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Abstract

We present the first solution to finding τ -majorities on tree paths. Given a
tree of n nodes, each with a label from [1..σ], and a fixed threshold 0 < τ < 1,
such a query gives two nodes u and v and asks for all the labels that appear
more than τ · |Puv| times in the path Puv from u to v, where |Puv| denotes
the number of nodes in Puv. Note that the answer to any query is of size
up to 1/τ . On a w-bit RAM, we obtain a linear-space data structure with
O((1/τ) lg lgw σ) query time, which is worst-case optimal for polylogarithmic-
sized alphabets. We also describe two succinct-space solutions with query
time O((1/τ) lg∗ n lg lgw σ). One uses 2nH+4n+o(n)(H+1) bits, where H ≤
lg σ is the entropy of the label distribution; the other uses nH+O(n)+o(nH)
bits. By using just o(n lg σ) extra bits, our succinct structures allow τ to be
specified at query time. We obtain analogous results to find a τ -minority,
that is, an element that appears between 1 and τ · |Puv| times in Puv.

Keywords: Majorities on trees, Succinct data structures

1. Introduction

Finding frequent elements in subsets of a multiset is a fundamental oper-
ation for data analysis and data mining [2, 3]. When the sets have a certain
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structure, it is possible to preprocess the multiset to build data structures
that efficiently find the frequent elements in any subset.

The best studied multiset structure is the sequence, where the subsets
that can be queried are ranges (i.e., contiguous subsequences) of the sequence.
Applications of this case include time sequences, linear-versioned structures,
and one-dimensional models, for example. Data structures for finding the

mode (i.e., the most frequent element) in a range require time O(
√
n/ lg n),

and it is unlikely that this can be done much better within reasonable extra
space [4]. Instead, listing all the elements whose relative frequency in a
range is over some fraction τ (called the τ -majorities of the range) is feasible
within linear space and O(1/τ) time, which is worst-case optimal [5]. Mode
and τ -majority queries on higher-dimensional arrays have also been studied
[6, 4].

In this paper we focus on finding frequent elements when the subsets that
can be queried are the labels on paths from one given node to another in a
labeled tree. For example, given a minimum spanning tree of a graph, we
might be interested in frequent node types on the path between two nodes.
Path mode or τ -majority queries on multi-labeled trees could be useful when
handling the tree of versions of a document or a piece of software, or a
phylogenetic tree (which is essentially a tree of versions of a genome). If each
node stores a list of the sections (i.e., chapters, modules, genes) on which its
version differs from its parent’s, then we can efficiently query which sections
are changed most frequently between two given versions.

There has been relatively little previous work on finding frequent elements
on tree paths. Krizanc et al. [7] considered path mode queries, obtaining
O(
√
n lg n) query time. This was recently improved by Durocher et al. [8],

who obtained O(
√
n/w lg lg n) time on a RAM machine of w = Ω(lg n) bits.

As in the special case of sequences, these times are not likely to improve
much. No previous work has considered the problem of finding path τ -
majority queries, which is more tractable than finding the path mode. This
is our focus.

We present the first data structures to support path τ -majority queries on
trees of n nodes, with labels in [1..σ], on a RAM machine. We first obtain a
data structure using O(n lg n) space and O((1/τ) lg lgw σ) time (Theorem 3).
Building on this result, we manage to reduce the space to O(n) without
affecting the query time (Theorem 7). We then show that our linear-space
data structure can be further compressed, to either 2nH + 4n+ o(n)(H + 1)
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bits or nH + O(n) + o(nH) bits, where H ≤ lg σ is the entropy of the
distribution of the labels in T , while increasing the query time of the linear-
space data structure only slightly, to O((1/τ) lg∗ n lg lgw σ) (Theorems 8 and
9). Finally, we extend the succinct results so as to allow τ to be specified at
query time, at the cost of just o(n lg σ) further bits of space (Theorems 11
and 12).

Durocher et al. [8] also considered queries that look for the least frequent
elements and τ -minorities on paths. In Theorem 14, we slightly improve their
query time to O((1/τ) lg lgw σ) within linear space, and in Theorem 15 we
show how to compress the data structure to fit in succinct space, with only
a very slight increase in query time.

Finally, we describe how to adapt our results to multi-labeled trees and
to path queries on functions, and discuss some open problems.

An early partial version of this paper appeared in Proc. ISAAC 2018 [1].
This version includes an improved complexity for the linear-space version
(so the super-linear space version of the conference paper becomes obsolete),
which is also simplified. It also includes new results for τ specified at query
time, for τ -minorities, and for extensions to path queries on functions. Fi-
nally, we have improved the writing and added more detail, fixed some minor
errors.

2. Preliminaries

2.1. Definitions

We deal with rooted ordinal trees (or just trees) T . Further, our trees are
labeled, that is, each node u of T has an integer label label(u) ∈ [1..σ]. We
assume that, if our main tree has n nodes, then σ = O(n); if not, we can
remap the labels to a range of size at most n without altering the semantics
of the queries of interest in this paper.

The path between nodes u and v in a tree T is the (only) sequence of
nodes Puv = 〈u = z1, z2, . . . , zk−1, zk = v〉 such that there is an edge in T
between each pair zi and zi+1, for 1 ≤ i < k. The length of the path is
|Puv| = k; for example, the length of the path Puu is 1. Any path from u to v
goes from u to the lowest common ancestor of u and v, and then from there
it goes to v (if u is an ancestor of v or vice versa, one of these two subpaths
is empty).

Given a real number 0 < τ < 1, a τ -majority of the path Puv is any label
that appears (strictly) more than τ ·|Puv| times among the labels of the nodes
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in Puv. The path τ -majority problem is, given u and v, list all the τ -majorities
in the path Puv. Note that there can be up to b1/τc such τ -majorities.

Our results hold in the RAM model of computation, assuming a computer
word of w = Ω(lg n) bits, supporting the standard operations.

Our logarithms are to the base 2 by default. By lg[k] n we mean the
function that applies logarithm k times to n, i.e., lg[0] n = n and lg[k] n =
lg(lg[k−1] n). By lg∗ n we denote the iterated logarithm, i.e., the minimum k
such that lg[k] n ≤ 1.

2.2. Sequence representations

A bitvector B[1..n] can be represented within n+o(n) bits so that the fol-
lowing operations take constant time: access(B, i) returns B[i], rankb(B, i)
returns the number of times bit b appears in B[1..i], and selectb(B, j) re-
turns the position of the jth occurrence of b in B [9]. If B has m 1s, then it
can be represented within m lg(n/m) + O(m) bits while retaining the same
operation times [10]. Note the space is o(n) bits if m = o(n). Those struc-
tures can be built in linear time.

Analogous operations are defined on sequences S[1..n] over alphabets
[1..σ]. For example, one can represent S within nH + o(n)(H + 1) bits,
where H ≤ lg σ is the entropy of the distribution of symbols in S, so that
rank takes time O(lg lgw σ), access takes time O(1), and select takes
any time in ω(1) [11, Thm. 8]. The construction takes linear time. While
this rank time is optimal, we can answer partial rank queries in O(1) time,
prank(S, i) = rankS[i](S, i), by adding O(n(1 + lgH)) bits on top of a repre-
sentation giving constant-time access [12, Sec. 3]. This construction requires
linear randomized time.

