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Abstract

We prove that, given a permutation 7 over [l..n] formed of nRuns sorted
blocks of sizes given by the vector R = (r1,...,7mrus), there exists a com-

pressed data structure encoding 7 in n(1 + H(R)) = n + Ym0 r;log, & <

Ty
n(1 + log, nRuns) bits while supporting access to the values of m() and 7=*() in
time O(lognRuns/loglogn) in the worst case and O(H(R)/loglogn) on aver-
age, when the argument is uniformly distributed over [1..n]. This data structure
can be constructed in time O(n(1+ H(R))), which yields an improved adaptive
sorting algorithm. Similar results on compressed data structures for permuta-
tions and adaptive sorting algorithms are proved for other preorder measures of
practical and theoretical interest.

Keywords: Compression, permutations, succinct data structures, adaptive
sorting.

1. Introduction

Permutations of the integers [1..n] = {1,...,n} are a fundamental mathe-
matical structure, and a basic building block for the succinct encoding of integer
functions [39], strings [30, 22, 25, 2, 34, 14], binary relations [9], and geometric
grids [13], among others. A permutation 7 can be trivially encoded in n[lgn|
bits, which is within O(n) bits of the information theory lower bound of lg(n!)
bits, where lg x = log, x denotes the logarithm in base two.

Efficient computation for both the value 7 (i) at any point 7 € [1..n] of the
permutation, and for the position 771(j) of any value j € [1..n] (i.e., the value
of the inverse permutation) is essential in most of those applications. A trivial
solution is to store explicitly both m and 7!, using a total of 2n[lgn] bits.
Munro et al. [39] proposed three nontrivial alternatives. The first consists in
plainly representing 7 in n[lgn] bits (hence supporting the operator 7 () in con-
stant time) and adding a small structure of e nlgn extra bits in order to support
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the operator 7=1() in time O(1/€). The second solution uses the previous one
to encode another permutation, the one mapping the original permutation to a
cycle representation, which yields support for any positive or negative power of
7(), k(i) for any k € Z. The third solution uses less space (only O(n) extra
bits, as opposed to enlgn) but supports the operator 7% (j) for any value of k
and j in higher time, within O(logn/loglogn). Each of those solutions uses at
least [nlog, n] bits to encode the permutation itself.

The lower bound of lg(n!) bits to represent any permutation yields a lower
bound of ©(n logn) comparisons to sort a permutation in the comparison model,
in the worst case over all permutations of n elements. A large body of research
has been dedicated to finding better sorting algorithms that can take advan-
tage of specificities of certain families of permutations. Some examples are
permutations composed of a few sorted blocks (also called “runs”) [35] (e.g.,
(1,3,5,7,9,2,4,6,8,10) or (6,7,8,9,10,1,2,3,4,5)), or permutations con-
taining few sorted subsequences [33] (e.g., (1,6,2,7,3,8,4,9,5,10)). Algo-
rithms performing possibly o(nlogn) comparisons on such permutations, yet
still O(nlogn) comparisons in the worst case, are achievable and preferable if
those permutations arise with sufficient frequency. Other examples are classes
of permutations whose structure makes them interesting for applications; see
the seminal paper of Mannila [35], and the survey of Moffat and Petersson [37].

Each sorting algorithm in the comparison model yields an encoding scheme
for permutations: the result of all the comparisons performed uniquely identi-
fies the permutation sorted, and hence encodes it. Since an adaptive sorting
algorithm performs o(nlogn) comparisons on a class of “easy” permutations,
each adaptive algorithm yields a compression scheme for permutations, at the
cost of losing a constant factor on the complementary class of “hard” permuta-
tions. Yet such compression schemes do not necessarily support efficiently the
computation of arbitrary (i) values, nor the inverse permutation values 7=1(j).

It is natural to ask whether it is possible to compress a permutation 7 [37]
while at the same time supporting efficient access to 7 and its inverse [39)].
To the best of our knowledge, such a representation had not been described
till now. In this paper we describe a whole family of such compressed data
structures, inspired by and improving upon the MergeSort family of adaptive
sorting algorithms [35]. All of them take advantage of permutations composed
of a small number of monotone subsequences, and support the operators 7()
and 7~ 1() efficiently, taking less time on the more compressible permutations.

Our central result (Theorem 3) is a compressed data structure based on
the decomposition of a permutation 7 into “runs”, that is, monotone sub-
sequences of consecutive positions. If 7 is formed by nRuns runs of sizes
given by the vector R = (ri,...,7prms), our data structure encodes it in
n(1+H(R)) =n+ > lg 7+ < n(1 + lgnRuns) bits and supports access
to the values of () and 7=1() in time O(lognRuns/ loglogn) in the worst case
and O(H(R)/loglogn) on average, when the argument is uniformly distributed
over [1..n]. The construction of this data structure yields an improved adap-
tive sorting algorithm running in time O(n(1+ #H(R))). Similar data structures



and adaptive sorting algorithms are obtained, via reductions, for other preorder
measures of practical and theoretical interest, such as “strict runs”, a particular
case of runs with consecutive values, and “shuffled sequences”, monotone subse-
quences of not necessarily consecutive positions. Those results have applications
to the indexing of natural language text collections, the support of compressed
suffix arrays, and the representation of strings supporting operations access,
rank, and select (Theorem 8). The latter result improves upon the state of the
art [16, 23] in the average case when the queries are uniformly distributed, while
retaining the space and worst-case performance of the previous solutions.

2. Basic Concepts and Previous Work

For completeness, we review here some basic notions and techniques about
entropy (Section 2.1), Huffman codes (Section 2.2), data structures on sequences
(Section 2.3) and adaptive sorting algorithms (Section 2.4). Readers already
familiar with those notions can safely skip this section.

2.1. Entropy

We define the entropy of a distribution [15], a measure that will be useful to
evaluate compressibility results.

Definition 1 The entropy of a sequence of positive integers X =
(n1,n2,...,ny) adding up ton is H(X) = >";_; “1g . By concavity of the log-

arithm, it holds that (r—1)1gn < nH(X) < nlgr and that H({(ny,na, ...n,)) >
H(<n1+n27 s 7nr>)'

Here X = (ny,na,...,n,) is a distribution and H(X) measures how even
is it. H(X) is maximal (Igr) when all n; = n/r and minimal (“*lgn +
n—r+1

+=1g —"—7) when they are most skewed (X = (1,1,...,1,n —7r+1)).

This measure is related to the entropy of random variables and of sequences
as follows. If a random variable P takes the value i with probability n;/n, for
1 < i < r, then its entropy is H({n1,n2,...,n,)). Similarly, if a string S[1..n]
contains n; occurrences of character ¢;, then its empirical zero-order entropy is
HO(S) = H(<n17n27 s 7nr>)'

H(X) is then a lower bound to the average number of bits needed to encode
an instance of P, or to encode a character of S (if we model S statistically with
a zero-order model, that is, ignoring the context of characters).

2.2. Huffman Codes

Given symbols [1..r] with frequencies X = (ny,nso,...,n,) adding up to
n, Huffman [28] described how to build an optimal prefix-free code for them.
His algorithm can be implemented in time O(rlogr). If ¢; is the bit length
of the code assigned to the ith symbol, then L = Y ¢;n; is minimal and L <
n(1 + H(X)). For example, given a string S[1..n] over alphabet [1..r], with
symbol frequencies X[1..r], one can compress S by concatenating the codewords



of the successive symbols S|i], achieving total length L < n(1 + H(S)). (One
also has to encode the usually negligible codebook of O(rlogr) bits.)

