
On Compressing and Indexing Repetitive Sequences I

Sebastian Krefta,1,2, Gonzalo Navarroa,2

aDepartment of Computer Science, University of Chile

Abstract

We introduce LZ-End, a new member of the Lempel-Ziv family of text com-
pressors, which achieves compression ratios close to those of LZ77 but per-
forms much faster at extracting arbitrary text substrings. We then build the
first self-index based on LZ77 (or LZ-End) compression, which in addition
to text extraction offers fast indexed searches on the compressed text. This
self-index is particularly effective to represent highly repetitive sequence col-
lections, which arise for example when storing versioned documents, software
repositories, periodic publications, and biological sequence databases.

Keywords: compression, repetitive texts, self-indexing, Lempel-Ziv,
succinct data structures

1. Introduction and Related Work

Regarding compression as the default, instead of the archival, state of
the data is becoming popular due to the increasing gap between access times
in main and secondary memory. Compressed sequence and text databases,
and compact data structures in general, aim at handling the data directly in
compressed form, rather than decompressing before using it [3, 4]. This poses
new challenges, as now it is required that the compressed texts should, at
least, be accessible at random, and more ambitiously, offer indexed searches.

IEarly versions of this article appeared in Proc. DCC’10 [1] and Proc. CPM’11 [2].
Email addresses: skreft@dcc.uchile.cl (Sebastian Kreft),

gnavarro@dcc.uchile.cl (Gonzalo Navarro)
1Partially funded by Conicyt’s Master Scholarship.
2Partially funded by Millennium Institute for Cell Dynamics and Biotechnology

(ICDB), Grant ICM P05-001-F, Mideplan, Chile.

Preprint submitted to Theoretical Computer Science December 21, 2011



On general text databases, self-indexes [4] provide an excellent solution to
this challenge. Self-indexes are data structures that represent a text collection
in compressed form, in such a way that not only access to arbitrary text
substrings is supported, but also indexed pattern matching, in time at most
polylogarithmic on the text size (and in some cases totally independent of
it). Invented in the past decade [5, 6], they have been enormously successful
to drastically reduce the space burden posed by general text indexes such
as suffix trees or arrays [7, 8]. Their compression effectiveness is usually
analyzed in terms of the empirical k-th order entropy model [9]: Hk(T ),
the k-th order entropy of text T , is a lower bound to the bits-per-symbol
compression achievable by any statistical compressor that models symbol
probabilities as a function of the k symbols preceding it in the text. The
smallest self-indexes [10, 11] are able to represent a text T [1, n] over alphabet
[1, σ], within nHk(T ) + o(n log σ) bits of space for any k ≤ α logσ n and
constant α < 1. Note that the k-th entropy model is meaningful only for
small k ≤ logσ n [12].

In this article we focus on offering direct access and indexed searches to
highly repetitive text collections. These are formed by sets of strings that are
mostly near-copies of each other. For example, versioned document collec-
tions store all the history of modifications of the documents. Most new ver-
sions are minor edits of a previous version. Good examples are the Wikipedia
database and the Internet archive. Another example are software reposito-
ries, which store all the versioning history of software pieces. Again, except
for major releases, most versions are relatively minor variants of previous
ones. Yet another example comes from Bioinformatics. Given the sharply
decreasing sequencing costs, large sequence databases of individuals of the
same or closely related species are appearing. The genomes of two humans,
for example, share 99.9% to 99.99% of their sequence. In many applications
the versioning has a known linear, tree, or acyclic graph structure, but in
others, like genome databases, no such clear structure exists.

The k-th order entropy model is adequate for many practical text collec-
tions, but not for repetitive ones. If one concatenates two identical texts, the
statistical structure of the concatenation is almost the same as that of the
pieces, and thus the k-th order entropy basically does not change. There-
fore, statistical compression is not a good approach for repetitive sequences.
Consequently, those self-indexes that are precisely tailored to the k-th order
entropy model [10, 11] are insensitive to repetitiveness and fail to compress
repetitive text collections.

2



Compression models that are adequate for repetitive sequences include
grammar compression [13, 14] and Lempel-Ziv compression [15, 16, 17].
These factor the text into substrings that appear repeatedly and take ad-
vantage of short factorizations. Grammar compressors enable efficient direct
access to the data [18, 19], and they have also been extended to support self-
indexing [18], both with good practical results [20, 21, 22]. Similar develop-
ments have been pursued on the LZ78 variant [17] of Lempel-Ziv compression
[23, 24, 25, 26, 27]. The stronger LZ77 variant [16] has proved much harder
to handle. Only some techniques for providing direct access have been re-
cently proposed [28]. These assume that the repetitive collection has a known
structure where one can identify which texts are close variants of which, so
that representative texts can be chosen and the others can be compressed
with respect to the representatives.

Mäkinen et al. [29, 30] faced the challenge of self-indexing repetitive col-
lections, focusing on the case of large DNA databases of the same species.
They studied how repetitiveness in the text collection translates into runs of
equal letters in its Burrows-Wheeler transform [31] or runs of successive val-
ues in the Ψ function [32]. Based on these findings they engineered variants of
FM-indexes [33] and Compressed Suffix Arrays (CSAs) [34] that take advan-
tage of repetitiveness. Their best structure, the Run-Length CSA (RLCSA)
has standed as the best general-purpose self-index for repetitive collections.

However, Mäkinen et al. showed that their new self-indexes were very far
(by a factor of 10) from the space that can be achieved by a compressor based
on LZ77. They showed that the runs model is intrinsically inferior to the
LZ77 model to capture repetitions. They also confirmed experimentally that
LZ78-based self-indexes [24] were too weak to capture high repetitiveness. It
is also known [35] that grammar-based compression is intrinsically inferior to
LZ77 compression. This has also been confirmed in practice [21, 22]. LZ77
compression is particularly well-suited to capture repetitiveness, as it parses
the text into consecutive maximal phrases so that each phrase appears earlier
in the text. It is then natural to advocate for a self-index based on LZ77.

Decompressing LZ77-compressed data from the beginning is simple and
time-optimal. Yet, extracting an arbitrary substring is expensive, with cost
bounded only by the collection size in general. Cutting the text into blocks
allows decompressing individual blocks, but compression ratio is ruined as
long-range repetitions are not captured. As explained, some solutions as-
suming that one can identify a base sequence and regard the others as close
variants of it have been explored [30, 28], but this assumption can be too

3



strong in many real-life repetitive collections.
In this article we introduce a new Lempel-Ziv parsing, LZ-End, whose

compression ratio is close to that of LZ77 (we conjecture it is 2-optimal in
the worst case, yet in our real-life collections it was never worse by more than
20%). LZ-End forces the source of a phrase to finish at a previous phrase
boundary, and as a result it can guarantee that a substring finishing at a
phrase boundary can be extracted in optimal time. It is easy to enforce that
individual sequences in a collection end at phrase boundaries, so that they
can be extracted optimally and fast in practice. In general, a substring of
length ` can be extracted in time O(` + h) on LZ-End, whereas we achieve
only O(`h) on LZ77. Here h is a measure of the nesting of the parsing, that
is, how many times a character is transitively copied.

We then go on to design the first self-index, for repetitive sequences, based
on LZ77 or LZ-End compression. There exists a pioneer theoretical proposal
for LZ77-based indexing by Kärkkäinen and Ukkonen [36, 37], but it requires
to have the text in plain form and has never been implemented. Although it
guarantees an index whose size is of the same order of the LZ77 compressed
text, the constant factors are too large to be practical. This work can be
regarded as the predecessor of all the Lempel-Ziv self-indexes that followed
[24, 25, 26, 27]. However, all these are bound to the LZ78 parsing, which as
explained is more tractable but too weak to capture high repetitiveness [29].