2.3. Range τ -majorities on sequences

A special version of the path τ -majority queries on trees is range τ -
majority queries on sequences S[1..n], which have been studied in greater
depth. Given i and j, the problem is to return all the distinct symbols that
appear more than τ · (j − i + 1) times in S[i..j]. The most recent result on
this problem [13, 5] is a linear-space data structure, built in O(n lg n) time,
that answers queries in the worst-case optimal time, O(1/τ).

For our succinct representations, we also use a data structure [5, Thm. 5.2]
that requires nH+o(n)(H+1) bits, and can answer range τ -majority queries
in any time in (1/τ) · ω(1). The structure is built on the sequence repre-
sentation mentioned above [11, Thm. 8], and thus it includes its support for
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access, rank, and select queries on the sequence. To obtain the given times
for τ -majorities, the structure includes the support for partial rank queries
[12, Sec. 3], and therefore its construction time is randomized. In this paper,
however, it will be sufficient to obtain O((1/τ) lg lgw σ) time, and therefore
we can replace their prank queries by general rank operations. These take
time O(lg lgw σ) instead of O(1), but can be built in linear time.1 Therefore,
this slightly slower structure can also be built in O(n lg n) deterministic time.

When a set has no structure, we can find its τ -majorities in linear time.
Misra and Gries [14] proposed an optimal solution that computes all τ -
majorities using O(n lg(1/τ)) comparisons. When implemented on a word
RAM over an integer alphabet of size σ, the running time becomes O(n) [3].

2.4. Tree operations

For tree nodes u and v, we define the operations root (the tree root),
parent(u) (the parent of node u), depth(u) (the depth of node u, 0 being the
depth of the root), preorder(u) (the rank of u in a preorder traversal of T ),
postorder(u) (the rank of u in a postorder traversal of T ), subtreesize(u)
(the number of nodes descending from u, including u), anc(u, d) (the ancestor
of u at depth d), and lca(u, v) (the lowest common ancestor of u and v).
All those operations can be supported in constant time and linear space on
a static tree after a linear-time preprocessing, trivially with the exceptions
of anc [15] and lca [16].

A less classical query is labelanc(u, `), which returns the nearest ancestor
of u (possibly u itself) labeled ` (note that the label of u need not be `). If
u has no ancestor labeled `, labelanc(u, `) returns null. This operation
can be solved in time O(lg lgw σ) using linear space and preprocessing time
[17, 18, 8].

2.5. Succinct tree representations

A tree T of n nodes can be represented as a sequence P [1..2n] of parenthe-
ses (i.e., a bit sequence). In particular, we consider the balanced parentheses
representation, where we traverse T in depth-first order, writing an opening
parenthesis when reaching a node and a closing one when leaving its subtree.
A node is identified with the position P [i] of its opening parenthesis. By

1In fact, their structure [5] can be considerably simplified if one can spend the time of
a general rank query per returned majority.
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using 2n + o(n) bits, all the tree operations defined in Section 2.4 (except
those on labels) can be supported in constant time [19].

This representation also supports access, rank and select on the bitvec-
tor of parentheses, and the operations close(P, i) (the position of the paren-
thesis closing the one that opens at P [i]), open(P, i) (the position of the
parenthesis opening the one that closes at P [i]), and enclose(P, i) (the po-
sition of the rightmost opening parenthesis whose corresponding parenthesis
pair encloses P [i]; when P represents a tree, this parenthesis represents the
parent of the node to which P [i]).

Labeled trees can be represented within nH + 2n + o(n)(H + 1) bits by
adding the sequence S[1..n] of the node labels in preorder, so that label(i) =
access(S, preorder(i)).

3. An O(n lgn)-Space Solution

In this section we design a data structure answering path τ -majority
queries on a tree of n nodes using O(n lg n) space and O((1/τ) lg lgw σ) time.
This introduces the basic ideas to obtain our final results.

We start by marking O(τn) tree nodes, in a way that any node has a
marked ancestor at distance O(1/τ). A simple way to obtain these bounds is
to mark every node whose height is ≥ d1/τe and whose depth is a multiple
of d1/τe. Therefore, every marked node is the nearest marked ancestor of at
least d1/τe − 1 distinct non-marked nodes, which guarantees that there are
≤ τn marked nodes. On the other hand, any node is at distance at most
2d1/τe − 1 from its nearest marked ancestor.

For each marked node x, we will consider prefixes Pi(x) of the labels in
the path from x to the root, of length 1 + 2i, that is,

Pi(x)=〈label(x), label(parent(x)), label(parent2(x)), . . . , label(parent2
i
(x))〉

(terminating the sequence at the root if we reach it). For each 0 ≤ i ≤
dlg depth(x)e, we store Ci(x), the set of (τ/2)-majorities in Pi(x). Note that
|Ci(x)| ≤ 2/τ for any x and i.

By successive applications of the next lemma we have that, to find all the
τ -majorities in the path from u to v, we can partition the path into several
subpaths and then consider just the τ -majorities in each subpath.

Lemma 1. Let u and v be two tree nodes, and let z be an intermediate node
in the path. Then, a τ -majority in the path from u to v is a τ -majority in
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the path from u to z (including z) or a τ -majority in the path from z to v
(excluding z), or in both.

Proof. Let duz be the distance from u to z (counting z) and dzv be the
distance from z to v (not counting z). Then the path from u to v is of length
d = duz + dzv. If a label ` occurs at most τ · duz times in the path from u to
z and at most τ · dzv times in the path from z to v, then it occurs at most
τ(duz + dzv) = τ · d times in the path from u to v.

Let us now show that the candidates we record for marked nodes are
sufficient to find path τ -majorities towards their ancestors.

Lemma 2. Let x be a marked node. All the τ -majorities in the path from x
to a proper ancestor z are included in Ci(x) for some suitable i.

Proof. Let dxz = depth(x) − depth(z) be the distance from x to z (i.e.,
the length of the path from x to z minus 1). Let i = dlg dxze. The prefix
Pi(x) contains all the nodes in an upward path of length 1 + 2i starting at
x, where dxz ≤ 2i < 2dxz. Therefore, Pi(x) contains node z, but its length is
|Pi(x)| < 1+2dxz. Therefore, any τ -majority in the path from x to z appears
more than τ · (1 + dxz) > (τ/2) · (1 + 2dxz) > (τ/2) · |Pi(x)| times, and thus
it is a (τ/2)-majority recorded in Ci(x).

3.1. Queries

With the properties above, we can find a candidate set of size O(1/τ)
for the path τ -majorities between arbitrary tree nodes u and v. Let z =
lca(u, v). If v 6= z, let us also define z′ = anc(v, depth(z) + 1), that is, the
child of z in the path to v. The path is then split into at most four subpaths,
each of which can be empty:

1. The nodes from u to its nearest marked ancestor, x, not including x. If
x does not exist or is a proper ancestor of z, then this subpath contains
the nodes from u to z. The length of this path is less than 2d1/τe by
the definition of marked nodes, and it is empty if u = x.