The algorithm to build the optimal prefix free code starts with a forest of r
leaves corresponding to the frequencies {ny,na,...,n.}, and outputs a binary
trie with those leaves, in some order. This so-called Huffman tree describes the
optimal encoding as follows: The sequence of left/right choices (interpreted as
0/1) in the path from the root to each leaf is the prefix-free encoding of that
leaf, of length ¢; equal to the leaf depth.

A generalization of this encoding is multiary Huffman coding (28], in which
the tree is given arity t, and then the Huffman codewords are sequences over an
alphabet [1..t]. In this case the algorithm also produces the optimal ¢-ary code,
of length L < n(1+ H(X)/lgt).

2.8. Succinct Data Structures for Sequences

Let S[1..n] be a sequence of symbols from the alphabet [1..r]. This includes
bitmaps when r = 2 (where, for convenience, the alphabet will be {0, 1} rather
than {1,2}). We will make use of succinct representations of S that support the
rank and select operators over strings and over binary vectors: rank.(S,%) gives
the number of occurrences of ¢ in S[1..i] and select. (S, j) gives the position in
S of the jth occurrence of c.

When r = 2, S requires n bits and rank and select can be supported in
constant time using O(nloglogn/logn) C o(n) bits on top of S [38, 21].

Raman et al. [43] devised a bitmap representation that takes nHo(S) + o(n)
bits, while maintaining the constant time for supporting the operators. For the
binary case Ho(S) is just mlg - +(n—m)lg —=— € mlg > +O(m), where m is
the number of bits set to 1 in S. Patragcu [42] reduced the o(n)-bits redundancy
in space to O(n/log®n) for any constant ¢ (we will use just ¢ = 2 in this paper).

When m is much smaller than n, the o(n)-bits term may dominate. Gupta et
al. [27] showed how to achieve space within mlg - + O(mloglog = + logn)
bits, which largely reduces the dependence on n, but now rank and select are
supported in time O(logm) via binary search [26, Theorem 17 p. 153].

For larger alphabets, of size r € o(logn), Ferragina et al. [16] showed how
to represent the sequence within ny(S) + o(nlogr) bits and support rank and
select in constant time. Golynski et al. [23, Lemma 9] improved the space to
nHo(S) + o(nlogr/logn) bits while retaining constant times.

Grossi et al. [24] introduced the wavelet tree, which decomposes a sequence
over an alphabet of arbitrary size r into several bitmaps. By representing the
bitmaps in compressed form [42], the overall space is nHy(S) + o(n) and rank
and select are supported in time O(logr). Multiary wavelet trees decompose
the sequence into subsequences over a sublogarithmic-sized alphabet and reduce
the time to O(1 + log r/loglog n) while retaining space nHo(S) + o(n) [16, 23].

In this article n will generally denote the length of the permutation. All of
our o) expressions, even those with several variables, will be asymptotic in n.
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Figure 1: Partial order on some measures of disorder for adaptive sorting, completed from
Moffat and Petersson’s 1992 survey [37]. Round boxes signal the measures for which new
results have been proved since then (all inspired by our results), and bold ones signal the
results introduced in this article. A measure A dominates a measure B (A — B) if all optimal
algorithms for A have a better asymptotic complexity (i.e., for instances large enough and
ignoring constant factors) than some optimal algorithms for B. In this sense, the measures
H(vSMS) and H(vSUS) are of theoretical interest because their asymptotic complexities involve
larger constant factors, while the measures H(vRuns) and H(vSRuns) are more practical. The
measure nSRuns is presented for completeness and the measure 7 (vLRM), not presented in this
work, is a side result of another technique [7] (see Section 6.4).

2.4. Measures of Presortedness in Permutations

The complexity of adaptive algorithms, for problems such as searching, sort-
ing, merging sorted arrays or convex hulls, is studied in the worst case over
instances of fixed size and difficulty, for a definition of difficulty that is specific
to each analysis. Even though sorting a permutation in the comparison model
requires O(nlogn) comparisons in the worst case over all the permutations of
n elements, better results can be achieved for some parameterized classes of
permutations. We describe some of those below, see the survey of Moffat and
Petersson [37] for other results.

Knuth [32] considered runs (contiguous ascending subsequences) of a per-
mutation 7, counted by nRuns = 1+ |[{i : 1 < i < n,w(i +1) < 7(i)}|
Levcopoulos and Petersson [33] introduced Shuffled Up-Sequences and its gen-
eralization Shuffled Monotone Sequences, respectively counted by nSUS =
min{k : = is covered by k increasing subsequences}, and nSMS = min{k
7 is covered by k monotone subsequences}. By definition, nSMS < nSUS <
nRuns. The relations between those preorder measures, others not described
here, and new ones described in this article, are represented in Figure 1.

Munro and Spira [40] took an orthogonal approach, considering the problem
of sorting multisets through various algorithms such as MergeSort. They showed
that the algorithms can be adapted to run in time O(n(1 + H({(m,...,m;))))
where m; is the number of occurrences of i in the multiset (note this is totally
different from our results, which depend on the distribution of the lengths of
monotone runs).



Each adaptive sorting algorithm in the comparison model yields a compres-
sion scheme for permutations, but the encoding thus defined does not necessarily
support the simple application of the permutation to a single element without
decompressing the whole permutation, nor the application of its inverse.

3. Contiguous Monotone Runs

Our most fundamental representation takes advantage of permutations that
are formed by a few monotone (ascending or descending) runs.

Definition 2 A down step of a permutation w over [1..n] is a position 1 < i <n
such that (i + 1) < w(i). An ascending run in a permutation 7 is a mazimal
range of consecutive positions [i..j] that does not contain any down step. Let
di,da,...,dy be the list of consecutive down steps in w. Then the number of
ascending runs of m is denoted by nRuns = k + 1, and the sequence of the
lengths of the ascending runs is denoted by vRuns = (nq,no, ..., Nnruns), where
ny = di,ng = dz —dy,..., Mpruns—1 = dp — di—1, and Ngpuns = N — di. (If
k = 0 then nRuns = 1 and vRuns = (n1) = (n).) The notions of up step and
descending run are defined similarly.

For example, the permutation (8,9,1,4,5,6,7,2,3) of Figure 2 contains
nRuns = 3 ascending runs, of lengths forming the vector vRuns = (2,5,2). We
now describe a data structure that represents a permutation partitioned into
nRuns ascending runs, and is able to support any 7(i) and 7=1(i) efficiently.

3.1. Structure

Consider the sorting algorithm MergeSort. Its merging process can be repre-
sented as a balanced binary tree of height lgn. Detecting runs and merging them
pairwise and hierarchically makes MergeSort adaptive to the number nRuns of
runs. The reduced merging process is then represented by a balanced binary
tree of height lg nRuns and the total sorting time becomes O(n + nlognRuns).
Merging the two shortest runs at each step further improves MergeSort, mak-
ing its running time adaptive to the entropy of the vector vRuns formed by the
lengths of the runs, O(n + H(vRuns)). The merging process is then represented
by a tree with the same shape of a Huffman tree for the distribution vRuns.
Keeping the result of each comparison performed by those algorithms yields a
compressed encoding of the permutation that identifies it uniquely. To support
forward and inverse access to the individual values of 7 in less time than re-
quired to uncompress the whole encoding, it is enough to memorize the lengths
of the runs and their reordering into the leaves of the merging tree.