Our self-index can be seen as a reduced-space variant of Kärkkäinen and
Ukkonen’s LZ77 index, which solves the problem of not having the text at
hand and also makes use of recent compressed data structures. This involves
designing new solutions to some subproblems where the original proposal [36]
was too space-consuming, for example when handling secondary occurrences.

Some of these solutions have independent interest. For example, consider
the problem of preprocessing a sequence of values so that later, given a
position and a value, one returns the rightmost position preceding the given
one that holds a value smaller than the given one. We show how to solve
this query in logarithmic time and sublinear extra space (Theorem 4.10).

Let n′ be the number of phrases of the LZ77 or LZ-End parsing of T .
Then a basic Lempel-Ziv compressor outputs n′(2 log n + log σ) bits, and a
more clever one may achieve n′(log n + log σ) bits (our logarithms are base
2 by default). The size of our self-index is 3n′ log n+O(n′ log σ) + o(n) bits,
that is, asymptotically 3 times the size of the output of a good Lempel-Ziv
compressor. It can determine the existence of pattern p1,m in T in time
O(m2h+m log n′). After this check, each occurrence of p is reported in time

4



O(log n′). It retains the complexities we have given for substring extraction.
An important feature of our index is that it is universal, that is, it com-

presses repetitive collections without knowing the versioning structure of the
data (which in some applications is unknown or even absent).

We implemented our self-index over LZ77 and LZ-End parsings, and com-
pared it with the state of the art on a number of real-life repetitive collections
consisting of Wikipedia versions, versions of public software, periodic publi-
cations, and DNA sequence collections. We maintain a public repository
with those repetitive collections in http://pizzachili.dcc.uchile.cl/

repcorpus.html, so that standardized comparisons are possible. Our im-
plementations and those of the RLCSA are also available in there.

Our experiments show that in practice the smallest-space variant of our
index takes 2.5–4.0 times the space of an LZ77-based compressor, it ex-
tracts 0.5–2 million characters per second, and locates each occurrence of
a pattern of length 10 in 10–50 microseconds. Compared to the state of
the art (RLCSA), our self-index always takes less space, less than a half on
our DNA and Wikipedia corpus. Searching for short patterns is faster than
on the RLCSA. On longer patterns our index offers competitive space/time
tradeoffs.

The article is organized as follows. In Section 2 we survey the main
Lempel-Ziv parsings, LZ77 and LZ78, and establish their basic properties.
In Section 3 we describe our new parsing, LZ-End, and analyze its perfor-
mance in terms of extraction of arbitrary substrings and compression ratio.
Section 4 describes a self-index built on top of a parsing like LZ77 or LZ-End,
and analyzes its space and time complexities. Section 5 gives and analyzes
the algorithms for building the parsings and the self-index. Section 6 gives
experimental results on space and time performance of our parsing and self-
index variants. Finally, Section 7 concludes.

The reader will be referred to an extended version of this work [38] for
some secondary results and less relevant details.

2. Lempel-Ziv Parsings

Dictionary-based compression methods build a dictionary of strings, and
then parse the text into a sequence of phrases, each of them belonging to the
dictionary. LZ77 [16] can be seen as a dictionary-based compression scheme
in which the dictionary used is the set of substrings of the preceding text.
This makes it very well suited for repetitive texts.

5



Definition 2.1 ([16]). The LZ77 parsing of text T [1, n] is a sequence Z[1, n′]
of phrases such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have
already processed T [1, i − 1] producing the sequence Z[1, p − 1]. Then, we
find the longest prefix T [i, i′ − 1] of T [i, n] which occurs in T [1, i − 1], set
Z[p] = T [i, i′] and continue with i = i′ + 1. The occurrence in T [1, i − 1] of
the prefix T [i, i′ − 1] is called the source of the phrase Z[p].

Note that our definition of LZ77 differs from the original one [16] in that
we do not allow the source of T [i, i′ − 1] to extend beyond position i − 1.
While avoiding this is rather typical in the literature on searching Lempel-Ziv
compressed text (e.g., [39, 35]), the variant does not have an agreed-upon
name. More than that, Ziv and Lempel called their method LZ1, and what
is usually called LZ77 is a variant of LZ1 where the referenced text must
belong to a window of fixed length preceding T [i]. Rather than inventing a
new name, we prefer to retain the name LZ77, as it is the most widely known
for the general idea.

Note that each phrase is composed of the content of a source, which can
be the empty string ε, plus a trailing character. Note also that all phrases of
the parsing are different, except possibly the last one. To avoid that case, a
special character $ is appended at the end, T [n] = $.

Typically a source is represented as a triple Z[p] = (start, len, c), where
start is the starting position of the source, len is the length of the source
and c is the trailing character. Then a simple representation of T based on
the parsing requires n′(2 log n+ log σ) bits, where σ is the alphabet size.

Example 2.2. The LZ77 parsing of T = ‘alabar a la alabarda$’ is as
follows:

a l ab ar a la alabard a$

In this example the seventh phrase copies two characters starting at position
2 and has a trailing character ‘ ’.

One of the greatest advantages of this algorithm is the simple and fast
decompression scheme, opposed to the construction algorithm which is more
complicated. Decompression runs in linear time by copying the source con-
tent referenced by each phrase and then the trailing character. However,
random text extraction is not as easy.

A weaker Lempel-Ziv variant, which makes the compressed representation
more manipulable, is LZ78 [17]. It restricts new phrases to be equal to some
previous phrase plus one character.

6



Definition 2.3 ([17]). The LZ78 parsing of text T [1, n] is a sequence Z[1, n′]
of phrases such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have
already processed T [1, i−1] producing the sequence Z[1, p−1]. Then, we find
the longest prefix T [i, i′− 1] of T [i, n] which is a phrase Z[q] for some q < p,
set Z[p] = T [i, i′], and continue with i = i′ + 1.

With respect to compression, both LZ77 and LZ78 converge to the en-
tropy of stationary ergodic sources, and in particular to the empirical entropy.

Definition 2.4 ([40]). A parsing algorithm is said to be coarsely optimal
if its compression ratio ρ(T ) differs from the k-th order empirical entropy
Hk(T ) by a quantity depending only on the length of the text and that goes
to zero as the length increases. That is, ∀k ∃fk, limn→∞ fk(n) = 0, such that
for every text T , ρ(T ) ≤ Hk(T ) + fk(|T |).

Theorem 2.5 ([40, 41]). The LZ77 and LZ78 parsings are coarsely optimal.

However, converging to Hk(T ) is not sufficiently good for repetitive texts.
As explained, measure Hk(T ) does not capture repetitiveness, in particular
|TT |Hk(TT ) ≥ 2|T |Hk(T ), as proved next.

Lemma 2.6. Let T be a string of length n. For any k ≤ n it holds Hk(TT ) ≥
Hk(T ).

Proof. By definition, Hk(T ) = 1
|T |
∑

S∈C(T,k) |T S|H0(T S), where C(T, k) are

the substrings of length k present in T , T S is the string formed by the charac-
ters preceding the occurrences of S in T , andH0(T ) = 1

|T |
∑

c∈Σ n
T
c log(|T |/nTc ),

where nTc is the number of occurrences of c in T [9].
We use the fact that, for any X, Y , it holds |XY |H0(XY ) ≥ |X|H0(X):

|XY |H0(XY ) =
∑

c∈Σ(nXc + nYc ) log |X|+|Y |
nXc +nYc

≥ |X|
∑

c∈Σ
nXc
|X| log |X|+|Y |

nXc +nYc
≥

|X|
∑

c∈Σ
nXc
|X| log |X|

nXc
(by Gibbs inequality [42]).

