S[1..n], which efficiently supports the queries access(S, i) (the symbol S[i]),95

rankc(S, i) (the number of symbols c in S[1..i]), and selectc(S, j) (the position96

of the jth occurrence of symbol c in S). In this paper we use a wavelet tree97

variant [21] that uses n lg s (1 + o(1)) +O(s lg n) bits, where the alphabet of98

S is {1, . . . , s}, and supports the three operations in time O(1 + lg s/ lgw).99

2.3. Prefix-free codes100

A prefix-free code (or instantaneous code) is a mapping from a source101

alphabet, of size σ, to a sequence of bits, so that each source symbol is assigned102

a codeword in a way that no codeword is a prefix of any other. A sequence of103

source symbols is then encoded as a sequence of bits by replacing each source104

symbol by its codeword. Compression can be obtained by assigning shorter105

codewords to more frequent symbols [2, Ch. 5]. When the code is prefix-free,106

we can unambiguously determine each original symbol from the concatenated107

binary sequence, as soon as the last bit of the symbol’s codeword is read. An108

optimal prefix-free code minimizes the length of the binary sequence and can109

be obtained with the Huffman algorithm [3].110

For constant-time encoding, we can just store a table of σL bits, where L111

is the maximum codeword length, where the codeword of each source symbol112

is stored explicitly using standard bit manipulation of computer words [22,113

Sec. 3.1]. Since L = O(w), we have to write only O(1) words per symbol.114

Decoding is a bit less trivial. The classical solution for decoding a prefix-free115

code is to store a binary tree B, where each leaf corresponds to a source116

symbol and each root-to-leaf path spells the codeword of the leaf, if we write117

a 0 whenever we go left and a 1 whenever we go right. Unless the code is118

obviously suboptimal, every internal node of B has two children and thus B119

has O(σ) nodes. Therefore, it can be represented in O(σ lg σ) bits, which120

also includes the space to store the source symbols assigned to the leaves.121

By traversing B from the root and following left or right as we read a 0 or a122

1, respectively, we arrive in O(`) time at the leaf storing the symbol that is123

encoded with ` bits in the binary sequence.124

Since lg σ ≤ L < σ, the above classical solution takes O(σL) bits of space.125

We can reduce the space to O(σ lg σ) bits by deleting the encoding table and126

adding instead parent pointers to B, so that from any leaf we can extract the127

corresponding codeword in reverse order. Both encoding and decoding take128

O(`) time in this case.129

Figure 1 shows an example of Huffman coding.130
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Figure 1: An example of Huffman coding. A sequence of symbols on top, the symbol
frequencies on the left, the Huffman tree B in the center, and the corresponding codewords
on the right. The blue numbers on the tree nodes show the total frequencies in the subtrees.
The sequence uses n lg σ = 66 bits in plain form, but 61 bits in Huffman-compressed form.

2.4. Canonical prefix-free codes131

By the Kraft Inequality [23], we can put any prefix-free code into canonical132

form [8] while maintaining all the codeword lengths. In the canonical form,133

the leaves of lower depth are always to the left of leaves of higher depth,134

and leaves of the same depth respect the lexicographic order of the source135

symbols, left to right.136

Canonical codes enable faster encoding and decoding, and/or lower space137

usage. Moffat and Turpin [24] give practical data structures that can encode138

and decode a codeword of ` bits in time O(lg `). Apart from the O(σ lg σ)139

bits they use to store the symbols at the leaves, they need O(L2) bits for140

encoding and decoding; they do not store the binary tree B explicitly. They141

use the O(σ lg σ) bits to map from a symbol c to its left-to-right leaf position142

p and back. Given the increasing positions and codewords of the leftmost143

leaves of each length, they find the codeword of a given leaf position p by144

finding the predecessor position p′ of p, and adding p − p′ to the codeword145

of p′, interpreted as a binary number. For decoding, they extend all those146

first codewords of each length to length L, by padding them with 0s on147

their right. Then, interpreting the first L bits of the encoded stream as a148

number x, they find the predecessor x′ of x among the padded codewords,149

corresponding to leaf position p′. The leaf position of the encoded source150

symbol is then p′ + (x − x′)/2L−`, where ` is the depth of the leaf p. This151

is also used to advance by ` bits in the encoded sequence. The time O(lg `)152
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T’: Decoding Pred table

Sequence:  3 6 7 5 6 4 0 1 3 0 2 6 0 7 7 3 3 6 5 0 6
1     2    3     4    5     6     7    8     9   10   11  12  13  14   15  16  17   18  19  20   21

1 2

0 1

Figure 2: The canonical code corresponding to Figure 1. To encode a symbol, the table
E gives its leaf rank p, whose predecessor p′ we find in the ranks of table T , together
with its length `. We then add p− p′ to the codeword associated with p′. To decode x, a
predecessor search for x on the padded codewords of T ′ finds x′. Its associated length `
and leaf position p′ are in T . We use them to obtain the entry in D storing the symbol.

is obtained with exponential search (binary search would yield O(lgL)); the153

other predecessor time complexities also hold.154

Figure 2 continues our example with a canonical Huffman code.155

Gagie et al. [9] improve upon this scheme both in space and time, by using156

more sophisticated data structures. They show that, using O(σ lgL+ L2)157

bits of space, constant-time encoding and decoding is possible.158

2.5. Alphabetic codes159

A prefix-free code is alphabetic if the codewords (regarded as binary160

strings) maintain the lexicographic order of the corresponding source sym-161

bols. If we build the binary tree B of such a code, the leaves enumerate162

the source symbols in order, left to right. Hu and Tucker [13] showed how163

to build an optimal alphabetic code, whose codewords are at most one bit164

longer than the optimal prefix-free codes on average [2].165

Figure 3 gives an alphabetic code tree for our running example.166

In an alphabetic code we do not need to map from symbols to leaf po-167

sitions, so the sheer topology of B is sufficient to describe the code. Such a168

topology can be described in O(σ) bits, in a way that the tree navigation169
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Figure 3: An alphabetic code corresponding to the frequencies of Figure 1. The compressed
sequence is 62 bits long.