Construction. We find the down-steps of « in linear time, obtaining nRuns runs
of lengths vRuns = (ni,..., Nurus), and then apply the Huffman algorithm
to the vector vRuns. When we set up the leaves v of the Huffman tree, we
store their original index in vRuns, idx(v), the starting position in 7 of their
corresponding run, pos(v), and the length of their run, len(v). After the tree
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Figure 2: Example of the runs-compressed data structure, highlighting in bold which of the
variables computed during the compression represent the permutation in the end.

is built, we use idx(v) to compute a permutation ¢ over [l..nRuns| so that
¢(i) = j if the leaf corresponding to n, is placed at the jth left-to-right leaf
in the Huffman tree. We also precompute a bitmap C[1..n] that marks the
beginning of runs in 7, with constant-time support for rank and select. Since
C contains only nRuns bits set out of n, it is represented in compressed form
[43] within nRuns lg —"— + O(nRuns) + o(n) bits.

Now we set a new permutation 7’ over [1..n] where the runs are written in the
order given by ¢~1: We first copy from 7 the run whose endpoints are those of
the leftmost tree leaf, then the run pointed by the second leftmost leaf, and so on.
The endpoints of the runs are obtained with pos(v) and len(v). Simultaneously,
we create field pos’(v) as the starting position of the area v covers in 7’. After
creating 7’ the original permutation 7 can be deleted. We say that an internal
node covers the contiguous area of ' formed by concatenating the runs of all
the leaves that descend from v. We propagate the leaf pos’ and len values to all
the internal nodes v, so that pos’(v) is the starting position of the area covered
by v in 7/, and len(v) is the length of that area.

Now we enhance the Huffman tree into a wavelet-tree-like structure [24]
without altering its shape, as follows. Starting from the root, first process
recursively each child. For the leaves we do nothing. Once the left and right
children, v; and v,., of an internal node v have been processed, the invariant is
that the areas they cover have already been sorted in 7/. We create a bitmap
for v, of size len(v). Now we merge the areas of v; and v, in time O(len(v)).
As we do the merging, each time we take an element from v; we append a bit
0 to the node bitmap, and a bit 1 when we take an element from v,. When we
finish, 7’ has been sorted and we can delete it. The Huffman-shaped wavelet
tree (only with the bitmaps and field pos, but storing nRuns pointers to the
leaves and parent pointers), ¢, and C, represent 7. See Figure 2 for an example.

Space and construction cost. Note that each of the n; elements of leaf i (at
depth ¢;) is merged ¢; times, contributing ¢; bits to the bitmaps of its ancestors,
and thus the total number of bits in all bitmaps is Y n;¢;. Therefore, the total
number of bits in the Huffman-shaped wavelet tree is at most n(1 4 H(vRuns)).



Those bitmaps, however, are represented in compressed form [42], which allows
us to remove the n extra bits added by the Huffman encoding.

Let us call m; = ng-1(;) the length of the run corresponding to the jth
left-to-right leaf, and m; ; = m; +...+m;. The compressed representation [42]
takes, on a bitmap of length n and m 1s, mlg > + (n — m)

a redundancy of O(n/log?n) bits. We prove by induction (see also Grossi et
al. [24]) that the compressed space allocated for all the bitmaps descending from
a node covering leaves [i..k] is >, . m,1g T3 Tk (we consider the redundancy
later). Consider two sibling leaves merging two runs of m; and m; 1 elements.
Their parent bitmap contains m; 0s and m;y; 1s, and thus its compressed
representation requires m; lg w + mi1lg Lml“ bits. Now consider a
general Huffman tree node merglng a left subtree covering leaves [i..j] and a
right subtree covering leaves [+ 1. k] Then the bitmap of the node will be
compressed to m; j1g T 4+ mjyy g lg . By the inductive hypothesis,

™my
mi,j

all the bitmaps on the left child and 1ts subtrees add up to ZKK <jMr lg —
and those on the right add up to >, ;.. <, m; g Tuilk - Adding up the three
formulas we get the inductive thesis.

Therefore, a compressed representation of the bitmaps requires n#H (vRuns)
bits, plus the redundancy. The latter, added over all the bitmaps, is O(n(1 +
H(vRuns))/log® n) C o(n) because H(vRuns) < lgn. To this we must add the
O(nRuns log n) bits of the tree pointers, bitmap pointers and lengths, fields pos,
the permutation ¢, and the bitmap C.

The construction time is O(nRuns log nRuns) for the Huffman algorithm, plus
O(nRuns) for computing ¢ and filling the node fields idx, pos, len and pos’, plus
O(n) for constructing ©’ and C, plus the total number of bits appended to all
the bitmaps, which includes the merging cost. The extra structures for rank are
built in linear time on those bitmaps. All this adds up to O(n(1 4+ H(vRuns))),
because nRuns lgnRuns < n#H(vRuns) + lgn by concavity, recall Definition 1.

3.2. Queries

Computing 7() and 7=1(). One can regard the wavelet tree as a device that
tracks the evolution of a merge-sorting of «’, so that in the bottom we have
(conceptually) the sequence 7’ (with one run per leaf) and in the top we have
(conceptually) the sorted permutation (1,2,...,n).

To compute 7~ 1(5) for any j € [1..n] we start at the top and find out where
that position came from in 7’. We start at offset 7' = j of the root bitmap B.
If B[j'] = 0, then position j' came from the left subtree in the merging. Thus
we go down to the left child with j’ « rankg(B, j’), which is the position of j’
in the array of the left child before the merging. Otherwise we go down to the
right child with j' < rank; (B, 7). We continue recursively until we reach a leaf
v. At this point we know that j came from the corresponding run, at offset j’,
that is, 771(j) = pos(v) + 5’ — 1. See Figure 3 for an example.

To compute 7(¢) for any ¢ € [1..n] we do the reverse process, but we must
first determine the leaf v and offset i’ within v corresponding to position 4.
We compute | = ¢(rank,(C,i)), so that 4 falls at the Ith left-to-right leaf.



The value 7—1(9)

s

— is computed by navigating T top-down: Loo 111100
the 9-th bit in the top bitmap is the 4th 0,

the 4-th bit of the left child is the 2nd 0.

We reach offset 2 in the first leaf v of T'.

— Hence m71(9) = pos(v) +2 — 1 = 2.

B pos=3
110 0

pos=1 pos=8

(As can be checked in Figure 2.)

Figure 3: Computing 7~ () on the runs-compressed data structure, using the example per-
mutation of Figure 2. We mark in bold the bits counted in the rank operations.

The value m(9) Too1 11100
— is in run rank;(C,9) = 3.

— This run is the ¢(3) = 2nd leaf of T', v.
The offset is i’ = 9 — pos(v) + 1 = 2.

— We navigate T bottom-up from v.

— The 7th = 2nd 1 in the lower bitmap
is at position 2.

2 s pos=3
1100

pos=1 pos=8

— The 2nd 0 in the top bitmap is at position 3. ~ _ i 3 i é

— Hence 7(9) = 3. o = (1,3,2)

(As can be checked in Figure 2.)

Figure 4: Example of support of 7() on a Runs-compressed Data Structure, using the same
permutation as in Figure 2. We mark in bold the bits counted in the rank operations.

Then v is the [th entry in our array of pointers to the leaves, and the offset is
i’ =i — pos(v) + 1. We now start an upward traversal from v using the parent
pointers. If v is the left child of its parent u, then we set i’ + selectg(B,17’)
to locate it in the merged array of the parent, else we set i’ + selecty(B,i),
where B is the bitmap of u. Then we set v <— u and continue until reaching the
root, where we answer (i) = i’. See Figure 4 for an example.

