
Simple and Efficient Fully-Functional Succinct Trees I

Joshimar Cordova, Gonzalo Navarro

Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile

Abstract

The fully-functional succinct tree representation of Navarro and Sadakane (ACM Transactions
on Algorithms, 2014) supports a large number of operations in constant time using 2n + o(n) bits.
However, the full idea is hard to implement. Only a simplified version withO

(
lg n
)

operation time
has been implemented and shown to be practical and competitive. We describe a new variant of
the original idea that is much simpler to implement and has worst-case time O

(
lg lg n

)
for the

operations. An implementation based on this version is experimentally shown to be superior to
existing implementations.

Keywords: Succinct data structures, ordinal trees.

1. Introduction

Combinatorial arguments show that it is possible to represent any ordinal tree of n nodes
using less than 2n bits of space: the number of such trees is the (n−1)th Catalan number, 1

n

(
2n−2
n−1

)
,

and its logarithm (in base 2 and written lg across this paper) is 2n − Θ(lg n). A simple way
to encode any ordinal tree in 2n bits is the so-called balanced parentheses (BP) representation:
traverse the tree in depth-first order, writing an opening parenthesis upon reaching a node, and a
closing one upon definitely leaving it. Much more challenging is, however, to efficiently navigate
the tree using that representation.

The interest in navigating a 2n-bit representation of a tree, compared to using a classicalO(n)-
pointers representation, is that those succinct data structures allow fitting much larger datasets
in the faster and smaller levels of the memory hierarchy, thereby improving the overall system
performance. Note that compression is not sufficient; it must be possible to operate the data in
its compressed form. The succinct representation of ordinal trees is one of the most clear success
stories in this field. Table 1 lists the operations that can be supported in constant time within
2n + o(n) bits of space. These form a rich set that suffices for most applications.

The story starts with Jacobson [1], who proposed a simple levelwise representation called
LOUDS, which reduced tree navigation to two simple primitives on bitvectors: rank and select
(all these primitives will be defined later). However, the repertoire of tree operations was limited.
Munro and Raman [2] used for the first time the BP representation, and showed how three basic

IFunded with basal funds FB0001, Conicyt, Chile.
Email addresses: jcordova@dcc.uchile.cl (Joshimar Cordova), gnavarro@dcc.uchile.cl (Gonzalo

Navarro)

Preprint submitted to Theoretical Computer Science March 18, 2016

Table 1: Operations on ordinal trees, where i and j are node identifiers.

operation description
root the tree root
preorder(i) / postorder(i) preorder/postorder rank of node i
preorderselect(k) / postorderselect(k) the node with preorder/postorder k
isleaf (i) whether the node is a leaf
isancestor(i, j) whether i is an ancestor of j
depth(i) depth of node i
parent(i) parent of node i
fchild(i) / lchild(i) first/last child of node i
nsibling(i) / psibling(i) next/previous sibling of node i
subtree(i) number of nodes in the subtree of node i
levelancestor(i, d) ancestor j of i such that depth(j) = depth(i) − d
levelnext(i) / levelprev(i) next/previous node of i with the same depth
levelleftmost(d) / levelrightmost(d) leftmost/rightmost node with depth d
lca(i, j) the lowest common ancestor of two nodes i, j
deepestnode(i) the (first) deepest node in the subtree of i
height(i) the height of i (distance to its deepest node)
degree(i) q = number of children of node i
child(i, q) q-th child of node i
childrank(i) q = number of siblings to the left of node i
leafrank(i) number of leaves to the left and up to node i
leafselect(k) kth leaf of the tree
numleaves(i) number of leaves in the subtree of node i
leftmostleaf (i) / rightmostleaf (i) leftmost/rightmost leaf of node i

primitives on the parentheses: open, close, and enclose, plus rank and select, were sufficient to
support a significantly wider set of operations. The operations were supported in constant time,
however the solution was quite complex in practice. Geary et al. [3] retained constant times with
a much simpler solution to open, close, and enclose, based on a two-level recursion scheme. Still,
not all the operations of Table 1 were supported. Missing ones were added one by one: children
[4], levelancestor [5], child, childrank, height, and lca [6]. Each such addition involved extra
o(n)-bit substructures that were also hard to implement.

An alternative to BP, called DFUDS, was introduced by Benoit et al. [7]. It also used 2n
balanced parentheses, but they had a different interpretation. Its main merit was to support child
and related operations very easily and in constant time. It did not support, however, operations
childrank, depth, levelancestor, and lca, which were added later [8, 9], again each using o(n) bits
and requiring a complex implementation to achieve constant time.

Navarro and Sadakane [10] introduced a new representation based on BP, said to be fully-
functional because it supported all of the operations in Table 1 in constant time and using a
single set of structures. This was a significant simplification of previous results and enabled the
development of an efficient implementation. The idea was to reduce all the tree operations to a
small set of primitives over parentheses: fwdsearch, bwdsearch, rmq, and a few variations. The
main structure to implement those primitives was the so-called range min-max tree (rmM-tree),
which is a balanced tree of arity lgε n (for a constant 0 < ε < 1) that supports the primitives in
constant time on buckets of O

(
polylog n

)
parentheses. To handle queries that were not solved

within a bucket, other structures had to be added, and these were far less simple.
A simpleO

(
lg n
)
-time implementation using a single binary range min-max tree for the whole

sequence [11] was shown to be faster (or use much less space, or both) than other implementable
2

constant-time representations [3] in several real-life trees and navigation schemes. Only the
LOUDS representation was shown to be competitive, within its limited functionality. While
the O

(
lg n
)

growth was shown to be imperceptible in many real-life traversals, some stress tests
pursued later [12] showed that it does show up in certain plausible situations.

