
Reporting Consecutive Substring Occurrences
Under Bounded Gap Constraints I

Gonzalo Navarroa,1, Sharma V. Thankachanb

aCenter of Biotechnology and Bioengineering, Department of Computer Science, University of Chile.
gnavarro@dcc.uchile.cl.

bSchool of Computational Science and Engineering, Georgia Institute of Technology, USA.
sharma.thankachan@gatech.edu

Abstract

We study the problem of indexing a text T [1 . . . n] such that whenever a pattern
P [1 . . . p] and an interval [α, β] comes as a query, we can report all pairs (i, j) of consec-
utive occurrences of P in T with α ≤ j − i ≤ β. We present an O(n log n) space data
structure with optimal O(p+ k) query time, where k is the output size.

1. Introduction

Detecting consecutive occurrences of a pattern in a text is a problem that arises, in
various forms, in computational biology applications [7, 2, 11]. For example, a tandem
repeat is an occurrence of the form PP of a given string P [1 . . . p] inside a sequence
T [1 . . . n]. Due to mutations and experimental errors, one may relax the condition that
the occurrences appear exactly one after the other, and allow for a small range of distances
between the two occurrences of P [7, Sec. 9.2]. Other variants of the problem are to find
P closely followed by its reverse complemented version in tRNA sequences, which is
useful to identify the positions where the tRNA molecule folds into a cloverleaf structure
defined by stems (the two occurrences of P) and loops (the string between them) [7, Sec.
11.9, Ex. 42]; this process is also called RNA interference [2, Sec. 6,4].

Several related combinatorial problems stem from these motivations. For example,
Iliopoulos and Rahman [8] consider the problem of finding all the k occurrences of two
patterns P1 and P2 (of total length p) separated by a fixed distance α known at indexing
time. They gave a data structure using O(n logε n) space and query time O(p+log log n+
k), for any constant ε > 0. Bille and Gørtz [3] retained the same space and improved the
time to the optimal O(p + k).2 The problem becomes, however, much messier when we
allow the distance between P1 and P2 to be in a range [α, β], even if these are still known
at indexing time. Bille et al. [4] obtained various tradeoffs, for example O(n) space and
O(p + σβ log log n + k) time, where σ is the alphabet size; O(n log n logβ n) space and

IA conference version of this paper appeared in Proc. CPM 2015.
1Funded with Basal Funds FB0001, Conicyt, Chile.
2This is optimal in the RAM model if we assume a general alphabet of size O(n).

Preprint submitted to Elsevier March 31, 2015

O(p+ (1 + ε)β log log n+k) time; and O(σβ
2

n logβ log n) space and O((p+β)(β−α) +k)
time.

These problems, however, are more general than necessary for the applications we
described, where P1 = P2 = P (or P2 is the reverse complement of P1, a case that
can be handled in the solution we will give). For this case, some related problems have
been studied. Keller et al. [9] considered the problem of, given an occurrence of P in
T , find the next one to the right. They obtained an index using O(n logε n) space and
O(log log n) time. Another related problem they studied was to find a maximal set of
nonoverlapping occurrences of P . They obtained the same space andO(log log n+k) time.
Muthukrishnan [10] considered a document-based version of the problem: T is divided
into documents, and we want to report all the k documents where two occurrences of
P appear at distance at most β. For β fixed at indexing time, he obtained O(n) space
and optimal O(p + k) time; the space raises to O(n log n) when β is given as a part of
the query. Finally, Brodal et al. [5] considered the related pattern mining problem: find
the all z maximal patterns P that appear at least twice in T , separated by a distance in
[α, β]. They obtain O(n log n+ z) time, within O(n) space.

In this paper we focus on what is perhaps the cleanest variant of the problem, which
(somewhat surprisingly) has not been considered before: find the positions in T where
two occurrences of P appear, separated by a distance in the range [α, β]. It is formally
stated as follows.

Problem 1. Index a text T [1 . . . n], such that whenever a pattern P [1 . . . p] and a range
[α, β] comes as a query, we can report all pairs (i, j) of consecutive occurrences of P in
T with α ≤ j − i ≤ β.

We obtain the following result.

Theorem 1. There exists an O(n log n) space data structure with query time O(p + k)
for Problem 1, where k is the output size.