2. The nodes from v to its nearest marked ancestor, y, not including y. If
y does not exist or is an ancestor of z, then this subpath contains the
nodes from v to z′. The length of this path is again less than 2d1/τe,
and it is empty if v = y or v = z.

3. The nodes from x to z. This path exists only if x exists and descends
from z.
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4. The nodes from y to z′. This path exists only if y exists and descends
from z′.

By Lemma 1, any τ -majority in the path from u to v must be a τ -majority
in some of these four paths. For the paths 1 and 2, we consider all their up
to 2d1/τe − 1 nodes as candidates. For the paths 3 and 4, we use Lemma 2
to find suitable values i and j so that Ci(x) and Cj(y), both of size at most
2/τ , contain all the possible τ -majorities in those paths. In total, we obtain
a set of at most 8/τ + O(1) candidates that contain all the τ -majorities in
the path from u to v.

In order to verify whether a candidate is indeed a τ -majority, we follow the
technique of Durocher et al. [8]. Every tree node u will store count(u), the
number of times its label occurs in the path from u to the root. We also make
use of the operation labelanc(u, `). If u has no ancestor labeled `, this op-
eration returns null, and we define count(null) = 0. Therefore, the number
of times label ` occurs in the path from u to an ancestor z of u (including z)
can be computed as count(labelanc(u, `))−count(labelanc(parent(z), `)).
Each of our candidates can then be checked by counting their occurrences in
the path from u to v using

(count(labelanc(u, `))− count(labelanc(parent(z), `)))

+ (count(labelanc(v, `))− count(labelanc(z, `))).

The time to perform query labelanc is O(lg lgw σ) using a linear-space data
structure on the tree [17, 18, 8], and therefore we find all the path τ -majorities
in time O((1/τ) lg lgw σ).

The space of our data structure is dominated by the O(lg n) candidate
sets Ci(x) we store for the marked nodes x. These amount to O((1/τ) lg n)
space per marked node, of which there are O(τn). Thus, we spend O(n lg n)
space in total.

Theorem 3. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1.
On a RAM machine of w-bit words, we can build an O(n lg n) space data
structure that answers path τ -majority queries in time O((1/τ) lg lgw σ).

3.2. Construction

The construction of the data structure is easily carried out in linear time
(including the fields count and the data structure to support labelanc [8]),
except for the candidate sets Ci(x) of the marked nodes x. We can com-
pute the sets Ci(x) for all i in total time O(depth(x)) using the linear-time
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algorithm of Misra and Gries [14] because we compute (τ/2)-majorities of
doubling-length prefixes Pi(x). This amounts to time O(mt) on a tree of t
nodes and m marked nodes. In our case, where t = n and m ≤ τn, this is
O(τn2).

To reduce this time, we proceed as follows. First we build all the data
structure components except the sets Ci(x). We then decompose the tree
into heavy paths [20] in linear time, and collect the labels along the heavy
paths to form a set of sequences. On the sequences, we build in O(t lg t)
time the range τ -majority data structure [13, 5] that answers queries in time
O(1/τ). The prefix Pi(x) for any marked node x then spans O(lg t) sequence
ranges, corresponding to the heavy paths intersected by Pi(x). We can then
compute Ci(x) by collecting and checking the O(1/τ) (τ/2)-majorities from
each of those O(lg t) ranges.

Let the path from x to the root be formed by O(lg t) heavy path segments
π1, . . . , πk. We first compute the O(1/τ) (τ/2)-majorities in the sequences
corresponding to each prefix π1, . . . , πk: For each πj, we (1) compute its 2/τ
majorities on the corresponding sequence in time O(1/τ), (2) add them to
the set of 2/τ majorities already computed for π1, . . . , πj−1, and (3) check
the exact frequencies of all the 4/τ candidates in the path π1, . . . , πj in time
O((1/τ) lg lgw σ), using the structures already computed on the tree. All the
(τ/2)-majorities for π1, . . . , πj are then found.

Each prefix Pi(x) is formed by some prefix π1, . . . , πj−1 plus a prefix of πj.
We can then carry out a process similar to the one to compute the majorities
of π1, . . . , πj, but using only the proper prefix of πj. The O(lg t) sets Ci(x)
are then computed in total time O((1/τ) lg t lg lgw σ). Added over the m
marked nodes, we obtain O((1/τ)m lg t lg lgw σ) construction time.

Lemma 4. On a tree of t nodes, m of which are marked, all the candidate
sets Ci(x) can be built in time O((1/τ)m lg t lg lgw σ).

The construction time in our case, where t = n and m ≤ τn, is the
following.

Corollary 5. The data structure of Theorem 3 can be built in O(n lg n lg lgw σ)
time.

4. A Linear-Space Solution

We can reduce the space of our data structure by stratifying our tree.
First, let us create a separate structure to handle unary paths, that is, formed
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by nodes with only one child. The labels of upward maximal unary paths are
laid out in a sequence, and the sequences of the labels of all the unary paths
in T are concatenated into a single sequence, S, of length at most n. On S
we build the linear-space data structure that solves range τ -majority queries
in time O(1/τ) [13, 5]. Each node in a unary path of T points to its position
in S. Each node also stores a pointer to its nearest branching ancestor (i.e.,
one with more than one child).

The stratification then proceeds as follows. We say that a tree node is
large if it has more than (1/τ) lg n descendant nodes (counting itself); other
nodes are small. Then the subset of the large nodes, which is closed by
parent, induces a subtree T ′ of T with the same root and containing at most
τn/ lg n leaves, because for each leaf in T ′ there are at least (1/τ) lg n − 1
distinct nodes of T not in T ′. Further, T − T ′ is a forest of trees {Fj}, each
of size at most (1/τ) lg n.

We will use for T ′ a structure similar to the one from Section 3, with
some changes to ensure linear space. Note that T ′ may have Θ(n) nodes, but
since it has at most τn/ lg n leaves, T ′ has only O(τn/ lg n) branching nodes.
We modify the marking scheme, so that we mark precisely the branching
nodes in T ′. Spending O((1/τ) lg n) space for the candidate sets Ci(x) over
all branching nodes of T ′ adds up to O(n) space.

The procedure to solve path τ -majority queries on T ′ is then as follows.
We split the path from u to v into four subpaths, exactly as in Section 3.
The subpaths of type 1 and 2 can now be of arbitrary length, but they are
unary, thus we obtain their (up to) 1/τ candidates in time O(1/τ) from the
corresponding range of S. Finally, we check all the O(1/τ) candidates in
time O((1/τ) lg lgw σ) as in Section 3.