operations can be simulated in constant time, as well as obtaining the left-to-170

right position of a given leaf and vice versa [14]. With such a representation,171

we can then simulate the O(`) encoding and decoding algorithms described172

in Section 2.3 [9].173

On the other hand, there is no such a thing like a canonical alphabetic174

code, because the leaf left-to-right order cannot be altered. Indeed, no faster175

encoding and decoding algorithms exist for alphabetic codes. Our first contri-176

bution, in Sections 3 and 4, is a data structure of O(σ lgL) bits that encodes177

and decodes in time O(min(`, lgL)), and even O(lg `) if we spend O
(
2L

ε
)

178

further bits, for any constant ε > 0. While this increases the space compared179

to the O(σ)-bit basic structure, we show that o(σ) bits of space are sufficient180

to encode and decode in constant time, if we let the average codeword length181

increase by a factor of 1 +O
(
1/
√

lg σ
)

over the optimal.182

2.6. Codes for wavelet matrices183

Claude et al. [15] showed how to build an optimal prefix-free code such184

that all the codewords of length ` come before the prefixes of length ` of185

longer codewords in the lexicographic order of the reversed binary strings.186

Specifically, they first build a classical Huffman code and then use the Kraft187

Inequality to build another code with the same codeword lengths and with188

the desired property. They store anO(σL)-bit mapping between symbols and189

their codewords, which allows them to encode and decode codewords of length190

` in time O(`). They use such codes to compress wavelet matrices, which are191

data structures aimed to represent sequences on large alphabets. Thus, it is192

worthwhile to devise more space economical codeword representations.193
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Figure 4 gives a code tree of this type for our running example.194

Our second contribution, in Section 5, is a representation for these codes195

that uses O(σ lgL) bits, with the same O(`) encoding and decoding time.196

With O
(
2εL
)

further bits, for any constant ε > 0, we achieve constant en-197

coding and decoding time.198

3. Optimal Alphabetic Codes199

In this section we consider how to efficiently store alphabetic (prefix-free)200

codes; recall Section 2.5. We describe a structure called BSD [25], and then201

how we use it to build our fast and compact data structures to store optimal202

alphabetic codes. We finally show how to make it faster using more space.203

3.1. Binary Searchable Dictionaries (BSD)204

Gupta et al. [25] describe a structure called BSD, which encodes n binary205

strings of length L using a trie that is analogous to the binary tree B we de-206

scribed above to store the code (except that here all the strings have the same207

length L). Let us say that the identifier of a string is its lexicographic posi-208

tion, that is, the left-to-right position of its leaf in the trie. Their structure209

supports extraction of the ith string (which is equivalent to our encoding),210

and fast computation of the identifier of a given string (which is equivalent211

to our decoding), both in O(lg n) time.212

To achieve this, Gupta et al. define a complete binary search tree T on213

the strings with lexicographic order (do not confuse T with the binary trie;214

there is one node in T per trie leaf). The complete tree can be stored without215

pointers. Each node v of T represents a string v.x, which is not explicitly216
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stored. Instead, it stores a suffix v.t = v.x[l + 1..L], where l is the length of217

the longest prefix v.x shares with some u.x, over the ancestors u of v in T .218

For the root v of T it holds that v.x = v.t.219

For both operations, we descend in T until reaching the desired node. We220

start at the root v of T , where we know v.x. The invariant is that, as we221

descend, we know v.x for the current node v and u.x for all of its ancestors222

u in T (which we have traversed). Further, we keep track of the most recent223

ancestors u.l and u.r from where our path went to the left and to the right,224

respectively, and therefore it holds that u = ul if v.t[1] = 0 and u = ur if225

v.t[1] = 1 [25]. Whenever we choose the child v′ of v to follow, we compute226

v′.x by composing v′.x = u.x[1..L− |v′.t|] · v′.t, which restores the invariant.227

The procedure ends after O(lg n) constant-time steps, and we can do the228

concatenation that computes v′.x in constant time in the RAM model.229

To extract the ith string, we navigate from the root towards the ith node230

of T . Because T is a complete binary search tree, we know algebraically231

whether the i-th node is v, or it is to the left or to the right of v. If it is v,232

we already know v.x, as explained, and we are done. Otherwise, we choose233

the proper child v′ of v and continue the search. Finding i from its string234

x is analogous, except that we compare x with v.x numerically (in constant235

time in the RAM model) to determine whether we have found v or we must236

go left or right. Because T is complete, we know algebraically the identifier237

v.i of each node v without need of storing it.238

Gupta et al. [25] show that, surprisingly, the sum of the lengths of all the239

strings v.t is bounded by the number of edges in the trie. Our data structure240

for optimal alphabetic codes builds on this BSD data structure.241

3.2. Our data structure242

Given an optimal alphabetic code over a source alphabet of size σ with243

maximum codeword length L, we store the lengths of the σ codewords using244

σdlgLe bits, and then pad the codewords on the right with 0s up to length245

L. We divide the lexicographically sorted padded codewords into blocks of246

size L (the last block may be smaller). We collect the first padded codeword247

of every block in a predecessor data structure, and store all the (non-padded)248

codewords of each block in a BSD data structure, one per block.249

The predecessor data structure then stores dσ/Le numbers in a universe250

of size 2L. As seen in Section 2.2, the structure uses O
(
(σ/L) lg(2L)

)
= O(σ)251

bits and answers predecessor queries in time O
(
lg lg(2L)

)
= O(lgL).252
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Each BSD structure, on the other hand, stores (at most) L strings v.t.253

Unlike the original BSD structure, our codewords are of varying length (those254

lengths were stored separately, as indicated). This does not invalidate the255

argument that the sum of the strings v.t adds up to the number of edges in256

the trie of the L codewords: what Gupta et al. [25, Lem. 3] show is that each257

edge of the trie is mentioned in only one string v.t, with no reference to the258

code lengths. We vary its encoding, though: We store all the strings v.t of259

the BSD, in the same order of the nodes of T , concatenated in a variable-260

length array as described in Section 2.2. With constant-time select we find261

where is v.t in the concatenation, and with another O(1) time we extract it262

in the RAM model.263

Considering the extra space needed to find in constant time where is v.t,264

we spend O(1) bits per trie edge. Since the trie stores up to L consecutive265

leaves of the whole binary tree B (and internal nodes of B have two children266

because the alphabetic code is optimal), it follows that the trie has O(L)267

nodes: There are O(L) trie nodes with two children because there are L268

leaves in the trie, and the trie nodes with one child are those leading to the269

leftmost and rightmost trie leaves. Since the leaves are of depth L, there are270