Our solution makes use of heavy-path decompositions on suffix trees and geometric
data structures. In the Conclusions we comment on the implications of this result on
related problems.

2. Notation and Preliminaries

The ith leftmost character of T is denoted by T [i], where 1 ≤ i ≤ n. The sub-string
starting at location i and ending at location j is denoted by T [i . . . j]. A suffix is a
substring that ends at location n and a prefix is a string that starts at location 1.

The suffix tree (ST) of T is a compact representation of all suffixes of T ◦ $, except $,
in the form of a compact trie [13]. Here $ a special symbol that does not appear anywhere
in T and T ◦ $ is the concatenation of T and $. The number of leaves in ST is exactly n.
The degree of an internal node is at least two. We use `i to represent the ith leftmost
leaf in ST. The edges are labeled with characters and the concatenation of edge labels
on the path from root to a node u is denoted by path(u). Then, path(`i) corresponds
to the ith lexicographically smallest suffix of T , and its starting position is denoted by
SA[i]. The locus of a pattern P in T , denoted by locus(P), is the highest node u in ST,

2

such that P is a prefix of path(u). The set of occurrences of P in T is given by SA[i] over
all i’s, where `i is in the subtree of locus(P). The space occupied by ST is O(n) words
and the time for finding the locus of an input pattern P is O(|P |). Additionally, for two
nodes u and v, we shall use lca(u, v) to denote their lowest common ancestor.

We now describe the concept of heavy path and heavy path decomposition. The heavy
path of ST is the path starting from the root, where each node u on the path is the child
with the largest subtree size (ties broken arbitrary). The heavy path decomposition is
the operation where we decompose each off-path subtree of the heavy path recursively.
As a result, any path(·) in ST will be partitioned into disjoint heavy paths. Sleator and
Tarjan [12] proved the following property; we will use log n to denote logarithm in base
2.

Lemma 1. The number of heavy paths intersected by any root to leaf path is at most
log n, where n is the number of leaves in the tree.

Each node belongs to exactly one heavy path and each heavy path contains exactly
one leaf node. The heavy path containing `i will be called the i-th heavy path (and
identified simply by the number i). For an internal node u, let hp(u) be the unique
heavy path that contains u.

Definition 1. The set Hi is defined as the set of all leaf identifiers j, where the path
from root to `j intersects with the i-th heavy path. That is, Hi = {j | hp(lca(`j , `i)) = i}.

Lemma 2.
∑n
i=i |Hi| ≤ n log n.

Proof. For any particular j, path from root to `j can intersect at most log n heavy
paths, by Lemma 1. Therefore, j cannot be a part of more than log n sets. �

3. The Data Structure

The key idea is to reduce our pattern matching problem to an equivalent geometric
problem. Specifically, to the orthogonal segment intersection problem.

Definition 2 (Orthogonal Segment Intersection). A horizontal segment (xi, x
′
i, yi)

is a line connecting the 2D points (xi, yi) and (x′i, yi). A segment intersection problem
asks to pre-process a given set S of horizontal segments into a data structure, such that
whenever a vertical segment (x′′, y′, y′′) comes as a query, we can efficiently report all
the horizontal segments in S that intersect with the query segment. Specifically, we can
output the following set: {(xi, x′i, yi) ∈ S | xi ≤ x′′ ≤ x′i, y′ ≤ yi ≤ y′′}.

There exists an O(|S|) space and O(log log |S| + k) time solution for the segment
intersection problem, where k is the output size [6, Cor. 4.2(a)]. We now proceed to
describe the reduction.

3

Pj

j|P |
hj

locus()P

P

P’j

j

T
P

ba

j

j|P’|

b−a

α

β

|P|

Figure 1: Illustration of the main concepts of our data structure.

3.1. Reduction

One of the main components of our data structure is the suffix tree ST of T , and is
used only for finding the locus of P . Based on the heavy path on which the locus node
is, we categorize the queries in different types.

Definition 3. A query with input pattern P is type-h if h = hp(locus(P)).