The nodes u and v may, however, belong to some small tree Fj, which is
of size |Fj| ≤ (1/τ) lg n. We preprocess all those trees Fj in a way analogous
to Section 3, using its same marking scheme to ensure that at most τ |Fj|
nodes x are marked. The definition of the prefix Pi(x), and consequently
of their (τ/2)-majorities Ci(x), however, is slightly modified: P ′i (x) is the
sequence of the labels of the first 1 + 2i/τ nodes in the path from x to the
root of its small subtree Fj, that is,

P ′i (x)=〈label(x),label(parent(x)),label(parent2(x)),. . .,label(parent2
i/τ(x))〉

terminating the sequence at the root of Fj if we reach it. Let depthFj
(x)

be the depth of x within Fj. For each 0 ≤ i ≤ dlg(τ · depthFj
(x))e ≤

dlg(τ |Fj|)e ≤ dlg lg ne, we store C ′i(x), the set of (τ/2)-majorities in P ′i (x).
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The sizes |C ′i(x)| are still at most 2/τ for any x and i. Lemma 2 applies with
C ′i(x) as well, as we show next.

Lemma 6. Let x be a marked node in a small tree Fj. All the τ -majorities
in the path from x to a proper ancestor z in Fj at distance dxz > 1/(2τ) are
included in C ′i(x) for some suitable i.

Proof. Let dxz = depth(x)− depth(z) be the distance from x to z (i.e., the
length of the path from x to z minus 1). Let i = dlg(τ · dxz)e ≥ 0. The path
P ′i (x) contains all the nodes in an upward path of length 1 + 2i/τ starting
at x, where dxz ≤ 2i/τ < 2dxz. Therefore, P ′i (x) contains node z, but its
length is |P ′i (x)| < 1 + 2dxz. Therefore, any τ -majority in the path from x to
z appears more than τ · (1 + dxz) > (τ/2) · (1 + 2dxz) > (τ/2) · |P ′i (x)| times,
and thus it is a (τ/2)-majority recorded in C ′i(x).

Note that, if dxz ≤ 1/(2τ), we do not need to use any C ′i(x); we can
simply collect all the O(1/τ) elements in the path from x to z.

If the O(lg lg n) candidate sets C ′i(x), for a marked node x, were stored
as in Section 3, they would require O((1/τ) lg σ lg lg n) bits. Instead of
storing the candidate labels ` directly, however, we will store depth(y),
where y is the nearest ancestor of x with label `. We can then recover
` = label(anc(x, depth(y))) in constant time. Since the depths in Fj are
also O((1/τ) lg n), we need only O(lg((1/τ) lg n)) bits per candidate. Fur-
ther, by sorting the candidates by their depth(y) value, we can encode only
the differences between consecutive depths using γ-codes [21]. Encoding
k increasing numbers in [1..t] with this method requires O(k lg(t/k)) bits;
therefore we can encode our O(1/τ) candidates using O((1/τ) lg lg n) bits in
total. Added over all the O(lg lg n) values of i, the candidates Ci(x) require
O((1/τ)(lg lg n)2) bits per marked node. Added over all the O(τ |Fj|) marked
nodes of Fj, this amounts to O(|Fj|(lg lg n)2) bits of space, and added over
all the small trees Fj, this yields O(n(lg lg n)2) bits, or o(n) words, in total.
The other pointers of Fj, as well as node labels, can be represented normally,
as they are O(n) in total.

To solve a general path τ -majority query from u to v, we compute z =
lca(u, v) and process the path from u to z as follows:

• If u (and thus z) belongs to T ′, then we proceed on T ′ as explained.

• If z (and thus u) belongs to some small tree Fj, then we proceed on
Fj as in Section 3, collecting O(1/τ) candidates in our path from u to
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its nearest marked ancestor x, and then other O(1/τ) candidates from
the corresponding set C ′i(x).

• If u is in some Fj and z is in T ′, then let u′ be the root of Fj (we have
enough space to store a pointer to u′ for each node u), whose parent
is a leaf in T ′. Then we collect O(1/τ) candidates in the path from u
to u′ using the mechanism of Fj, and then other O(1/τ) candidates in
the path from the parent of u′ to z using the mechanism of T ′.

Other O(1/τ) candidates are collected analogously in the path from v to
z′, where z′ is the child of z in the path to v, that is, z′ = anc(v, depth(z) +
1). Finally, all the candidates are checked as in Section 3, each in time
O(lg lgw σ).

The time to build the structures on T ′, using the technique of Lemma 4,
is O(n lg lgw σ) because T ′ has t = O(n) nodes and m = O(τn/ lg n) marked
nodes. For the small trees Fj, we can use the O(mt)-time method described
in the first paragraph of Section 3.2. Since on Fj it holds that t = |Fj| ≤
(1/τ) lg n and m ≤ τ · |Fj|, the construction time is O(|Fj| lg n), which adds
up to O(n lg n). Note that we also need O(n lg n) time to build the range
majority data structure on S.

Theorem 7. Let T be a tree of n nodes with labels in [1..σ], and 0 <
τ < 1. On a RAM machine of w-bit words, we can build in O(n lg n) time
an O(n) space data structure that answers path τ -majority queries in time
O((1/τ) lg lgw σ).

Example. Figure 1 shows an example tree T where we have defined that a
node is large if it has more than 7 descendant nodes (including itself). The
large nodes of T form T ′, which has gray background. The branching nodes
of T ′ are circled; those are the sampled nodes of T ′. We have chosen the
path between a small node u and a large node v. The node u is then within
a small subtree Fj, rooted at u′. The path Puv between u and v is split into
several subpaths: (1) from u to u′, which is handled within the subtree Fj
(possibly with a mix of brute force and the use of a set C ′i(·)); (2) from the
parent of u′ to its nearest marked ancestor x in T ′ (excluding x), which is
a unary path and thus handled with a range query on the sequence S (not
drawn); (3) from x to z = lca(u, v), which is handled with a set Ci(x) for
some i; (4) from v to z′ = anc(v, depth(z) + 1), which is handled with a set
Ci(v) for some i, because v belongs to T ′ and is a sampled node.
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Figure 1: An example tree T where the labels are the letters of each node. The top tree
T ′ of large nodes (with more than 7 descendants) has gray background. The path between
two chosen nodes u and v is highlighted in dashed lines; note that u belongs to a small
subtree Fj rooted at u′, whereas v belongs to T ′. We also show the nodes z = lca(u, v)
and z′ = anc(v, depth(z) + 1). Finally, we show the nearest branching ancestor x or u′.

Figure 2 shows the nodes included in each prefix Pi(x) in the path from
x to the root of T ′, for i = 0 to 4.

Assume τ = 1/3. The subpaths (1) and (2) do not yield any candidate
to τ -majority, since no label appears in more than a third of the subpath
nodes. Instead, C4(x) = {b, c} (since b and c are the (τ/2 = 1/6)-majorities
in the path P4(x) from x to the root of T ′) and C3(v) = {a, b} (since a
and b are the (τ/2 = 1/6)-majorities in the path P3(v) from v to z′). We
thus check the candidates a, b, and c, and report only b, because it appears
9 > τ · |Puv| = (1/3) · 25 = 8.3 times in Puv.