O(L) of those trie nodes too. Therefore, we use O(L) bits per BSD structure,271

adding up to O(σ) bits overall.272

The total space is then dominated by the σ lgL + O(σ) bits spent in273

storing the lengths of the codewords. On top of that, the predecessor data274

structure uses O(σ) bits and the BSD structures use other O(σ) bits.275

To encode symbol i, we go to the di/Leth BSD structure and find the i′th276

string inside it, with i′ = i− (di/Le−1) · i. The algorithm is identical to that277

for BSD, except that each v.x has variable length; recall that we have those278

lengths |v.x| stored explicitly. We thus update v′.x = u.x[1..|v′.x|−|v′.t|] ·v′.t279

when moving to node v′.280

To decode, we store in a number x the first L bits of the stream, find281

its predecessor in our structure, and decode x in the corresponding BSD282

structure. The only difference is that, when we compare x with v.x, their283

lengths differ (because we do not know the length ` of the codeword we seek,284

which prefixes x). Since the code is prefix-free, it follows that the codeword285

we look for is v.x if v.x = x[1..|v.x|], otherwise we go left or right according286

to which is smaller between those |v.x|-bit numbers. When we find the287

proper node v, the source symbol is the position i of v (which we compute288

algebraically, as explained) and the length of the codeword is ` = |v.x|.289

In both cases, the time is O(lgL) to find the proper node in the BSD290
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plus, in the case of decoding, O(lgL) time for the predecessor search. As291

before, we can also encode and decode a codeword of length ` in time O(`)292

using the basic O(σ)-bit representation. We can even choose the smallest by293

attempting the encoding/decoding up to lgL steps, and then switch to the294

O(lgL)-time procedure if we have not yet finished.295

Theorem 1. Given a probability distribution over an alphabet of σ symbols,296

we can build an optimal alphabetic prefix-free code and store it in σ lgL+O(σ)297

bits, where L is the maximum codeword length, such that we can encode and298

decode any codeword of length ` in O(min(`, lgL)) time. The result assumes299

a w-bit RAM computation model with L = O(w).300

Figure 5 shows our structure for the codewords tree of Figure 4. Note301

that, for each BSD structure, the length of the concatenated strings v.t equals302

the number of edges in the corresponding piece of the codewords tree. For303

example, to encode the symbol 3, we must encode the 4th symbol of BSD1.304

We start at the root u (corresponding to symbol 2), with u.x = u.t = 0011.305

We know algebraically that the root corresponds to the 3rd symbol, so we306

go right to v, the node representing the symbol 3. Since v.t[1] = 1, v.t is307

encoded with respect to the nearest ancestor where we went right, that is,308

from the root u. We have |v.x| = 3 stored explicitly, so we build v.x =309

u.x[1..|v.x| − |v.t|] · v.t = 0 · 10. Since we know algebraically that we arrived310

at the 4th symbol, we are done: the codeword for 3 is 010. Let us now decode311

0110 = 6. The predecessor search tells it appears in BSD2. We start at the312

root u (which encodes 6). Since its extended codeword, u.x = 10 · 00, is313

larger than 0110, we go left to the node v that represents 5. Since v.t[1] = 0,314

v.t is represented with respect to the last ancestor where we went left, that315

is, u. So we compose v.x = u.x[1..|v.x| − |v.t|] · v.t = ·0111. Now, since316

v.x = 0111 is larger than our codeword 0110, we again go left to the node317

v′ that represents 4. Since v′.t[1] = 0, v′.t is also represented with respect318

to the last node where we went left, that is, v.x. So we compose v′.x =319

v.x[1..|v′.x|− |v′.t|] · v′.t = 011 · 0. We have found the code sought, 0110, and320

we algebraically know that the node corresponds to the source symbol 4.321

3.3. Faster operations322

In order to reduce the time O(min(`, lgL)) to O(lg `), we manage to323

encode and decode in constant time the codewords of length up to L′ = Lε/2,324

for some constant ε > 0. For the longer codewords, since L′ < ` ≤ L, it holds325

that lg ` = Θ(lgL), and thus we already process them in time O(lg `).326
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Sequence:  3 6 7 5 6 4 0 1 3 0 2 6 0 7 7 3 3 6 5 0 6
1     2    3     4    5     6     7    8     9   10   11  12  13  14   15  16  17   18  19  20   21

1 2

0 1

0 1

Alphabetic tree (Hu-Tucker)

0
1
2
3
4
5
6
7

3
4
4
3
4
4
2
2

Symb Len

000
0010
0011
010
0110
0111
10
11

Code

0

0

0 1

1

4 5

0 1

3

0 1

6 7

0 1

1 2
0 1

0

0

0
0 1

1

3
0

0 1

1

4 5
0 1

1
6 7
0 11 3

2

0

|x|= 4
x  = 0011
t = 0011

|x|= 3
x  = 010
t = 10

|x|= 4
x  = 0010
t = 0

|x|= 3
x  = 000
t = 0

1st block of 
alphabetic tree BSD1

5 7

6

4

|x|= 2
x  = 10
t = 10

|x|= 2
x  = 11
t = 1

|x|= 4
x  = 0111
t = 0111

|x|= 4
x  = 0110
t = 0

strings v.t = 00110100
B  = 10001101

|x| = 4 4 3 3 

strings v.t = 10011110
B  = 10100011

|x| = 2 4 2 4  

2nd block of 
alphabetic tree BSD2

(in heap order) (in heap order)

Predecesor:   0  (0000)          6 (0110)

Figure 5: Our representation of the code for wavelet matrices of Figure 4. For each BSD
structure we only store the concatenated strings v.t, their bitmap B, and the code lengths
|x|. The first codes of each BSD structure are stored in the predecessor structure on the
bottom, padded to L = 4 bits.