Now, TT has at most k substrings not in T . For each S ∈ C(T, k), we have
(TT )S = T SAST S, for some AS such that |AS| ≤ k. Then, by definition,
Hk(TT ) = 1

|TT |
∑

S∈C(TT,k) |(TT )S|H0((TT )S). Since C(T, k) ⊆ C(TT, k),

this is ≥ 1
2|T |
∑

S∈C(TT,k) |T SAST S|H0(T SAST S). Using X = T ST S and Y =

AS in the previouds paragraph, this is ≥ 1
2|T |
∑

S∈C(TT,k) |T ST S|H0(T ST S),

since |T SAST S|H0(T SAST S) = |T ST SAS|H0(T ST SAS). Since H0(TT ) =
H0(T ), finally, this is equal to 1

|T |
∑

S∈C(TT,k) |T S|H0(T S) = Hk(T ).

7



That is, a statistical-based compressor applied to TT doubles its output
size with respect to T , being blind to the repetitiveness. Instead, the LZ77
parsing captures exact and near-repetitions in the text, as stated in the
following easy-to-prove lemma.

Lemma 2.7 ([38, Lem. 4.1]). Given a text T , let L77(T ) be the number of
phrases of the LZ77 parsing of text T . Then the following statements hold
for any characters a, b: L77(TT ) = L77(T ) + 1; L77(TT$) ≤ L77(T$) +
1; L77(TT ′) ≤ L77(TaT ′) + 1; L77(TaT ′) ≤ L77(TT ′) + 1; L77(TaT ′) ≤
L77(TbT ′) + 1.

The lemma states that a repetition of a text, as well as single-character
edits on a text, alter the number of phrases very little. This explains why
LZ77 is so strong to compress highly repetitive collections. On the contrary,
LZ78 is not that powerful. On T = an it produces n′ =

√
n

2
+ O(1) phrases,

and this increases to n′ =
√

2n
2

+ O(1) on TT . LZ77, instead, produces
n′ = log n+O(1) phrases on T and just one more phrase on TT .

3. LZ-End Parsing

In this section we introduce a new LZ77-like parsing. It permits faster
extraction of arbitrary text substrings, while achieving compression ratios
close to those of LZ77.

Definition 3.1. The LZ-End parsing of text T [1, n] is a sequence Z[1, n′] of
phrases such that T = Z[1]Z[2] . . . Z[n′], built as follows. Assume we have
already processed T [1, i−1] producing the sequence Z[1, p−1]. Then, we find
the longest prefix T [i, i′− 1] of T [i, n] that is a suffix of Z[1] . . . Z[q] for some
q < p, set Z[p] = T [i, i′] and continue with i = i′ + 1.

Example 3.2. The LZ-End parsing of T = ‘alabar a la alabarda$’ is
as follows:

a l ab ar a la a labard a$

When generating the seventh phrase we cannot copy two characters as in Ex-
ample 2.2, because ‘la’ does not end at a previous phrase boundary. How-
ever, ‘l’ does end at a phrase boundary, hence we generate the phrase ‘la’.
Notice that the number of phrases increased from 9 to 10.

8



The LZ-End parsing is similar to that by Fiala and Green [43], LZFG, in
that theirs restricts where the sources start, while ours restricts where the
sources end. This apparently irrelevant difference is the key feature that will
allow us to extract arbitrary phrases in optimal time.

3.1. Encoding

The output of an LZ77 compressor is, essentially, the sequence of triplets
z(p) = (j, `, c), such that the source of Z[p] = T [i, i′] is T [j, j+`−1], ` = i′−i,
and c = T [i′]. This format allows fast decompression of T , but not extracting
an individual phrase Z[p].

Although the LZ-End parsing may generate more phrases than LZ77, it
permits a shorter encoding of each phrase. The pth phrase can be encoded as
z(p) = (q, `, c), such that the source of Z[p] = T [i, i′] is a suffix of Z[1] . . . Z[q],
and ` and c are as for LZ77. We introduce a more sophisticated encoding
that, in addition, will allow us to extract individual phrases in optimal time.

• source[1, n′] (using n′dlog n′e bits) encodes the phrase identifier where
the source ends (q above).

• B[1, n] (using n′ log n
n′ +O(n′ + n log logn

logn
) bits in compressed form [44])

is a bitmap marking the n′ ending positions of the phrases in T .

• L[1, n′] (using n′dlog σe bits) encodes the trailing characters (c above).

The compressed representation of B [44] supports operations rank and
select in constant time: rankb(B, i) is the number of bs in B[1, i] (b = 0
or 1), and selectb(B, j) is the position of the j-th b in B. Both return
0 if the argument i or j is 0. In our case, phrase p goes from position
select1(p − 1) + 1 to position select1(B, p). Thus we have z(p) = (q, `, c) =
(source[p], select1(B, p)−select1(B, p−1)−1, L[p]). We can also compute in
constant time that text position i belongs to phrase Z[rank1(B, i− 1) + 1].

3.2. Extraction Algorithm

Figure 1(a) gives the algorithm to extract an arbitrary substring in LZ-
End. The extraction works from right to left. First we compute the last
phrase p overlapping the substring. If the last character to extract is stored
explicitly, that is, it is at the end of phrase p (line 4), we output L[p] after
recursively extracting the remaining substring (line 5). Else we split the
substring to extract into two parts, a first one intersecting the phrases before

9



Extract(start, `)

1 if ` > 0 then
2 end← start+ `− 1
3 p← rank1(B, end− 1) + 1
4 if B[end] = 1 then
5 Extract(start, `− 1)
6 output L[p]
7 else
8 pos← select1(B, p− 1) + 1
9 if start < pos then

10 Extract(start, pos− start)
11 `← end− pos+ 1
12 start← pos
13 Extract(select1(B, source[p]

−1) + 1 + start− pos, `)

(a) LZ-End extraction algorithm for
T [start, start+ `− 1].

Build

1 F ← {〈0, n+ 1〉}
2 i← 1, p← 1
3 while i ≤ n do
4 [sp, ep]← [1, n]
5 i′ ← i, j ← i, q ← 0
6 while i′ ≤ n do
7 [sp, ep]← bws(sp, ep, T [i′])
8 mpos← rmqA(sp, ep)
9 if A[mpos] ≤ n+1− i then break

10 i′ ← i′ + 1
11 〈q′, fpos〉 ← Successor(F , sp)
12 if fpos ≤ ep then j ← i′, q ← q′

13 Insert(F , 〈p,A−1[n+ 1− j]〉)
14 output (q, j − i, T [j])
15 i← j + 1, p← p+ 1

(b) LZ-End construction algorithm. F stores
pairs 〈phrase identifier, text position〉 and an-
swers successor queries on the text position.
We assume rmq(sp, ep) returns 0 if sp > ep.

Figure 1: LZ-End extraction and construction algorithms.

p, and the second one intersecting phrase p. If the first is not empty we
recursively extract it (line 10). Then we recursively extract the second part
from the source of phrase p (line 13).

While the algorithm works for extracting any substring, it is optimal
when the substring to extract ends at a phrase boundary.

Theorem 3.3. Function Extract outputs a text substring T [start, start+`−
1] ending at a phrase boundary in time O(`).