No attempt was made to implement the actual constant-time proposal [10]. The reason is that,
while constant-time and o(n)-bit space in theory, the structures used for inter-bucket queries,
as well as the variant of rmM-trees that operates in constant time, involve large constants and
include structures that are known to be hard to implement efficiently, such as fusion trees [13]
and compressed bitvectors with optimal redundancy [14]. Any practical implementation of these
ideas leads again to the O

(
lg n
)

times already obtained with binary rmM-trees.
In this paper we introduce an alternative construction that builds on binary rmM-trees and is

simple to implement. It does not reach constant times, but rather O
(
lg lg n

)
time, and requires

2n + O
(
n/ lg n

)
bits of space. We describe a new implementation building on these ideas, and

experimentally show that it outperforms a state-of-the-art implementation of the O(lg n)-time
solution, both in time and space, and therefore becomes the new state-of-the art implementation
of fully-functional succinct trees.

2. Basic Concepts

2.1. Bits and balanced parentheses
Given a bitvector B[1, 2n], we define rankt(i) as the number of occurrences of the bit t in

B[1, i]. We also define selectt(k) as the position in B of the kth occurrence of the bit t. Both
primitives can be implemented in constant time using o(n) bits on top of B [15]. Note that
rank1(i) + rank0(i) = i and rankt(selectt(k)) = k.

A sequence of 2n parentheses will be represented as a bitvector B[1, 2n] by interpreting ‘(’ as
a 1 and ‘)’ as a 0. On such a sequence we define the operation excess(i) as the number of opening
minus closing parentheses in B[1, i], that is, excess(i) = rank1(i) − rank0(i) = 2rank1(i) − i.
We say that B is balanced if excess(i) ≥ 0 for all i, and excess(2n) = 0. Note that excess(i) =

excess(i − 1) ± 1.
In a balanced sequence, every opening parenthesis at B[i] has a matching closing parenthesis

at B[j] for j > i, and every other parenthesis opening inside B[i + 1, j − 1] has its matching
parenthesis inside B[i + 1, j − 1] as well. Thus the parentheses define a hierarchy. Moreover, we
have excess(j) = excess(i) − 1 and excess(m) ≥ excess(i) for all i < m < j. This motivates the
definition of the following primitives on parentheses [2]:

close(i): the position of the closing parenthesis that matches B[i] = 1, that is, the smallest j > i
such that excess(j) = excess(i) − 1.

open(i): the position of the opening parenthesis that matches B[i] = 0, that is, the largest j < i
such that excess(j − 1) = excess(i).

enclose(i): the opening parenthesis of the smallest matching pair that contains position i, that is,
the largest j < i such that excess(j − 1) = excess(i) − 2.

It turns out that a more general set of primitives is useful to implement a large number of tree
operations [10], which look forward or backward for an arbitrary relative excess:

fwdsearch(i, d) = min{ j > i, excess(j) = excess(i) + d},

bwdsearch(i, d) = max{ j < i, excess(j) = excess(i) + d}.
3

)(((())(()))()((()()))

10 117643

5

2

9

8

1

1

2

3 4 5

6

7 8

9

10 11

Figure 1: An ordinal tree on the left (the node identifiers are their preorder numbers) and its BP representation on the
right, indicating which parentheses represent each node. For example the node with preorder 5 has identifier 7, which is
its position in the sequence of parentheses.

In particular, we have close(i) = fwdsearch(i,−1), open(i) = bwdsearch(i, 0)+1, and enclose(i) =

bwdsearch(i,−2) + 1.
To implement other tree operations, we also need the following primitives, which refer to

minimum and maximum excess in a range of B:

rmq(i, j): position of the leftmost minimum in excess(i), excess(i + 1), . . . , excess(j).

rMq(i, j): position of the leftmost maximum in excess(i), excess(i + 1), . . . , excess(j).

mincount(i, j): number of occurrences of the minimum in excess(i), excess(i + 1), . . . , excess(j).

minselect(i, j, q): position of the qth minimum in excess(i), excess(i + 1), . . . , excess(j).

2.2. BP representation of ordinal trees
As said in the Introduction, an ordinal tree of n nodes is represented with 2n parentheses by

opening a parenthesis when we arrive at a node and closing it when we leave the node. The
resulting sequence is balanced, and the hierarchy it defines corresponds to subtree containment.
Let us identify each node with the position of its opening parenthesis in the sequence B. See
Figure 1.

Many tree operations are immediately translated into the primitives we have defined [2]:
root = 1, depth(i) = excess(i), parent(i) = enclose(i), isleaf (i) iff B[i + 1] = 0, fchild(i) = i + 1
(if i is not a leaf), nsibling(i) = close(i) + 1 (if the result j holds B[j] = 0 then i has no next
sibling), psibling(i) = open(i − 1) (if B[i − 1] = 1 then i has no previous sibling), lchild(i) =

open(close(i) − 1) (if i is not a leaf), preorder(i) = rank1(i), preorderselect(k) = select1(k),
postorder(i) = rank0(close(i)), postorderselect(k) = open(select0(k)), isancestor(i, j) iff i ≤ j <
close(i), and subtree(i) = (close(i) − i + 1)/2.

The primitives fwdsearch and bwdsearch yield other tree operations [10]: levelancestor(i, d) =

bwdsearch(i,−d−1)+1, levelnext(i) = fwdsearch(close(i), 1), levelprev(i) = open(bwdsearch(i, 0)+
1), levelleftmost(d) = fwdsearch(0, d), and levelrightmost(d) = open(bwdsearch(2n + 1, d)).
The other primitives yield the remaining operations: degree(i) = mincount(i + 1, close(i) − 1),
child(i, q) = minselect(i+1, close(i)−1, q−1)+1 for q > 1 (for q = 1 it is fchild(i)), childrank(i) =

mincount(parent(i) + 1, i) + 1 unless B[i − 1] = 1 (in which case childrank(i) = 1), lca(i, j) =

parent(rmq(i, j) + 1) unless isancestor(i, j) (so lca(i, j) = i) or isancestor(j, i) (so lca(i, j) = j),
deepestnode(i) = rMq(i, close(i)), and height(i) = excess(deepestnode(i)) − excess(i).