For encoding, we store a bitmap B[1..σ], so that B[i] = 1 iff the length of327

the codeword of the ith source symbol is at most L′. We also store a table328

S[1..2L
′
] so that, if B[i] = 1, then S[rank(B, i)] stores the codeword of the329

ith source symbol (only 2L
′

source symbols can have codewords of length up330

to L′). To encode i, we check B[i]. If B[i] = 1, then we output the codeword331

S[rank(B, i)] in constant time; otherwise we encode i as in Theorem 1332

For decoding, we build a table A[0..2L
′ − 1] where, for any 0 ≤ j < 2L

′
, if333

the binary representation of j is prefixed by the codeword of the ith codeword,334

which is of length ` ≤ L′, then S[j] = (i, `). Instead, if no codeword prefixes335

j, then S[j] =⊥. We then read the next L bits of the stream and extract336

the first L′ of those L bits in a number j. If S[j] = (i, `), then we have337

decoded the symbol i in constant time and advance in the stream by ` bits.338

Otherwise, we proceed with the L bits we have read as in Theorem 1.339

The encoding and decoding time is then always bounded by O(lg `), as340

explained. The space for B, S, and A is O
(
σ + 2L

′
(L′ + lg σ)

)
⊆ O

(
σ + 2L

ε
)

341

bits, because L′ + lg σ = O(L) and O
(
L2L

ε/2
)
⊆ 2L

ε
.342

Corollary 2. Given a probability distribution over an alphabet of σ symbols,343

we can build an optimal alphabetic prefix-free code and store it in O
(
σ lgL+ 2L

ε
)

344

bits, where L is the maximum codeword length and ε is any positive constant,345

such that we can encode and decode any codeword of length ` in O(lg `) time.346
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The result assumes a w-bit RAM computation model with L = O(w).347

4. Near-Optimal Alphabetic Codes348

Our approach to storing a nearly optimal alphabetic code compactly has349

two parts: first, we show that we can build such a code so that the expected350

codeword length is
(
1 +O

(
1/
√

lg σ
))2

= 1+O
(
1/
√

lg σ
)

times the optimal,351

the codewords tree B has height at most lg σ +
√

lg σ + 3, and each subtree352

rooted at depth dlg σ −
√

lg σe is completely balanced. Then, we manage to353

store such a tree in o(σ) bits so that encoding and decoding take O(1) time.354

4.1. Balancing the codewords tree355

Evans and Kirkpatrick [26] showed how, given a binary tree on σ leaves,356

we can build a new binary tree of height at most dlg σe + 1 on the same357

leaves in the same left-to-right order, such that the depth of each leaf in358

the new tree is at most 1 greater than its depth in the original tree. We359

can use their result to restrict the maximum codeword length of an optimal360

alphabetic code, for an alphabet of σ symbols, to be at most lg σ+
√

lg σ+3,361

while forcing its expected codeword length to increase by at most a factor362

of 1 +O
(
1/
√

lg σ
)
. To do so, we build the tree B for an optimal alphabetic363

code and then rebuild, according to Evans and Kirkpatrick’s construction,364

each subtree rooted at depth d
√

lg σe. The resulting tree, Blim, has height at365

most d
√

lg σe+ dlg σe+ 1 and any leaf whose depth increases was already at366

depth at least d
√

lg σe. Although there are better ways to build a tree Blim367

with such a height limit [27, 28], our construction is sufficient to obtain an368

expected codeword length for Blim that is 1+O
(
1/
√

lg σ
)

times the optimal.369

Further, let us take Blim and completely balance each subtree rooted370

at depth dlg σ −
√

lg σe. The height does not increase and any leaf whose371

depth increases was already at depth at least dlg σ−
√

lg σe, so the expected372

codeword length increases by at most a factor of373

d
√

lg σe+ dlg σe+ 1

dlg σ −
√

lg σe
= 1 +O

(
1/
√

lg σ
)
.

Let Bbal be the resulting tree. Since the expected codeword length of Blim is in374

turn a factor of 1+O
(
1/
√

lg σ
)

larger than that of B, the expected codeword375

length of Bbal is also a factor of
(
1 +O

(
1/
√

lg σ
))2

= 1 +O
(
1/
√

lg σ
)

larger376

than the optimal. The tree Bbal then describes our suboptimal code.377
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4.2. Representing the balanced tree378

To represent Bbal, we store a bitmap B[1..σ] in which B[i] = 1 if and only379

if the ith left-to-right leaf is:380

• of depth less than dlg σ −
√

lg σe, or381

• the leftmost leaf in a subtree rooted at depth dlg σ −
√

lg σe.382

Note that each 1 of B corresponds to a node of Bbal with depth at most383

dlg σ−
√

lg σe. Since there are m = O
(

2lg σ−
√

lg σ
)

such nodes, B can be rep-384

resented in compressed form as described in Section 2.2, using m lg(σ/m) +385

O(m+ σ/ lgc σ) = O
(

2lg σ−
√

lg σ lg σ + σ/ lgc σ
)

bits, supporting rank and386

select in time O(c). For any constant c, the term O
(

2lg σ−
√

lg σ lg σ
)

=387

O
(
σ/2
√

lg σ−lg lg σ
)

is dominated by the second component, O(σ/ lgc σ).388

For encoding in constant time we store an array S[1..2dlg σ−
√

lg σe], which389

explicitly stores the codewords assigned to the leaves of Bbal where B[i] = 1,390

in the same order of B. That is, if B[i] = 1, then the code assigned to the391

symbol i is stored at S[rank(B, i)]. Since the codewords are of length at most392

d
√

lg σe + dlg σe + 1 = O(lg σ), S requires O
(

2lg σ−
√

lg σ lg σ
)

= o(σ/ lgc σ)393

bits of space, for any constant c. We can also store the length of the code394

within the same asymptotic space.395

To encode the symbol i, we check whether B[i] = 1 and, if so, we simply396

look up the codeword in S as explained. If B[i] = 0, we find the preceding397

1 at i′ = select(B, k) with k = rank(B, i), which marks the leftmost leaf in398

the subtree rooted at depth dlg σ −
√

lg σe that contains the ith leaf in B.399

Since the subtree is completely balanced, we can compute the code for the400

symbol i in constant time from that of the symbol i′: The balanced subtree401

has r = i′′− i′ leaves, where i′′ = select(B, k+1), and its height is h = dlg re.402