Let Gh be the data structure handling type-h queries, where Gh is a structure over
a set Ih of horizontal segments, that can efficiently answer segment intersection queries.
The set Ih is generated from Hh using the following steps for each j ∈ Hh:

1. Let Pj = path(lca(`h, `j))

2. Let suc(j) be the first occurrence of Pj after the position SA[j] in T and let pre(j)
be the last occurrence of Pj before the position SA[j] in T . Clearly, neither in
[(pre(j)+1) . . . (SA[j]−1)], nor in [(SA[j]+1) . . . (suc(j)−1)], Pj has an occurrence.

3. Now, obtain two segments w.r.t. j as follows:

(a) Let P ′j be the shortest prefix of Pj without any occurrence in [(pre(j) +
1) . . . (SA[j]−1)]. Then, create segment (xi, x

′
i, yi) = (|P ′j |, |Pj |,SA[j]−pre(j))

and associate the pair (pre(j),SA[j]) of consecutive occurrences of Pj as satel-
lite information.

(b) Similarly, let P ′′j be the shortest prefix of Pj without any occurrence in
[(SA[j]+1) . . . (suc(j)−1)]. Then, create segment (xi, x

′
i, yi) = (|P ′′j |, |Pj |, suc(j)−

SA[j]) and associate it to the pair (SA[j], suc(j)) of consecutive occurrences
of Pj as satellite information.

Clearly, |Ih| = 2|Hh|. The central idea of our solution is summarized below. Figure 1
illustrates the idea.

4

Lemma 3. Let P and [α, β] be the input parameters of a query in problem 1 and let
h = hp(locus(P)). Then, the set of satellite information associated with all those hori-
zontal segments in Ih, which are stabbed by a vertical segment (p, α, β) (i.e., the segment
connecting the points (p, α) and (p, β)) forms the output to Problem 1.

Proof. First we prove that any satellite information (a, b) reported by the geometric
query on Gh is an answer to the original query. Let [s, e] be the x-interval corresponding
to the reported satellite information (a, b). Then, s ≤ p ≤ e and α ≤ b − a ≤ β. Here
the condition e ≥ p ensures that both `SA−1[a] and `SA−1[b] are leaves in the subtree of
locus(P). Therefore a and b are occurrences of P . The condition s ≤ p ensures that there
exists no occurrence of P in any location which is after a, but before b (i.e., a and b are
consecutive occurrences of P). Finally the y-coordinate ensures that α ≤ b− a ≤ β.

Now we prove that for every output (a, b) of Problem 1, there exists a segment
(s, e, b−a) in Ih with s ≤ p ≤ e and satellite information (a, b). Without loss of generality,
let lca(`h, `SA−1[a]) be either lca(`h, `SA−1[b]) or an ancestor of it. Then, let j = SA−1[a].
Since P occurs at position a, the leaf j descends from the subtree of locus(P), and since
this node belongs to the heavy path h, we have that lca(`h, `j) descends from locus(P),
thus e ≥ p. Since there is no occurrence of P between a and b, it holds s ≤ p. Then, a
segment of the form (s, e, b − a) will indeed be created while processing j ∈ Hh during
the construction of Ih. �

In the light of Lemma 3, we have the following result.

Lemma 4. There exists an O(n log n) space and O(p+log log n+k) query time solution
for Problem 1, where k is the output size.

Proof. The space of ST is O(n) and the space required for maintaining the segment in-
tersection structure over Ih, for all values of h, is O(

∑
h |Ih|) = O(

∑
h |Hh|) = O(n log n).

Thus, the total space is O(n log n) words. To answer a query, we first find the locus of
P in ST in O(p) time, and then query Gh, where h = hp(locus(P)), in O(log log n + k)
time. Therefore, the query time is O(p+ log log n+ k). �

The query time in Lemma 4 is optimal if p ≥ log log n. To handle queries where p is
shorter than log log n, we use a different approach.

3.2. Achieving Optimal Query Time

We present an optimal query time data structure for p < log log n. Essentially,
we associate a data structure D(u) with each node u in ST, whose string depth (i.e.,
|path(u)|) is at most log log n. Observe that the number of occurrences of path(u) in T is
equal to size(u), where size(u) is the number of leaves in the subtree of u. Therefore, the
number of consecutive occurrences (i, j) of path(u) is size(u)−1. Each such pair (i, j) can
be mapped to a point (j − i) in one dimension along with the pair (i, j) as an associated
satellite data. We then create a one-dimensional range reporting data structure over
these (size(u) − 1) points and call it D(u). Whenever the locus of P is u, the answer
can be obtained by issuing a one dimensional range reporting query on D(u) with [α, β]
as the input range. The satellite data associated with each reported corresponds to an
answer to Problem 1.

