
Path Queries on Functions 1

Travis Gagie 2,3

Center for Biotechnology and Bioengineering (CeBiB)
School of Computer Science and Telecommunications, Diego Portales University,

Chile
travis.gagie@gmail.com

Meng He

Faculty of Computer Science, Dalhousie University, Canada
mhe@cs.dal.ca

Gonzalo Navarro 2,4

Center for Biotechnology and Bioengineering (CeBiB)
Millenium Institute for Foundational Research on Data
Department of Computer Science, University of Chile

gnavarro@dcc.uchile.cl

Abstract

Let f : [1..n]→ [1..n] be a function, and ` : [1..n]→ [1..σ] indicate a label assigned
to each element of the domain. We design several compact data structures that
answer various kinds of summary queries on the labels of paths in f . For example,
we can find either the minimum label in fk(i) for a given i and any k ≥ 0 in a
given range [k1..k2], or the minimum label in f−k(i) for a given i and k > 0, using
n lg n + n lg σ + o(n lg n) bits and time O(α(n)), the inverse Ackermann function.
Within similar space we can count, in time O(lg n/ lg lgn), the number of labels
within a range, and report each element with such labels inO(lg n/ lg lgn) additional
time. Several other tradeoffs and possible queries are considered, such as selection,
top-r queries and τ -majorities. Finally, we consider queries that allow us navigate
on the graph of the function, such as the nearest common successor of two elements,
or the nearest successor or predecessor of an element within a range of labels.

Key words: Succinct data structures; Integer functions; Range queries; Trees and
permutations

Preprint submitted to Elsevier Preprint 17 October 2018

1 Introduction

We focus on the representation of integer functions where the domain coin-
cides with the image, f : [1..n] → [1..n]. This kind of functions were studied
by Munro et al. [21], who focused on how to compute efficiently powers of
functions. A positive power is fk(i), for a given i ∈ [1..n] and k ≥ 0, whereas
a negative power returns all the elements in the set f−k(i) = {j, fk(j) = i},
for a given i ∈ [1..n] and k > 0. They show that f can be represented within
n lg n(1+1/t)+O(n) bits so that any positive power fk(i) is computed in time
O(t), and any negative power f−k(i) is listed in time O(t + |f−k(i)|), for any
t = O(lg n). The main idea of Munro et al. is summarized in their metaphor
“functions are just hairy permutations”, in the sense that the directed graph
G(V,E) where V = [1..n] and E = {(i, f(i)), i ∈ [1..n]} has the form of a set
of cycles, where a tree may sprout from each node in each cycle (permutations,
instead, are decomposed into just a set of cycles).

In this article we go beyond the goal of simply listing the elements of powers
of permutations. Instead, we seek to compute summaries on the elements
belonging to paths in G. We consider three kinds of paths P :

(1) A positive path is formed by the distinct elements in fk1..k2(i) =
{fk(i), k ∈ [k1..k2]} for a given i ∈ [1..n] and 0 ≤ k1 ≤ k2.

(2) A negative path is formed by the distinct elements in f−k1..−k2(i) = {j ∈
f−k(i), k ∈ [k1..k2]} for a given i ∈ [1..n] and 0 < k1 ≤ k2.

(3) A negative path point is a particular case of a negative path, formed by
the elements in f−k(i), for a given i ∈ [1..n] and k > 0.

In turn, we consider various kinds of summarizations. For maximum generality,
let us assume that the domain elements are assigned a label ` : [1..n]→ [1..σ],
and we perform summary queries on the labels. A particular case is that of
`(i) = i. We consider the following queries on paths P :

(1) Minimum or maximum queries: Return min{`(j), j ∈ P} or max{`(j), j ∈
P}.

(2) Selection queries: Return an element of P with the rth smallest or largest
label; this includes queries where the value of r is relative to |P |, such as
the median.

(3) Top-r queries: Return a set M ⊆ P formed by r elements with largest
labels in P , or r elements with smallest labels in P .

(4) τ -Majority queries: Return a set of labels whose relative frequency in P

1 An early partial version of this paper appeared in Proc. CPM 2017 [11].
2 Partially funded by Basal Funds FB0001, Chile.
3 Partially funded by Fondecyt Grant 1-171058, Chile.
4 Partially funded by Millenium Institute for Foundational Research on Data, Chile.

2

is over τ , for a given 0 ≤ τ < 1.
(5) Range queries: Let R = {j ∈ P, `(j) ∈ [`1, `2]}, given 1 ≤ `1 ≤ `2 ≤ σ.

A counting query asks for |R|, whereas a reporting query requires listing
all the elements in R.

As an application of summary queries on paths, suppose we are simulating a
system to prepare for situations in which we need to react quickly, say, natural
disasters or conflicts or critical-equipment failures. We run our simulation
through some finite set of states and want to store the traces such that later,
given a start state in that set and a number of time-steps, we can quickly return
summaries about the states the simulation passes through from that state in
that many steps. Of course, we could precompute all the possible answers,
but this could take space quadratic in the number of states; we could iterate
through all the relevant states at query time, but this could take linear time.
If our simulation is deterministic, our problem reduces to storing a function
(from states to states, with each state labelled by satellite data) compactly
such that we can efficiently answer path queries on it.

The case of positive paths is the most direct. We build on recent results [16,5]
that give succinct (and also larger) structures for various path queries on
trees. Then a relatively simple unrolling and doubling of the cycles in the
graph G allows us to directly apply their results to positive paths, with a
small extra time penalty to map from the domain of f to the nodes of G.
For example, using n lg n + n lg σ + o(n lg n) bits we can solve minimum or
maximum queries in time O(α(n)) (the inverse Ackermann function), range
queries in time O(lg n/ lg lg n) per returned datum and, raising the space to
n lg n+ 2n lg σ + o(n lg n) bits, selection queries in time O(lg n/ lg lg n).

For negative path points, we unroll the cycles in such a way that all the desired
nodes in any f−k(i) belong to a contiguous range within a single level of the
tree. Then an appropriate layout of the data associated with the node allows us
to reduce queries on negative path points to array range queries, and therefore
reuse all the known results on array range queries [4,10,14,2], some of which
do not even require us to represent the labels. Therefore, we generally obtain
better results on negative path points than on positive paths. For example, we
can solve minimum or maximum queries in time O(α(n)) using only n lg n +
o(n lg n) bits. We can also solve top-r queries using n lg n + O(n lgR) bits,
where R is the maximum r value permitted, in time O(r lgR n). As another
example, we can solve τ -majority queries using n lg n + (1 + ε)n lg σ bits, for
any constant ε > 0, in time O(1/τ + lgσ n).

The hardest case are the general negative paths. Our queries in this case are
mapped into a couple of two-dimensional spaces with labels, and thus the
structures require from O(n lg n) to O(n lg2 n) bits in order to offer polyloga-
rithmic query times [19,6,24,23]. For example, we can solve top-r queries using

3

O(n lg n) bits and O((r + lg n) lgε n) time, for any constant ε > 0. For range
counting and reporting, we need O(n lg2 n/ lg lg n) bits and O((lg n/ lg lg n)2)
time per datum retrieved.

Finally, we consider new queries to navigate on the values of the function, more
sophisticated than the basic iteration queries supported by Munro et al. [21].
For example, we can find the nearest element that can be reached from two
given elements i and i′ through applications of f , in time O(lg n/ lg lg n), using
n lg n+O(n) bits. Within n lg n+n lg σ+o(n lg n) bits, we can find the nearest
element reachable from an element i, whose label is within a given range, in
time O(1 + lg σ/ lg lg n).

An early partial version of this paper appeared in Proc. CPM 2017 [11]. This
extended version includes pseudocode for all the nontrivial procedures, more
applications of the generic results to specific queries, improved results on nega-
tive path queries, considerations for the special cases of queries without labels,
and a new section on sophisticated navigation queries. In addition, we obtain
in this paper some new results of independent interest on labeled tree ancestors
(Theorem 7).

2 Background

2.1 Rank and select on bitvectors

A bitvector B[1..n] can be represented in n + o(n) bits so as to perform op-
erations rank and select in constant time [18,7,20]. Operation rank b(B, i), for
b ∈ {0, 1} and i ∈ [1..n], is the number of occurrences of bit b in B[1..i]. Op-
eration select b(B, j), with b ∈ {0, 1} and j ∈ [1..rank b(B, n)], is the position
of the jth occurrence of bit b in B.

When B is sparse, having only m � n 1s, a structure that computes only
rank 1(B, i) whenever B[i] = 1 (and is unable to access B or to compute
select) will be of interest to us. It is called a monotone minimum perfect hash
function [1] and can compute rank in time O(1) using O(m lg lg n) bits, or in
time O(lg lg n) using O(m lg lg lg n) bits.

2.2 Permutations and functions

Munro et al. [21] regard a permutation π on [1..n] as a directed graph G =
(V,E), where V = [1..n] and E = {(i, π(i)), i ∈ [1..n]}. This graph turns
out to be a set of simple cycles, which correspond to the cycle decomposition

4

7

4

8

24

6

21

6

1

3

2

5

1

5

3

23

17

10

4

11

9

22

16

14

15

20

2
19

18

12

7

13

Fig. 1. On the left, the representation of a permutation as a directed graph. On the
right, the permutation is extended into a function.

of π. Figure 1 (left) shows the grahical representation of permutation π =
(3 6 2 7 5 1 4), which is decomposed into the cycles (1 3 2 6), (5), and (4 7).

A function f : [1..n] → [1..n] is then regarded as an extension of permuta-
tions, where a general tree may sprout from each node of the cycles (with
edges pointing towards the root). Figure 1 (right) illustrates the case of
f(1..24) = (5, 1, 23, 11, 3, 24, 18, 8, 1, 4, 23, 18, 18, 22, 9, 22, 4, 3, 2, 2, 6, 9, 1, 6),
which extends the cycles of our example π.