Then the first 2r− 2h codewords are of the same length of the codeword for403

i′, and the last 2h−r have one bit less. Thus, if i− i′ < 2r−2h, the codeword404

for i′ is S[k] + i − i′, of the same length of that of i; otherwise it is one bit405

shorter, (S[k] + 2r− 2h)/2 + i− i′ − (2r− 2h) = S[k]/2 + i− i′ − (r− 2h−1).406

To be able to decode quickly, we store an array A[0..2dlg σ−
√

lg σe−1] such407

that, if the dlg σ−
√

lg σe-bit binary representation of j is prefixed by the ith408

codeword, then A[j] stores i and the length of that codeword. If, instead,409
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the dlg σ−
√

lg σe-bit binary representation of j is the path label to the root410

of a subtree of Bbal with size more than 1, then A[j] stores the position i′411

in B of the leftmost leaf in that subtree (thus B[i′] = 1). Again, A takes412

O
(

2lg σ−
√

lg σ lg σ
)

= o(σ/ lgc σ) bits for any constant c.413

Given a string prefixed by the ith codeword, we take the prefix of length414

dlg σ−
√

lg σe of that string (padding with 0s on the right if necessary), view415

it as the binary representation of a number j, and check A[j]. This either416

tells us immediately i and the length of the ith codeword, or tells us the417

position i′ in B of the leftmost leaf in the subtree containing the desired418

leaf. In the latter case, since the subtree is completely balanced, we can419

compute i in constant time: We find i′′, r, and h as done for encoding.420

We then take the first dlg σ −
√

lg σe + h bits of the string (including the421

prefix we had already read, and padding with a 0 if necessary), and interpret422

it as the number j′. Then, if d = j′ − S[rank(B, i′)] < 2r − 2h, it holds423

i = i′ + d. Otherwise, the code is one bit shorter and the decoded symbol is424

i = i′ + 2r − 2h + b(d− (2r − 2h))/2c = i′ + r − 2h−1 + bd/2c.425

Figure 6 shows an example, where we have balanced from level 1 instead426

of level 2 (which is what the formulas indicate) so that the tree of Figure 3427

undergoes some change. The subtrees starting at the two children of the428

root are then balanced and made complete. The array S gives the codeword429

of the first leaves of both subtrees and A gives the position in bitmap B430

of the codewords of the nodes rooting the balanced subtrees. To encode 2,431

since it is the 3rd symbol (i = 3), we compute k = rank(B, 3) = 1, i′ =432

select(B, 1) = 1, i′′ = select(B, 1 + 1) = 7, and S[1] = 0000. The complete433

subtree then has r = i′′ − i′ = 6 leaves and its height is r = dlg 6e = 3. The434

first 2r− 2h = 4 leaves are of depth 4 like S[1], and the other 2h − r = 2 are435

of depth 3. Since i− i′ = 2 < 4, our codeword is of length 4 and is computed436

as S[1] + i − i′ = 0010. Instead, to decode 010, we truncate it to length 1,437

obtaining j = 0. Since A[0] = 1, the code is in the subtree that starts at438

i′ = 1 in B. We compute i′′ = 7, r = 6, and h = 3 as before. The first439

1 + h = 4 bits of our code is j′ = 0100, which we had to pad with a 0. Since440

d = j′ − S[rank(B, 1)] = 0100− 0000 = 4 ≥ 2r − 2h, the code is of length 3441

and the source symbol is i = 1 + 6− 22 + 2 = 5, that is, 4.442

Theorem 3. Given a probability distribution over an alphabet of σ symbols,443

we can build an alphabetic prefix-free code whose expected codeword length444

is at most a factor of 1 + O
(
1/
√

lg σ
)

more than optimal and store it in445
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Sequence:  3 6 7 5 6 4 0 1 3 0 2 6 0 7 7 3 3 6 5 0 6
1     2    3     4    5     6     7    8     9   10   11  12  13  14   15  16  17   18  19  20   21

2 3

0 1

0 1

Bbal

0

0 1

1

4

0 1

6 7

0 1

5

0 1

0 1

B: 1   0   0   0   0   0   1   0    
1 2 3 4 5 6 7 8

S: 0000 10
1 2    

A: 1     7
0 1    

Figure 6: The alphabetic tree of Figure 3 balanced from level 1. The resulting compressed
sequence length is now 67 bits (larger than a plain code, in this toy example).

O(σ/ lgc σ) bits, for any constant c, such that we can encode and decode any446

symbol in constant time O(c).447

5. Efficient Codes for Wavelet Matrices448

We now show how to efficiently represent the prefix-free codes for wavelet449

matrices; recall Section 2.6. We first describe a representation based on the450

wavelet trees of Section 2.2. This is then used to design a space-efficient451

version that encodes and decodes codewords of length ` in time O(`), and452

then a larger one that encodes and decodes in constant time.453

5.1. Using wavelet trees454

Given a code for wavelet matrices, we reassign the codewords of the same455

length such that the lexicographic order of the reversed codewords of that456

length is the same as that of their symbols. This preserves the property that457

the codewords of some length are numerically smaller than the corresponding458

prefixes of longer codewords in the lexicographic order of their reverses. The459

positive aspect of this reassignment is that all the information on the code460

can be represented in σ lgL bits as a sequence D = d1, . . . , dσ, where di is461

the depth of the leaf encoding symbol i in the codewords tree B. We can462
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represent D with a wavelet tree using σ lgL (1+o(1))+O(L lg σ) ⊆ O(σ lgL)463

bits1 (Section 2.2), and then:464

• access(D, i) is the length ` of the codeword of symbol i;465

• rank`(D, i) is the position (in reverse lexicographic order) of the leaf466

representing symbol i among those of codeword length `; and467

• select`(D, r) is the symbol corresponding to the rth codeword of length468

` (in reverse lexicographic order).469

Those operations take time O(1 + lgL/ lgw), because the alphabet of D470

is {1, . . . , L}. Since we assume L = O(w) (Section 2.1), this time is O(1).471

We are left with two subproblems. For decoding the first symbol encoded472

in a binary string, we need to find the length ` of its codeword and the lexi-473

cographic rank r of its reverse among the reversed codewords of that length.474

With that information we have that the source symbol is select`(D, r). For475

encoding a symbol i, instead, we find the length ` = D[i] of its codeword476

and the lexicographic rank r = rank`(D, i) of its reverse among the reversed477

codewords of length `. Then we must find the codeword given ` and r.478

We first present a solution that takes O(L lg σ) ⊆ O(σ lgL) further bits479

and works inO(`) time. We then present a solution that takesO
(
2εL
)