4

M=3n=1

e=2 m=1

(()()))

M=0n=1

e=−2m=−2

M=−1n=1

e=−2m=−2

M=2n=1

e=2 m=−1

M=−1n=1

e=−2m=−3

M=2n=1

e=2 m=0

M=4n=1

e=4 m=1

M=0n=2

e=0 m=−3

M=0n=1

e=−4m=−4

M=4n=3

e=4 m=1

M=0n=1

e=−4m=−4

M=4n=1

e=0 m=0

((()

1 2 3 2 3 2 3 4 3 2 1 2 1 2 3 4 3 4 3 2 1

()(()))())(

0

Figure 2: The rmM-tree of the parentheses sequence of Figure 1. The numbers below are excess(i).

Finally, the operations on leaves are solved by extending the bitvector rank and select prim-
itives to count the occurrences of pairs 10 (which represent tree leaves, ‘()’): rank10(i) is the
number of occurrences of 10 starting in B[1, i] and select10(k) is the position of the kth occur-
rence of 10 in B. These are easily implemented as extensions of the basic rank and select primi-
tives, adding other o(n) bits on top of B. Then leafrank(i) = rank10(i), leafselect(k) = select10(k),
numleaves(i) = leafrank(close(i))−leafrank(i−1), leftmostleaf (i) = leafselect(leafrank(i−1)+1)
and finally rightmostleaf (i) = leafselect(leafrank(close(i))).

Therefore, all the operations of Table 1 are supported via the primitives fwdsearch, bwdsearch,
rmq, rMq, mincount, and minselect. We also need rank and select on 0, 1, and 10.

2.3. Range min-max trees

We describe the simple version of the structure used by Navarro and Sadakane [10] to solve
the primitives. We choose a block size b. Then, the (binary) range min-max tree, or rmM-tree,
of B[1, 2n] is a complete binary tree where the kth leaf covers B[(k−1)b + 1, kb]. Each rmM-tree
node v stores the following fields: v.e is the total excess of the area covered by v, v.m is the
minimum excess in this area, v.M is the maximum excess in the area, and v.n is the number of
times the minimum excess occurs in the area. Since the rmM-tree is complete, it can be stored
without pointers, like a heap. See Figure 2.

Then, an operation like fwdsearch(i, d) is solved as follows. First, the block number k = di/be
is scanned from position i+1 onwards, looking for the desired excess. If not found, then we reset
the desired relative excess to d ← d− (excess(kb)−excess(i)) and consider the leaf v of the rmM-
tree that covers block k. Now we move upwards from v, looking for its nearest ancestor that
contains the answer. At every step, if v is a right child, we move to its parent. If it is a left
child, we see if v′.m ≤ d ≤ v′.M, where v′ is the (right) sibling of v. If d is not in the range,
then update d ← d − v′.e and move to the parent of v. At some point in the search, we find that
v′.m ≤ d ≤ v′.M for the sibling v′ of v, and then start descending from v′. Let vl and vr be its left
and right children, respectively. If vl.m ≤ d ≤ vl.M, then we descend to vl. Otherwise, we update

5

d ← d − vl.e and descend to vr. Finally, we arrive at a leaf, and scan its block until finding the
excess d. Operation bwdsearch(i, d) is analogous; we scan in the other direction.

For rmq(i, j), we scan the blocks of i and j and, if there are blocks in between, we consider
the fields v.m of the O

(
lg j−i

b

)
maximal nodes that cover the leaves contained in B[i, j]. Then we

identify the minimum excess in B[i, j] as the minimum found across the scans and the maximal
nodes. If the first occurrence of the minimum is inside the scanned blocks, that position is
rmq(i, j). Otherwise, we must start from the node v that contained the first occurrence of the
minimum and traverse downwards, looking if the first occurrence was to the left or to the right
(by comparing the fields v.m). Operation rMq(i, j) is analogous. For mincount(i, j) we retraverse
the blocks and nodes, adding up the fields v.n of the nodes where v.m is the minimum. Finally,
for minselect(i, j, q), we do the same counting but traverse downward from the node v where the
qth occurrence is found, to find its position.

Finally, for primitives rankt(i) and selectt(k), we can compute on the fly the number of 1s
inside any node v as v.r = (|v| + v.e)/2, where |v| is the size of the area of B covered by v. For
rank1(i), we count the 1s in the block of i and then climb upwards from the leaf v covering
i, adding up v′.r for each left sibling of v found towards the root. For rank0(i) we compute
i − rank1(i). For select1(k), we start from the root node v, going to the left child vl if vl.r ≥ k,
and otherwise updating k ← k − vl.r and going to the right child. For select0(k) we proceed
analogously, but using |vl| − vl.r instead of vl.r. Finally, rank and select on 10 is implemented
analogously, but we need to store a field v.rr storing the number of 10s.

By using small precomputed tables that allow us to scan any block of c = (lg n)/2 bits in
constant time (i.e., computing the analogous to fields e, m, M, and n for any chunk of c bits), the
total time of the operations is O

(
b/c + lg n

)
bits. The extra space of the rmM-tree over the 2n

bits of B is O
(
(n/b) lg n

)
bits. For example, we can use a single rmM-tree for the whole B, set

b = lg2 n, and thus have all the operations implemented in time O
(
lg n
)

within 2n + O
(
n/ lg n

)
bits. This is essentially the practical solution implemented for this structure [11].

3. An O(lg lg n) Time Solution

Now we show how to obtain O
(
lg lg n

)
worst-case time, still within O

(
n/ lg n

)
extra bits.

The main idea (still borrowing from the original solution [10]) is to cut B[1, 2n] into n′ = 2n/β
buckets of β = Θ(lg3 n) bits. We maintain one (binary) rmM-tree for each bucket. The block size
of the rmM-trees is set to b = lg n lg lg n. This maintains the extra space of each rmM-tree within
O
(
(β/b) lg β

)
bits, adding up to O

(
(n/b) lg β

)
= O
(
n/ lg n

)
bits. Their operation times also stay

O
(
b/c + lg β

)
= O
(
lg lg n

)
.

Therefore, the operations that are solved within a bucket take O
(
lg lg n

)
time. The diffi-

cult part is how to handle the operations that span more than one bucket: a fwdsearch(i, d) or
bwdsearch(i, d) whose answer is not found within the bucket of i, or a rmq(i, j) or similar opera-
tion where i and j are in different buckets.