From the results that are interesting to us, Munro et al. obtain two repre-
sentations for permutations π. The first uses lg n! + o(n) bits and computes
any π(i) in time O(1) and any π−1(i) in time O(lg n/ lg lg n). The second uses
lg n! + O((n/t) lg n) bits, for any t ≤ lg n, and computes any π(i) in time
O(1) and any π−1(i) in time O(t). For functions, they can compute any posi-
tive power fk(i), with k ≥ 0, or negative power f−k(i) = {j, fk(j) = i}, with
k > 0, in time O(t) and O(t+|f−k(i)|), respectively, using n lg n(1+1/t)+O(n)
bits of space, for any t = O(lg n).

2.3 Path queries on trees

He et al. [16] and Chan et al. [5] recently showed how to represent a tree where
the nodes have labels (or weights) in succinct space so as to support various
queries on the paths of the tree. Let us regard the trees as acyclic connected
graphs G(V,E); then a path is a sequence of nodes v1, v2, . . . , vp, such that
every (vk, vk+1) ∈ E, and it can be specified by giving v1 and vp.

5 Given a

5 They actually handle undirected graphs, supporting paths between any two nodes
u and v. Those can be easily decomposed into two directed paths, from u to lca(u, v)
and from v to lca(u, v), where lca is the lowest common ancestor operation on the
tree induced by choosing an arbitrary root from the graph nodes.

5

general ordinal tree of n nodes, where each node v has a label `(v) ∈ [1..σ],
they support the following queries on paths P of the tree that are of interest
to us:

(1) Minimum/maximum queries, that is, finding a node with the smallest
or largest label in P , are solved in time α(m,n) with a structure using
O(m) bits of space on top of the raw data, for any m ≥ n, where α is the
inverse of the Ackermann function [5]. By “raw data” we mean that the
label of any node must be obtained in O(1) time from its preorder.

(2) Selection, that is, find the node holding the rth smallest label in P , is
solved in time O(lg σ/ lg lg σ), with a structure using nH(`) + o(n lg σ) +
O(n) bits of space. Here H(`) ≤ lg σ is the entropy of the distribution of
the values `(v) over all the nodes v [16].

(3) Range queries include counting, that is, how many nodes in P have labels
in [`1..`2], and reporting, that is, listing all those nodes, given `1 and `2.
Both are solved within nH(`) +o(n lg σ) +O(n) bits of space, supporting
counting in time O(1 + lg σ/ lg lg n) and reporting of r results in time
O((r + 1)(1 + lg σ/ lg lg n)) [16]. By using more space, it is possible to
match the same results of two-dimensional range queries [5].

Those structures include anO(n)-bit representation of the tree topology. There
are several such representations, including balanced parentheses [18,22,25],
DFUDS [3], LOUDS [18], and tree covering [12,15,8]. All of them use 2n+o(n)
bits and support a wide set of navigation operations on trees. The represen-
tation used to solve these path queries [16,5] supports in constant time a few
primitives that will be useful for our positive path queries:

• Mapping from each tree node v to a unique identifier id(v) ∈ [1..n], and
from an identifier i ∈ [1..n] to the tree node, node(i).
• Level ancestor queries, that is, given a node v and a distance d, anc(v, d)

is the ancestor of v at distance d (e.g., anc(v, 0) is v and anc(v, 1) is the
parent of v).
• The depth of a node, depth(v), where the depth of the root is 0.
• The leftmost leaf of the subtree of a node, leftmost(v).
• The lowest common ancestor of two nodes, lca(u, v).

For negative paths, instead, we will use the Fully-Functional representation
[25], which represents the tree using 2n parentheses: the tree is traversed
in depth-first order, writing an opening parenthesis when we reach a node
and a closing one when we leave it. A node is identified with the position
v of its opening parenthesis (thus, using preorders as node identifiers, we
have id(v) = rank ((v) and node(i) = select ((i) on the parentheses sequence).
Within 2n + o(n) bits, the representation supports in constant time all of
the above operations, plus fwd(x, d) and bwd(x, d), defined as follows. Let
excess(x) = rank ((x)−rank)(x) be the number of opening minus closing paren-

6

theses up to position x in the sequence (thus depth(v) = excess(v)−1). Oper-
ation fwd(x, d) (resp. bwd(x, d)) finds the closest position y > x (resp. y < x)
where excess(y) = excess(x) + d. For example, if there is an opening (resp.
closing) parenthesis at x, its corresponding closing (resp. opening) parenthesis
is at close(x) = fwd(x,−1) (resp. open(x) = bwd(x, 0) + 1). Therefore, the
number of nodes in the subtree of v is subtreesize(v) = (close(v) − v + 1)/2,
and anc(v, d) = bwd(v,−d − 1) + 1. Also, the previous (resp. next) node
at the same depth of x in preorder is prev-level(v) = open(bwd(v, 0) + 1)
(resp. next-level(v) = fwd(close(v), 1)). The operation leftmost(v) can also be
computed in this representation, with select)(rank)(v) + 1) − 1. Finally, the
representation also computes in constant time the height of the subtree of a
node, height(v) (see the original article [25]).

2.4 Range queries on arrays

A much better studied particular case of path queries is that of range queries
on an array A[1..n] of labels in [1..σ]. The following is a brief selection from a
number of results reported in the literature:

(1) Minimum queries, where it is possible to find the position of a minimum
in any range A[i..j] in O(1) time with a structure that uses 2n + o(n)
bits and does not access A [10]. An analogous result holds for maximum
queries.

(2) Selection queries, where we can set at construction time a maximum value
R of r that can be used in queries, and then a structure using O(n lgR)
bits, without accessing A, can answer queries in optimal time O(1 +
lg r/ lg lg n) [14]. Note that we can set R = n for maximum generality.

(3) Top-r queries, that is, finding r elements in A[i..j] with the largest labels,
can be answered in optimal time O(r) with a structure that uses O(n lgR)
bits and does not access A, where R is an upper bound on the values of
r that can be queried [14].

(4) τ -Majority queries, that is, finding the labels whose relative frequencies
in A[i..j] are above τ . This can be solved in optimal time O(1/τ) and
O(1 + ε)nH(`) + o(n) bits, for any constant ε > 0; this representation
contains A in compressed form. The space can be reduced to nH(`)(1 +
o(1)) + o(n) bits, and still obtain any time in ω(1/τ) [2].

(5) Range counting can be performed in O(1+lg σ/ lg lg n) time, and r results
can be reported in time O((r+1)(1+lg σ/ lg lg n)), using n lg σ+o(n lg σ)
bits of space [4].

7

2.5 Range queries in two dimensions

When the ranges are two-dimensional and the points have weights, most of
the queries require linear and even super-linear space. Some examples in the
literature follow.

(1) The top-r heaviest elements in a two-dimensional range of an n× n grid
with points having weights in [1..σ] can be listed in time O((r+lg n) lgε n),
for any constant ε > 0, with a data structure that uses O(n lg n) bits [23,
Lem. 7]. With r = 1, this gives a structure for range minima or maxima.

(2) The rth heaviest element in a two-dimensional range can be obtained in
time O(` lg n lg` σ) with a structure using n lg n lg` σ +O(n lg σ) bits, for
any ` ∈ [2, σ] [24].

(3) The same structure of the previous point can be used to find the τ -
majorities in a range in time O((1/τ)` lg n lg` σ) [24].

(4) Range counting queries in three dimensions (or in two dimensions and
labels) can be carried out in time O((lg n/ lg lg n)2) with a structure that
uses O(n lg2 n/ lg lg n) bits of space [19]. Within that space, each point
can be reported in time O((lg n/ lg lg n)2) [19]. By raising the space to
O(n lg2+ε n) bits, for any constant ε > 0, the time to report r points is
reduced to O(r + lg lg n) [6].

3 Positive Paths

A positive path of the form fk1..k2(i) can be handled by converting the graph G
that represents f (recall Figure 1 (right)) into a single tree. The transformation
is as follows:

(1) We cut each cycle v1 → v2 → . . . → vc → v1 at an arbitrary position,
say removing the edge vc → v1. The result is a directed tree rooted at
vc (with arrows pointing from children to parents) where the cycle edges
form the leftmost path.

(2) We add a new leaf per cycle, which will be the leftmost child of v1.
(3) We add an artificial root, which will be the parent of the roots vc of all

the cycles.
(4) We represent the resulting tree using the data structures of Section 2.3

[16,5], for whichever query we want to answer. The representation sup-
ports in constant time the operations id , node, anc, depth, leftmost , and
lca, which we need.

(5) We store a bitvector B[1..n+ l + 1], where l ≤ n is the number of leaves
added, or equivalently the number of cycles in f , so that B[i] = 1 iff
the tree node with identifier i is one of the original nodes of G. We give

8

1

9

22

16

14

15

20

2
19

5 6

21

24

8

3

1818

12

7

13

23

17

10

4

11

Fig. 2. Our transformation to solve positive queries on functions using path queries
on trees.

rank and select support to B, so as to map the tree node identifiers in
[1..n+ l + 1] of the nodes that are in G to the interval [1..n].

(6) We store a permutation π that goes from the mapped node identifiers in
[1..n] to the corresponding domain elements, using the representation of
Section 2.2.

Figure 2 exemplifies our construction on the function of Figure 1. The permu-
tation π is displayed in the form of numbers associated with the nodes. Note
how we have broken the cycle 3→ 23→ 1→ 5→ 3, for example.

Consider now a positive path query fk1..k2(i). In the simplest case, we proceed
as follows:

(1) We compute v = node(select1(B, π
−1(i))), the node where the path query

will start.
(2) We compute the path extremes vs = anc(v, k1) and ve = anc(v, k2).
(3) We carry out the desired query on the tree path from vs to ve.
(4) Any node u returned by the query is mapped back to a domain value in

constant time using π(rank 1(B, id(u))).