further480

bits, for any constant ε > 0, and works in less time.481

5.2. A space-efficient representation482

For each depth d between 0 and L, let nodes(d) be the total number of483

nodes at depth d in B and let leaves(d) be the number of leaves at depth484

d. Let v be a node other than the root, let u be v’s parent, let rv be the485

lexicographic rank (counting from 1) of v’s reversed path label among all the486

reversed path labels of nodes at v’s depth, and let ru be defined analogously487

for u. Then note the following facts:488

1. Because B is optimal, every internal node has two children, so half the489

non-root nodes are left children and half are right children.490

2. Because the reversed path labels of the left children at any depth start491

with a 0, they are all lexicographically less than the reversed path labels492

of all the right children at the same depth, which start with a 1.493

1Since L ≤ σ, L/ lgL ≤ σ/ lg σ because x/ lg x is increasing for x ≥ 3, thus L lg σ ≤
σ lgL for all 3 ≤ L ≤ σ and O(L lg σ) ⊆ O(σ lgL).

18



3. Because of the ordering properties of these codes, the reversed path494

labels of all the leaves at any depth are lexicographically less than the495

reversed path labels of all the internal nodes at that depth.496

It then follows that:497

• v is a leaf if and only if rv ≤ leaves(depth(v));498

• v is u’s left child if and only if rv ≤ nodes(depth(v))/2;499

• if v is u’s left child then rv = ru − leaves(depth(u)); and500

• if v is u’s right child then rv = ru−leaves(depth(u))+nodes(depth(v))/2.501

Of course, by rearranging terms we can also compute ru in terms of rv.502

We store nodes(d) and leaves(d) for d between 0 and L, which requires503

O(L lg σ) bits. With the formulas above, we can decode the first codeword,504

of length `, from a binary string as follows: We start at the root u, ru = 1,505

and descend in B until we reach the leaf v whose path label is that codeword,506

and return its depth ` and the lexicographic rank r = rv of its reverse path507

label among all the reversed path labels of nodes at that depth. We then508

compute i from ` and r as described with the wavelet tree. Note that these509

nodes v are conceptual: we do not represent the nodes explicitly, but we510

still can compute rv as we descend left or right; we also know when we have511

reached a conceptual leaf.512

For encoding i, we obtain as explained, with the wavelet tree, its length `513

and the rank r = rv of its reversed codeword among the reversed codewords514

of that length. Then we use the formulas to walk up towards the root, finding515

in each step the rank ru of the parent u of v, and determining if v is a left or516

right child of u. This yields the ` bits of the codeword of i in reverse order517

(0 when v is a left child of u and 1 otherwise), in overall time O(`). This518

completes our first solution, which we evaluate experimentally in Section 6.519

Theorem 4. Consider an optimal prefix-free code in which all the codewords520

of length ` come before the prefixes of length ` of longer codewords in the lex-521

icographic order of the reversed binary strings. We can store such a code522

in σ lgL (1 + o(1)) + O(L lg σ) ⊆ O(σ lgL) bits — possibly after swapping523

symbols’ codewords of the same length — where σ is the alphabet size and L524

is the maximum codeword length, so that we can encode and decode any code-525

word of length ` in O(`) time. The result assumes a w-bit RAM computation526

model with L = O(w).527
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Ancho de figura

Sequence:  3 6 7 5 6 4 0 1 3 0 2 6 0 7 7 3 3 6 5 0 6
1     2    3     4    5     6     7    8     9   10   11  12  13  14   15  16  17   18  19  20   21

0 1

0 1

0 1

nodes = 1
leaves = 0D: 2 4 4 3 4 4 2 3    

0 1 2 3 4 5 6 7Symb:

r = 1

r = 1

r = 1 r = 3

r = 2

r = 2 r = 4

r = 1 r = 3 r = 2 r = 4

r = 1 r = 3 r = 2 r = 4

6

7

2 5

0

3

1 4

nodes = 2
leaves = 0

nodes = 4
leaves = 2

nodes = 4
leaves = 2

nodes = 4
leaves = 4

Figure 7: Our representation for the tree of Figure 4. We only store the sequence D and
the values nodes and leaves at each level. For each node v we show its rv value.

Figure 7 shows our representation for the codewords tree of Figure 4. To528

decode 110..., we start at the root with r0 = 1. The next bit to decode is529

a 1, so we must go right: the node of depth 1 is then r1 = r0 − leaves(0) +530

nodes(1)/2 = 2. The next bit to decode is again a 1, so we go right again: the531

node of depth 2 is r2 = r1− leaves(1)+nodes(2)/2 = 4. The last bit to decode532

is a 0, so we go left: the node of depth 3 is r3 = r2 − leaves(2) = 2. Now533

we are at a leaf (because r3 ≤ leaves(3) = 2) whose depth is ` = 3 and its534

rank is r = r3 = 2. The corresponding symbol is then select3(D, 2) = 8, that535

is, symbol 7. Instead, to encode 3, the symbol number i = 4, we compute536

its codeword length ` = D[4] = 3 and its rank r = rank3(D, 4) = 1. Our537

leaf then corresponds to r3 = 1, and we discover the code in reverse order by538

waking upwards to the root. Since r3 ≤ nodes(3)/2 = 2, we are a left child539

(so the codeword ends with a 0) and our parent has r2 = r3 + leaves(2) = 3.540

Since r2 > nodes(2)/2 = 2, this node is a right child (so the codeword ends541

with 10) and its parent has r1 = r2 + leaves(1) − nodes(2)/2 = 1. Finally,542

the new node is a left child because r1 ≤ nodes(1)/2 = 1, and therefore the543

codeword is 010.544

Figure 8 shows another example with a sequence producing a less regular545

tree. Consider decoding 1110.... We start at the root with r0 = 1. The546

first bit to decode is a 1, so we go right and obtain r1 = r0 − leaves(0) +547

nodes(1)/2 = 2. The next bit is also a 1, so we go right again and get548

r2 = r1 − leaves(1) + nodes(2)/2 = 4. The third bit to decode is also a 1,549

so we go right again to get r3 = r2 − leaves(2) + nodes(3)/2 = 6 (that is,550

the 4th node of level 2, minus the leaf with code 00, shifted by all the 6/3551

nodes of level 3 that descend by a 0 and thus precede our node). Finally, the552
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0 1
r = 1 r = 4