For each bucket k, we will store an entry e[k] = excess(kβ) with the excess at its end, and
entries m[k] = min(k−1)β<i≤kβ excess(i) and M[k] = max(k−1)β<i≤kβ excess(i) with the minimum
and maximum absolute excess reached inside the bucket. These entries require just O

(
n′ lg n

)
=

O
(
n/ lg2 n

)
bits of space. Heavier structures will be added for each operation, as described next.

3.1. Forward and backward searching
The solution for these queries is similar to the original one [10], but we can simplify it and

make it more practical by allowing us to take O
(
lg lg n

)
time to solve the operation. We describe

6

its details for completeness.
We first try to solve fwdsearch(i, d) inside the bucket of i, k∗ = di/βe. If the answer is

found in there, we have completed the query in O
(
lg lg n

)
time. Otherwise, after scanning the

block, we have computed the new relative excess sought d (which is the original one minus
excess(k∗β) − excess(i)). This is converted into absolute with d ← d + e[k∗].

Now we have to find the answer in the buckets k∗ + 1 onwards. We have to find the smallest
k > k∗ with m[k] ≤ d ≤ M[k], and then find the answer inside bucket k. Let us first consider the
next bucket. If m[k∗+1] ≤ d ≤ M[k∗+1], then the desired excess is reached inside the next bucket,
and therefore we complete the query by running fwdsearch(0, d − e[k∗]) inside the rmM-tree of
bucket k∗ + 1. Otherwise, either d < m[k∗ + 1] or d > M[k∗ + 1]. Let us consider the first case,
as the other is symmetric (and requires other similar data structures). The query bwdsearch(i, d)
works similarly, except that we look towards the left, therefore it is also analogous.

Since the excess changes by ±1 from one parenthesis to the next, it must hold M[k + 1] ≥
m[k] − 1 for all k, that is, there are no holes in the ranges [m[k],M[k]] of consecutive buckets.
Therefore, if d < m[k∗ + 1], then we simply look for the smallest k > k∗ + 1 such that m[k] ≤ d.
Note that for this search we would like to consider, given a k where m[k] > d, only the smallest
k′ > k such that m[k′] < m[k], as those values m[k + 1], . . . ,m[k′ − 1] ≥ m[k] are not the solution.
If we define a tree where k′ is the parent of k, then we are looking for the nearest ancestor k′′ of
node k where m[k′′] < d.

The solution builds on a well-known problem called level-ancestor queries (an operation we
have already considered for our succinct trees). Given a node v and a distance t, we want the
ancestor at distance t from v. In the classical scenario, there is an elegant and simple solution to
this problem [16]. It requires O

(
n′ lg2 n′

)
bits of space, but this is just O

(
n/ lg n

)
. The idea is to

extract the longest root-to-leaf path and write it on an array called a ladder. Extracting this path
disconnects the tree into several subtrees. Each disconnected subtree is processed recursively,
except that each time we write a path p[1, `] of nodes into a new ladder, we continue writing the
ancestors up to other ` nodes. That is, a path p[1, `] is converted into a ladder of 2` nodes (or
less if we reach the global root). Thus the ladders add up to at most 2n′ cells.

In the ladders, each node has a primary copy, corresponding to the path p[1, `] where it
belongs, and zero or more secondary copies, corresponding to paths that are extended in other
ladders. We store a pointer to the primary copy of each node, and the id of its ancestors at
distances t = 2l, for l = 0, 1, This is where the n′ lg n′ words of space are used.

Now, to find the tth ancestor of d, we compute l = blg tc, and find in the tables the ancestor
u at distance 2l of v. Then we go to the ladder where the primary copy of u is written. Because
we extract the longest paths, since u has height at least 2l, the path p[1, `] where it belongs must
be of length at least 2l, and therefore the ladder is of length at least 2` ≥ 2 · 2l. Therefore, the
ladder contains the ancestors of u up to distance at least 2l, and thus the one we want, at distance
t − 2l < 2l, is written in the ladder. Thus we just read the answer in that ladder and finish.

We must extend this solution so that we find the first ancestor u with m[u] ≤ d. Recall that
the values m[u] form a decreasing sequence as we move higher in the sequence of ancestors, and
within any ladder. First, we can find the appropriate l value with a binary search in the ancestors
at distance 2l, so that l is the smallest one such that the ancestor u at distance 2l still has m[u] > d.
This takes O

(
lg lg n′

)
time.

Now, in the ladder of u, we must find the first cell u′ to its right with m[u′] ≤ d. We solve this
by representing all the m[u′] values as B[m[u′]] = 1 in a bitvector B created for that ladder. Then
rank1(B, d) is the distance from the end of the ladder to the position of the desired ancestor u′.

7

A useful bitvector representation for this matter is the sarray by Okanohara and Sadakane
[17, Sec. 6].1 If the ladder contains r elements and the maximum value is µ, then it takes r lg µ

r +

O(r) bits of space (which adds up to just O
(
n′ lg n

)
bits overall, since µ ≤ n is the maximum

excess). It solves rank1 queries in time O
(
lg µ

r

)
if we represent its internal bitvector H of O(r)

bits with a structure that solves rank and select in constant time [15]. Note that, since the excess
changes by ±1 across positions, it changes by ±β across buckets, and thus consecutive elements
in the ladder differ by at most β. Therefore, it must be µ ≤ rβ, and the time for the rank operation
is O
(
lg β
)

= O
(
lg lg n

)
.

3.2. Range minima and maxima

If both i and j fall inside the same bucket, then operations rmq(i, j) and relatives are solved
inside their bucket. Otherwise, the minimum might fall in the bucket of i, k1 = di/βe, in that
of j, k2 = d j/βe, or in a bucket in between. Using the rmM-trees of buckets k1 and k2, we find
the minimum µ1 in the range [i − (k1 − 1)β, β] of bucket k1, and convert it to a global excess,
µ1 ← µ1 + e[k1 − 1]. We also find the minimum µ2 in the range [1, j − (k2 − 1)β] of bucket k2,
and convert it to µ2 ← µ2 + e[k2 − 1]. The problem is to find the minimum in the intermediate
buckets, µ3 ← mink1<k<k2 m[k]. Once we have this, we easily solve rmq(i, j) as the position of µ1
if µ1 ≤ min(µ3, µ2), otherwise as the position of µ3 if µ3 ≤ µ2, and otherwise as the position of
µ2 (recall that we want the leftmost position of the minimum).