In our example, we can compute a query on f 1..3(4) = (11, 23, 1) with this
technique. However, consider f 1..4(15). Our technique maps the path to the
domain elements (9, 1, 5, root), whereas the correct domain elements to include
were (9, 1, 5, 3). This is because the path goes through the node vc where we
have cut the cycle. In general, both k1 and k2 may be several times larger
than the cycle length. The way we handle this situation is different for decom-
posable and non-decomposable queries: the former can be computed from the
results obtained on disjoint subpaths, whereas the latter cannot. For example,
range counting and reporting are decomposable, whereas range minimum is
decomposable only if we store the labels, as in the solution of Section 2.3 [5]
(but not in that of Section 2.4 [10]). Selection queries are not decomposable
within the same query times obtained for a single path [5,14], even if we store
the labels.

9

3.1 Decomposable path queries

If the query we want to solve is decomposable, we use the cycle as follows.
First, if k1 ≥ depth(v), then we set vs ← anc(v1, (k1−depth(v)) mod c), where
v1 is the lowest node of the cycle and c is the cycle length. Similarly, if k2 ≥
depth(v), we set ve ← anc(v1, (k2 − depth(v)) mod c). For this we compute
vc = anc(v, depth(v)− 1), then v1 = anc(leftmost(vc), 1) and c = depth(v1).

However, ve might not be an ancestor of vs after this transformation, that is,
depth(ve) > depth(vs) or anc(vs, depth(vs)− depth(ve)) 6= ve. This means that
the positive path is cut into two tree paths: one from vs to vc, and the other
from v1 to ve. In our example, f 1..4(15) is cut into the paths (9, 1, 5) and (3).

A final issue is that, if k2 − k1 ≥ c, we may visit the same domain values
several times along the positive path. Since we want to consider each distinct
element only once, we can solve this problem by splitting the query into up
to three paths: one inside the tree where v belongs that sprouts from the
cycle, and two on the cycle. We first compute v′ = lca(v, v1), to find the cycle
node where the tree of v sprouts. Then a first path to consider, if k1 < d =
depth(v)−depth(v′), is the one corresponding to [k1,min(k2, d−1)]. If k2 ≥ d,
then we consider paths on the cycle, starting at node v′ and with the range
[k′1, k

′
2] = [max(0, k1 − d), k2 − d]. If k′2 − k′1 ≥ c − 1, we simply include the

whole cycle, with the path from v1 to vc. Otherwise, we do as before.

Algorithm 1 gives the complete procedure. It is possible to reduce the case of
three paths to two, since those of lines 9 and 23 can be concatenated into one,
but we opt for simplicity.

We have then the following theorem, where the extra time is the one spent to
compute π−1(i) and the extra space is that of storing π and B.

Theorem 1. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an
assignment of labels to the domain elements. Let there be a tree representation
that performs in constant time the operations id, node, anc, depth, leftmost,
and lca, and in addition it solves a certain decomposable path query on n-
node trees with labels in [1..σ] in T (n, σ) time, using in total S(n, σ) bits of
space. Then, there exists a data structure using n lg n+O(n)+S(n, σ) bits that
answers the same query on the positive paths of f in time O(lg n/ lg lg n) +
T (n, σ). There exists another data structure using n lg n(1 + 1/t) + O(n) +
S(n, σ) bits that answers the query in time O(t) + T (n, σ), for any t > 0.

By considering the minimum/maximum queries of Chan et al. [5] and the range
queries of He et al. [16] (Section 2.3), we obtain the following corollaries. For
the first one, we use a compressed representation of the labels, in preorder,
that accesses any value in O(1) time [9].

10

Algorithm 1: Computing decomposable queries on positive paths.

1 Proc Positive(i, k1, k2)
2 v ← node(select1(B, π

−1(i)))
3 vc ← anc(v, depth(v)− 1)
4 v1 ← anc(leftmost(vc), 1)
5 c← depth(v1)
6 v′ ← lca(v1, v)
7 d← depth(v)− depth(v′)
8 if k1 < d then
9 Compute path query from anc(v, k1) to anc(v,min(k2, d− 1))

10 if k2 ≥ d then
11 k′1 ← max(0, k1 − d)
12 k′2 ← k2 − d
13 if k′2 − k′1 ≥ c− 1 then
14 Compute path query from v1 to vc

15 else
16 if k′1 < depth(v′) then vs ← anc(v′, k′1)
17 else vs ← anc(v1, (k

′
1 − depth(v′)) mod c)

18 if k′2 < depth(v′) then ve ← anc(v′, k′2)
19 else ve ← anc(v1, (k

′
2 − depth(v′)) mod c)

20 if depth(vs) ≥ depth(ve) and anc(vs, depth(vs)− depth(ve)) = ve
then

21 Compute path query from vs to ve

22 else
23 Compute path query from vs to vc
24 Compute path query from v1 to ve

25 Return the composition of all the path queries performed; resulting nodes
u are converted into domain values π(rank 1(B, id(u)))

Corollary 1. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an as-
signment of labels to the domain elements. Then, there exists a data structure
using n lg n+nH(`) + o(n lg σ) +O(n) bits that answers minimum/maximum
queries on the positive paths of f in time O(lg n/ lg lg n), where H(`) ≤ lg σ is
the entropy of the distribution of the values in `. There exists another struc-
ture using n lg n(1 + 1/t) + nH(`) + o(n lg σ) + O(m) bits, for any m ≥ n,
that answers the queries in time O(t + α(m,n)), for any t > 0. By setting
t = α(m,n), we obtain a structure using n lg n+nH(`)+o(n lg n)+O(m) bits
that answers the queries in time O(α(m,n)).

Corollary 2. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n + nH(`) + O(n) + o(n lg σ) bits that answers counting

11

1

9

22

16

14

15

20

2
19

5

3

23

1

6

21

24

8

24

3

1818

12

7

13

23

17

10

4

11

Fig. 3. Our transformation to solve non-decomposable positive queries on functions
using path queries on trees.

queries on the positive paths of f in time O(lg n/ lg lg n), and also reports
those r results in time O(lg n/ lg lg n+ r(1 + lg σ/ lg lg n)), where H(`) ≤ lg σ
is the entropy of the distribution of the values in `.

It is also possible to adapt the faster counting and reporting of Chan et al. [5],
by using more space.

3.2 Non-decomposable path queries

When the query is not decomposable, we cannot allow splitting paths. Instead,
we unroll the cycles twice, as illustrated in Figure 3. More formally:

(1) We cut each cycle v1 → v2 → . . .→ vc → v1 as before, removing the edge
vc → v1 and leaving a tree rooted at vc.

(2) We add a leaf as the leftmost child of v1, as before.
(3) We add an upward path per cycle, starting at each tree root vc, which

repeats the cycle with copies of the nodes. That is, we add edges vc →
v′1 → v′2 → . . . → v′c−1. Each of the new nodes v′i is assigned the same
label of vi.

(4) We add an artificial root, which will be the parent of all the nodes v′c−1
(or of the node v1 = vc for cycles of length 1, since in those cases no v′i
nodes are added).

(5) We represent the resulting tree using the data structures of Section 2.3,
as before.

(6) We store a bitvector B[1..n+ g], where g ≤ n+ 1 is the number of nodes
added, so that B[i] = 1 iff the tree node with identifier i is one of the
original nodes of G. As before, we give rank and select support to B.

(7) We store a permutation π that goes from the mapped node identifiers in
[1..n] to the corresponding domain elements, as before.

12

We can now compute v′c−1 = anc(v, depth(v)−1), v1 = anc(leftmost(v′c−1), 1),
c = (depth(v1)+1)/2, and vc = anc(v1, c−1). We also compute v′ = lca(v1, v)
as before. There are two cases. The first is that the path starts inside the
subtree sprouting from v′, that is, k1 < d = depth(v)− depth(v′). In this case,
we set vs = anc(v, k1). Then, if k2 − d < c, we set ve = anc(v, k2); otherwise
we set ve = anc(v′, c− 1). Now we can safely run the tree path query from vs
to ve.

The other case is that the path lies completely on the cycle, that is, k1 ≥ d.
We can first exclude the condition k2−k1 ≥ c, as in this case we simply query
the path from v1 to vc. If k2 − k1 < c, we find vs inside the path that goes
from v1 to vc: If depth(v) − k1 ≥ c, we set vs = anc(v, k1); otherwise we set
vs = anc(v1, ((c−1)−(depth(v)−k1)) mod c). We then do the same to compute
ve with k2. However, if ve is deeper than vs, we recompute ve = anc(ve, c).
Finally, we run the tree path query from vs to ve.

A final issue is how to map back the nodes u = v′i that the algorithm may
return. Note that we know the cycle where the query was performed, so we
know c and v1. Thus, if depth(u) < c, we know that u is a created node, and
replace it with anc(v1, (c− 1)− depth(u)) before mapping it to the domain of
f . Algorithm 2 gives the pseudocode.

Since we have up to n newly created nodes for which we have to store labels,
we have the following result.

Theorem 2. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an
assignment of labels to the domain elements. Let there be a tree representation
that performs in constant time the operations id, node, anc, depth, leftmost,
and lca, and it addition it solves a certain non-decomposable path query on
n-node trees with labels in [1..σ] in T (n, σ) time, using in total S(n, σ) bits of
space. Then, there exists a data structure using n lg n+O(n)+S(2n+1, σ) bits
that answers the same query on the positive paths of f in time O(lg n/ lg lg n)+
T (2n+1, σ). There exists another data structure using n lg n(1+1/t)+O(n)+
S(2n+ 1, σ) bits that answers the query in time O(t) + T (2n+ 1, σ), for any
t > 0.