Proof. Let p be the phrase overlapping end = start+`−1. Since T [start, end]
ends at a phrase boundary, it holds B[end] = 1. We proceed by induction
on `. The case ` ≤ 1 is trivial by inspection. Otherwise, we output T [end]
at line 6 after a recursive call on length `− 1. If in the recursive call we are
at phrase p− 1, then |Z[p]| = 1 and we are done by the inductive hypothesis
since T [start, end − 1] finishes at the end of phrase p − 1. So assume we
are still at phrase p. This time we go to line 8. Phrase p starts at pos. If
start < pos, we carry out a recursive call at line 10 to extract the segment
T [start, pos − 1]. As this segment finishes at the end of phrase p − 1, this

10



call takes time O(pos−start) by the inductive hypothesis. Now the segment
T [max(start, pos), end] is contained in Z[p] and it finishes one symbol before
the phrase ends. Thus a copy of it finishes where Z[source[p]] ends. So
induction applies also to the recursive call at line 13, which extracts the
remaining string from the source of Z[p], also in optimal time.

An arbitrary substring is extracted essentially by unrolling the last phrase
p (see Figure 1(a)) overlapping the substring, from the end of p until reach-
ing the substring. The following measure is useful to analyze the general
extraction cost.

Definition 3.4. Let T = Z[1]Z[2] . . . Z[n′] be a LZ-parsing of T [1, n]. Then
the height of the parsing is defined as h = max1≤i≤nC[i], where C is defined
as follows. Let Z[i] = T [a, b] be a phrase whose source is T [c, d], then

C[k] = C[(k − a) + c] + 1, ∀a ≤ k < b

C[b] = 1

Array C counts how many times a character was transitively copied from
its original source. This is also the extraction cost of that character. Hence,
the value h is the worst-case bound for extracting a single character in the
LZ parse. The extraction cost can be bound in terms of h.

Theorem 3.5. Extracting a substring of length ` from an LZ-End parsing
takes time O(`+ h).

Proof. Theorem 3.3 already shows that the cost to extract a substring ending
at a phrase boundary is constant per extracted symbol. The only piece of
code in Figure 1(a) that does not amortize in this sense is line 13, where
we recursively unroll the last phrase, removing the last character each time,
until hitting the end of the substring to extract. By definition of h, this line
cannot be executed more than h times. So the total time is O(`+ h).

Remark 3.6. Function Extract also works on parsing LZ77, by storing ab-
solute starting text positions instead of phrase numbers in source′[1, n′] and
replacing select1(B, source[p] − 1) + 1 by source′[p] in line 13. However, in
this case the best theoretical bound we can prove for extracting a substring of
length ` is O(`h), which follows trivially from the definition of h.

Next lemma proves that h is upper bounded by the maximum length of
a phrase. This gives further intuition on this value.

11



Lemma 3.7. In an LZ-End parsing it holds that h is smaller than the longest
phrase, i.e., h ≤ max1≤p≤n′ |Z[p]|.

Proof. We prove by induction that C[i] ≤ C[i + 1] + 1 for all 1 ≤ i < n.
From this inequality the lemma follows: For all positions ip where a phrase
p ends, it holds by definition that C[ip] = 1. Thus, for all positions i in the
phrase p, we have C[i] ≤ C[ip] + ip − i ≤ |Z[p]|.

The first phrase of any LZ-End parsing is T [0], and the second is either
T [1] or T [1]T [2]. In the first case, we have C[1]C[2] = 1, 1; in the second,
C[1]C[2]C[3] = 1, 2, 1. In both cases the property holds. Now, suppose the
inequality is valid up to position ip where the phrase Z[p] ends. Let ip+1

be the position where the phrase Z[p + 1] = T [a, b] ends (so a = ip + 1
and b = ip+1) and let T [c, d] be its source. For ip + 1 ≤ i < ip+1, it holds
C[i] = C[(i− a) + c] + 1, and since d ≤ ip, the inequality holds by inductive
hypothesis for ip + 1 ≤ i ≤ ip+1 − 2. By definition of the LZ-End parsing,
the source of a phrase ends in a previous end of phrase, hence C[ip+1 − 1] =
C[d] + 1 = 2 ≤ 1 + 1 = C[ip+1] + 1. For position ip+1 (end of phrase) the
inequality trivially holds as it has by definition the least possible value.

For example, on an ergodic Markov source of entropy H, it holds h =
O(log(n)/H), yet we remind this is not a practical model for repetitive texts.
On our repetitive collection corpus (see Section 6) h is between 22 and 259
for LZ-End, and between 22 and 1003 for LZ77. Its average values, on the
other hand, are 5–25 on LZ-End and 5–176 on LZ77.

Note that our extraction algorithm is not faster on LZFG parsing [43]
than on LZ77, even for substrings starting at phrase boundaries. The reason
is that they align to the beginning of phrases but store the trailing character
of phrases. To solve the problem while innovating the least with respect
to LZFG we could define LZ-Begin, which requires that sources start at
phrase boundaries (like LZFG) but store the leading, instead of the trailing,
symbols of the phrases. LZ-Begin allows for fast extraction, just like LZ-End.
However, as we see next, it does not compress well on repetitive sequences.

3.3. Compression Performance

We now study the compression performance of LZ-End, first with respect
to the empirical k-th order entropy and then on repetitive texts.

12



3.3.1. Coarse Optimality

We prove that LZ-End is coarsely optimal. The main tool is the following
lemma.

Lemma 3.8. All the phrases generated by an LZ-End parse are different.

Proof. Assume for contradiction Z[p] = Z[p′] for some p < p′. When Z[p′]
was generated, we could have taken Z[p] as the source, yielding phrase Z[p′]c,
longer than Z[p′]. This is a valid source as Z[p] is a suffix of Z[1] . . . Z[p]. So
this is not an LZ-End parse.

The uniqueness property does not hold on LZ-Begin: Let T = AxyAyAz,
where x, y, z are distinct characters and A is a string; if we have parsed up
to Ax, then the next phrase will be yA, and the following phrase will also be
yA. Moreover, in practice LZ-Begin compresses up to 40 times worse than
LZ-End (see Section 6). Thus, despite apparent symmetries, LZ-End is the
only variant combining good extraction time and good compression ratio.

The uniqueness lemma enables us to apply a couple of known results on
this kind of parsings, which leads us to the coarse optimality proof.

Lemma 3.9 ([15]). Any parsing of T [1, n] into n′ distinct phrases satisfies

n′ = O
(

n
logσ n

)
, where σ is the alphabet size of T .

Lemma 3.10 ([40]). For any text T [1, n] parsed into n′ different phrases, it
holds n′ log n′ ≤ nHk(T ) + n′ log n

n′ + Θ(n′(1 + k log σ)), for any k.

Theorem 3.11. The LZ-End compression is coarsely optimal.

Proof. We follow the proof by Kosaraju and Manzini [40] for LZ77. Here we
must also consider our particular encoding. The size of the parsing in bits is

LZ-End(T ) = n′dlog n′e+ n′ log
n

n′
+O

(
n′ +

n log log n

log n

)
+ n′dlog σe

= n′ log n+O

(
n′ log σ +

n log log n

log n

)
.

Thus from Lemmas 3.8 and 3.10 we have

LZ-End(T ) ≤ nHk(T ) + 2n′ log
n

n′
+O

(
n′(k + 1) log σ +

n log log n

log n

)
.

13



Now, by means of Lemma 3.9 and since n′ log n
n′ is increasing in n′, we get

LZ-End(T ) ≤ nHk(T ) +O

(
n log σ log log n

log n

)
+O

(
n(k + 1) log2 σ

log n
+
n log log n

log n

)
= nHk(T ) +O

(
n log σ(log log n+ (k + 1) log σ)

log n

)
.

Thus, diving by n and taking k and σ as constants, we get that the compres-
sion ratio is

ρ(T ) ≤ Hk(T ) +O

(
log log n

log n

)
.