Query time. In both queries the time is O(¢), where ¢ is the depth of the leaf
arrived at. If 7 is chosen uniformly at random in [1..n], then the average cost
is -3 n;l; € O(1 + H(vRuns)). However, the worst case can be O(nRuns) in
a fully skewed tree. We can ensure ¢ € O(lognRuns) in the worst case while
maintaining the average case by slightly rebalancing the Huffman tree [36].
Given any constant x > 0, the height of the Huffman tree can be bounded to at
most (1+z)lgnRuns so that the total number of bits added to the encoding is at
most n-nRuns '8 ¥ where ¢ ~ 1.618 is the golden ratio. This is o(n) if nRuns €
w(1), otherwise the cost is O(nRuns) C O(1) anyway. Similarly, the average time



stays O(1+H(vRuns)), as it increases at most by O(nRuns~?1°¢¥) C O(1). This
rebalancing takes just O(nRuns) time if the frequencies are already sorted. Note
also that the space required by the query is constant.

Theorem 1 There is an encoding scheme wusing at most nH(vRuns) +
O(nRunslogn) + o(n) bits to represent a permutation m over [1..n] covered by
nRuns contiguous ascending runs of lengths forming the vector vRuns. It can be
built within time O(n(1+H(vRuns))), and supports the computation of w(i) and
77 1(i) in time O(1 + lognRuns) and constant space for any value of i € [1..n].
If i is chosen uniformly at random in [1..n] then the average computation time
is O(1 + H(vRuns)).

We note that the space analysis leading to nH(vRuns) + o(n) bits works
for any tree shape. We could have used a balanced tree, yet we would not
achieve O(1+ H(vRuns)) average time. On the other hand, by using Hu-Tucker
codes instead of Huffman, as in our previous work [10], we would not need the
permutation ¢ and, by using compact tree representations [46], we would be
able to reduce the space to nH(vRuns) + O(nRuns log —"—) 4 o(n) bits. This

is interesting for large values of nRuns, as it is always nH(vRuns) + o(n(1 +
H(vRuns)) even if nRuns = O(n).?

8.8. Mizing Ascending and Descending Runs

We can easily extend Theorem 1 to mix ascending and descending runs.

Corollary 1 Theorem 1 holds verbatim if  is partitioned into a sequence nRuns
contiguous monotone (i.e., ascending or descending) runs of lengths forming the
vector vRuns.

Proof. We mark in a bitmap of length nRuns whether each run is ascending
or descending, and then reverse descending runs in m, so as to obtain a new
permutation m,s., which is represented using Theorem 1 (some runs of 7 could
now be merged in 7., but we force those runs to stay separate).

The values 7(i) and 7~ !(j) are easily computed from mue.: If
m.L(j) = i, we use C to determine that i is within run mas.(¢..r), that
is, { = select;(rank;(C,i)) and r = select;(rank;(C,i) + 1) — 1. If that run
is reversed in m, then 7= 1(j) = £ +r — 4, else 77 1(j) = i. For m(i), we use C
to determine that i belongs to run w(¢..r). If the run is descending, then we
return mas.(€ 4+ r — 1), else we return m,s.(7). The operations on C require only
constant time. The extra construction time is just O(n), and no extra space is
needed apart from nRuns € o(nRuns logn) bits. O

2We do not follow this path because we are more interested in multiary codes (see Sec-
tion 3.5) and, to the best of our knowledge, there is no efficient (i.e., O(nRuns log nRuns) time)
algorithm for building multiary Hu-Tucker codes [32].
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Note that, unlike the case of ascending runs, where there is an obviously
optimal way of partitioning (that is, maximize the run lengths), we have some
freedom when partitioning into ascending or descending runs, at the endpoints
of the runs: If an ascending (resp. descending) run is followed by a descending
(resp. ascending) run, the limiting element can be moved to either run; if
two ascending (resp. descending) runs are consecutive, one can create a new
descending (resp. ascending) run with the two endpoint elements. While finding
the optimal partitioning might not be easy, we note that these decisions cannot
affect more than O(nRuns) elements, and thus the entropy of the partition
cannot be modified by more than O(nRunslogn), which is absorbed by the
redundancy of our representation.

8.4. Improved Adaptive Sorting

One of the best known sorting algorithms is MergeSort, based on a simple
procedure to merge two already sorted arrays, and with a complexity of n[lgn]
comparisons and O(nlogn) running time. It had been already noted [32] that
finding the down-steps of the array in linear time allows improving the time of
MergeSort to O(n(1 + lognRuns)) (the down-step concept can be applied to
general sequences, where consecutive equal values do not break runs).

We now show that the construction process of our data structure sorts the
permutation and, applied on a general sequence, it achieves a refined sorting
time of O(n(1+H(vRuns)) C O(n(1+lognRuns)) (since H(vRuns) < lgnRuns).

Theorem 2 There is an algorithm sorting an array of length n covered by
nRuns contiguous monotone runs of lengths forming the vector vRuns in time
O(n(1 + H(vRuns))), which is worst-case optimal in the comparison model.

Proof.  Our construction of Theorem 1 (and Corollary 1) indeed sorts 7 (after
converting it into 7’) within this time, and it also works if the array is not a
permutation. This is optimal because, even considering just ascending runs,
there are W’Mms, different permutations that can be covered with runs of
lengths forming the vector vRuns = (ni,n2,...,Nprus). Thus lg W'nnms,
comparisons are necessary. Using Stirling’s approximation to the factorial we
have Ig W’nm‘n‘ €(n+1/2)lgn—73,(n; +1/2)lgn; — O(lognRuns). Since
>~ lgn; < nRunslg(n/nRuns), this is n?H{(vRuns) — O(nRuns log(n/nRuns)) C
nH(vRuns) — O(n). The term Q(n) is also necessary to read the input, hence
implying a lower bound of Q(n(1 + H(vRuns))).

Note, however, that our formula m is actually overcounting.
That is, it properly counts the set of permutations that can be covered with
nRuns runs of lengths vRuns, but it includes permutations that can also be
covered with fewer runs (as two consecutive runs could be merged). Still the
lower-bound argument is valid: We have proved that the lower bound applies

to the union of two classes: one (1) contains (some®) permutations of entropy

30ther permutations with vectors distinct from vRuns could also have entropy H(vRuns).
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H(vRuns) and the other (2) contains (some) permutations of entropy less than
‘H(vRuns). Obviously the bound does not hold for class (2) alone, as we can
sort it in less time. Since we can tell the class of a permutation in O(n) time
by counting the down-steps, it follows that the bound also applies to class (1)
alone (otherwise O(n) + o(nH(vRuns)) would be achievable for (1)+(2)). O

3.5. Boosting Time Performance

The time achieved in Theorem 1 (and Corollary 1) can be boosted by an
O(loglogn) time factor by using Huffman codes of higher arity. Given the run
lengths vRuns, we build a t-ary Huffman tree for vRuns, with ¢t = \/Ign. Since
now we merge t children to build the parent, the sequence stored in the parent
to indicate the child each element comes from is not binary, but over [1..t].

The total length of all the sequences stored at all the Huffman tree nodes is <
n(1+H(vRuns)/1gt) [28]. To reduce the redundancy, we represent each sequence
S[1..m] stored at a node using the compressed representation of Golynski et
al. [23, Lemma 9], which takes m#(S) + O(mlogtloglogm/log® m) bits.