By considering the selection queries of He et al. [16] (Section 2.3), we obtain
the following corollary. Note that, since we duplicate some nodes and their
labels, the space of the sequence of labels can grow at most to 2nH(`) by
standard entropy arguments.

Corollary 3. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n + 2nH(`) + O(n) + o(n lg σ) bits that answers selection
queries on the positive paths of f in time O(lg n/ lg lg n), where H(`) ≤ lg σ

13

Algorithm 2: Computing non-decomposable queries on positive paths.

1 Proc Positive(i, k1, k2)
2 v ← node(select1(B, π

−1(i)))
3 v′c−1 ← anc(v, depth(v)− 1)
4 v1 ← anc(leftmost(v′c−1), 1)
5 c← (depth(v1) + 1)/2
6 v′ ← lca(v1, v)
7 d← depth(v)− depth(v′)
8 if k1 < d then
9 vs ← anc(v, k1)

10 if k2 − d < c then ve ← anc(v, k2)
11 else ve ← anc(v′, c− 1)

12 else if k2 − k1 ≥ c then
13 vs ← v1
14 ve ← vc

15 else
16 if depth(v)− k1 ≥ c then vs ← anc(v, k1)
17 else vs ← anc(v1, ((c− 1)− (depth(v)− k1)) mod c)
18 if depth(v)− k2 ≥ c then ve ← anc(v, k2)
19 else ve ← anc(v1, ((c− 1)− (depth(v)− k2)) mod c)
20 if depth(vs) < depth(ve) then
21 ve ← anc(ve, c)

22 Compute path query from vs to ve
23 Return the answers; resulting nodes u are converted into domain values

π(rank 1(B, id(u))), but if depth(u) < c we first set
u← anc(v1, (c− 1)− depth(u))

is the entropy of the distribution of the values in `.

It is also possible to use the variant that requires n lg n(1 + 1/t) bits, to
approach the cost O(lg σ/ lg lg σ) of the base query [16].

3.3 Functions without labels

In the simple case where the function has no assigned labels, or said another
way, where we assume `(i) = i for the queries, we can do better than
Corollaries 1, 2, and 3. In the first case [5], we do not need anymore to store
the labels, since these are now simply the elements returned by π. For clarity,
we restate the resulting corollary.

Corollary 4. Let f : [1..n] → [1..n] be a function. Then, there exists a data

14

structure using n lg n+O(n) bits that answers minimum/maximum queries on
the positive paths of f in time O(lg n/ lg lg n). There exists another structure
using n lg n(1 + 1/t) + O(m) bits, for any m ≥ n, that answers the queries
in time O(t + α(m,n)), for any t > 0. By setting t = α(m,n), we obtain a
structure using n lg n+ o(n lg n) +O(m) bits that answers the queries in time
O(α(m,n)).

For Corollaries 2 and 3, all the path query structures [16] store the sequence
of labels (now domain elements) in node identifier order, and represent it
with a wavelet tree [13]. This structure allows us, with a query similar to
select , to find the occurrence of element i, thus effectively computing π−1(i),
in time O(lg n/ lg lg n). Instead of returning the node identifier, they may
return the label, that is, the domain element, by accessing the wavelet tree
in the same time. Therefore, they do not require the permutation to map
from elements to nodes. In the case of Corollary 3, where we have duplicated
nodes v′i, we may use the select-like operation to find the two places where
an element is mentioned in the labels, and choose the one with largest depth
to avoid starting the query from a node v′i. Since the wavelet tree has each
distinct element mentioned once or twice, its entropy is essentially maximal,
and we have the following results for this case.

Corollary 5. Let f : [1..n] → [1..n] be a function. Then, there exists a data
structure using n lg n + o(n lg n) bits that answers counting queries on the
positive paths of f in time O(lg n/ lg lg n), and also reports those r results in
time O((r + 1) lg n/ lg lg n).

Corollary 6. Let f : [1..n] → [1..n] be a function. Then, there exists a data
structure using 2n lg n + o(n lg n) bits that answers selection queries on the
positive paths of f in time O(lg n/ lg lg n).

4 Negative Path Points

Figure 4 shows the same tree of Figure 2, now showing clearly the result-
ing levels of the tree, and without the extra root. The result is a forest,
which we will store with the Fully-Functional representation [25]. The fig-
ure illustrates an important point: all the nodes in f−k(i) correspond to
the descendants at distance k of the node corresponding to i. For example
f−2(1) = {3, 11, 22, 15, 20, 19}. These form a range if we deploy the nodes in
levelwise order.

Just as for positive paths, we will store a bitvector B indicating which nodes
are originally in G (i.e., not the added leaves) and a permutation π on [1..n]
mapping from the identifiers of those nodes in G (after being mapped to

15

π ρο

1

23

3

418

12 137 10 17

16 14

22 15 20 19

2

6 8

2124

9

5

11

5 18 4 16 14 1 7 12 13 10 17 23 9 2 3 11 22 2015 19 6 24 21 8

11 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1L

Fig. 4. The same tree used for decomposable positive queries (without the extra
root), showing how the levels are deployed to solve negative path point queries. The
numbers inside the nodes are the π values of the node identifiers, as before, whereas
the dashed arrows represent the ρ−1 values of the node identifiers.

[1..n] using B) to domain elements. The information on the nodes (such
as the labels) will be stored in levelwise order, with a permutation ρ on
[1..n] mapping from the levelwise deployment to the tree identifier of the
node (mapped using B). Let v = node(select1(B, π

−1(i))) be the node cor-
responding to domain element i, and assume v is not on the cycle of its
component in G. Then the elements of f−k(i) are the descendants of v at
distance k. The leftmost such descendant is found with v1 = fwd(v, k),
whereas the rightmost one is v2 = open(bwd(close(v), k + 1) + 1). Then the
range of values where the information on the elements of f−k(i) is stored is
[ρ−1(rank 1(B, id(v1))), ρ

−1(rank 1(B, id(v2)))]. Note that any element at posi-
tion j in the levelwise deployment can be converted into a domain element
with π(ρ(j)). Figure 4 shows how f−2(9) is mapped to the range containing
(16, 14), which is within the level containing (18, 4, 16, 14) (disregard for now
bitvector L and the way levels are interlaced in the array).

When v is on a cycle (of length c), then we can go to its predecessor in the
cycle (taking the arrow backwards) and collect the descendants at distance
k − 1 in its sprouting tree, then to its predecessor and collect its descendants
at distance k − 2, and so on. Given the way we have converted G into a tree,
all these nodes are indeed the descendants of v at distance k; consider again
f−2(1) in Figure 4. However, the situation can be more complicated because, if
k is large enough, then we could run over the whole cycle in backward direction
and return again to v, now looking for descendants at distance k−c. Therefore,
not only we have to include the descendants of v at distance k, but also all
the elements in the whole tree where v belongs at depths depth(v) + k − c,
depth(v) + k − 2c, and so on.

To handle this case, we will store the levelwise information on the nodes of
each tree of the forest in an interlaced order of the levels: levels 1, c+1, 2c+1,

16

Algorithm 3: Computing queries on negative path points.

1 Proc Negative(i, k)
2 v ← node(select1(B, π

−1(i)))
3 vc ← anc(v, depth(v))
4 v0 ← leftmost(vc)
5 v2 = open(bwd(close(v), k + 1) + 1)
6 p2 = ρ−1(rank 1(B, id(v2)))
7 if v ≤ v0 ≤ close(v) then
8 p1 ← select1(L, rank 1(L, p2))

9 else
10 v1 ← fwd(v, k)
11 p1 ← ρ−1(rank 1(B, id(v1)))

12 Compute array range query on [p1, p2]
13 Return the answers; resulting positions j are converted into domain

values π(ρ(j)).

and so on, then levels 2, c+2, 2c+2, and so on, until levels c, 2c, 3c, and so on.
A bitvector L[1..n] with rank and select support will mark, in the levelwise
ordered domain, the first node at a level of the form tc + l in each tree, for
all 1 ≤ l ≤ c. Figure 4 shows the levelwise deployment. The nodes of the first
tree are listed as 5, 18, 4, 16, 14 for l = 1, then 1, 7, 12, 13, 10, 17 for l = 2, then
23, 9, 2 for l = 3, and finally 3, 11, 22, 15, 20, 19 for l = 4. The following two
trees are then listed as 6, 24, 21 and 8. The bitvector L marks the beginnings
of the change in tree or in l.

With this arrangement, we only have to find as before p2 =
ρ−1(rank 1(B, id(v2))), the second endpoint of the range, and then p1 =
select1(L, rank 1(L, p2)), the beginning of the nodes of the tree of v2 with its
same l value. Figure 4 shows how v2 is found for f−2(23), and then the range
includes up to the beginning of l = 1 in its tree, to contain (5, 18, 4).

The final issue is how to determine if v is or not on the cycle. We can do
this by computing, similarly to the positive paths, vc = anc(v, depth(v)),
v0 = leftmost(vc) as the leftmost leaf, and then v is in the cycle iff v0 descends
from v, that is, v ≤ v0 ≤ close(v).

Finally, we can build on the levelwise deployment of the node data any array
range query data structure we desire. Algorithm 3 shows the pseudocode.

The time per query is that of the array range query, plus the time needed
to compute π−1 and ρ−1 a constant number of times; answers are converted
back to domain values by computing ρ and π in constant time. Apart from
the array range query structures, we are storing two permutations and some
bitvectors. We then have the following result.