Corollary 3.12. The output size in bits of our LZ-End compressor is LZ-End(T ) ≤
nHk(T ) + o(n log σ) for any k = o(logσ n).

3.3.2. Performance on Repetitive Texts

We have been unable to prove a worst-case bound for the competitiveness
of LZ-End compared to LZ77. After many attempts, we have been able to
produce families of sequences where LZ-End produces almost twice the num-
ber of phrases generated by the LZ77 parsing. Those examples, moreover,
require an unbounded alphabet. The following is one of them.

Example 3.13. Let T = 112 ·113 ·214 ·325 ·436 ·547 · . . . · (σ− 2)(σ− 3)σ.
The length of the text is n = 3(σ − 1). The LZ parsings are:

LZ77 1 12 113 214 325 436 547 . . . (σ − 2)(σ − 3)σ

LZ-End 1 12 11 3 21 4 32 5 43 6 54 7 . . . (σ − 2)(σ − 3) σ

The size of LZ77 is n′ = σ and that of LZ-End is n′ = 2(σ − 1).

This means that LZ-End is at best 2-competitive with LZ77. We conjec-
ture that this is tight.

Conjecture 3.14. Parsing LZ-End is 2-competitive with parsing LZ77 in
terms of the number of phrases generated.

14



On the other hand, we show that LZ-End satisfies one of the key proper-
ties of Lemma 2.7, with constant 2. This is in agreement with our conjecture.

Lemma 3.15. Given a text T , it holds LEnd(TT$) ≤ LEnd(T$) + 2, where
LEnd(·) is the number of phrases of the LZ-End parsing.

Proof. First assume that T$ is parsed as T$ = T | $, where the “|” indicates
a phrase boundary (i.e., the last phrase of T$ is just $). Then TT$ will be
parsed as TT$ = T | T$ and both will have the same number of phrases.
Otherwise, let T$ = XyY | aA$ be parsed into n′ phrases, and y, a ∈ Σ. In
this partition, aA$ is the last phrase of T$ and X is the longest string such
that aAX occurs in T aligned at the end of a phrase boundary (this holds at
least for X = ε since aA was chosen as the source of the last phrase). Note
that XyY may be formed by several phrases. If Y does not appear anywhere
else in T , then TT$ will be parsed as TT$ = XyY | aAXy | Y a | A$, with
n′+2 phrases. More in general, let Y B the longest prefix of Y aA that appears
in T aligned at the end of a phrase, with aA = BcC, then the parsing will
be TT$ = XyY | aAXy | Y Bc | C$, also with n′ + 2 phrases. Note that C
is a suffix of A and thus it appears aligned at a phrase boundary in T .

4. A Self-Index

We now start from an LZ77-like parsing, such as LZ77 itself or LZ-End,
and design a self-index around the corresponding compressed text represen-
tation, which supports direct access to arbitrary text substrings.

Assume we have a text T of length n, which is partitioned into n′ phrases
using an LZ77-like compressor. Let p1,m be a search pattern. We call primary
occurrences of p those overlapping more than one phrase or ending at a phrase
boundary; and secondary occurrences the others.

Example 4.1. In Figure 2(a), the occurrence of ‘lab’ starting at position
2 is primary as it spans two phrases. The second occurrence, starting at
position 14, is secondary.

Our self-index will find first the primary occurrences, and those will be
used to recursively find the secondary ones (these, in turn, will be used to
find further secondary occurrences). We describe next how we find each kind
of occurrence, and which extra data structures we need for that purpose. To
begin, we describe how we change the representation of an LZ77 or LZ-End
parsing to a format that is more suitable for our self-index.

15



0 10 0 

1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1

0 0 0 0 0depths

sources

phrases

permutation

ends 0 30 0  1 1 1 1 6

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) The LZ77 parsing of the string
‘alabar a la alabarda$’, showing the
sources of each phrase on top. On the
bottom, bitmap B marks the ends of
phrases, the bitmap S marks the starting
positions of sources, and the permuta-
tion P connects phrases to sources. We
also show array D of depths and (vir-
tual) array E of ending source positions
(these arrays are exclusive).

8 6 1 7 0 3 5 2 4

(b) Top: The sparse suffix trie. The black node
is the one we arrive at when searching for ‘la’,
and the gray leaves of its subtree represent the
phrases that start with ‘la’. Left: The reverse
trie for the string. The gray leaf is the node
at which we stop searching for ‘a’. Bottom:
The range structure for the string. The gray
dot marks the only primary occurrence of the
pattern ‘ala’ (it is the only dot in the range
defined by the gray nodes).

Figure 2: Our self-index structure over the example text T = ‘alabar a la alabarda$’

and part of the process of searching for p = ‘ala’.

4.1. Parsing Representation

We will store Z[1, n′] in a particular way that enables further operations
needed by the self-index. We will use L[1, n′] and B[1, n] just as in Section 3.1,
but source[1, n′] will be stored differently: We will store a bitmap S[1, n+n′]
that describes the structure of the sources in T , as follows. We traverse T
from left to right, from T [1] to T [n]. At step i, if there are k sources starting
at position T [i], we append 1k0 to S (k may be zero). Empty sources (i.e.,
i = i′ in Z[p] = T [i, i′]) are assumed to lie just before T [1] and appended
at the beginning of S, followed by a 0. So the 0s in S correspond to text
positions, and the 1s correspond to the successive sources. Finally, we store

16



a permutation P [1, n′] that maps targets to sources, that is, P [i] = j means
that the source of the ith phrase starts at the position corresponding to the
jth 1 in S. Figure 2(a) gives an example.

Bitmap S[1, n + n′] contains only n′ 1s. It is stored using again a com-
pressed representation [44] that takes n′ log n

n′ +O(n′) + o(n) bits. Permuta-
tion P is stored using a representation [45] that computes P [i] in constant
time and P−1[j] in time O(l), using (1 + 1/l)n′ log n′ + O(n′) bits of space.
We use parameter l = log n′. Thus our total space for L, B, S, and P , is
n′ log n′ + 2n′ log n

n′ + n′ log σ +O(n′) + o(n) bits, only slightly more than in
Section 3.1. The extraction times of Section 3.2 are retained, as in line 13 of
Figure 1(a) we have select1(B, source[p]−1)+1 = rank0(S, select1(S, P [p])),
which is computed in constant time.

4.2. Primary Occurrences

Each primary occurrence can be split as p = p1,i pi+1,m, where the left
side p1,i is a nonempty suffix of a phrase and the (possibly empty) right side
pi+1,m is the concatenation of zero or more consecutive phrases plus a prefix
of the next phrase. To find primary occurrences we partition the pattern into
two in every possible way. Then, we search for the left part in the suffixes of
the phrases and for the right part in the prefixes of the suffixes of T starting
at phrase boundaries. Then, we find which pairs of left and right occurrences
are concatenated, thus representing actual primary occurrences of p.

Finding the right part of the pattern. To find pi+1,m we use a suffix trie that
indexes all the suffixes of T starting at phrase boundaries. In the leaves of the
trie we store the identifiers of the phrases where the corresponding suffixes
start. The identifiers form an array id that stores the phrase identifiers in
lexicographic order of the suffixes they start, requiring n′dlog n′e bits.

We represent the suffix trie as a Patricia tree [46], encoded using a succinct
representation for labeled trees called dfuds [47]. As the trie has at most 2n′

nodes, the succinct representation requires at most 2n′ log σ +O(n′) bits. It
supports a large number of operations in constant time, such as going to a
child labeled c, going to the leftmost and rightmost descendant leaf, etc. To
search for pi+1,m we descend through the tree using the next character of
the pattern, skip as many characters as the skip value of the child indicates,
and repeat the process until determining that pi+1,m is not in the set, or
until reaching a node or an edge whose leftmost and rightmost subtree leaves
define the interval in array id of suffixes that start with pi+1,m.