For the string S[l..m] corresponding to a leaf covering runs of lengths
mi,...,my, we have mHo(S) = > m;lg -, From there we can carry
out exactly the same analysis done in Section 3.1 for binary trees, to con-
clude that the sum of the mH#Hy(S) bits for all the strings S over all the
tree nodes is nH(vRuns). On the other hand, the redundancies add up to
O(n(1 4 H(vRuns)/ logt) log tloglog n/log® n) C o(n) bits.

The advantage of the t-ary representation is that the average leaf depth is
1+ H(vRuns)/lgt € O(1 + H(vRuns)/loglogn). The algorithms to compute
7(i) and 7~ 1(i) are similar, except that rank and select are carried out on
sequences S over alphabets of size v/Ign. Those operations can still be carried
out in constant time on the representation we have chosen [23].

For the worst case, if nRuns € w(1), we can again limit the depth of the
Huffman tree to O(lognRuns/loglogn) and maintain the same average time.
The multiary case is far less understood than the binary case. An algorithm to
find the optimal length-restricted t-ary code was presented whose running time
is linear once the lengths are sorted [4]. To analyze the increase in redundancy,
consider the sub-optimal method that simply takes any node v of depth more
than ¢ = 4lgnRuns/ lgt and balances its subtree (so that height 51gnRuns/lgt is
guaranteed). Since any node at depth £ covers a total length of at most n/tL¢/2]
(see next paragraph), the sum of all the lengths covered by these nodes is at most
nRuns-n/ t!4/2] By forcing those subtrees to be balanced, the average leaf depth
increases by at most (lgnRuns/lgt) nRuns/t/2) < lg(nRuns)/(nRunslgt) €
O(1). Hence the worst case is limited to O(1 + lognRuns/loglogn) while
the average case stays within O(1 + H(vRuns)/loglogn). For the space,
since nRuns € w(1), we can just charge the lgnRuns/lgt levels added to all
the nodes deeper than ¢, which cover at most nRuns - n/tW 2] cells, and get
lg nRuns - nRuns - n/tl¥/2 = n - 1g(nRuns)/nRuns € o(n) further bits.

The upper bound of n/t l£/2] is obtained as follows. Consider a node v in the
t-ary Huffman tree. Then len(u) > len(v) for any uncle u of v, as otherwise
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switching v and u improves the already optimal Huffman tree (recall the defi-
nition of the covered area len(-) from Section 3.1). Hence w, the grandparent
of v (i.e., the parent of u) must cover an area of size len(w) > ¢ - len(v). Thus
the covered length is multiplied at least by ¢ when moving from a node to its
grandparent. Conversely, it is divided at least by ¢ as we move from a node to
any grandchild. As the total length at the root is n, the length covered by any
node v at depth £ is at most len(v) < n/tLl¢/2],
This yields our final result for contiguous monotone runs.

Theorem 3 There is an encoding scheme wusing at most nH(vRuns) +
O(nRunslogn) + o(n) bits to encode a permutation m over [1..n] covered by
nRuns contiguous monotone runs of lengths forming the vector vRuns. It can be
built within time O(n(1 + H(vRuns)/loglogn)), and supports the computation
of ©(i) and w=1(i) in time O(1 + lognRuns/loglogn) and constant space for
any value of i € [1.n]. If i is chosen uniformly at random in [1..n] then the
average computation time is O(1 + H(vRuns)/loglogn).

The only missing part is the construction time, since now we have to build
strings S[1..m] by merging ¢ increasing runs. This can be done in O(m) time
by using atomic heaps [19]. The compressed sequence representations are built
in linear time [23]. Note that this implies that we can sort an array with
nRuns contiguous monotone runs of lengths forming the vector vRuns in time
O(n(1+H(vRuns)/loglogn)), yet we are not anymore in the comparison model.

This data structure yields almost directly a new representation of sequences,
described in Section 6.3.

4. Strict Runs

Some classes of permutations can be covered by a small number of runs of a
stricter type. We present an encoding scheme that takes advantage of them.

Definition 3 A strict ascending run in a permutation m is a mazximal range of
positions satisfying w(i+k) = w(i)+k. The head of such run is its first position.
The number of strict ascending runs of m is denoted by nSRuns, and the sequence
of the lengths of the strict ascending runs is denoted by vSRuns. We will call
vHRuns the sequence of contiguous monotone run lengths of the sequence formed
by the strict run heads of w. Similarly, the notion of a strict descending run
can be defined, as well as that of strict (monotone) run encompassing both.

For example, our permutation 7 = (8,9,1,4,5,6,7,2,3) has nSRuns = 4
strict runs of lengths forming the vector vSRuns = (2,1,4,2). The run heads
are (8,1,4,2), which form 3 monotone runs, of lengths forming the vector
vHRuns = (1,2,1). The number of strict runs can be anywhere between
nRuns and n; for instance the permutation (6, 7,8,9,10,1,2,3,4,5) contains
nSRuns = nRuns = 2 runs, both of which are strict, while the permutation
(1,3,5,7,9,2,4,6,8,10) contains nSRuns = 10 strict runs, each of length 1,
but only 2 runs, each of length 5.
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Theorem 4 Assume there is an encoding P for a permutation over [1..n] with
nRuns contiguous monotone runs of lengths forming the vector vRuns, which
requires s(n,nRuns, vRuns) bits of space and can apply the permutation and its
inverse in time t(n,nRuns, vRuns). Now consider a permutation w over [1..n]
covered by nSRuns strict runs and by nRuns < nSRuns monotone runs, and let
vHRuns be the vector formed by the nRuns monotone run lengths in the per-
mutation of strict run heads. Then there is an encoding scheme using at most
5(nSRuns, nRuns, vHRuns) 4O (nSRuns log —x'—)+o(n) bits for w. It can be com-
puted in O(n) time on top of that for building P. It supports the computation
of m(i) and 7=1(i) in time O(t(nSRuns, nRuns, vHRuns)) for any value i € [1..n].

Proof. We first set up a bitmap R of length n marking with a 1 bit the beginning
of the strict runs. We set up a second bitmap R*®’ such that R¥*[i] = R[r~1(i)].
Now we create a new permutation 7’ over [1..nSRuns| that collapses the strict
runs of 7, 7/(i) = rank; (R*™, (select;(R,7))). All this takes O(n) time and
the bitmaps take 2nSRuns lg —:— + O(nSRuns) + o(n) bits in compressed form
[43], where rank and select are supported in constant time.

Now we build the structure P for «’. The number of monotone runs in 7 is
the same as for the sequence of strict run heads in 7, and in turn the same as
the runs in 7. So the number of runs in 7’ is also nRuns and their lengths are
vHRuns. Thus we require s(nSRuns, nRuns, vHRuns) further bits.

To compute 7(i), we find i’ + rank;(R,i) and then compute j' <+ =’(i).
The final answer is select;(R*™, ') +i — select;(R,i'). To compute 7 1(j),
we find j’ < rank; (R*", j) and then compute i’ < (7/)~1(j’). The final answer
is selecti(R,4') + j — select;(R™,j’). The structure requires only constant
time on top of that to support the operator 7’() and its inverse 7/~*() . O

The theorem can be combined with previous results, for example Theorem 3,
in order to obtain concrete data structures. Figure 5 illustrates such a construc-
tion on our example permutation.

This representation is interesting because its space could be much less than
n if nSRuns is small enough. However, it still retains an o(n) term that can be
dominant. The following corollary describes a compressed data structure where
the o(n) term is significantly reduced.

Corollary 2 The o(n) term in the space of Theorem 4 can be replaced by
O(nSRuns loglog —2i— +logn) at the cost of O(1 + lognSRuns) extra time for
the queries.