5. A Succinct Space Solution

To obtain a succinct-space structure from Theorem 7, we increase the
thresholds that define the large nodes in Section 4 and generalize the strat-
ification to several levels. Let us say that the original tree T is of level 0.
We now define the large nodes as those whose subtree size is larger than

13



a

a

b

b

c
c

d

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

c

c

c

c

c

c

c

c

c

d

d

d

d

d

d

d

d

e

e

e

e

e

e

e

e

f

f

f

f

f

ff

f

g

g

g

g

g

g

h

h

i i

i

i

i

i

i

i

i
j

j

j

h

h

h

h

h

h

vx

z
z′

e

d

d

d

g
h

h

e

a

f

d

i

f

b

g

f

a

a

d

i

i

a

i

a

a

b

b

c
c

d

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

c

c

c

c

c

c

c

c

c

d

d

d

d

d

d

d

d

e

e

e

e

e

e

e

e

f

f

f

f

f

ff

f

g

g

g

g

g

g

h

h

i i

i

i

i

i

i

i

i
j

j

j

h

h

h

h

h

h

e

d

d

d

g
h

h

e

a

f

d

i

f

b

g

f

a

a

d

i

i

a

i

x

Figure 2: The precomputed prefixes Pi(x), for 0 ≤ i ≤ 4, on the tree T and node x of
Figure 1. The corresponding (τ/2 = 1/6)-majorities for the prefixes Pi(x) are C0(x) =
{b, c}, C1(x) = {a, b, c}, C2(x) = {a, b, c, e}, C3(x) = {b, c}, and C4(x) = {b, c}.

(1/τ)(lg n)3; these form the nodes corresponding to T ′ in Section 4. The
small trees Fj of Section 4, which here are of size ≤ (1/τ)(lg n)3, are said to
be of level 1. We recursively apply the same stratification on the small trees
Fj. On those, we define large nodes as those whose subtree size is larger than
(1/τ)(lg lg n)3; the resulting small trees are said to be of level 2. We iterate
this process κ times. In general, the trees of level 1 ≤ k ≤ κ are of size at
most (1/τ)(lg[k] n)3. The large nodes of the trees of level 0 ≤ k < κ are those
whose subtree size exceeds (1/τ)(lg[k+1] n)3. The smallest trees, of level κ,
are of size (1/τ)(lg[κ] n)3 and are not further decomposed.

Level 0 can be handled exactly as T ′ in Section 4. In this case, since T ′ has
O(τn/ lg3 n) branching nodes, the space for the sets Ci(x) amounts to only
O(n/ lg n) = o(n) bits. In all the other levels, except the last one, we sample
the branching nodes (as done for T ′ in Section 4), but build on them the sets
C ′i(x) (as done for the subtrees Fj in Section 4). A tree F of level 1 ≤ k < κ

has t ≤ (1/τ)(lg[k] n)3 nodes andm ≤ τ ·|F |/(lg[k+1] n)3 branching nodes. The
representation of a set C ′i(x) in such a tree F , using the described differential
encoding, takes O((1/τ) lg((lg[k] n)3)) = O((1/τ) lg[k+1] n) bits. Added over
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all the branching nodes, we obtain O(|F |/(lg[k+1] n)2) bits. Since every node
belongs to one tree F , the total space amounts to O(n/(lg[κ] n)2) bits.

We aim to use about lg∗ n levels. This will introduce a slowdown factor
of the same order in query times, but in exchange the smallest trees will
be small enough that they can be traversed by brute force, within the same
penalty factor as well. We must carefully choose κ so as to also obtain o(n)
bits of space for all the sets C ′i(x). Thus we set κ = 1 + lg∗ n − lg∗∗ n,
so that there are κ = O(lg∗ n) levels, and the last-level subtrees are of
size O((1/τ)(lg[κ] n)3) = O((1/τ)(lg[1+lg∗ n−lg∗∗ n] n)3) = O((1/τ)(lg lg∗ n)3) =
o((1/τ) lg∗ n). Still, there are O(τn/(lg[κ] n)3) = O(τn/(lg[1+lg∗ n−lg∗∗ n] n)3) =
O(τn/(lg lg∗ n)3) = o(n) subtrees in the last level, and the space of all
the sets C ′i(x) is bounded by O(n/(lg[κ] n)2) = O(n/(lg[1+lg∗ n−lg∗∗ n] n)2) =
O(n/(lg lg∗ n)2) = o(n) bits.

The general process to solve a path τ -majority query from u to v is then
as follows. We compute z = lca(u, v) and split the path from u to z into
k − k′ + 1 subpaths, where k′ and k (note k′ ≤ k ≤ κ) are the levels of the
subtree where z and u belong, respectively. Let us call ui the root of the
subtree of level i that is an ancestor of u, except that we call uk′ = z. For
uniformity, the sets Ci(x) of level 0 are called C ′i(x) as well.

1. If k = κ, then u belongs to one of the smallest subtrees. We then
collect the o((1/τ) lg∗ n) node labels in the path from u to uκ one by
one and include them in the set of candidates. We then move to the
parent of that root, setting u← parent(uκ) and k ← κ− 1.

2. At levels k′ ≤ k < κ, if u is a branching node, we collect the 2/τ
candidates from the corresponding set C ′i(u), where i is sufficient to
cover uk (C ′i(u) will not store candidates beyond the subtree root). We
then set u← parent(uk) and k ← k − 1.

3. At levels k′ ≤ k < κ, if u is not a branching node, let x be lowest
between parent(z) and the nearest branching ancestor of u. Let also
p be the position of u in S. Then we find the O(1/τ) τ -majorities in
S[p..p + depth(u) − depth(x) − 1] in time O((1/τ) lg lgw σ); see Sec-
tion 5.1. We then continue from u ← x and k ← k(x), where k(x) is
the level of the subtree where x belongs. Note that k(x) can be equal
to k, but it can also be any other level less than k.

4. We stop when u = parent(z).

A similar procedure is followed to collect the candidates from v to z′,
where again z′ = anc(v, depth(z) + 1) is the child of z in the path to v.
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In total, since each path has at most one case 2 and one case 3 per level
k, we collect at most 2κ = O(lg∗ n) candidate sets of size O(1/τ), plus two
of size o((1/τ) lg∗ n). The total cost to verify all the candidates is then
O((1/τ) lg∗ n lg lgw σ).

The construction time, using Lemma 4 on level 0, is O(n lg lgw σ) as in
Section 4. Applied on level 1, the lemma yields O((n/(lg lg n)3) lg((1/τ) lg n)
lg lgw σ) = o(n lg n) construction time. For higher levels, we use the basic
quadratic method described in the first paragraph of Section 3.2: a subtree
F of level 2 ≤ k < κ is built in time O(mt) = O(|F |(lg[k] n)3/(lg[k+1] n)3),
which adds up toO(n(lg[k] n)3/(lg[k+1] n)3) time for level k. This is maximized
at level k = 2, yielding time O(n(lg lg n/ lg lg lg n)3) = o(n lg n). All these
costs are dominated by the O(n lg n) time to build the range majority data
structure on S, which also absorbs the time to sort all the sets Ci(x) by
decreasing frequency.