In the original work [10], they use the most well-known classical solution to range mini-
mum queries [18]. While it solves the problem for query rmq, it decomposes the query range
m[k1 +1, k2−1] into overlapping subintervals, and thus it cannot be used to solve the other related
queries, such as counting the number of occurrences of the minimum or finding its qth occur-
rence. As a result, they resort to complex fixes to handle each of the other related operations in
constant time.

If we can allow ourselves to use O
(
lg lg n

)
time for the operations, then a much simpler and

elegant solution is possible, using a less known data structure for range minimum queries [19].
It uses O

(
n′ lg n′

)
words, which is O

(
n/ lg n

)
bits, and solves queries in constant time. The most

relevant feature of this solution is that it reduces the query on interval m[k1 + 1, k2 − 1] to disjoint
subintervals, which allows solving the related queries we are interested in.

Assume n′ is a power of 2 and consider a perfect binary tree on top of array m[1, n′], of height
dlg n′e. The tree nodes with height h cover disjoint areas of m, of length 2h. The tree is stored as
a heap, so we identify the nodes with their position in the heap, starting from 1, and the children
of the node at position v are at positions 2v and 2v + 1.

For each node v covering m[s, e], we store two arrays with the left-to-right and right-to-left
minima in m[s, e], that is, we store L[v][p] = min{m[s], . . . ,m[s + p]} and R[v][p] = min{m[e −
p], . . . ,m[e]} for all 0 ≤ p ≤ e − s. Their size adds up to O

(
n′ lg n′

)
cells, or O

(
n′ lg n′ lg n

)
=

O
(
n/ lg n

)
bits.

Let us call k = k1 + 1 and k′ = k2 − 1. To find the minimum in m[k, k′], we compute the
lowest node v that covers [k, k′]. Node v is found as follows: we compute the highest bit where
the numbers k − 1 and k′ − 1 differ. If this is the hth bit (counting from the left), then node v is
of height h, and it covers the `th area of m of size 2h (left-to-right), where ` = dk/2he. That is, it
holds v = n′/2h + ` − 1 and the range it covers is m[s, e] = m[(` − 1)2h + 1, ` 2h].

1Other compressed representations use o(u) further bits, which make them unsuitable for us.

8

The value of h can be computed as h = blg((k − 1) xor (k′ − 1))c2. If operations lg and
xor are not allowed in the computation model, we can easily simulate them with small global
precomputed tables of size O

(√
n′
)
, which can process any sequence of lg(n′)/2 bits (note that

computing lg requires just to find the most significant 1 in the computer word).
Now we have found the lowest node v that covers [s, e] ⊇ [k, k′] in the perfect tree. Therefore,

for p = (s+e−1)/2, the left child 2v of v covers m[s, p] and its right child 2v+1 covers m[p+1, e].
Then, the minimum of m[k, k′] is either that of m[k, p] (which is available at R[2v][p− k]) or that
of m[p + 1, k′] (available at L[2v + 1][k′ − p − 1]). We return the minimum of both.

This general mechanism is used to solve all the queries related to rmq, as we see next.

3.2.1. Solving rmq(i, j) and rMq(i, j)
The only missing piece for solving rmq(i, j) is to find the leftmost position of the minimum

in m[k, k′]. To do this we store other two arrays, Lp and Rp, with the leftmost positions of the
minima of the bucket ranges represented in L and R, respectively. That is, if v covers m[s, e],
then Lp[v][p] = rmq((s − 1)β + 1, (s + p)β) and Rp[v][p] = rmq((e − p)β + 1, eβ).

Thus, once we have the node v that covers [k, k′], there are two choices: If R[2v][p − k] ≤
L[2v + 1][k′ − p − 1] (i.e., the minimum appears in the subrange m[k, p]), the leftmost position
is Rp[2v][p − k]. Otherwise (i.e., the minimum appears only in the subrange m[p + 1, k′]) the
leftmost position is Lp[2v + 1][k′ − p − 1].

Note that any entry from the array L/R can be obtained on the fly from the corresponding
entry of Lp/Rp and the bucket array m[], hence L/R are only conceptual and we do not store
them. Furthermore, the arrays Lp/Rp are only accessed by nodes that are the right/left children
of their parent, thus we only store one of them in each node.

Operation rMq(i, j) is solved analogously (needing similar structures R, L, Lp and Rp regard-
ing the maxima).

3.2.2. Solving mincount(i, j)
To count the number of times the minimum appears, we first compute µ = min(µ1, µ2, µ3),

and then add up its occurrences in each of the three ranges: we add up mincount(i − (k1 − 1)β, β)
in bucket k1 if µ = µ1, mincount(1, j − (k2 − 1)β) in bucket k2 if µ = µ2, and the number of times
the minimum appears in [(k − 1)β + 1, k′β] (i.e., inside buckets k to k′) if µ = µ3. To compute
this last number, we store two new arrays, Ln and Rn, giving the number of times the minimum
occurs in the corresponding areas of L and R, that is, Ln[v][p] = mincount((s− 1)β+ 1, (s + p)β)
and Rn[v][p] = mincount((e − p)β + 1, eβ).

Thus, if R[2v][p− k] < L[2v + 1][k′ − p− 1], then the minimum appears only on the left, and
the count in buckets k to k′ is Rn[2v][p − k]. If R[2v][p − k] > L[2v + 1][k′ − p − 1], it appears
only on the right, and the count is Ln[2v + 1][k′ − p − 1]. Otherwise, it appears in both and the
count is Rn[2v][p− k] + Ln[2v + 1][k′ − p− 1]. Once again, a node needs to store only Ln or Rn,
not both.