17



Example 4.2. Figure 2(b) shows, on top, the trie of all suffixes of T starting
at a phrase boundary, shading the range [8,9] of leaves found when searching
for pi+1,m = ‘la’.

Recall that, in a Patricia tree, after searching for the positions we need
to check if they are actually a match, as some characters are not checked
because of the skips. Instead of doing the check at this point, we defer it for
later, when we connect both searches.

We do not explicitly store the skips, as they may take much space and can
be computed from the trie and the text. Given a node in the trie correspond-
ing to a string of length `, we go to the leftmost and rightmost leaves and
extract the corresponding suffixes from their (`+ 1)th symbols. The number
s of symbols they share from that position is the skip. This takes O(sh) time
for LZ77. For LZ-End this is not O(s+ h) because extraction goes from left
to right and we extract one character at a time until they differ. We can
achieve O(s+ h log s) by extracting substrings of doubling lengths. Still, the
descent may be formed by Θ(m) steps with skips of size s = O(1), and thus
the total time for extracting the skips as we descend is O(mh) in any case.

Finding the left part of the pattern. Another Patricia trie indexes all the
reversed phrases, stored in the same way as the suffix trie. To find the left
part of the pattern we search this trie for (p1,i)

rev, that is, p1,i read backwards.
The array with the phrase identifiers at the leaves of the trie is called rev id,
but it is not stored explicitly. The space is at most 2n′ log σ +O(n′) bits.

Example 4.3. Figure 2(b) shows, on the left, the trie of reverse phrases of
T , with the result of searching for a left part p1,i = ‘a’.

For this trie we do store the skips. As all the strings inserted in the
trie add up to length n, and the trie has at most n′ internal nodes, we can
concatenate the skip values in unary, 0skip1, forming a bitmap of length n
with at most n′ bits set. This can be stored in compressed form [44] so that
any skip can be extracted in constant time using select1 and the bitmap
space is at most n′ log n

n′ + O(n′) + o(n) bits. The mapping from a node to
an internal node rank i is easily computed in constant time using dfuds [47].
Thus the searches on this trie take O(m) time.

Connecting both searches. Actual occurrences of p are those formed by a
phrase rev id[j] = k − 1 and the following one id[i] = k, so that j and i
belong to the lexicographical intervals found with the tries. To find those we

18



use a n′ × n′ range structure that connects the consecutive phrases in both
trees. If id[i] = k and rev id[j] = k − 1, the structure holds a point in (i, j).

The range structure is represented compactly using a wavelet tree [10, 48],
which requires n′ log n′+O(n′ log log n′) bits, or even n′ log n′+o(n′) [49]. The
wavelet tree stores the permutation R[1, n′] so that R[i] = j if (i, j) is a point
(note there is only one j per i value). It can compute any R[i] and R−1[j] in
O(log n′) time, as well as find all the occ points in a given orthogonal range
in time O((occ + 1) log n′). With such an orthogonal range search for the
intervals of leaves found in both trie searches, the wavelet tree gives us all
the primary occurrences. It also computes any rev id[j] = id[R−1[j]] − 1 in
O(log n′) time, thus we do not need to store rev id.

Example 4.4. Figure 2(b) shows sequence R at the bottom. It also shows
how we find the only primary occurrence of p = ‘ala’ by partitioning it into
‘a’ and ‘la’.

At this stage we also verify that the answers returned by the Patricia tree
searches are valid. By the Patricia tree properties, it is sufficient to extract
the text of one of the occurrences reported and compare it to p, to determine
that either all or none of the answers are valid. This costs O(mh) time for
LZ77 and O(m+ h) for LZ-End.

Note that the structures presented up to now are sufficient to determine
whether the pattern exists in the text or not, since p cannot appear if it
does not have primary occurrences. If we have to report the occ occurrences,
instead, we use bitmap B: An occurrence with partition p1,i and pi+1,m found
at rev id[j] = k is to be reported starting at text position select1(B, k)−i+1.

Overall, the data structures introduced in this section add up to n′ log n+
n′ log n′+4n′ log σ+O(n′)+o(n) bits. The occ primary occurrences are found
in time O(m2h+m log n′ + occ log n′).

Implementation considerations. As most of the skips are usually very small
and computing them from the text phrases is slow in practice, we actually
store the skips for both tries, using Directly Addressable Codes [50]. These
allow storing variable-length codes while retaining fast direct access. The
time complexity O(m2h) drops to O(m(m + h)) on LZ-End, yet the space
for the skips on the suffix trie can be n′ log n bits in the worst case.

We use a practical dfuds implementation [51] that binary searches for the
child labeled c, as the theoretical one [47] uses perfect hashing.

19



Instead of storing the tries we can do a binary search over the id or
rev id arrays. This alternative modifies the complexity of searching for a
prefix/suffix of p to O(mh log n′) for LZ77 or O((m + h) log n′) for LZ-End
(actually, since we extract the phrases right-to-left, binary search on the
reverse trie costs O(m log n′) for LZ-End). Independently, we could store
explicitly array rev id, instead of accessing it through the wavelet tree. Al-
though this increases the space usage of the index and does not improve the
complexity, it gives a relevant tradeoff in practice.

4.3. Secondary Occurrences

Secondary occurrences are found from the primary occurrences and, re-
cursively, from other previously discovered secondary occurrences. The idea
is to locate all the sources covering the occurrence and then finding their cor-
responding phrases. Each copy found is reported and recursively analyzed
for sources containing it.

For each occurrence found T [i, i+m− 1], we find the position pos of the
0 corresponding to its starting position in bitmap S, pos = select0(S, i +
1). Then we consider all the 1s to the left of pos, looking for sources that
start before the occurrence. For each such S[j] = 1, j < pos, the source
starts in T at t = rank0(S, j) and is the sth source, for s = rank1(S, j).
Its corresponding phrase is f = P−1[s], which starts at text position c =
select(B, f − 1) + 1. Now we compute the length of the source, which is
the length of its phrase minus one, l = select1(B, f)− select1(B, f − 1)− 1.
Finally, if T [t, t + l − 1] covers the occurrence T [i, i + m − 1], then this
occurrence has been copied to T [c+ i− t, c+ i− t+m−1], where we report a
secondary occurrence and recursively find sources covering it. The time per
occurrence reported is dominated by that of computing P−1, O(log n′).

Example 4.5. Consider in Figure 2(a) the only primary occurrence of pat-
tern ‘la’ starting at position 2 in our example text. We find the third 0 in
the bitmap of sources at position 12. Then we consider all 1s starting from
position 11 to the left. The 1 at position 11 maps to a phrase of length 2 that
covers the occurrence, hence we report an occurrence at position 10. The
second 1 maps to a phrase of length 6 that also covers the occurrence, thus
we report another occurrence at position 15. The third 1 maps to a phrase of
length 1, hence it does not cover the occurrence and we do not report it. We
proceed recursively for the occurrences found at positions 10 and 15.

20



Unfortunately, we do not know when to stop looking for 1s to the left of
pos in S. Stopping at the first source not covering the occurrence works only
when no source contains another.

Example 4.6. Let us start with the primary occurrence of the pattern ‘ba’

starting at position 4. The first source to the left is ‘la’, at position 2 and
of length 2, which does not cover the pattern. Assume we stop, reporting
no secondary occurrences. Then we miss the source ‘alabar’ to the left,
that does cover the pattern and generates the secondary occurrence starting
at position 16.