We still need, however, to use succinct space for all the other linear-
space components of the structure. The topology of the whole tree T can
be represented using a sequence P of balanced parentheses in 2n+ o(n) bits,
supporting in constant time all the standard tree traversal operations we
use [19]. We assume that opening and closing parentheses are represented
with 1s and 0s in P , respectively. Let us now focus on the less standard
operations needed.

5.1. Counting labels in paths

In Section 3, we count the number of times a label ` occurs in the path
from u to the root by means of a query labelanc and by storing count fields
in the nodes. In Section 4, we use in addition a string S to support range
majority queries on the unary paths.

To solve labelanc queries, we use the representation of Durocher et al. [8,
Lem. 7], which uses nH+2n+o(n)(H+1) bits in addition to the 2n+o(n) bits
of the tree topology. This representation includes a string S[1..n] where all
the labels of T are written in preorder; any implementation of S supporting
access, rank, and select in time O(lg lgw σ) can be used (e.g., [11]). This
string can also play the role of the one we call S in Section 4, because the
labels of unary paths are contiguous in S, and any node v can access its label
from S[preorder(v)].

On top of this string we must also answer range τ -majority queries in
time O((1/τ) lg lgw σ). We can use the slow variant of the succinct structure
described in Section 2.3, which requires only o(n)(H + 1) additional bits and
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also supports access in O(1) time and rank and select in time O(lg lgw σ).
This variant of the structure is built in O(n lg n) time.

In addition to supporting operation labelanc, we need to store or com-
pute the count fields. Durocher et al. [8] also require this field, but find no
succinct way to represent it. We now show a way to obtain this value within
succinct space.

The sequence S lists the labels of T in preorder, that is, aligned with
the opening parentheses of P . Assume we have another sequence S ′[1..n]
where the labels of T are listed in postorder (i.e., aligned with the closing
parentheses of P ). Since the opened parentheses not yet closed in P [1..i] are
precisely node i and its ancestors, we can compute the number of times a
label ` appears in the path from P [i] to the root as

rank`(S, rank1(P, i))− rank`(S
′, rank0(P, i)).

Therefore, we can support this operation with nH+o(n)(H+1) additional
bits. Note that, with this representation, we do not need the operation
labelanc, since we do not need that P [i] itself is labeled `.

If we do use operation labelanc, however, we can ensure that P [i] is
labeled `, and another solution is possible based on partial rank queries. Let
o = rank`(S, rank1(P, i)) and c = rank`(S

′, rank0(P, i)) be the numbers of
opening and closing parentheses up to P [i], respectively, so that we want
to compute o − c. Since P [i] is labeled `, it holds that S[rank1(P, i))] = `,
and thus o = prank(S, rank1(P, i)). To compute c, we do not store S ′,
but rather S ′′[1..2n], so that S ′′[i] is the label of the node whose opening
or closing parenthesis is at P [i] (i.e., S ′′ is formed by interleaving S and
S ′). Then, prank(S ′′, i) = o + c; therefore the answer we seek is o − c =
2 · prank(S, rank1(P, i))− prank(S ′′, i).

We use the structure for constant-time partial rank queries [12, Sec. 3]
that requires O(n) + o(nH) bits on top of a sequence that can be accessed in
O(1) time. We can build it on S and also on S ′′, though we do not explicitly
represent S ′′: any access to S ′′ is simulated in constant time with S ′′[i] =
S[rank1(P, i)] if P [i] = 1, and S ′′[i] = S[rank1(P, open(P, i))] otherwise.
This partial rank structure is built in O(n) randomized time and in O(n lg n)
time with high probability.2

2It involves building perfect hash functions, which succeeds with constant probability
p in time O(n). Repeating c lg n times, the failure probability is 1−O(1/nc/ lg(1/p)).
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5.2. Other data structures

The other fields stored at tree nodes, which we must now compute within
succinct space, are the following:

Pointers to candidate sets C ′i(x). All the branching nodes in all subtrees
except those of level κ are marked, and there are O(n/(lg[κ] n)3) = o(n)
such nodes. We can then mark their preorder ranks with 1s in a bitvector
M [1..n]. Since M has o(n) 1s, it can be represented within o(n) bits [10] while
supporting constant-time rank and select operations. We can then find out
when a node i is marked (iff M [preorder(i)] = 1), and if it is, its rank among
all the marked nodes, r = rank1(M, preorder(i)). The C ′i(x) sets of all the
marked nodes x of any level can be written down in a contiguous memory
area of total size o(n) bits, sorted by the preorder rank of x. A bitvector C
of length o(n) marks the starting position of each new node x in this memory
area. Then the area for marked node i starts at p = select1(C, r). A second
bitvector D can mark the starting position of each C ′j(x) in the memory
area of each node x, and thus we access the specific set C ′j(x) from position
select1(D, rank1(D, p− 1) + j).

Pointers to subtree roots. We store an additional bitvector B[1..2n], parallel
to the parentheses bitvector P [1..2n]. In B, we mark with 1s the positions of
the opening and closing parentheses that are roots of subtrees of any level.
As there are O(n/(lg[κ] n)3) = o(n) such nodes, B can be represented within
o(n) bits while supporting constant-time rank and select operations. We
also store the sequence of o(n) parentheses P ′ corresponding to those in
P marked with 1s in B. The nearest subtree root containing node P [i]
is obtained by finding the nearest position to the left that is marked in
B, i.e., j = select1(B, r) with r = rank1(B, i), and then considering the
corresponding position P ′[r]. If it is an opening parenthesis, then the nearest
subtree root is the node whose parenthesis opens in P [j]. Otherwise, it is the
one opening at P [j′], where j′ = select1(B, enclose(P ′, open(P ′, r))) (see
[22, Sec. 4.1]).

Finding the nearest branching ancestor. A unary path looks like a sequence of
opening parentheses followed by a sequence of closing parentheses. The near-
est branching ancestor of P [i] is obtained in constant time by finding the near-
est closing parenthesis to the left, l = select0(rank0(P, i)), and the nearest
opening parenthesis to the right, r = select1(rank1(close(P, i))+1). Then
the answer is the larger between enclose(P, open(P, l)) and enclose(P, r).
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Determining the subtree level of a node. We can compute s = subtreesize(i)
of a node P [i] in constant time, so we can determine the corresponding level:
if s > (1/τ) lg3 n, it is level 1. Otherwise, we look up τ · s in a precomputed
table of size O(lg3 n) that stores the level corresponding to each possible size.

Therefore, depending on whether we represent both S and S ′ or use par-
tial rank structures, we obtain two results within succinct space.

Theorem 8. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1.
On a RAM machine of w-bit words, we can build in O(n lg n) time a data
structure using 2nH + 4n+ o(n)(H + 1) bits, where H ≤ lg σ is the entropy
of the distribution of the node labels, that answers path τ -majority queries in
time O((1/τ) lg∗ n lg lgw σ).