Proof.  Replace the structure of Raman et al. [43] by the binary searchable
gap encoding of Gupta et al. [27], which takes O(1 4 lognSRuns) time for rank
and select (recall Section 2.3). O

Other tradeoffs for the bitmap encodings are possible, such as the one de-
scribed by Gupta [26, Theorem 18 p. 155].
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T = (89,1,4,5,6,7,2,3)
nSRuns — A The value 7(i=9) is obtained with:
R = 101100010 — i = rank, (R, 9) = 4
R™ = 110100010 —j=r'4)=2
7 = (4,1,3,2) — select((R¥™ 2) +i— selecti(R,4)
—2+9-8=3.
s s — Hence 7(9) =3
1010
T = g The value 7—1(j=9) is obtained with:
12 pos=2
/1\ — j' = rank; (R™,9) =4
goszl pos=4 o Z-/ — (71_/)71(4) -1
nRuns - = — select;(R,1) +j — select;(R*™,4)
vRuns = (1,2,1) —14+9-8=2
¢ = 1101 — Hence 771(9) = 2
¢ = (1,3,2)

Figure 5: Our strict runs compressed data structure, on the permutation of Figure 2.

5. Shuffled Sequences

Up to now our runs have been contiguous in 7. Levcopoulos and Peters-
son [33] introduced the more sophisticated concept of partitions formed by in-
terleaved runs, such as Shuffled UpSequences (SUS) and Shuffled Monotone
Sequences (SMS). We now show how to take advantage of permutations formed
by shuffling (interleaving) a small number of runs.

Definition 4 A decomposition of a permutation 7 over [1..n] into Shuffled Up-
Sequences is a set of, not necessarily consecutive, disjoint subsequences of in-
creasing numbers that cover w. The number of shuffled upsequences in such a
decomposition of 7 is denoted by nSUS, and the vector formed by the lengths of
the involved shuffled upsequences, in arbitrary order, is denoted by vSUS. When
the subsequences can be of increasing or decreasing numbers, we call them Shuf-
fled Monotone Sequences, call nSMS their number and vSMS the vector formed
by their lengths.

For example, the permutation (1,6,2,7,3,8,4,9,5,10) contains nSUS = 2
shuffled upsequences of lengths forming the vector vSUS = (5,5), but nRuns = 5
runs, all of length 2. Interestingly, we can reduce the problem of representing
shuffled sequences to that of representing strings and contiguous runs.
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The value w(9) is «'(A[S[9]] +
rankgg(S,9)), where S[9] = 2,

T = (89,1,4,25,6,37) A[S[9]] = 2, ranks(S,9) = 5, hence
S = 112232232 m(9) =7/ (245) =7'(7) =T.

A = 0,2,7,9 To compute 7~ 1(3) we start with
™ = (8,9,1,4,56,7,2,3) (7')~1(3) = 9, then ¢ = 3 because

A[3] < 9 < A[4]. Hence 771(3) =
select3(S,9 — A[3]) = 8.

Figure 6: Example of a SUS-compressed data structure on a permutation that reduces to that
of Figure 2 via Theorem 5.

5.1. Reduction to Strings and Contiguous Monotone Sequences

We first show how a permutation with a small number of shuffled monotone
sequences can be represented using strings over a small alphabet and permuta-
tions with a small number of contiguous monotone sequences.

Theorem 5 Assume there exists an encoding P for a permutation over [1..n]
with nRuns contiguous monotone runs of lengths forming the vector vRuns,
which requires s(n,nRuns, vRuns) bits of space and supports the application of
the permutation and its inverse in time t(n,nRuns,vRuns). Assume also that
there is a data structure S for a string S[1..n] over an alphabet of size nSMS
with symbol frequencies vSMS, using s'(n,nSMS, vSMS) bits of space and support-
ing operators rank, select, and access to values S[i|, in time t'(n,nSMS, vSMS).
Now consider a permutation ™ over [1..n] covered by nSMS shuffled monotone
sequences of lengths vSMS. Then there exists an encoding of ™ using at most
5(n,nSMS, vSMS) + s'(n,nSMS, vSMS) + O(nSMS log —g=) + o(n) bits. Given the
covering by SMSs, the encoding can be built in time O(n), in addition to that
of building P and S. It supports the computation of 7(i) and 7= 1(i) in time
t(n,nSMS, vSMS) + t'(n,nSMS, vSMS) for any value of i € [l.n]. The result is
also wvalid for shuffled upsequences, in which case P is just required to handle
ascending runs.

Proof. Given the partition of 7 into nSMS monotone subsequences, we create a
string S[1..n] over alphabet [1..nSMS] that indicates, for each element of 7, the
label of the monotone sequence it belongs to. We encode S[1..n] using the data
structure S. We also store an array A[1..nSMS] so that A[¢] is the accumulated
length of all the sequences with label less than /.

Now consider the permutation 7’ formed by the sequences taken in label
order: 7' can be covered with nSMS contiguous monotone runs vSMS, and
hence can be encoded using s(n,nSMS,vSMS) bits using P. This computes
7/() and 7/71() in time t(n,nSMS,vSMS) (again, some of the runs could be
merged in 7/, but we avoid that). Thus (i) = ='(A[S[i]] + rankg(;(S,1))
is computed in time #(n,nSMS, vSMS) + #/(n,nSMS, vSMS). Similarly, 7=1(j) =
selecty(S, (7')~1(j) — A[f]), where ¢ is such that A[(] < (7")71(j) < A} + 1],
can also be computed in time ¢(n, nSMS, vSMS) + t'(n, nSMS, vSMS), plus the time
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to find . The latter is reduced to constant by representing A with a bitmap
A’[1..n] with the bits set at the values A[f]+1, so that A[¢] = select (A4’,¢)—1,
and then £ is simply computed as ¢ = rank; (A, (7')~1(j)). With the structure
of Raman et al. [43], A" uses O(nSMSlog =) + o(n) bits and operates in
constant time. ]

See Figure 6 for an example of this theorem. We will now obtain concrete
results by using specific representations for P and S, and specific methods to
find the decomposition into shuffled sequences.

5.2. Shuffled UpSequences

Given an arbitrary permutation, one can decompose it in linear time into
contiguous runs in order to minimize H(vRuns), where vRuns is the vector of run
lengths. However, decomposing the same permutation into shuffled up (resp.
monotone) sequences so as to minimize either nSUS or #H(vSUS) (resp. nSMS or
‘H(vSMS)) is computationally harder.

Fredman [20] gave an algorithm to compute a partition of minimum size
nSUS, into upsequences, claiming a worst case complexity of O(nlogn). Even
though he did not claim it at the time, it is easy to observe that his algorithm is
adaptive in nSUS and takes O(n(1 + lognSUS)) time. We give here an improve-
ment of his algorithm that computes the partition in time O(n(1 + H(vSUS))),
no worse than the time of his original algorithm since H(vSUS) < lgnSUS.

Theorem 6 Let an array D[1..n] be optimally covered by nSUS shuffled upse-
quences (equal values do not break an upsequence). Then there is an algorithm
finding a covering of size nSUS in time O(n(1+H(vSUS))) C O(n(1+lognSUS)),
where vSUS is the vector formed by the lengths of the upsequences found.

Proof. Initialize a sequence S1 = (D]1]), and a splay tree T' [47] with the node
(S1), ordered by the rightmost value of the sequence contained by each node.
For each further array element D[i], search for the sequence with the maximum
ending point no larger than D[i]. If it exists, add D[i] to this sequence, otherwise
create a new sequence and add it to 7.