17

Theorem 3. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an
assignment of labels to the domain elements. Let there be an array range query
data structure that, on an array A[1..n] of values in [1..σ], answers queries in
time T (n, σ) using S(n, σ) bits of space. Then, there exists a data structure
using 2n lg n+O(n)+S(n, σ) bits that answers the same query on the negative
path points of f in time O(lg n/ lg lg n) + T (n, σ). There exists another data
structure using 2n lg n(1 + 1/t) + O(n) + S(n, σ) bits that answers the query
in time O(t) + T (n, σ), for any t > 0.

4.1 Reducing space

We can also design a more sophisticated variant that uses n lg n+o(n lg n) bits,
instead of 2n lg n+O(n), by exploiting some regularity present in the mapping
ρ. We note that ρ−1 maps a tree position p = rank 1(B, id(v)) into an array
corresponding to the depth of the node, d = depth(v), and an offset inside the
array that is equal to the number of nodes with depth v and preorder ≤ p. The
Fully Functional representation offers constant-time operations prev-level(v)
and next-level(v), as we have seen in Section 2.3. We can therefore choose a
sampling step t and store, for every level d for which there are t or more nodes
of depth d, the position in the array of labels of every tth node of depth d. A
bitvector M marks the positions rank 1(B, id(·)) of all the marked nodes (for
all the values of d), and their corresponding positions in the array of labels is
stored in an array P , of at most n/t entries. To map a node v, we compute
v0 = v and vi+1 = prev-level(vi), until M [rank 1(B, id(vi))] = 1 for some
0 ≤ i < t. In this case, the position of v is P [rank 1(M, rank 1(B, id(vi))) + i].
We thus compute the mapping ρ−1 in time O(t) using O((n/t) lg n+n) bits of
space. Note that we can simply concatenate the arrays M and P of different
trees.

An exception occurs when v is the ith node of depth d for some i < t, in
which case prev-level(vi−1) returns a null value. In this case we know i, but
we need to know the position where the range of depth d = depth(v) starts in
the whole array. This can be computed with operation select on a bitvector
D analogous to L, which marks the positions where each depth starts. Since
the depths are interlaced, the 1 in D corresponding to depth d is computed
as follows: let r = 1 + ((d − 1) mod c) and k = 1 + ((h − 1) mod c), where
h = height(vc) is the height of the tree where v belongs (which is also computed
in constant time in the Fully Functional representation). Then, if r ≤ k + 1,
the desired 1 is d′ = (r − 1) · dh/ce + dd/ce; otherwise we must subtract
r − 1 − k from that value. In addition, since the levels of the different trees
are separated and concatenated in the array of labels, the ranges of the tree
of v start at position rank 1(B, id(vc)), so the global position of v is computed

18

as i− 1 + select1(D, d
′ + rank 1(D, rank 1(B, id(vc)− 1))).

Once the array range query returns a position j, we must map it back with
ρ. We again use D to determine that we are at the range d′ = rank 1(D, j) −
rank 1(D, rank 1(B, id(vc)− 1)), with offset i = 1 + j− select1(D, rank 1(D, j)).
We have another bitvector M ′ where the sampled positions are aligned to D
and marked with a 1, and their corresponding tree nodes are stored in an array
P ′ aligned to the 1s in M ′. Thus, the node of the sampled position preceding
j is v′ = P ′[j′], with j′ = rank 1(M

′, j). From v′, we execute next-level for
j − select1(M

′, j′) < t times to obtain the mapping.

Once again, the first positions of each depth are not sampled, which we note
because select1(M

′, j′) < select1(D, rank 1(D, j)). In this case, we must obtain
the depth d, the first descendant of vc at depth d (with v′ = fwd(vc, d)), and
execute i − 1 next-level steps from v′. To compute d, we find k as before,
compute r = dd′/dh/cee and g = (d′ − 1) mod dh/ce. However, if r > k + 1,
we recompute r = d(d′−k)/dh/c− 1ee, g = (d′−k− 1) mod dh/c− 1e. Then,
we have d = gc+ r.

We thus obtain the following result. The second variant does the mapping
faster and is useful when the array range structure directly returns labels. It is
obtained by using for π−1 the version that uses O(n) bits and O(lg n/ lg lg n)
time. We also replace the sampling mechanism used to compute ρ−1 by a
monotone minimum perfect hash function [1] for each level d, where we store
all the values rank 1(B, id(v)) of the nodes v for which depth(v) = d, and it
returns their rank in the set. Such hash function uses O(n lg lg lg n) bits and
returns the rank in time O(lg lg n). To obtain the offset in the array of level
d of the tree where v belongs, we also search for fwd(vc, d), the first node
at level d in its tree, and subtract the ranks. The difference plus 1 is then
the offset i in the array of level d of the tree of v. Its starting position in
the global array is computed as in the case where we do not have a sampled
predecessor node.

Theorem 4. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an
assignment of labels to the domain elements. Let there be an array range query
data structure that, on an array A[1..n] of values in [1..σ], answers queries in
time T (n, σ) using S(n, σ) bits of space. Then, there exists a data structure
using n lg n(1 + 1/t) + O(n) + S(n, σ) bits, for any t > 0, that answers the
same query on the negative path points of f in time O(t)+T (n, σ). If the array
query returns array positions that must be converted to domain elements, then
each answer requires O(t) additional time. Otherwise, there exists another data
structure using n lg n+O(n lg lg lg n) + S(n, σ) bits that answers the query in
time O(lg n/ lg lg n) + T (n, σ).

By considering the various array range queries of Section 2.4, we obtain the

19

following corollaries; others can be derived by the reader.

Corollary 7. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n(1 + 1/t) + O(n) bits that finds the elements of f−k(i)
with the minimum and the maximum labels, for any i ∈ [1..n] and k > 0, in
time O(t), for any t > 0.

Corollary 8. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n(1 + 1/t) + O(n lgR) bits, for any t > 0 and R ≤ n. It
finds the element with the rth largest label in f−k(i), for any i ∈ [1..n], k > 0,
and 1 ≤ r ≤ R, in time O(t+ lg r/ lg lg n). It can also list the r elements with
the largest or smallest values in f−k(i) in time O(tr).

Corollary 9. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n+ (1 + ε)nH(`) +O(n lg lg lg n) bits, where ε > 0 is any
constant and H(`) is the entropy distribution of the labels, that finds the τ -
majorities in the labels of f−k(i), for any i ∈ [1..n], k > 0, and 0 < τ < 1, in
time O(1/τ+lg n/ lg lg n). It can also use n lg n(1+1/t)+O(n)+(1+ε)nH(`)
bits, for any t > 0, and answer queries in time O(1/τ + t).

Corollary 10. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n(1 + 1/t) +O(n) + nH(`) + o(n lg σ) bits, for any t > 0,
where H(`) is the entropy distribution of the labels, that counts the number of
labels of f−k(i) within a range, for any i ∈ [1..n], k > 0, and range of labels,
in time O(t + lg σ/ lg lg n). It can then list those r elements in time O(r(t +
lg σ/ lg lg n)). If only counting is needed, then there is a structure using n lg n+
nH(`) + o(n lg σ) +O(n lg lg lg n) bits, that counts in time O(lg n/ lg lg n).

4.2 Functions without labels

As before, we can consider the case where the domain elements have no labels,
but we just want to query their values, that is, `(i) = i. In Corollary 10, the
geometric structures used allow performing the equivalent to select queries
on the sequence of labels, and thus they can be used to find where the
domain value i appears in the array of labels, and then we can map it to the
tree using ρ and B. Then there is no need for permutation π, and we can

20

subtract n lg n bits to the space in this corollary. 6 On the other hand, we
have that H(`) = lg n since each symbol appears exactly once in the sequence.

Corollary 11. Let f : [1..n]→ [1..n] be a function. Then, there exists a data
structure using n lg n + o(n lg n) bits, that counts the number of elements of
f−k(i) within a range, for any i ∈ [1..n], k > 0, and range of elements, in time
O(lg n/ lg lg n). It can then list those r elements in time O((r+1) lg n/ lg lg n).

5 Negative Paths

For ranges of negative values of k, f−k1..−k2(i), our solution maps the queries
into two-dimensional ranges, which require more space and/or time than pre-
vious solutions. We preserve the same tree as in Section 4, but this time the
mapping from node v is done to pairs (rank 1(B, id(v)), depth(v)). Here id(v)
is the preorder of the node in the Fully-Functional representation. Therefore,
once we have mapped the domain element i to a tree node v, and determined
that v is not on the cycle, we have that the query encompasses the two-
dimensional range [rank 1(B, id(v)) .. rank 1(B, id(v) + subtreesize(v) − 1)] ×
[depth(v) + k1 .. depth(v) + k2], which is determined in constant time. We now
perform the desired query on a structure that handles two-dimensional points
(possibly with labels). The returned points (j, d) are then mapped to the do-
main values π(j) in constant time. Note that we can use a single n × n grid
for all the trees.

For the case where v is on the cycle, we will use a further structure. Note that
we want to consider, in addition to the previous range, all the nodes in the tree
of v with a depth that is between d1 = depth(v) + k1 and d2 = depth(v) + k2,
modulo c, but not reaching the range [d1..d2], as that one is already handled. To
this end, we will map the nodes v to pairs (depth(v) div c, depth(v) mod c),
and will query for the points in the range [0..d2 div c − 1] × [d1 mod c .. d2
mod c]. If, however, d1 mod c > d2 mod c, then we split the second range into
two, [d1 mod c .. c− 1] and [0 .. d2 mod c].

An exception occurs if k2− k1 ≥ c, since then the two types of ranges overlap
and we could count points twice. In this case we take, in this second arrange-
ment, the range [0 .. d2 div c − 1] × [0 .. c − 1], and reduce the range within
the subtree of v to [rank 1(B, id(v)) .. rank 1(B, id(v) + subtreesize(v) − 1)] ×
[(d2 div c) · c .. d2].