We use the data structure summarized in Lemma 5, by which queries can be answered
in optimal time and the space of D(u) can be bounded by O(size(u)) words.

5

Lemma 5 ([1]). One dimensional range reporting queries over a set of m points in
{0, 1, 2, . . . , 2w} can be answered in optimal time using an O(m) space data structure,
where w is the word size.

Note that the sum of all the size(u) terms for all the nodes u with the same string
depth is n, and added over all the nodes with string depth up to log log n is n log log n.
Thus the space for the D(·) structures of all the nodes with string depth up to log log n
is O(n log log n) words. This completes the proof of Theorem 1.

4. Conclusions

We have addressed what seems to be the cleanest variant of the problem related
to finding close occurrences of a pattern P [1 . . . p] in a text T [1 . . . n]: find pairs of
occurrences that are within a distance range [α, β] (given at query time). Our data
structure uses O(n log n) space and optimal O(p+ k) query time.

It is not hard to extend our result to the case where we look for the occurrence of P
followed (or preceded) by some function of P , such as its reverse complemented string
(as motivated in the Introduction). We can build the geometric structure at each suffix
tree node v considering the function of the string represented by v, instead of the string
itself. However, extending our solution to the general case of two patterns [4] seems not
possible.

Our result opens several interesting questions. A first one is whether this problem is
strictly harder than the restricted variant where α = β. For this case, the same optimal
query time has been obtained within less space, O(n logε n) [3], even when generalizing
the problem to two patterns P1 and P2. The significantly messier results obtained for
the general case α ≤ β [4] suggest that this general problem is indeed harder. Still, it is
not clear whether our optimal-time result can also be obtained within o(n log n) space.

A second interesting question is whether our result can be used for pattern mining,
that is, finding those P that appear twice in T separated by a distance in [α, β]. A direct
application of our result, which builds our structure and then traverses the suffix tree,
requires Ω(n log n + z) time, which is not better than the current result [5]. Yet, there
could be harder pattern mining problems for which our result is a useful tool.

Yet a third interesting question is how our results can be extended to the document
retrieval scenario, that is, listing the documents where P appears twice and separated
by a distance in [α, β]. The current result [10] is similar to ours in space and time, but
it is restricted to the case α = 0. It is not clear if is the problem is harder, and by how
much, for an arbitrary value of α.

References

[1] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Optimal static range reporting in one
dimension. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 476–482, 2001.

[2] S. Aluru, editor. Handbook of Computational Molecular Biology. CRC Computer and Information
Science Series. Chapman & Hall, 2005.

[3] P. Bille and I. L. Gørtz. Substring range reporting. Algorithmica, 69(2):384–396, 2014.
[4] P. Bille, I. L. Gørtz, H. W. Vildhøj, and S. Vind. String indexing for patterns with wildcards.

Theory of Computing Systems, 55(1):41–60, 2014.

6

[5] G. S. Brodal, R. B. Lyngsø, C. N. S. Pedersen, and J. Stoye. Finding maximal pairs with bounded
gap. In Proc. 10th Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS 1645,
pages 134–149, 1999.

[6] T. M. Chan. Persistent predecessor search and orthogonal point location on the word RAM. ACM
Transactions on Algorithms, 9(3):article 22, 2013.

[7] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[8] C. S. Iliopoulos and M. S. Rahman. Indexing factors with gaps. Algorithmica, 55(1):60–70, 2009.
[9] O. Keller, T. Kopelowitz, and M. Lewenstein. Range non-overlapping indexing and successive list

indexing. In Proc. 10th International Workshop on Algorithms and Data Structures (WADS),
LNCS 4619, pages 625–636, 2007.

[10] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002.

[11] E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phy-
logenetic Reconstruction. Oldenbusch Verlag, 2013.

[12] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983.

[13] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11, 1973.

7