3.2.3. Solving minselect(i, j, q)
To solve minselect(i, j, q) we must see if q falls in the bucket of k1, in the bucket of k2, or in

between. We start by considering k1, if µ = µ1. In this case, we compute q1 = mincount(i− (k1 −

2The xor operator takes two integers and performs the bitwise logical exclusive-or operation on them, that is, on each
pair of corresponding bits.

9

1)β, β), the number of times µ occurs inside bucket k1. If q ≤ q1, then the qth occurrence is inside
it, and we answer minselect(i − (k1 − 1)β, β, q). If q > q1, then we continue, with q← q − q1.

If µ appears between k1 and k2, that is, if µ = µ3, we compute q3 = mincount((k−1)β+1, k′β)
as in Section 3.2.2. Again, if q ≤ q3, the answer is the qth occurrence of the minimum in buckets
k to k′. If q > q3, we just set q ← q − q3. Finally, if we have not yet solved the query, we return
minselect(1, j − (k2 − 1)β, q) within bucket k2.

To find the qth occurrence of µ in the buckets k to k′, we make use of the arrays Ln and Rn.
If µ < R[2v][p − k], then the answer is to be found in the buckets p + 1 to k′. If, instead, µ =

R[2v][p− k], then there are Rn[2v][p− k] occurrences of µ in m[k, p]. Thus, if q ≤ Rn[2v][p− k],
we must find the qth occurrence of µ in buckets k to p. If instead q > Rn[2v][p − k], we set
q← q − Rn[2v][p − k] and find the qth occurrence of the minimum in buckets p + 1 to k′.

Let us find the qth occurrence of µ in buckets k to p (the other case is symmetric, using L
instead of R). The minimum in m[k, p] is µ. It also holds that the minimum in m[k + l, p] is µ,
for all 0 ≤ l ≤ g, for some number g ≥ 0, and then m[k + g + 1, p] > µ. Those intervals are
represented in the cells R[2v][p − k] to R[2v][p − k − g], and the number of times µ occurs in
them is in Rn[2v][p − k] to Rn[2v][p − k − g]. Therefore, our search for the qth minimum spans
a contiguous area of Rn[2v]: we want to find the largest l ≥ 0 such that Rn[2v][p − k − l] ≥ q.
This means that the qth occurrence of µ in buckets k to p is in bucket k + l, in whose rmM-tree
we must return minselect(1, β,Rn[2v][p − k − l] − q + 1).

To find l fast, we record all the values Rn[2v][·] in complemented unary (i.e., number x ≥ 0
as 0x1) in a bitvector C. Then, each 0 counts an occurrence of the minimum and each 1 counts
a bucket. To find l, we compute y = select1(C, p − k) − (p − k), the sum of the values up to
Rn[2v][p − k], and then l′ = select0(C, y − q + 1) − (y − q) is the desired cell Rn[2v][p − k − l],
thus l = p − k − l′.

We use again the sarray bitvector of Okanohara and Sadakane [17]. It solves select1 in
constant time and select0 in the same time as rank. There is a 1 per cell in Rn, so the global space
is at most (n′ lg n + O(n′)) lg n′ = O

(
n/ lg n

)
bits. Since the distance between consecutive 1s is at

most β, the time to compute select0 is O
(
lg β
)

= O
(
lg lg n

)
.

Note, in passing, that bitvector C can replace Rn[2v], as it can compute any cell Rn[2v][x] =

select1(C, x)−select1(C, x−1)−1 in constant time. Therefore we can use those bitvectors instead
of storing arrays Rn and Ln, thus avoiding to increase the space further.

3.3. Rank and select operations
The various basic and extended rankx and selectx operations are implemented similarly as the

more complex operations. For rankx, we store the rankx value at the beginning of each bucket,
in an array rx[1, n′], and then compute rankx(i) = rx[k] + rankx(i − (k − 1)β) inside the rmM-
tree of bucket k = di/βe. For selectx(j), we store the rx[k] values in a bitvector Bx[1, n] with
Bx[k + rx[k]] = 1 for all k, then the bucket k where the answer lies is k = select0(Bx, j) − j + 1,
inside whose rmM-tree we must solve selectx(j− rx[k]). Again, with the bitvectors of Okanohara
and Sadakane [17], we do not need to store rx because its cells are computed in constant time as
rx[k] = select1(Bx, k) − select1(Bx, k − 1) − 1, the space used is n′ lg n + O(n′) = O

(
n/ lg2 n

)
bits,

and the time to compute select0 is O
(
lg lg n

)
because there are at most β 0s per 1 in Bx.

4. Implementation and Experimental Results

We now describe an engineered implementation based on our theoretical description, and
experimentally evaluate it. Engineered implementations often replace solutions with guaranteed

10

asymptotic complexity by simpler variants that perform better in most practical cases. Our new
theoretical version is much simpler than the original [10], and thus most of it can be implemented
verbatim. Still, we further simplify some parts to speed them up in practice. As a result, our
implementation does not fully guarantee O(lg lg n) time complexity, but it turns out to be faster
than the state-of-the-art implementation that uses O(lg n) time. As this latter implementation
essentially uses one binary rmM-tree for the whole sequence, our experiments show that our new
way to handle inter-bucket queries is useful in practice, reducing both space and time.

4.1. Implementation
We use a fixed bucket size of β = 215 parentheses (i.e., 4KB). Since the relative excess

inside each bucket are in the range [−215, 215] the fields of the nodes of each rmM-tree are
stored using 16-bit integers. To reduce space, we get rid of the v.e fields by storing v.m and
v.M in absolute form, not relative to their rmM-subtree.3 This is because the field v.e is used
only to convert relative values to absolute.4 This reduces the space required by the rmM-tree
nodes from 8 to 6 bytes (or 4 bytes if the field v.n is not required, as it is used only in the more
complicated operations). The block size of each rmM-tree, b, is parameterized and provides a
space-time tradeoff: the bigger the block size, the more expensive it is to perform a full scan.
The sequential scan of a block is performed by lookup tables that handle chunks of either 8 or 16
bits. Preliminary tests yielded the following values to be reasonable for b: 512 bits (with lookup
tables of 8 bits) and 1024/2048 bits (with lookup tables of 16 bits). In particular, for b = 1024
our rmM-trees have height h = lg(β/b) = 5 and a sequential scan of a block requires up to 64
table lookups.