Note that all the nodes in a tree with the same depth are mapped to the same

6 The same happens in Corollary 9, but the query makes no sense if the labels are
all unique.

21

Algorithm 4: Computing queries on negative paths.

1 Proc Negative(i, k1, k2)
2 p← π−1(i)
3 v ← node(select1(B, p))
4 p′ ← rank 1(B, id(v) + subtreesize(v)− 1)
5 vc ← anc(v, depth(v))
6 v0 ← leftmost(vc)
7 c← depth(v0)
8 d1 ← depth(v) + k1
9 d2 ← depth(v) + k2

10 if k2 − k1 > c then
11 Query the first structure with [p .. p′]× [(d2 div c) · c .. d2]
12 Query the second structure with [0..d2 div c− 1]× [0 .. c− 1]

13 else
14 Query the first structure with [p .. p′]× [d1 .. d2]
15 if d1 mod c ≤ d2 mod c then
16 Query the second structure with [0..d2 div c− 1]× [d1 mod c .. d2

mod c]

17 else
18 Query the second structure with [0..d1 div c− 1]× [d1

mod c .. c− 1]
19 Query the second structure with [0..d2 div c− 1]× [0 .. d2 mod c]

20 Return the composition of all the points collected in the ranges.

cell of this second grid; these are separated in the geometric structures with
standard methods, in which the width of the grid is enlarged to have one point
per column. The grids of all the trees can then be horizontally concatenated,
to reach n columns in total. The strip of the grid for the node v is then the
one starting at column rank 1(B, id(vc)), as before. Finally, note that we must
spend other n lg n bits to maintain the domain values associated with the
returned nodes in this second grid, since this time they cannot be deduced
only from the depth information stored at the points.

Note that we have to complete the query from the results of up to 3
two-dimensional ranges, so the query must be decomposable. Algorithm 4
gives the details.

Theorem 5. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an
assignment of labels to the domain elements. Let there be a two-dimensional
range query data structure that, on an n× n grid with n points with values in
[1..σ], answers decomposable queries in T (n, σ) time using in S(n, σ) bits of
space. Then, there exists a data structure using 2n lg n+O(n) + 2S(n, σ) bits
that answers the same query on the negative paths of f in time O(lg n/ lg lg n)+

22

T (n, σ). There exists another data structure using 2n lg n(1 + 1/t) + O(n) +
2S(n, σ) bits that answers the query in time O(t) + T (n, σ), for any t > 0.

We can combine this theorem with various results on querying two-dimensional
grids of points with labels (or weights); recall Section 2.5. The other queries
considered in that section are not decomposable.

Corollary 12. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using O(n lg n) bits that answers minima and maxima queries on
the negative paths of f in time O(lg1+ε n), and top-r queries in time O((r +
lg n) lgε n), for any constant ε > 0.

Corollary 13. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using O(n lg2 n/ lg lg n) bits that answers range counting queries on
the negative paths of f in time O((lg n/ lg lg n)2), and reports the r values in
time O((r + 1)(lg n/ lg lg n)2). By using slightly more space, O(n lg2+ε n) bits
for any constant ε > 0, the time to report is reduced to O(r + lg lg n).

6 Navigation Queries

We now consider a different type of query, which allow us navigate on the
graph of the function in a more sophisticated way than the basic iteration
queries of Munro et al. [21]. We study various queries of this type that might
be of interest.

6.1 Nearest common successor

Given i, i′ ∈ [1..n], we want to know which is the element j such that fk(i) =
fk

′
(i′) = j for the minimum possible values of k ≥ 0 and k′ ≥ 0. This is the

closest “meeting point” of i and i′ through applications of f . Note that there
may be more than one solution not dominating each other.

It is not hard to see that this query can be solved with the arrange-
ment of Section 3.1. We first compute the corresponding nodes, v =
node(select1(B, π

−1(i))) and v′ = node(select1(B, π
−1(i′))). Now, if v and v′

are in the same subtree sprouting from the node of a cycle, then the only
answer is j = π(rank 1(B, id(w))), where w = lca(v, v′). If w is the (fake) tree
root, then v and v′ are in different trees, and there is no answer to the query.

23

Algorithm 5: Computing the meeting point of two values.

1 Proc Meeting(i, i′)
2 v ← node(select1(B, π

−1(i)))
3 v′ ← node(select1(B, π

−1(i′)))
4 w ← lca(v, v′)
5 if w = root then
6 Return that there is no answer

7 vc ← anc(v, depth(v)− 1)
8 v0 ← leftmost(vc)
9 u← lca(v0, v)

10 u′ ← lca(v0, v
′)

11 if u = u′ then
12 Return one answer: π(rank 1(B, id(w)))

13 else
14 Return two answers: π(rank 1(B, id(u))) and π(rank 1(B, id(u′)))

The other case is that v and v′ are in the same tree, but they come from
subtrees sprouting from different nodes of the cycle. This case yields two
incomparable answers. We first compute the leftmost leaf v0 of the cycle.
Then, the points where v and v′ meet the cycle, u = lca(v0, v) and u′ =
lca(v0, v

′), are valid answers: the first with k = depth(v)− depth(u) and k′ =
depth(v′) − depth(u′) + ((depth(u′) − depth(u)) mod c); and the second with
k′ = depth(v′)−depth(u′) and k = depth(v)−depth(u)+((depth(u)−depth(u′))
mod c). Algorithm 5 shows the procedure.

By using the Fully-Functional tree representation [25], we obtain the following
result.

Theorem 6. Let f : [1..n] → [1..n] be a function. Then, there exists a data
structure using n lg n + O(n) bits that finds the nearest common successor of
two values in time O(lg n/ lg lg n). There exists another data structure using
n lg n(1 + 1/t) +O(n) bits that answers the query in time O(t), for any t > 0.

A related query is whether there exists some k ≥ 0 such that fk(i) = fk(i′),
and which is the smallest such k. This is easily solved after finding the meeting
point(s) in Algorithm 5. If there is only the meeting point w = lca(v, v′), then
the answer is depth(v) − depth(w) if this is equal to depth(v′) − depth(w);
otherwise there is no answer. If, on the other hand, we find two answers u and
u′, each with its own values k and k′ (which are not computed in Algorithm 5,
but we gave their formulas), then an answer is k if k = k′. Then we may return
the k of u or the k of u′, depending on which is smaller.

24

6.2 Nearest labeled successor

Given i ∈ [1..n] and 1 ≤ `1 ≤ `2 ≤ σ, this query asks for the smallest
k ≥ 0 such that `(fk(i)) ∈ [`1, `2]. We can answer this query by using the
arrangement of Section 3.2 and building on the resulting trees a structure
that finds the nearest ancestor with a label in a given range.

We define, over a labeled tree, the operator lowest-anc[`1..`2](T, x), which re-
turns the lowest ancestor of x with a label in [`1..`2] if it exists, or null
otherwise. We first show how to support lowest-anc in constant time when
σ = O(lgε n) for some constant 0 < ε < 1/2.

The starting point of our solution is the succinct tree representations based
on tree covering [12,15,8]. Given a parameter M , Geary et al. [12] showed
how to cover all the nodes in T using a set of O(n/M) cover elements, each
being a subtree of size O(M). Any two cover elements are either disjoint (i.e.,
not sharing any nodes), or only share the common root. Farzan and Munro [8]
further modified this approach to guarantee that, for each cover element, there
exists at most one edge that connects a non-root node of this cover element
to a node of a different element. Using their approach, the number of nodes in
each cover element is bounded by 2M . Succinct representations of (unlabeled)
trees can be constructed by constructing auxiliary data structures for two tiers
of cover elements of T [12,15,8].

In our solution, we first follow the approach of representing a labeled tree over
a small alphabet by He et al. [17], and then build additional auxiliary data
structures to support lowest-anc. In their approach, He et al. adopt the idea
by Geary et al. [12] to represent the tree structure of T , but with different
parameters and a different approach of computing cover elements. More pre-
cisely, we first set M = dlg2 ne and use the approach of Farzan and Munro
to cover T with mini-trees of size at most 2M . Then, for each mini-tree, we
set M ′ = dlgλ ne for some max(1/2, 2ε) < λ < 1 to cover it with micro-trees
of size at most 2M ′. 7 Mini-trees (or micro-trees) are ordered by the preorder
of their roots, and when two mini-trees (or micro-trees) share the same root,
they are ordered by the immediate successor of the root in these trees in pre-
order. Thus, when referring to a node of T , there are two ways: Externally, we
identify each node by its preorder. Internally, we define the τ -name of a node
x to be τ(x) = 〈τ1(x), τ2(x), τ3(x)〉, where τ1(x) is the rank of the mini-tree
containing x, τ2(x) is the rank of the micro-tree containing x among all the
micro-trees in the τ1(x)-th mini-tree, and τ3(x) is the preorder rank of x in

7 He et al. [17] assume 0 < ε < 1 and max(1/2, ε) < λ < 1. To support lowest-anc,
we have to further narrow down the ranges of possible values for ε and λ. Since the
ranges set by us are subranges of those used by He et al., their data structures can
still be directly used in our representation.

25

its micro-tree. We also say that τi(x) is the τi-name of x, for i ∈ {1, 2, 3}.
As He et al. pointed out, the auxiliary data structures of Geary et al. [12]
and He et al. [15] can be easily adapted to our parameters to represent the
structure of T (without labels) in 2n+ o(n) bits such that:

• We can perform the conversion between the preorder rank and the τ -name
of an arbitrary node in constant time. Thus, we can refer to a node by
either its preorder rank or its τ -name, without explicitly mentioning the
conversion process.
• Given the τ -name of a node x, we can compute the global rank of the

micro-tree containing x among all micro-trees of T in constant time.
• We can also support a list of (unlabeled) operations in constant time. The

operations that are used in our solution include computing the depth and
the degree of x, and locating the i-child of x for any given i.