Theorem 9. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1.
On a RAM machine of w-bit words, we can build in O(n lg n) time (w.h.p.)
a data structure using nH+O(n)+o(nH) bits, where H ≤ lg σ is the entropy
of the distribution of the node labels, that answers path τ -majority queries in
time O((1/τ) lg∗ n lg lgw σ).

We can also retain the same complexity of the linear-space version by
using a constant number κ of levels, at the cost of using a slightly superlin-
ear number of bits. In this case, we do not use brute force on the last-level
trees, but rather combine the marking scheme of Section 3 with the stor-
age format of the sets C ′i(x). In this case, level κ requires O(n(lg[κ+1] n)2)
bits and its O(1/τ) candidates are obtained as in Section 3. Next we write
O(n(lg[κ+1] n)2) ⊂ O(n lg[κ] n) for simplicity.

Theorem 10. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1.
On a RAM machine of w-bit words, for any constant κ, we can build in
O(n lg n) time (w.h.p.) a data structure using nH + O(n lg[κ] n) + o(nH)
bits, where H ≤ lg σ is the entropy of the distribution of the node labels, that
answers path τ -majority queries in time O((1/τ) lg lgw σ).

We note that, within this space, all the typical tree navigation function-
ality, as well as access to labels, is supported.

6. Variable τ

Up to now, the value of τ is known at index construction time and cannot
be changed later (we can obviously query for some τ ′ ≥ τ by using τ ′ when
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verifying the candidates, but the time is still proportional to 1/τ). We aim
at a structure that is independent of τ and can receive it together with the
query nodes u and v, and answer in time proportional to 1/τ .

Note that, if τ = O(1/σ), we can simply test all the candidates of the
alphabet in Puv in time O(σ lg lgw σ) = O((1/τ) lg lgw σ). Therefore, we only
care about values τ > 2/σ.

Our solution builds on the succinct-space structure of Section 5. We build
one copy of the data structure for each value τ ′ = 1/2r, r ∈ [1..blg σc]. Then,
given τ at query time, we use the structure with the value τ ′ = 1/2dlg(1/τ)e.
This will return O(1/τ ′) = O(1/τ) candidates, since τ ′ ≥ τ/2 (the candidates
are then checked with the exact τ value).

This solution increases the space by a factor of lg σ. Note, however,
that in the succinct solutions of Theorems 8 to 10, the space component
O(nH) + 4n + o(n) is due to the tree topology and the sequence S, which
do not depend on the value of τ ′. In particular, the representation of S is
used to perform τ ′-majority queries on the unary paths, but it allows τ ′ be
specified at query time [5].

The structures that do depend on τ ′ (i.e., the information on levels and
all the candidate sets C ′i(x)) require only o(n) bits in Theorems 8 and 9,
and O(n lg[κ] n) bits in Theorem 10. These spaces stay succinct or near-
succinct even after our space increase. We then obtain results close to those
of Theorem 8 to 10, now for any τ specified at query time.

The construction time of the structure is O(n(lg σ/ lg lg n)2 + n lg n),
which includes the time to build lg σ copies of the C ′i(x) structures.

Theorem 11. Let T be a tree of n nodes with labels in [1..σ]. On a RAM
machine of w-bit words, we can build in O(n(lg σ/ lg lg n)2 + n lg n) time a
data structure using 2nH + 4n+ o(n lg σ) bits, where H ≤ lg σ is the entropy
of the distribution of the node labels, that answers path τ -majority queries
for any 0 < τ < 1, in time O((1/τ) lg∗ n lg lgw σ).

Theorem 12. Let T be a tree of n nodes with labels in [1..σ]. On a RAM
machine of w-bit words, we can build in O(n(lg σ/ lg lg n)2 + n lg n) time
(w.h.p.) a data structure using nH+O(n) + o(n lg σ) bits, where H ≤ lg σ is
the entropy of the distribution of the node labels, that answers path τ -majority
queries for any 0 < τ < 1, in time O((1/τ) lg∗ n lg lgw σ).

Theorem 13. Let T be a tree of n nodes with labels in [1..σ]. On a RAM ma-
chine of w-bit words, for any constant κ, we can build in O(n(lg σ/ lg lg n)2+
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n lg n) time (w.h.p.) a data structure using O(n lg σ lg[κ] n) bits, that answers
path τ -majority queries for any 0 < τ < 1, in time O((1/τ) lg lgw σ).

7. Path τ -Minorities

A path τ -minority query asks for a τ -minority in a given path Puv, that
is, a label that appears at least once and at most τ · |Puv| times in this path.
If we try A = 1 + b1/τc distinct elements in the path from u to v, then
one of them will turn out to be a τ -minority. With this idea, we extend the
technique of Chan et al. [23] to tree paths. To find a τ -minority, we will find
A distinct labels (or all the labels, if there are not that many) in the path
Puz, where z = lca(u, v), and check their frequency in Puv. We then run an
analogous process on the path Pvz. We will stop as soon as we find a label
that is not a τ -majority. We describe the process on Puz, as Pvz is analogous.
Note that we need to know τ only at query time.

To findA distinct labels, we will simulate on Puz the algorithm of Muthukr-
ishnan [24], which finds A distinct elements in any range of an array E. In
his algorithm, Muthukrishnan defines the array C where C[i] = max{j <
i, E[j] = E[i]} (C[i] is set to 0 if such a value does not exist) and builds on
C a range minimum query (RMQ) data structure; a range minimum query
asks for the minimum element in a given subrange of the array. Then he
finds A (or all the) distinct elements in any range E[i..j] via O(A) RMQs.

In our case, we store for each node u the field

prevlabel(u) = depth(labelanc(parent(u), label(u))) ,

which is the depth of the nearest ancestor of u with its same label (and −1 if
there is none). Then we conceptually define E and C over Puz, where E[i] =
label(anc(u, depth(z)−1+ i)) and C[i] = 1+prevlabel(anc(u, depth(z)−
1+ i)). Note that we do not store E or C explicitly, but each entry of E or C
can be computed in constant time using these formulas. To solve RMQs on
C, we also build the linear-space data structure of Chazelle [25], which can
return the minimum-weight node in any path of a weighted tree in constant
time. This data structure is constructed over the tree T , for which we assign
prevlabel(u) as the weight of each node u. With all these structures, we
can run Muthukrishnan’s algorithm and obtain A distinct labels of Puz. This
yields our first result, which slightly reduces the O((1/τ) lg lg n) time (within
linear space) of Durocher et al. [8]. Note that the prevlabel fields are easily
computed in O(n) time in a DFS traversal.
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Theorem 14. Let T be a tree of n nodes with labels in [1..σ]. On a RAM
machine of w-bit words, we can build an O(n) space data structure that an-
swers path τ -minority queries for any 0 < τ < 1, in time O((1/τ) lg lgw σ).
The structure is built in linear time.