We present now a general solution that requires just 2n′+o(n′) extra bits
and reports the occ secondary occurrences in time O(occ log n′).

Consider a (virtual) array E[1, n′] where E[s] is the text position where
the sth source ends. Then an occurrence T [i, i+m−1] is covered by source s if
s ≤ e = rank1(S, pos) (i.e., s starts at or before i in T ) and E[s] ≥ i+m− 1
(i.e., s ends at or after i + m − 1 in T ). Then we must report all values
E[1, e] ≥ i+m− 1. Figure 2(a) shows E on our running example.

A Range Maximum Query (RMQ) data structure can be built on E[1, n′]
so that it (i) occupies 2n′ + o(n′) bits of space; (ii) answers in constant
time queries rmqE(i, j) = arg maxi≤k≤j E[k]; (iii) it does not access E for
querying [52]. We build such a data structure on E. The array E itself is
not represented; any desired value can be computed as E[s] = t+ l−1, using
the nomenclature given at the beginning of this subsection, in time O(log n′)
as it involves computing P−1[s].

Thus k = rmqE(1, e) gives us the rightmost-ending source among those
starting at or before i. If E[k] < i + m − 1 then no source in [1, e] covers
the occurrence. Else, we report the copied occurrence within phrase P−1[k]
(and process it recursively), and now consider the intervals E[1, k − 1] and
E[k+1, e], which are in turn recursively processed with rmqs until no source
covering the occurrence is found. This algorithm was already described by
Muthukrishnan [53], who showed that it takes 2 · occ computations of rmq
to report occ occurrences. Each step takes us O(log n′) time due to the need
to compute the E[k] values. Figure 3(a) gives a pseudocode.

4.4. The Previous Smaller Value Problem

The best implemented rmq-based solution requires in practice around
3n′ bits and a constant but significant number of complex operations [52,

21



SecondaryOcc(i,m)

1 pos ← select0(S, i+ 1)
2 e← pos − i− 1
3 FindSources(i,m,1,e)

FindSources(i,m, s, e)

1 k ← rmqE(s, e)
2 t← select1(S, k)− k
3 f ← P−1[k]
4 c← select1(B, f − 1) + 1
5 l← select1(B, f)− c
6 if t+ l ≥ i+m− 1 then
7 occ pos ← c+ i− t
8 report occ pos
9 SecondaryOcc(occ pos,m)

10 FindSources(i,m,s,k − 1)
11 FindSources(i,m,k + 1,e)

(a) Reporting secondary occurrences
triggered by occurrence T [i, i+m− 1].

PSV(τ, d, s, a, b)

1 if τ is a leaf then
2 return s
3 c← b(a+ b)/2c
4 if d− 1 ≤ c then
5 p← PSV(τ.l , d, rank0(τ.V, s), a, c)
6 return select0(τ.V, p)
7 else
8 v0 ← select0(τ.V, rank0(τ.V, s))
9 p← PSV(τ.r , d, rank1(τ.V, s), c+1, b)

10 return max(v0, select1(τ.V, p))

(b) Solving PSV (D, s, d) on the wavelet tree
τ of D, with bitmap V and children l and r .
The initial invocation is PSV(τ, d, s− 1, 0, δ).

Figure 3: Algorithms for reporting secondary occurrences and for the PSV problem.

54]. We present now an alternative development that, although offering
worse worst-case complexities, requires in practice reasonable space, 2.88–
4.08n′ bits, and is faster: On the machine described in Section 6, it takes
1–3 microseconds in total per secondary occurrence, whereas just one rmq
computation takes more than 1.5 microseconds, and we need two of them
per occurrence, still ignoring the time to compute E[k] values indirectly. It
has, moreover, independent interest.

In early attempts to solve the problem of reporting secondary occurrences,
Kärkkäinen [37] introduced the concept of levels. We use it in a different way.

Definition 4.7. Source s1 = [l1, r1] is said to cover source s2 = [l2, r2] if
l1 < l2 and r1 > r2. Let cover(s) be the set of sources covering a source s.
Then the depth of source s is defined as depth(s) = 0 if cover(s) = ∅, and
depth(s) = 1 + maxs′∈cover(s) depth(s′) otherwise. We define depth(ε) = 0.
Finally, we call δ the maximum depth in the parsing.

Example 4.8. The four sources ‘a’ and the source ‘alabar’ have depth

22



zero, as all of them start at the same position. Source ‘la’ has depth 1, as
it is contained by source ‘alabar’.

Assume that sources starting at the same point are sorted by shortest
length first. We traverse S leftwards from pos. When we find a source not
covering the occurrence, we look for its depth d and then consider to the left
only sources with depth d′ < d, as those at depth ≥ d are guaranteed not to
contain the occurrence: sources to the left with the same depth d will not
end after the current source, and deeper sources to the left will be contained
in those of depth d. Thus for our traversal we need to solve a subproblem we
call Previous Smaller Value, PSV (D, s, d), on our array of depths D[1, n′].

Definition 4.9. Let D[1, n′] be an array of values over [0, δ]. Then the
Previous Smaller Value problem is, given a position s ∈ [1, n′] and a value
d ∈ [0, δ], find PSV (D, s, d), the largest s′ < s such that D[s′] < d.

Do not confuse this problem with a simpler variant [55] where d = D[s],
nor with another [56] where we give a range D[s, e] and want the largest
value smaller than d in the range.

We solve the PSV problem by representing D using a wavelet tree [10].
This time we need to explain its internal structure. The wavelet tree is
a balanced tree where each node represents a range of the alphabet [0, δ].
The root represents the whole range and each leaf an individual alphabet
member. Each internal node has two children that split its alphabet range
[a, b] by half, into [a, b(a+ b)/2c] and [b(a+ b)/2c+ 1, b]. Hence the tree has
height dlog(δ+ 1)e. At the root node, the tree stores a bitmap aligned to D,
with a 0 at position i if D[i] is a symbol belonging to the range of the left
child, and 1 if it belongs to the right child. Recursively, each internal node
stores a bitmap that refers to the subsequence of D formed by the symbols
in its range. All the bitmaps are preprocessed for rank/select queries, needed
for navigating the tree. The total space is n′ log(δ + 1) + o(n′) bits [49].

We solve PSV (D, s, d) as follows. We descend on the wavelet tree towards
the leaf that represents d−1. If d−1 is to the left of the current node, then no
interesting values can be stored in the right child. So we recursively continue
in the left subtree, at position s′ = rank0(V, s), where V is the bitmap of
the current node. Otherwise we descend to the right child, where the new
position is s′ = rank1(V, s). In this case, however, the answer could be at
the left child. Any value stored at the left child is < d, so we are interested
in the rightmost before position s. Hence v0 = select0(V, rank0(V, s − 1))

23



is the last position with a value from the left subtree. We find, recursively,
the best answer v1 from the right subtree, and return max(v0, v1). When
the recursion arrives at a leaf we return 0. The running time is O(log δ).
Figure 3(b) gives a pseudocode.

Theorem 4.10. The PSV problem can be solved in time O(log δ) using a
data structure that uses n′ log(δ+ 1) + o(n′) bits of space. This structure can
replace D as it delivers any value D[i] in time O(log δ).

Using this operation we proceed as follows. We keep track of the smallest
depth d that cannot cover our occurrence; initially d = δ + 1. We start
considering source s. Whenever s covers the occurrence, we report it, else we
set d = D[s]. In both cases we proceed to s′ = PSV (D, s, d), until s′ = 0.