To support operations over the labels of the nodes of T , we encode the labels
as a sequence ordered by the preorder ranks of the nodes and build the same
auxiliary data structures as those designed by He et al. [17]. The bounds of
their solution can be summarized in the following lemma, in which an α-node
is defined to be a node labeled α.

Lemma 1 ([17]). Let T be an ordinal tree on n nodes, each assigned a label
from [1..σ], where σ = O(lgε n) for some constant 0 < ε < 1/2. Then T can be
represented in nH(`) + 2n+ o(n) bits, where H(`) is the entropy distribution
of the labels, to support the following operations in O(1) time:

• pre-rankα(T, x), which returns the number of α-nodes preceding x in pre-
order;
• pre-selectα(T, i), which returns the i-th α-node in preorder;
• pre-countβ(T, i), which returns the number of nodes that have preorder ranks

at most i and labels at most β;
• parentα(T, x), which returns the lowest ancestor of x that is labeled α.

In addition, the encoding of an arbitrary micro-tree of T , including the tree
structure and the node labels, can be computed in O(1) time.

Note that more operations are supported by He et al. [17], but we only use
those defined in this lemma. We now construct additional auxiliary structures
to support lowest-anc.

Lemma 2. With additional auxiliary structures of o(n) bits, the data struc-
tures in Lemma 1 can support lowest-anc in O(1) time.

Proof. Let n1 and n2 denote the numbers of mini- and micro-trees, respec-
tively. We construct the following auxiliary data structures:

26

• A two-dimensional array A[1..n1, 1..σ, 1..σ], in which A[i, `1, `2] stores the
preorder number of the node lowest-anc[`1..`2](T, ri), where ri is the root of
the i-th mini-tree, or −1 if such a node does not exist;
• A two-dimensional array B[1..n2, 1..σ, 1..σ], in which B[i, `1, `2] stores the
τ2- and τ3-names of the node lowest-anc[`1..`2](T, r

′
i), where r′i is the root of

the i-th micro-tree, or −1 if such a node does not exist;
• A table C that stores, for every possible labeled tree L on at most 2M ′ nodes

with labels drawn from [1..σ], every integer x in [1..2M ′], and every pair of la-
bels, `1 and `2, in [1..σ], the preorder number of node lowest-anc[`1..`2](L, x),
or −1 if such a node does not exist.

We now analyze the space cost. A occupies n1 ·σ2 ·O(lg n) = O(n/ lg1−2ε n) =
o(n) bits, since n1 = O(n/ lg2 n) and each entry can be stored in O(lg n) bits.
By the tree covering algorithm, there are O(lg2−λ) micro-trees in any mini-
tree, and each micro-tree has at most 2 lgλ n nodes. Therefore, each entry of
B, which consists of a τ2-name and a τ3-name only, can be stored in O(lg lg n)
bits. We also have n2 = O(n/ lgλ n). Thus, B occupies n2 · σ2 · O(lg lg n) =
O(n lg lg n/ lgλ−2ε n) = o(n) bits. As each micro-tree has at most 2M ′ nodes
and entry entry of table C can be encoded in O(lg lg n) bits, table C uses at

most 24M ′ ·σ2M ′ ·2M ′ ·σ2 ·O(lg lg n) = 22dlgλ ne(lg σ+2) ·2dlgλ ne ·σ2 ·O(lg lg n) =
o(n) bits. Therefore, these auxiliary data structures occupy o(n) bits in total.

To compute lowest-anc[`1..`2](T, x), we first compute the encoding of the micro-
tree containing x and then perform a table lookup in C to find out if the answer
is inside the same micro-tree that contains x. If it is, this lookup also gives us
the answer when combined with the τ1- and τ2-names of x, which we return.
If x does not have an ancestor in its micro-tree that has a label in [`1..`2], we
compute the rank, j, of the micro-tree containing x. The entry B[j, `1, `2] tells
us whether the answer is located in the same mini-tree that contains x. If it is,
we retrieve the τ2- and τ3-names of the answer from this entry, and combine
it with τ1(x) to compute the answer and then we are done. If not, the entry
A[τ1(x), `1, `2] will either give us the answer, or tell us that no ancestor of x
has a label in [`1..`2]. All these steps require O(1) time in total.

We then make use of the tree extraction approach of He et al. [17] to extend
Lemma 2 to general alphabets. Given a range, [`1, `2] of labels, an ordinal
forest F`1,`2 can be constructed from a labeled tree T via tree extraction as
follows: We remove each non-root node x whose label is not within the range
[`1, `2] from T in an arbitrary order and insert its children in place of x into
the list of children of its parent, preserving the original left-to-right order.
Afterward, if the the label of the root is not within the range, we remove it
from the tree, and we do nothing otherwise. The resulting forest is F`1,`2 .

To represent T for an arbitrary σ, we follow the approach of He et al. [17],
and augment the resulting data structure with the auxiliary structures of

27

Lemma 2. More precisely, we define a conceptual range tree on [1..σ] with
branching factor q = dlgε ne. Each node of this tree represents a subrange
of the alphabet, and the root corresponds to the entire range of alphabet,
[1..σ]. This tree can be constructed level by level, starting from the top. At
each level, for a node representing range [a..b], we partition its range into q
subranges, [a1..b1], [a2..b2], . . . , [aq..bq], such that ai = bi−1+1 for i = 2, 3, . . . , q
and the size of each range, with the possible exception of the last one, is
d(b − a + 1)/qe. The i-th child of this node then represents [ai..bi]. We keep
repeating this process until all the nodes in the current level represent either
empty ranges or ranges of size 1. We number the levels of this range tree
1, 2, . . . , h starting from the root level, where h is the height of this tree. Then
h = O(1 + lg σ/ lg lg n).

For each level, l, of the range tree except the leaf level, we construct an auxil-
iary tree Tl as follows. Let [a1..b1], [a2..b2], . . . , [am..bm] be the nonempty ranges
represented by the nodes at the l-th level from left to right. Then a1 = 1,
bm = σ, and ai = bi−1 + 1 for i = 2, 3, . . . ,m. Tl has a dummy root, whose
children, from left to right, are roots of the trees in Fa1,b1 , Fa2,b2 , . . . , Fam,bm ,
and for the trees from the same forest Fai,bi , their left-to-right order is pre-
served when inserting their root nodes as the children of the dummy root.
The dummy root is not taken into account for the preorder sequence or node
depths of Tl. We assign labels to nodes of Tl as follows: The dummy root of
Tl is assigned label 1. For each node x of T , let xl denote the node in Tl that
corresponds to x. We assign label α to xl, if the range containing the label
of x at the (l + 1)-st level of the range tree is the α-th child range of that
containing the same label at the l-th level. Thus Tl is a labeled tree on n+ 1
nodes, each assigned a label from [1..q], where q = dlgε ne. Each Tl is then
represented by the data structures for Lemmas 1 and 2. By the analysis of
He et al. [17], all the Tl’s together occupy nH(`) +O(n(1 + lg σ/ lg lg n)) bits,
where H(`) is the entropy distribution of the labels.

To support the operation lowest-anc[`1..`2](T, x), we design a recursive algo-
rithm, which is presented in Algorithm 6. In this algorithm, provided that
[a..b] is a range at the l-th level of the conceptual range tree, c and d are the
numbers of non-root nodes in Tl with labels less than or equal to a− 1 and b,
respectively, and v is the node in Tl that corresponds to the lowest ancestor of
x with a label in [a..b], the procedure Ancestor([a..b], l, c, d, v, [`l..`2]) returns
the preorder number of the node in Tl that corresponds to the lowest ancestor
of x with a label in [a..b]∩ [`1..`2]. Thus, to compute lowest-anc[`1..`2](T, x), the
initial call to this recursive algorithm is Ancestor([1..σ], 1, 0, n, x, [`l..`2]).

In the procedure Ancestor , we first identify, in lines 4 and 5, the small-
est subscript α and the largest subscript β such that the child ranges
[aα..bα], [aα+1..bα+1], . . . [aβ..bβ] are completely contained in [a∗, b∗]. Then the
return value of this procedure is the lowest node in Tl among these three can-

28

Algorithm 6: The recursive algorithm for computing the lowest ancestor of
v with label in [`1..`2]. We assume that parent returns a fake node ⊥ if there
is no answer. Node ⊥ is assumed to be higher than any other node.

1 Proc Ancestor([a..b], l, c, d, v, [`1..`2])
2 Let [a1..b1], [a2..b2], . . . , [aq..bq] be the child ranges of [a..b] in the range

tree
3 [a∗..b∗]← [a..b] ∩ [`1..`2]
4 α← min{i ∈ [1..q], a∗ ≤ ai ≤ bi}
5 β ← max{i ∈ [1..q], ai ≤ bi ≤ b∗}
6 u←⊥
7 if α ≤ β then
8 u← lowest-anc[α..β](Tl, v)

9 for γ ∈ {α− 1, β + 1} do
10 if 1 ≤ γ ≤ q and [aγ..bγ] ∩ [a∗..b∗] 6= ∅ then
11 cγ ← c+ pre-countγ−1(Tl, d)− pre-countγ−1(Tl, c)

12 dγ ← c+ pre-countγ(Tl, d)− pre-countγ(Tl, c)

13 pl ← parentγ(Tl, v)

14 if pl 6=⊥ then
15 pl+1 ← c+ pre-rankγ(Tl, pl)− pre-rankγ(Tl, c)

16 u′l+1 ← Ancestor([aγ..bγ], l + 1, cγ, dγ, pl+1, [`1..`2])
17 if u′l+1 6=⊥ then
18 u′l ← pre-selectγ(Tl, pre-rankγ(Tl, c) + u′l+1 − cγ)
19 u← the lower of u and u′ in Tl

20 Return u

didate nodes: the lowest ancestor of x in Tl with a label in [aα−1..bα−1]∩[`1..`2],
the lowest ancestor of x in Tl with a label in [aα..bβ] ∩ [`1..`2], and the lowest
ancestor of x in Tl with a label in [aβ+1..bβ+1]∩ [`1..`2]. Note that not all three
candidate nodes exist necessarily. The second candidate node can be located
by performing lowest-anc over Tl if it exists (lines 7 and 8). This operation can
be supported in constant time by Lemma 2. The first and third candidates are
located in lines 9–19. To show how these lines work, take the first candidate
for example. The key idea is to recursively perform the same procedure at level
l+1, and line 16 shows the recursive call. Before this call, we fix the arguments
to pass to it. The computation of these arguments is straightforward, except
that of pl+1, which is the node in Tl+1 that corresponds to the lowest ancestor
of x with a label in [aα−1..bα−1]. To compute pl+1, we first compute pl, which
is the node in Tl that corresponds to Tl+1 in line 13, and then convert it to
pl+1 in line 15. After the recursive call, we located the node, u′l+1, in Tl+1, that
corresponds to the first candidate, and we locate the candidate itself in Tl in
line 18.