0 4

Figure 8: The representation of a less regular code, with the same notation of Figure 7,
produced for the sequence “14765232100214171”.

next bit is a 0, so we go left, to node r4 = r3 − leaves(3) = 1 (that is, the553

6th node of level 3 minus the 5 leaves of that level). Now we are at a leaf554

because r4 ≤ leaves(4) = 2. We leave to the reader finding the corresponding555

symbol 5 in D, as done for the previous example, as well as working out the556

decoding of the same symbol.557

5.3. Faster and larger558

We now show how to speed up the preceding procedure so that we can559

perform t steps on the tree in constant time, for some given t. From the560

formulas that relate ru and rv it is apparent that, given a node u and the561

following t bits to decode, the node x we will arrive at depends only on562

the nodes and leaves values at the depths depth(u), . . . , depth(u) + t. More563

precisely, the value rx is ru plus a number that depends only on the involved564

depths and the t bits of the codeword to decode. Similarly, given rx, the565

last t bits leading to it, and the rank ru of the ancestor u of x at distance t,566

depend on the same values of nodes and leaves.567

Let us first consider encoding a source symbol. We obtain its codeword568

length ` and rank r from the wavelet tree, and then extract the codeword.569

Consider all the path labels of a particular length that end with a particular570

suffix of length t: the lexicographic ranks of their reverses are consecutive,571

forming an interval. We can then partition the nodes at any depth d by those572

intervals of rank values.573

Let x be a node at depth d, u be its ancestor at distance t, and rx and ru574

be the rank values of x and u, respectively. As per the previous paragraph,575

the partition interval where rx lies determines the last t bits of x’s path576
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label, and it also determines the difference between rx and ru. For example,577

in level d = 3 of Figure 8 and taking t = 2, the codes of the nodes x with578

rank r = [1, 1] end with 00, those with ranks r = [2, 3] end with 10, those579

with ranks [4, 4] end with 01, and those with ranks r = [5, 6] end with 11.580

The differences ru − rx are +1 for the termination 00, −1 for 10, −2 for 01,581

and −4 for 11, the same for all the ranks in the same intervals.582

We can then compute the codeword of length ` in O(`/t) chunks of t bits583

each, by starting at depth d = ` and using the formulas to climb by t steps584

at a time until reaching the root (the last chunk may have less than t bits).585

For each depth d having s nodes, we store a bitmapBd[1..s], whereBd[r] =586

1 if r is the first rank of the interval that ends with the same t bits (or the587

same d bits if d < t). A table Ad[rank(Bd, r)] then stores those t bits and588

the difference that must be added to each rx in that interval to make it ru.589

Across all the depths, the bitmaps Bd add up to O(σ) bits because B has590

O(σ) nodes. Further, there are at most 2t partitions in each depth, so the591

tables Ad add up to L · 2t entries, each using O(t+ lg σ) bits: t bits of the592

chunk and 1 + lg σ bits to encode ru− rx, since ranks are at most σ. In total,593

we use O(σ + L 2t(t+ lg σ)) bits, which setting t = εL/2, for any constant594

ε > 0, is O
(
σ + 2εL

)
because t + lg σ = O(L) and L2 = O

(
2εL/2

)
. We can595

then encode any symbol in time O(L/t) = O(1/ε), that is, a constant.596

For decoding we store a table that stores, for every depth d that is a597

multiple of t, and every sequence j of t bits, a cell (d, j) with the value to be598

added to ru in order to become rx, where u is any node at depth depth(u) = d599

and x is the node we reach from u if we descend using the t bits of j. This600

table then has (L/t) · 2t entries, each using O(lg σ) bits to encode the value601

to be added. With t = εL/2, the space is O
(
2εL
)

bits and we arrive at the602

desired leaf after O(1/ε) steps (note that our formulas allow us identifying603

leaves). Once we arrive at a leaf at depth d, we know the codeword length604

` = d and the rank r = rx, so we use the wavelet tree to compute the source605

symbol in constant time.606

The obvious problem with this scheme is that it only works if the length607

` of the codeword we find is a multiple of t. Otherwise, in the last step we608

will try to advance by t bits when the leaf is at less distance. In this case609

our computation of rx will give an incorrect result.610

Note from our formulas that the nodes x at depth d + k with rx ≤
leaves(d + k) are leaves and the others are internal nodes. Let u be any
node at depth depth(u) = d and j be the bits of a potential path of length t
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descending from u. If x descends from u by the sequence jk of the first k bits
of j, then the difference gd,j(k) = rx−ru depends only on d, j, and k (indeed,
our table stores precisely gd,j(t) at cell (d, j)). Therefore, the nodes u that
become leaves at depth d+ k are those with ru ≤ leaves(d+ k)− gd,j(k). We
can then descend from node u by a path with s bits js iff ru > md,j(s), with

md,j(s) = max
0≤k<s

{leaves(d+ k)− gd,j(k)}.

We then extend our tables in the following way. For every cell (d, j) we611

now store t values md,j(s), with s = 1, . . . , t, and the associated values gd,j(s).612

Note that md,j(s) ≤ md,j(s+ 1), so this sequence is nondecreasing. We make613

it strictly increasing by removing the smaller s values upon ties. To find out614

how much we can descend from an internal node u at depth d by the t bits615

j, we find s such that md,j(s) < ru ≤ md,j(s + 1), and then we can descend616

by s steps (and by t steps if ru > md,j(t)). To descend by s steps to the617

descendant node x, we compute rx = ru + gd,j(s).618

We find s with a predecessor search on the t values md,j(s). One of619

the predecessor algorithms surveyed in Section 2.2 runs in time O(lgw t),620

which is constant in the RAM model with L = O(w) because t = εL/2.621

Therefore, the encoding time is still O(1/ε). The space is now multiplied by622

t because the values md,j and gd,j also fit in O(lg σ) bits, and thus it is still623