The bucket arrays e[],m[] and M[] are stored in heap form, as described. The special tree
T ′ of Section 3.1 is built using a stack-based folklore algorithm that finds the previous-smaller-
value of each element in array m[] in linear time and space (that is, O(n/β) words). The ladder
decomposition and pointers to ancestors at distances 2k (for some k) in T ′ are implemented
verbatim. To find the target bucket for operation fwdsearch we sequentially iterate over k =

0, 1, . . . to find an ancestor whose minimum excess is lower than the target, then we perform a
sequential search in its ladder to find the target bucket. Although this implementation does not
guarantee O

(
lg lg n

)
worst case time, it is cache-friendly and faster than doing a binary search

over the list of sampled ancestors or using the sarray bitmap representation to accelerate the
search. On the real datasets that were used for the experiments, the height of T ′ was in all
cases less than 10, which fully justifies a sequential scan. A more sophisticated implementation
could resort to the guaranteed O(lg lg n)-time method when it detects that the ladder or the list of
ancestors are long enough.

For operation rmq(i, j) and relatives, the perfect binary tree of Section 3.2 is implemented
verbatim, except that the bitvector C is not implemented; a sequential search in Rn/Ln is carried
out instead for minselect. The extended rank and select operations were not yet implemented.

4.2. Experiemental setup
To measure the performance of our new implementation we used two public datasets5: wiki,

the XML tree topology of a Wikipedia dump with 498, 753, 916 parentheses and prot, the topol-

3These values are absolute within their current bucket; they are still relative to the beginning of the bucket (otherwise
they would not fit in 16 bits).

4Instead, relative values allow making the structure dynamic, as efficient insertions/deletions become possible [10].
5Available at http://www.inf.udec.cl/~josefuentes/sea2015/

11

http://www.inf.udec.cl/~josefuentes/sea2015/

ogy of the suffix tree of the Protein corpus from the Pizza&Chili repository6 with 670, 721, 008
parentheses.

We replicate the benchmark methodology used by Arroyuelo et al. [11]: we fix a probability
p ∈ [0, 1] and generate a sample dataset of nodes by performing a depth-first traversal of the tree
where we descend to a random child and also descend to each other child with probability p. All
datasets generated consist of at least 200, 000 nodes. Setting p = 0 emulates random root-to-leaf
paths while p = 1 provides a full traversal of the tree. Intermediate values of p emulate other tree
traversals that occur, for example, when solving XPath queries or performing approximate string
matching on suffix trees. We benchmark the operations open/close/enclose for p = 0.00, 0.25,
and 0.50. We also benchmark operation rmq(i, j) by choosing 200,000 pairs i < j at random and
classifying the results according to j − i.

All the experiments were ran on a Intel(R) Core(TM) i5 running at 2.7GHz with 8GB of
RAM running Mac OS X 10.10.5. Our implementation is single-threaded, written in C++, and
compiled with clang version 7.0.0 with the flags -O3 and -DNDEBUG.

As a baseline we use the C++ implementation available in the Succinct Data Structures
Library 7(SDSL), which provides an O

(
lg n
)
-time implementation based on the description of

Arroyuelo et al. [11]. This library is known for its excellent implementation quality. In par-
ticular, this implementation also stores the fields v.m and v.M in absolute form and discards
v.e. It also does not store v.n, as it does not implement the more complex operations associ-
ated with it. For this reason, we will only compare the structures on the most basic primitives
open/close/enclose/rmq that are also implemented in SDSL. Also, for fairness, we do not ac-
count for the space of the field v.n in our structure.

4.3. Experimental results

Figures 3 and 4 (left) show the results for open/close/enclose operations with different values
of p. The times reported are in microseconds and are the average obtained by performing the
operation over all the nodes of a dataset generated for a given parameter value p. The space
is reported in bits per node (bpn). The new- prefix refers to the implementation of our new
structure, while sdsl- refers to the SDSL implementation. The three space-time tradeoffs shown
in our new implementation correspond to b = 512, 1024, and 2048 (a larger b obtains lower
space and higher time).

For operation close, our implementation is considerably faster than SDSL, while using es-
sentially the same space. For p = 0.0, we are up to 4 times faster when using the least space. For
larger p, the operations becomes much faster due to the locality of the traversals, and the time
differences decrease, but it they are still over 10%.

Our implementation is still generally faster for open on prot, whereas on wiki SDSL takes
over for larger p values. The maximum advantage in our favor is seen on operation enclose,
where our implementation is 2–6 times faster when using the least space, with the only exception
of prot with p = 0.50, where we are only 30% faster.

For operation rmq we show the results classified by j − i, cut into 100 percentiles. Figure 4
(top right) shows the results. Both structures use the same space, about 2.34 bits per node. On
prot we are significantly faster in almost all the spectrum, while on wiki we are generally faster
by a small margin. The difference owes to the fact that the tree of prot is much deeper, and

6Available at http://pizzachili.dcc.uchile.cl/
7Available at github.com/simongog/sdsl-lite

12

http://pizzachili.dcc.uchile.cl/
github.com/simongog/sdsl-lite

��

����

����

����

����

��

����

����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

�����������

��������
���������
��������
���������

����

����

����

����

����

����

����

����

����

��

����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

����������

��������
���������
��������
���������

�����

�����

�����

�����

�����

�����

�����

����

�����

�����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

������������

��������
���������
��������
���������

����

����

����

����

����

����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

�����������

��������
���������
��������
���������

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

�����������

��������
���������
��������
���������

������

�����

������

�����

������

�����

������

�����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

�����������

��������
���������
��������
���������

Figure 3: Space-time tradeoffs for our new implementation and the SDSL baseline, for operations close (left) and open
(right).

therefore the traversals towards the rmq positions are more random and less cache-friendly. In
wiki, the root and the highest nodes are the answers to random rmqs in most cases, so their
rmM-trees are likely to be in cache from previous queries. On the other hand, we note that the
times are basically constant as a function of j − i.