29

To analyze the running time, the key observation is that each call to Ancestor
invokes at most two recursive calls, and furthermore, the only possible case
in which two recursive calls are made is that the lowest common ancestor of
the leaves in the range tree corresponding to labels `1 and `2 are at level l.
Therefore, the recursive procedure is called at most 2h times. In each call,
a constant number of operations are performed at Tl, which require O(1)
time in total by Lemmas 1 and 2, as well as the constant-time support for
the unlabeled operations listed before them. Therefore, the total time needed
to support lowest-anc is O(h) = O(1 + lg σ/ lg lg n). We have proved the
following theorem.

Theorem 7. Let T be a tree on n nodes with labels in [1..σ]. Then T can be
represented in nH(`) + O(n(1 + lg σ/ lg lg n)) bits, where H(`) is the entropy
distribution of the labels, to support lowest-anc in O(1 + lg σ/ lg lg n) time.

By applying this technique over the arrangement of Section 3.2, we obtain an
analogous result on functions.

Theorem 8. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using n lg n+2nH(`)+O(n)+o(n lg σ) bits, where H(`) is the entropy
distribution of the labels, that answers nearest labeled successor queries in time
O(1 + lg σ/ lg lg n). There exists another data structure using n lg n(1 + 1/t) +
2nH(`)+O(n)+o(n lg σ) bits that answers queries in time O(t+lg σ/ lg lg n),
for any t > 0.

With this query and the previous one we can find the nearest common labeled
successor: given i, i′ ∈ [1..n], find the element j such that fk(i) = fk

′
(i′) = j

for the minimum possible values of k ≥ 0 and k′ ≥ 0, but subject to the
condition that `(j) ∈ [`1, `2]: We first compute the unlabeled answer(s) j with
Algorithm 5, and then find the nearest labeled successor of each. The answer
closest to i or to i′ is the result.

Another generalization is the iterated nearest successor, which given an addi-
tional parameter i, returns the iteration of the nearest common ancestor query
i times. For the particular case of ranges of the form [`1, `2] = [`, `], we can
efficiently answer this query by representing T with the arrangement of Tsur
[26], which solves the labeled level ancestor query on trees in time O(lg lg σ

lgw
)

on a computer word of w = Ω(lg n) bits, using H` + o(n lg σ) +O(n) bits. We
then obtain the same space of Theorem 8 for this query.

30

6.3 Nearest labeled predecessor

An analogous query, now referring to negative powers of f , is, given i ∈ [1..n]
and 1 ≤ `1 ≤ `2 ≤ σ, find the smallest k ≥ 0 such that there exists a j ∈ f−k(i)
such that `(j) ∈ [`1, `2].

This query can be solved as a two-dimensional range minimum query.
Analogously as in Section 5, we map each node v to the point
(rank 1(B, id(v)), `(π(rank 1(B, id(v))))), with value depth(v). At query time,
we map i to its tree node v. If v is not on the cycle, we simply query for
the two-dimensional range [rank 1(B, id(v)) .. rank 1(B, id(v)+ subtreesize(v)−
1)]× [`1, `2], and find the node with the minimum depth. If the resulting depth
is d, then the minimum distance to v is k = d− depth(v), and we finish.

If v is on the cycle, then any node in the tree rooted at vc is also
a possible candidate, because it is reacheable through the cycle. In this
case, we obtain a second candidate answer by querying the whole range
[rank 1(B, id(vc)) .. rank 1(B, id(vc) + subtreesize(vc)− 1)]× [`1, `2]. If we find a
node with minimum depth d, then it is at distance d+depth(v0)−depth(v)−1
from v (if it is not already a descendant of v, in which case it will be found,
with a shorter distance, with the method of the previous paragraph). We then
choose, between the two answers, the one that is closer to v.

By using the structure for two-dimensional minimum range queries (Sec-
tion 2.5), we obtain the following result.

Theorem 9. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ]
an assignment of labels to the domain elements. Then, there exists a data
structure using O(n lg n) bits that answers nearest labeled predecessor queries
on f in time O(lg1+ε n), for any constant ε > 0.

7 Conclusions

Munro et al. [21] studied how to represent an integer function f : [1..n]→ [1..n]
so as to efficiently find any element reachable through positive and negative
powers of f . We have now considered, for the first time, summary queries on
ranges of positive or negative powers of f . For positive powers, we essentially
retain optimal storage space and almost match the best results of path queries
on trees [16,5]. Negative powers lead to a set of domain values. For a single
negative power, we still almost retain the performance of the corresponding
array range query, which is generally better than for tree path queries. For a
range of negative powers, we resort to two-dimensional range queries, where

31

the space might stay linear or, if labels are also involved, it might be multiplied
by O(lg n). We also studied other navigation queries through paths of f , more
sophisticated than merely iterating positive and negative powers.

This is the first study on this problem, and it is not clear whether the results
can be improved, in particular it is not clear if queries on ranges of negative
powers of f must resort to three-dimensional range queries. Another interest-
ing line of work is to devise generalizations of integer functions that can be
dealt with efficiently.

Acknowledgements

We thank Srinivasa Rao Satti for useful discussions.

References

[1] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Theory and practice
of monotone minimal perfect hashing. ACM Journal of Experimental
Algorithmics, 16(3):article 2, 2011.

[2] D. Belazzougui, T. Gagie, J. I. Munro, G. Navarro, and Y. Nekrich. Range
majorities and minorities in arrays. CoRR, abs/1606.04495, 2016.

[3] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao.
Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.

[4] P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range
search structures on a grid with applications to text indexing. In Proc. 11th
International Symposium on Algorithms and Data Structures (WADS), LNCS
5664, pages 98–109, 2009.

[5] T. M. Chan, M. He, J. I. Munro, and G. Zhou. Succinct indices for path
minimum, with applications to path reporting. In Proc. 22th Annual European
Symposium on Algorithms (ESA), LNCS 8737, pages 247–259, 2014.

[6] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the
RAM, revisited. In Proc. 27th ACM Symposium on Computational Geometry
(SoCG), pages 1–10, 2011.

[7] D. R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada,
1996.

[8] A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various
families of trees. Algorithmica, 68(1):16–40, 2014.

32

[9] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. Theoretical Computer Science, 371(1):115–121, 2007.

[10] J. Fischer and V. Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM Journal on Computing, 40(2):465–
492, 2011.

[11] T. Gagie, M. He, and G. Navarro. Path queries on functions. In Proc. 28th
Annual Symposium on Combinatorial Pattern Matching (CPM), LIPIcs 78,
page article 5, 2017.

[12] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-
ancestor queries. ACM Transactions on Algorithms, 2(4):510–534, 2006.

[13] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text
indexes. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 841–850, 2003.

[14] R. Grossi, J. Iacono, G. Navarro, R. Raman, and R. Rao Satti. Asymptotically
optimal encodings of range data structures for selection and top-k queries. ACM
Transactions on Algorithms, 13(2):article 28, 2017.

[15] M. He, J. I. Munro, and S. S. Rao. Succinct ordinal trees based on tree covering.
ACM Transactions on Algorithms, 8(4):article 42, 2012.

[16] M. He, J. I. Munro, and G. Zhou. Succinct data structures for path queries.
In Proc. 20th Annual European Symposium on Algorithms (ESA), LNCS 7501,
pages 575–586, 2012.

[17] M. He, J. Ian Munro, and G. Zhou. Data structures for path queries. ACM
Transactions on Algorithms, 12(4):53:1–53:32, 2016.

[18] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 549–554, 1989.

[19] J. Jájá, C. W. Mortensen, and Q. Shi. Space-efficient and fast algorithms
for multi-dimensional dominance reporting and counting. In Proc. 15th
International Symposium on Algorithms and Computation (ISAAC), pages 558–
568, 2004.

[20] J. I. Munro. Tables. In Proc. 16th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), LNCS 1180, pages
37–42, 1996.

[21] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of
permutations and functions. Theoretical Computer Science, 438:74–88, 2012.

[22] J. I. Munro and V. Raman. Succinct representation of balanced parentheses
and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[23] G. Navarro and Y. Nekrich. Time-optimal top-k document retrieval. SIAM
Journal on Computing, 46(1):89–113, 2017.

33

[24] G. Navarro, Y. Nekrich, and L. M. S. Russo. Space-efficient data-analysis
queries on grids. Theoretical Computer Science, 482:60–72, 2013.

[25] G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct
trees. ACM Transactions on Algorithms, 10(3):article 16, 2014.

[26] D. Tsur. Succinct representation of labeled trees. Theoretical Computer
Science, 562:320–329, 2015.

34