It is likely that the result of Durocher et al. [8] can be improved to match
ours, by just using a faster predecessor data structure. We can, however,
make our solution succinct by using our tree representation of 2n+ o(n) bits
[19]. Instead of storing field prevlabel, we compute it on the fly with the
given formula. Using the structures of Durocher et al. [8, Lem. 7], we can
compute labelanc in time O(lg lgw σ). Their structure uses 2n + o(n) bits
in addition to the topology of T and the representation of S.

The structure for RMQs, on the other hand, can be replaced by the one
of Chan et al. [26], which uses 2n+o(n) further bits and answers RMQs with
O(α(n)) queries prevlabel(u), where α is the inverse Ackermann function.
Therefore, we can spot the A candidates in time O(A · α(n) lg lgw σ) and
then verify them in time O(A · lg lgw σ). This yields the first result for path
α-minority queries within succinct space.

Theorem 15. Let T be a tree of n nodes with labels in [1..σ]. On a RAM
machine of w-bit words, we can build in O(n) time a data structure using
nH+ 6n+o(n)(H+ 1) bits, where H ≤ lg σ is the entropy of the distribution
of the node labels, that answers path τ -minority queries for any 0 < τ < 1,
in time O((1/τ)α(n) lg lgw σ), where α is the inverse Ackermann function.

8. Extensions

8.1. Multi-labeled trees

As mentioned in the Introduction, many applications of these results re-
quire that the trees are multi-labeled, that is, each node holds several labels.
We can easily accommodate multi-labeled trees T in our data structure, by
building a new tree T ∗ where each node u of T with m(u) labels `1, . . . , `m(u)

is replaced by an upward path of nodes u1, . . . , um(u), each ui holding the
label `i and being the only child of ui+1 (and um(u) being a child of v1, where
v is the parent of u in T ). Path queries from u to v in T are then transformed
into path queries from u1 to v1 in T ∗, except when u (v) is an ancestor of
v (u), in which case we replace u (v) by um(u) (vm(v)) in the query. All our
complexities then hold on T ∗, which is of size n = |T ∗| = ∑

u∈T m(u).
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8.2. Queries on functions

Gagie et al. [27] consider path queries over a structure more general than
trees. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an assign-
ment of labels to the domain elements. The function defines a directed graph
where nodes v(i) are associated with the domain elements i and the edges
lead from v(i) to v(f(i)). The general form of these graphs is a set of cycles
with trees sprouting from the cycle nodes (arrows point upwards, toward the
cycles). We are interested in the so-called “positive path queries”: given i and
0 ≤ k1 ≤ k2, the path contains all the distinct elements {fk(i), k1 ≤ i ≤ k2}.
Our tree paths are then a particular case of positive path queries. They con-
sider several queries on the labels of the path, and give general results like
the following theorem.

Theorem 16. [27] Let f : [1..n] → [1..n] be a function and ` : [1..n] →
[1..σ] an assignment of labels to the domain elements. Let there be a tree
representation that computes in constant time the mapping between nodes
and preorders, ancestor queries, depths of nodes, leftmost leaves of nodes, and
lowest common ancestors, and in addition it solves a certain decomposable
path query on n-node trees with labels in [1..σ] in T (n, σ) time, using in total
S(n, σ) bits of space. Then, there exists a data structure using n lg n+O(n)+
S(n, σ) bits that answers the same query on the positive paths of f in time
O(lg n/ lg lg n)+T (n, σ). There exists another data structure using n lg n(1+
1/t) +O(n) +S(n, σ) bits that answers the query in time O(t) + T (n, σ), for
any t > 0.

Our results in this article allow, for the first time, using this result to
answer τ -majority queries on the positive paths of functions. Although τ -
majority queries are not decomposable (i.e., we cannot answer the query
from the results on a partition of the path into subpaths), we can obtain
a set of O(1/τ) candidates, with their frequencies, in each subpath of the
partition. Lemma 1 shows that this is sufficient to find all the τ -majorities.
In the result of Theorem 16, the query is partitioned into a constant number
of subpaths; therefore we can use the result of Theorem 16 as if the query
were decomposable. For example, combining it with Theorems 7 and 9, we
obtain the following results.

Theorem 17. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data

23



structure using O(n) space that answers τ -majority queries on the positive
paths of f in time O((1/τ) lg lgw σ), on a w-bit word machine.

Theorem 18. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n + O(n) + nH + o(nH) bits of space, where H ≤ lg σ
is the entropy of the distribution of the values in `, that answers τ -majority
queries on the positive paths of f in time O(lg n/ lg lg n+(1/τ) lg∗ n lg lgw σ),
on a w-bit word machine.

In some applications, however, the semantics of a positive path collecting
the unique elements may be inappropriate. Instead, the adequate meaning
may be the sequence f [k1..k2](i) = 〈fk1(i), fk1+1(i), . . . , fk2(i)〉, of length ex-
actly k2−k1 + 1; this may include the same element several times if we enter
a cycle, fk(i) = fk

′
(i) for some k1 ≤ k < k′ ≤ k2. Therefore we want the

τ -majorities of the sequence 〈`(fk1(i)), `(fk1+1(i)), . . . , `(fk2(i))〉.
We can still obtain the results of Theorems 17 and 18 under these seman-

tics. The data structure of Gagie et al. [27, Sec 3.1] converts the cycle of the
function graph into a tree: it cuts each cycle at an arbitrary edge vc → v1
and writes the cycle as the leftmost path of a tree; each such node then has
its sprouting subtree. They show how the data structure of Theorem 16 can
compute in constant time the node v = v(i), the node v′ from where the tree
of v sprouts from its cycle, the first and last nodes v1 and vc of the cycle,
the length c of the cycle and the distance d between v and v′. With this
information, we can easily separate the path f [k1..k2](i) into three subpaths,
each of which can be empty: (1) d1 elements from v(fk1(i)) to v′; (2) c · r
elements along r complete traversals of the cycle, from v′ to its cycle prede-
cessor; and (3) d2 elements from v′ to v(fk2(i)). The path then has length
k2−k1 +1 = d1 +cr+d2, and by Lemma 1, any τ -majority in f [k1..k2](i) must
be a τ -majority in (1), (2), or (3). Further, the τ -majorities in (2) are exactly
the τ -majorities in a single traversal of the cycle, that is, the path from v1
to vc. Thus we collect the O(1/τ) candidates along the tree paths of length
d1 (1), c (2), and d2 (3), and each candidate x appearing x1 times in (1), x2
times in (2), and x3 times in (3), is reported iff x1+r ·x2+x3 > τ ·(k2−k1+1).

9. Conclusions

We have presented the first data structures that can efficiently find the
τ -majorities on the path between any two given nodes in a tree. Our data
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structures use linear space, and even succinct space, whereas our query times
are close to optimal, by a factor near log-logarithmic. We also obtained
analogous results for path τ -minorities.

Our query time for path τ -majorities and τ -minorities in linear space,
O((1/τ) lg lgw σ), is over the optimal timeO(1/τ) that can be obtained for the
analogous range queries on sequences [5]. It is open whether we can obtain
optimal time on trees within linear (or even near-linear) space. Another
important open problem is how to support insertions and deletions of nodes
in T while answering these queries, as achieved on sequences [28].
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