Fredman [20] already proved that this algorithm finds a partition of minimum
size nSUS. Note that, although the rightmost values of the splay tree nodes
change when we insert a new element in their sequence, their relative position
with respect to the other nodes remains the same, since all the nodes at the
right hold larger values than the one inserted. This implies in particular that
only searches and insertions are performed in the splay tree.

A simple analysis, valid for both the plain sorted array in Fredman’s proof
and the splay tree of our own proof, yields an adaptive complexity of O(n(1 +
lognSUS)) comparisons, since both structures contain at most nSUS elements at
any time. The additional linear term (relevant when nSUS = 1) corresponds to
the cost of reading each element once.

The analysis of the algorithm using the splay tree refines the complexity
to O(n(l + H(vSUS))), where vSUS is the vector formed by the lengths
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of the upsequences found. These lengths correspond to the frequencies of
access to each node of the splay tree, which yields the total access time of
O(n(1 + H(vSus))) [47, Theorem 2]. O

The theorem obviously applies to the particular case where the array is a
permutation. For permutations and, in general, integer arrays over a universe
[1..m], we can deviate from the comparison model and find the partition within
time O(nloglogm), by using y-fast tries [48] instead of splay trees.

We can now give a concrete representation for shuffled upsequences. The
complete description of the permutation requires to encode the computation of
the partitioning and of the comparisons performed by the sorting algorithm.
This time the encoding cost of partitioning is as important as that of merging.

Theorem 7 Let m be a permutation over [1..n] that can be optimally covered
by nSUS shuffled upsequences, and let vSUS be the vector formed by the lengths
of an optimal decomposition found by an algorithm. Then there is an encoding
scheme for m using at most 2nH(vSUS) + O(nSUSlogn) + o(n) bits. It can be
computed in additional time O(n(1 4+ H(vSUS))), and supports the computation
of w(i) and 7=1(i) in time O(1 + lognSUS/loglogn) for any value of i € [1..n].
If i is chosen uniformly at random in [1..n] the average query time is O(1 +
H(vSUS)/loglogn).

Proof. Once the algorithm finds the SUS partition of optimal size nSUS, and
being vSUS the corresponding vector of the sizes of the subsequences of this
partition, we apply Theorem 5: For the data structure S we use Theorem 8
(see later, Section 6.3), whereas for P we use Theorem 3. Note H(vSUS) is both
Ho(S) and H(vRuns) for permutation «’. The result follows immediately. O

One would be tempted to consider the case of a permutation 7 covered by
nSUS upsequences that form strict runs, as a particular case. Yet, this is achieved
by resorting directly to Theorem 3. The corollary extends verbatim to shuffled
monotone sequences.

Corollary 3 There is an encoding scheme wusing at most nH(vSUS) +
O(nSuslogn)+o(n) bits to encode a permutation 7 over [1..n] optimally covered
by nSUS shuffled upsequences, of lengths forming the vector vSUS, and made up
of strict runs. It can be built within time O(n(1 + H(vSUS)/loglogn)), and
supports the computation of 7(i) and 7~1(i) in time O(1 + lognSUS/ loglogn)
for any value of i € [1..n]. If i is chosen uniformly at random in [1..n] then the
average query time is O(1 + H(vSUS)/loglogn).

Proof. It is sufficient to represent m—! using Theorem 3, since in this case
71 is covered by nSUS ascending runs of lengths forming the vector vSUS:
If ig < 41... < iy, forms a strict upsequence, so that m(i;) = 7w(ig) + ¢, then

calling jo = m(ig) we have the ascending run 71 (jo +t) =i, for 0 <t <m. O
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Once more, our construction translates into an improved sorting algorithm,
reducing the complexity O(n(1 + lognSUs)) of the algorithm by Levcopoulos
and Petersson [33].

Corollary 4 We can sort an array of length n, optimally covered by nSUS shuf-
fled upsequences, in time O(n(1+ H(vSUS))), where vSUS are the lengths of the
decomposition found by the algorithm of Theorem 6.

Proof. Our construction in Theorem 7 finds, separates, and sorts the
subsequences of 7, all within this time (we do not need to build string S). O

Open problem. Note that the algorithm of Theorem 6 finds a partition of mini-
mum size nSUS (this is what we refer to with “optimally covered”), but that the
entropy H(vSUS) of this partition is not necessarily minimal: There could be
another partition, even of size larger than nSUS, with lower entropy. Our results
are only in function of the entropy of the partition of minimal size nSUS found.
This is unsatisfactory, as the ideal would be to speak in terms of the minimum
possible H(vSUS), just as we could do for H(vRuns).

Consider for instance, for some even integer n, the permutation
(1,2,...,n/2-1,n,n/2,n/241,... ,n—1). The algorithm of Theorem 6
yields the partition {(1,2,...,n/2—1,n),(n/2,n/24+1,...,n—1)} of entropy
H((n/2,n/2)) = nlg2 = n. This is suboptimal, as the partition
{(1,2,...,n/2—=1,n/2,n/241,..., n—1),(n)} is of much smaller entropy,
H((n—1,1)) = (n —1)1g 25 +1gn € O(logn).

On the other hand, a greedy online algorithm cannot minimize the en-
tropy of a SUS partitioning. As an example consider the permutation
(2,3,...,n/2,1,n,n/2+1,...,n—1), for some even integer n. A greedy online
algorithm that after processing a prefix of the sequence minimizes the entropy
of such prefix, produces the partition {(1,n/2+1,...,n—1),(2,3,...,1n/2,n)},
of size 2 and entropy H({n/2,n/2)) = n. However, a much better partition is
{(1,n),(2,3,...,n—1)}, of size 2 and entropy H((2,n — 2)) € O(logn).

We doubt that the SUS partition minimizing H(vSUS) can be found within
time O(n(1+H(vSUS))) or even O(n(1+41lognSUS)). Proving this right or wrong
is an open challenge.

5.3. Shuffled Monotone Sequences

No efficient algorithm is known to compute the minimum number nSMS of
shuffled monotone sequences composing a permutation, let alone finding a par-
tition minimizing the entropy H(vSMS) of the lengths of the subsequences. The
problem is NP-hard, by reduction from the computation of the “cochromatic”
number of the graph corresponding to the permutation [31]. There exist, how-
ever, approximation algorithms. For example, Fomin et al. [18] obtain a decom-
position into O(nSMS) shuffled monotone sequences in O(n3) time.

Given any such partition into monotone subsequences, if it is of smaller
entropy than the partitions considered in the previous sections, this yields an
improved encoding by doing just as in Theorem 7 for SUS.
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6. Impact and Applications

Permutations are everywhere, so that compressing their representation helps
compress many other forms of data, and supporting in reasonable time the op-
erators on permutations yields support for other operators. From a practical
viewpoint, our encodings are simple enough to be implemented. Some pre-
liminary results on inverted indexes and compressed suffix arrays show good
performance on practical data sets. As an external test, the techniques were
successfully used to handle scalability problems in MPI applications [29]. We
describe here a selection of examples demonstrating the impact and applicability
of our results.

6.1. Natural Language

Consider a natural language text tokenized into word identifiers. Its word-
based inverted index stores for each distinct word the list of its occurrences in
the tokenized text, in increasing order. This is a popular data structure for
text indexing [5, 49]. By regarding the concatenation of the lists of occurrences
of all the words, a permutation 7 is obtained that is formed by v contiguous
ascending runs, where v is the vocabulary size of the text. The lengths of those
runs corresponds to the frequencies of the words in the text. Therefore our
representation achieves the zero-order word-based entropy of the text, which in
practice compresses the text to about 25% of its original size [11]. With 7 (%)
we can access any position of any inverted list, and with 7=!(j) we can find the
word that is at any text position j. Thus the representation contains the text
and its inverted index within the space of the compressed text.