The other plots on the right of Figure 4 we show how the times for operation close and
open evolve as a function of the difference between the position that is queried and the one
where the answer is found. We use the configuration with about 2.34 bits per node for both
implementations, and average the query times over all the tree nodes. In general, only a slight
increase is observed as the distance grows. In the larger sequence prot, however, there is a sharp
increase for the largest distances. This is not because the number of operations grows sharply, but
it rather owes to a 10X increase in the number of cache misses: traversing the longest distances
requires accessing various rmM-tree nodes that no longer fit in the cache. Note that the highest
times, around 0.5 µs, are indeed the typical times obtained in Figure 3 with p = 0.0, where most
of the nodes traversed produce cache misses.

13

����

����

����

����

����

����

����

����

��

����

����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

�������������

��������
���������
��������
���������

��

����

����

����

����

��

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
�

�
�
�
��
�
�
�
��
���
�

�
��
��
��
�
�
�
�
�
�
�
�

����������

���

��������
���������
��������
���������

��

����

����

����

����

����

����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

��������������

��������
���������
��������
���������

��

����

����

����

����

����

�� ��� ��� ��� ��� ����

�
��
�

�
�
�
��
�
�
�
��
���
�

�
��
��
��
�
�
�
�
�
�
�
�

����������

�����

���������
��������
���������
��������

����

����

����

����

����

����

���� ���� ���� ���� ����

��
�
��
��
���
��
��
���
��
��
���
��
��
��
��
�

���

��������������

��������
���������
��������
���������

��

����

����

����

����

����

�� ��� ��� ��� ��� ����

�
��
�

�
�
�
��
�
�
�
��
���
�

�
��
��
��
�
�
�
�
�
�
�
�

����������

����

���������
��������
���������
��������

Figure 4: Space-time tradeoffs for our new implementation and the SDSL baseline, for operation enclose (left). On the
right, the results as a function of the distance traversed in the parenthesis sequence for rmq, close, and open.

5. Conclusions

We have described an alternative solution for representing ordinal trees of n nodes within
2n+O

(
n/ lg n

)
bits of space, which solves a large number of queries in time O

(
lg lg n

)
. While the

original solution upon which we build [10] obtains constant times, it is hard to implement and
only variants using O

(
lg n
)

time had been successfully implemented. We have presented a practi-
cal implementation of our solution and have experimentally shown that, on real hundred-million
node trees, it achieves better space-time tradeoffs than current state-of-the-art implementations.
This shows that the new design has not only theoretical, but also practical value. Our new imple-
mentation is publicly available at www.dcc.uchile.cl/gnavarro/software.

References

[1] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th IEEE Symposium on Foundations of Computer
Science (FOCS), 1989, pp. 549–554.

[2] J. I. Munro, V. Raman, Succinct representation of balanced parentheses and static trees, SIAM Journal on Comput-
ing 31 (3) (2001) 762–776.

14

[3] R. F. Geary, N. Rahman, R. Raman, V. Raman, A simple optimal representation for balanced parentheses, Theoret-
ical Computer Science 368 (3) (2006) 231–246.

[4] Y. T. Chiang, C. C. Lin, H. I. Lu, Orderly spanning trees with applications, SIAM Journal on Computing 34 (4)
(2005) 924–945.

[5] J. I. Munro, R. Raman, V. Raman, S. S. Rao, Succinct representations of permutations and functions, Theoretical
Computer Science 438 (2012) 74–88.

[6] H. Lu, C. Yeh, Balanced parentheses strike back, ACM Transactions on Algorithms 4 (3) (2008) 1–13.
[7] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, S. S. Rao, Representing trees of higher degree,

Algorithmica 43 (4) (2005) 275–292.
[8] R. F. Geary, R. Raman, V. Raman, Succinct ordinal trees with level-ancestor queries, ACM Transactions on Algo-

rithms 2 (4) (2006) 510–534.
[9] J. Jansson, K. Sadakane, W.-K. Sung, Ultra-succinct representation of ordered trees with applications, Journal of

Computer and System Sciences 78 (2) (2012) 619–631.
[10] G. Navarro, K. Sadakane, Fully-functional static and dynamic succinct trees, ACM Transactions on Algorithms

10 (3) (2014) article 16.
[11] D. Arroyuelo, R. Cánovas, G. Navarro, K. Sadakane, Succinct trees in practice, in: Proc. 12th Workshop on

Algorithm Engineering and Experiments (ALENEX), 2010, pp. 84–97.
[12] S. Joannou, R. Raman, Dynamizing succinct tree representations, in: Proc. 11th International Symposium on

Experimental Algorithms (SEA), LNCS 7276, 2012, pp. 224–235.
[13] M. Fredman, D. Willard, Surpassing the information theoretic bound with fusion trees, Journal of Computer and

Systems Science 47 (3) (1993) 424–436.
[14] M. Pătraşcu, Succincter, in: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

2008, pp. 305–313.
[15] D. Clark, Compact PAT trees, Ph.D. thesis, University of Waterloo, Canada (1996).
[16] M. Bender, M. Farach-Colton, The level ancestor problem simplified, Theoretical Computer Science 321 (1) (2004)

5–12.
[17] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proc. 9th Workshop on Al-

gorithm Engineering and Experiments (ALENEX), 2007, pp. 60–70.
[18] M. Bender, M. Farach-Colton, The LCA problem revisited, in: Proc. 4th Latin American Theoretical Informatics

Symposium (LATIN), LNCS 1776, 2000, pp. 88–94.
[19] H. Yuan, M. J. Atallah, Data structures for range minimum queries in multidimensional arrays, in: Proc. 21st

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010, pp. 150–160.

15

	Introduction
	Basic Concepts
	Bits and balanced parentheses
	BP representation of ordinal trees
	Range min-max trees

	An O(lglgn) Time Solution
	Forward and backward searching
	Range minima and maxima
	Solving rmq(i,j) and rMq(i,j)
	Solving mincount(i,j)
	Solving minselect(i,j,q)

	Rank and select operations

	Implementation and Experimental Results
	Implementation
	Experiemental setup
	Experimental results

	Conclusions