O
(
L2εL/2

)
⊆ O

(
2εL
)

bits.624

Theorem 5. Consider an optimal prefix-free code in which all the codewords625

of length ` come before the prefixes of length ` of longer codewords in the626

lexicographic order of the reversed binary strings. We can store such a code627

in O
(
σ lgL+ 2εL

)
bits — possibly after swapping symbols’ codewords of the628

same length — where σ is the alphabet size, L is the maximum codeword629

length, and ε > 0 is any positive constant, so that we can encode and decode630

any codeword in constant time. The result assumes a w-bit RAM computation631

model with L = O(w).632

6. Experiments633

We have run experiments to compare the solution of Theorem 4 (referred634

to as WMM in the sequel, for Wavelet Matrix Model) with the only previous635

encoding, that is, the one used by Claude et al. [15] (denoted TABLE). Note636

that our codes are not canonical, so other solutions [9] do not apply.637
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Collection Length Alphabet Entropy max code Entropy of level
(n) size (σ) (H(P )) length(L) entries (H0(D))

EsWiki 200,000,000 1,634,145 11.12 28 2.24
EsInv 300,000,000 1,005,702 5.88 28 2.60
Indo 120,000,000 3,715,187 16.29 27 2.51

Table 1: Main statistics of the texts used.

Claude et al. [15] use for encoding a single table of σL bits storing the code638

of each symbol, and thus they easily encode in constant time. For decoding,639

they have tables separated by codeword length `. In each such table, they640

store the codewords of that length and the associated symbol, sorted by641

codeword. This requires σ(L + lg σ) further bits, and permits decoding by642

binary searching the codeword found in the wavelet matrix. Since there are643

at most 2` codewords of length `, the binary search takes time O(`).644

For the sequence D used in our WMM, we use binary Huffman-shaped645

wavelet trees with plain bitmaps (i.e., not compressed). The structures646

for supporting rank/select require 37.5% extra space, so the total space647

is 1.37σH0(D), where H0(D) ≤ lgL is the per-symbol zero-order entropy of648

the sequence D. We also add a small index to speed up select queries [29]649

(at decoding), which is parameterized with a sampling value that we set to650

{16, 32, 64, 128}. Finally, we store the values leaves and nodes, which add an651

insignificant L lg σ bits in total.652

We used a prefix of three datasets in http://lbd.udc.es/research/ECRPC.653

The first one, EsWiki, contains a sequence of word identifiers generated by us-654

ing the Snowball algorithm to apply stemming to the Spanish Wikipedia. The655

second one, EsInv, contains a concatenation of differentially encoded inverted656

lists extracted from a random sample of the Spanish Wikipedia. The third657

dataset, Indo was created with the concatenation of the adjacency lists of658

Web graph Indochina-2004, from http://law.di.unimi.it/datasets.php.659

Table 1 provides some statistics about the datasets, starting with the660

number of symbols in the sequence (n) and the alphabet size (σ). H(P ) is661

the entropy, in bits per symbol, of the frequency distribution P observed in662

the sequence. This is close to the average length ` of encoded and decoded663

codewords. The last columns show the maximum codeword length L and the664

zero-order entropy of the sequence D, H0(D), in bits per symbol. This is a665

good approximation to the per-symbol size of our wavelet tree for D.666
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Our test machine has an Intel(R) Core(tm) i7-3820@3.60GHz CPU (4667

cores/8 siblings) and 64GB of DDR3 RAM. It runs Ubuntu Linux 12.04668

(Kernel 3.2.0-99-generic). The compiler used was g++ version 4.6.4 and we669

set compiler optimization flags to -O9. All our experiments run in a single670

core and time measures refer to CPU user-time. The data to be compressed671

is streamed from the local disk and also output to disk using the regular672

buffering mechanism from the OS.673

Figure 9 compares the space required by both code representations and674

their compression and decompression times. As expected, the space per675

symbol of our new code representation, WMM, is close to 1.37H0(D), whereas676

that of TABLE is close to 2L+lg σ. This explains the large difference in space677

between both representations, a factor of 23–30 times. For decoding we show678

the effect of adding the structure that speeds up select queries.679

The price of our representation is the encoding and decoding time. While680

the TABLE approach encodes using a single table access, in 9–18 nanoseconds,681

our representation needs 130–230, which is 10–21 times slower. For decoding,682

the binary search performed by TABLE takes 20–45 nanoseconds, whereas our683

WMM representation requires 500–700 in the slowest and smallest variant (i.e.,684

11–30 times slower). Our faster variants require 300–500 nanoseconds, which685

is still 6.5–27 times slower.686

7. Conclusions687

A classical prefix-free code representation uses O(σL) bits, where σ is the688

source alphabet size and L the maximum codeword length, and encodes in689

constant time and decodes a codeword of length ` in time O(`). Canonical690

prefix codes can be represented in O(σ lgL) bits, so that one can encode691

and decode in constant time. In this paper we have considered two families692

of codes that cannot be put in canonical form. Alphabetic codes can be693

represented in O(σ) bits, but encoding and decoding takes time O(`). We694

showed how to store an optimal alphabetic code in O(σ lgL) bits such that695

encoding and decoding any codeword of length ` takes O(min(`, lgL)) time.696

We also showed how to store it in O
(
σ lgL+ 2L

ε
)

bits, where ε is any positive697

constant, such that encoding and decoding any such codeword takes O(lg `)698

time. We thus answered an open problem from the conference version of this699

paper [1]. We then gave an approximation that worsens the average code700

length by a factor of 1+O
(
1/
√

lg σ
)
, but in exchange requires only o(σ) bits701

and encodes and decodes in constant time.702
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We then consider a family of codes where, at any level, the strings leading703

to leaves lexicographically precede the strings leading to internal nodes, if we704

read them upwards. For those we obtain a representation using O(σ lgL)705

bits and encoding and decoding in time O(`), and even in constant time if706

we use O
(
2εL
)

further bits, where ε is again any positive constant. We have707

implemented the simple version of these codes, which are used for compress-708

ing wavelet matrices [15], and shown that our encodings are significantly709

smaller than classical ones in practice (up to 30 times), albeit also slower710

(up to 30 times). We note that in situations when our encodings are small711

enough to fit in a faster level of the memory hierarchy, they are likely to be712

also significantly faster than classical ones.713

We leave as an open question extending our results to dynamic coding714

[30, 31, 32, 33, 34] and to codes with unequal codeword-symbol costs [32, 35].715
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