6.2. Compressed Suffix Arrays

Compressed suffix arrays (CSAs) are data structures for indexing general
texts. A family of CSAs builds on a function called ¥ [25, 45, 24], which is
actually a permutation. Much effort was spent in compressing ¥ to the zero-
or higher-order entropy of the text while supporting direct access to it. It turns
out that W contains o contiguous increasing runs, where ¢ is the alphabet size
of the text, and that the run lengths correspond to the symbol frequencies.
Thus our representation of ¥ would reach the zero-order entropy of the text.
It supports not only access to ¥ but also to its inverse ¥~!, which enables
so-called bidirectional indexes [44], which have several interesting properties.
Furthermore, ¥ contains a number of strict ascending runs that depends on the
high-order entropy of the text, and this allows compressing it further [41].

6.3. An Improved Sequence Representation

Interestingly, the results from Section 3 yield almost directly a new repre-
sentation of sequences that, compared to the state of the art [16, 23], provides
improved average time.
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Theorem 8 Given a string S[1..n] over alphabet [1..0] with zero-order entropy
Ho(S), there is an encoding for S using at most nHo(S) + O(ologn) + o(n)
bits and answering queries S[i], rank.(S,7) and select.(S,j) in time O(1 +
logo/loglogn) for any ¢ € [1..0], i € [1.n], and j € [l..n.], where ¢ is the
number of occurrences of ¢ in S. When i is chosen at random in query S[i], or
¢ is chosen with probability n./n in queries rank.(S,i) and select.(S,i), the
average query time is O(1 + Ho(S)/loglogn).

Proof. We build exactly the same t-ary Huffman tree used in Theorem 3, using
the frequencies n. instead of run lengths. The sequences at each internal node
are formed so as to indicate how the symbols in the child nodes are interleaved
in S. This is precisely a multiary Huffman-shaped wavelet tree [24, 16], and
our previous analysis shows that the space used by the tree is exactly as in
Theorem 3, where now the entropy is Ho(S) = >, =g 7o+ The three queries
are solved by going down or up the tree and using rank and select on the
sequences stored at the nodes [24, 16]. Under the conditions stated for the
average case, one arrives at the leaf of symbol ¢ with probability n./n, and
then the average case complexities follow. O

6.4. Followup

Our preliminary results [10] have stimulated further research. This is just a
glimpse of the work that lies ahead on this topic.

While developing, with J. Fischer, compressed indexes for Range Minimum
Query indexes based on Left-to-Right Minima (LRM) trees [17, 46], we realized
that LRM trees yield a technique to rearrange in linear time nRuns contiguous
ascending runs of lengths forming vector vRuns, into a partition of nLRM = nRuns
ascending subsequences of lengths forming a new vector vLRM, of smaller entropy
H(vLRM) < H(vRuns) [7]. Compared to a SUS partition, the LRM partition can
have larger entropy, but it is much cheaper to compute and encode. We represent
it in Figure 1 between H(vRuns) and H(vSUS).

Barbay [6] described compressed data structures for permutations inspired
in other measures of disorder and adaptive sorting algorithms than those consid-
ered in this work. One such data structure takes advantage of both the number
nRuns and the minimum number nRem of elements to remove from a permuta-
tion in order to leave a sorted subsequence of it, and supports operators () and
771() in time O(lgnRuns). Another structure takes advantage of the number
nInv of inversions contained in the permutation and supports operators 7() and
771() in constant time. We represent those results in Figure 1 by round boxes
around the corresponding disorder measures nInv and nRem, and the disorder
measures dominated by them.

While developing, with T. Gagie and Y. Nekrich, an elegant combina-
tion of previously known compressed string data structures to attain superior
space/time trade-offs [8], we realized that this yields various compressed data
structures for permutations 7 such that the times for 7() and 7 ~1() are improved
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to log-logarithmic. While those results subsume our initial findings [10], the im-
proved results now presented in Theorem 3 are incomparable with those [8],
and in particular superior when the number of runs is polylogarithmic in n. In
addition, our representation has less redundancy, o(n) whenever o € o(n/logn),
whereas the faster representation [8] requires o(n(1 + H(nRuns))) bits over the
entropy.

Arroyuelo et al. [1] extended our result to range searches. The permutation
is seen as a set of n points on an n X n grid, and they use approximations to
SMS partitioning to separate the points into nSMS’ = O(nSMS) increasing and
decreasing subsequences (called “monotonic chains” in there). An additional
“non-crossing” geometric property is enforced on the chains, which allows or-
thogonal range searches to be reduced to O(nSMS) binary searches, so that using
fractional cascading the search time is O(nSMS + logn) plus the output size.

7. Discussion

Relation between space and time. Bentley and Yao [12] introduced a family of
search algorithms adaptive to the position of the element sought (also known as
the “unbounded search” problem) through the definition of a family of adaptive
codes for unbounded integers, hence proving that the link between algorithms
and encodings was not limited to the complexity lower bounds suggested by
information theory. Such a relation between “time” and “space” can be found
in other contexts: algorithms to merge two sets define an encoding for sets [3],
and the binary results of the comparisons of any deterministic sorting algorithm
in the comparison model yields an encoding of the permutation being sorted.

We have shown that some concepts originally defined for adaptive variants
of the algorithm MergeSort, such as runs and shuffled sequences, are useful in
terms of the compression of permutations, and conversely, that concepts origi-
nally defined for data compression, such as the entropy of the sets of run lengths,
are a useful addition to the set of difficulty measures previously considered in
the study of adaptive sorting algorithms.

More work is required to explore the application of the many other measures
of preorder introduced in the study of adaptive sorting algorithms to the com-
pression of permutations. Figure 1 represents graphically the relation between
known measures of disorder (adding to those described by Moffat and Peters-
son [37], those described in this and other recent work [7, 6]) and a preorder
on them based on optimality implications in terms of the number of compar-
isons performed. This is relevant for the space used by potential compressed
data structures on those permutations. Yet other relations of interest should
be studied, such as those in terms of optimality of the running time of the al-
gorithm, which can be distinct from the optimality in terms of the number of
comparisons performed. For instance, we saw that H(vSMS)-optimality implies
‘H(vSUS)-optimality in terms of the number of comparison performed, but not
in terms of the running time.
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Adaptive operators. It is worth noticing that, in many cases, the time to support
the operators on the compressed permutations is smaller as the permutation is
more compressed, in opposition with the traditional setting where one needs
to decompress part or all of the data in order to support the operators. This
behavior, incidental in our study, is a very strong incentive to further develop
the study of difficulty or compressibility measures: measures such that “easy”
instances can both be compressed and manipulated in better time capture the
essence of the data.

Compressed indices. Interestingly enough, our encoding techniques for permu-
tations compress both the permutation and its index (i.e., the extra data to
speed up the operators). This is opposed to previous work [39] on the encoding
of permutations, whose data encoding was fixed; and to previous work [9] where
the data itself can be compressed but not the index, to the point where the
space used by the index dominates that used by the data itself. This direction
of research is promising, as in practice it is more interesting to compress the
whole succinct data structure or at least its index, rather than just the data.

Acknowledgements. We thank Ian Munro, Ola Petersson and Alistair Moffat
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