In the worst case the first source is at depth δ and then we traverse level
by level, finding in each level that the previous source does not contain the
occurrence. Therefore the overall time is O(occ(log n′ + δ log δ)) to find occ
secondary occurrences. This worst case is, however, rather unlikely. More-
over, in practice δ is small: it is also limited by the maximum phrase length,
and in our test collections it is at most 46 and on average 1–4.

4.5. The Final Picture
The final result is summarized in the following theorem.

Theorem 4.11. Let T [1, n] be a text over alphabet [1, σ], parsed by LZ77
or LZ-End into n′ phrases, and let h be the height of the parsing. Then
there exists a data structure using 3n′ log n + 5n log σ + O(n′) + o(n) bits of
space, that can find the occ occurrences of any pattern p1,m in time O(m2h+
(m+ occ) log n′). It can also reproduce any substring of T of length ` in time
O(`+ h) (LZ-End parsing) or O(`h) (LZ77 parsing).

Implementation considerations. The term o(n) in the space complexity can
be as low as O(n/ logc n) for any constant c [49]. Still, in practice it can be
dominant on highly repetitive collections. It can be removed by using com-
pressed bitmap representations that require n′ log n

n′ + O(n′) bits [57], but
do not operate in constant time. This change multiplies all time complexi-
ties by O(log n

n′ ) (this is better than the results reported by Okanohara and
Sadakane [57], and is obtained by using a constant-time rank/select structure
for their internal bitmap H).

In practice, the bitmaps are so sparse that we achieve better space and
similar time by delta-encoding the differences between consecutive positions
of 1s and adding absolute pointers to regularly sampled positions.

24



5. Construction

In this section we describe the construction algorithms for the proposed
parsing and self-index.

5.1. Parsing Algorithm

It is well known how to carry out the LZ77 parsing. In particular we
use the algorithm CPS2 of Chen et al. [58]. This is based on maintaining
a lexicographic range of all the suffixes of the text that start with pattern
p = T [i, i′ − 1] (recall Definition 2.1) and refining it as p grows rightwards.
For the parsing of Fiala and Green [43] one must restrict these suffixes to
those starting at phrase boundaries. For the LZ-End parsing, however, we
maintain the range of all prefixes of T ending with p and at phrase boundaries
(recall Definition 3.1). This is significantly more challenging. We describe
next an algorithm based on CPS2 to carry out this parsing.

We first build the suffix array [8] A[1, n] of the reverse text, TR = T [n−
1] . . . T [2]T [1]$, so that TR[A[i], n] is the lexicographically i-th smallest suffix
of TR. We also build its inverse permutation: A−1[j] is the lexicographic rank
of TR[j, n]. Finally, we build the Burrows-Wheeler Transform (BWT) [31] of
TR, T bwt[i] = TR[A[i]− 1] (or TR[n] if A[i] = 1).

On top of the BWT we will apply backward search, by regarding the
BWT as an FM-index [25]. This allows determining all the suffixes of TR

that start with a given pattern p1,m by scanning p backwards, as follows. Let
C[c] be the number of occurrences of symbols smaller than c in T . After
processing pi+1,m, indexes sp and ep will be such that A[sp, ep] points to all
the suffixes of TR starting with pi+1,m. Initially i = m and [sp, ep] = [1, n].
Now, if the invariant holds for pi+1,m, we have that the new indexes for pi,m
are sp′ = C[pi] + rankpi(T

bwt, sp− 1) + 1 and ep′ = C[pi] + rankpi(T
bwt, ep).

Operation rankc(T
bwt, i) counts the occurrences of symbols c in T bwt[1, i].

Let us call this function a BWS step, [sp′, ep′] = bws(sp, ep, pi).
Backward search over TR adapts very well to our purpose. By considering

the patterns p = (T [i, i′ − 1])R and carrying out consecutive BWT steps for
increasing values of i′, we are searching backwards for p in TR, and thus
finding the ending positions of T [i, i′ − 1] in T .

Yet, only those occurrences that finish before position i are useful. As we
increase i′ in T [i, i′ − 1], we test whether A[sp, ep] contains some occurrence
finishing before i in T , that is, starting after n + 1 − i in TR. If it does
not, then we stop looking for larger i′ as there are no matches preceding

25



T [i]. For this, we precompute an RMQ data structure [52] on A. Then, if
A[rmqA(sp, ep)] is not large enough, we stop.

Moreover, for LZ-End, occurrences must in addition finish at a previous
phrase boundary. Translated to TR, this means the occurrence must start
at some position n + 1 − j, where some previous Z[p] ends at position j in
T . We maintain a dynamic set F where we add the ending positions of the
successive phrases we create, mapped to A. That is, once we create phrase
Z[p] = T [i, i′], we insert A−1[n+1− i′] into F . Later, when we process a new
phrase T [i, i′−1] and increase i′, we verify whether F contains some value in
the corresponding range [sp, ep]. A successor query on F finds the smallest
value fpos ≥ sp in F . If fpos ≤ ep, then it represents a suitable LZ-End
source for T [i, i′]. Otherwise, as the condition could hold again later, we do
not stop but recall the last j = i′ so that the condition held for T [i, j − 1].
Once we stop because no matches ending before T [i] exist, we insert phrase
Z[p] = T [i, j] and continue from i = j + 1. This may retraverse some text
since we had processed up to i′ ≥ j. We call N ≥ n the total number of text
symbols processed. The algorithm is depicted in Figure 1(b).

5.2. Parsing Analysis

The fastest construction time is achieved by using O(n log n) bits of space.
In this case we can build and store explicitly A and A−1 in time O(n) [59],
as well as build the static BWT in time O(n(1 + log σ

log logn
)) [11], so that it can

compute BWS steps in time O(1 + log σ
log logn

). The RMQ structure [52] is built

in O(n) time and the same final space of 2n+ o(n) bits, and answers queries
in constant time. We can use predecessor data structures [60] that support
queries and updates in time O(log log n). The construction time becomes
O(N( log σ

log logn
+ log log n)), dominated by the N BWS steps and queries to F .

On the other hand, we can build the parsing within as little as 2nHk(T )+
O(n) + o(n log σ) bits of space, for any k = o(logσ n). In this case the time
complexity is O(n logn log σ

(log logn)2
+ N log n). This comes from building the BWT

(i.e., the FM-index) incrementally within space nHk(T
rev) + o(n log σ) =

nHk(T ) + o(n log σ) [25, Thm. A.3] in time O(n logn log σ
(log logn)2

) [61]. After the

BWT construction is completed we make it static using O(n) + o(n log σ)
temporary bits,3 so that it supports BWS steps in time O(1 + log σ

log logn
). It

also supports access to A and A−1 in time O(log n) by sampling one position

3We make static one node of the multiary wavelet tree at a time, by copying it to a

26



out of log n (at the expense of O(n) bits of space) [11]. The successor data
structure can be a simple balanced search tree, with leaves holding Θ(log n)
elements, so that the query and update times are O(log n) and the space is
n′ log n(1 + o(1)) [62]. This is proved [63] to be nHk(T ) + o(n log σ), for any
k = o(logσ n), for any parsing where Lemma 3.8 holds. The time complexity
is dominated by the incremental BWT construction plus the N accesses to
A and A−1, and successor queries on F .

Note that a simplification of our construction algorithm, disregarding F
(and thus N = n) builds the LZ77 parsing using just nHk(T ) + O(n) +
o(n log σ) bits and time O(n log n(1 + log σ

(log logn)2
), which is better than the

best existing solutions [64, 58].
The times for LZ-End depend on N . Next we give an upper bound on it.

Lemma 5.1. The amount of text retraversed at any step is less than |Z[p]|,
for some 1 ≤ p ≤ n′.

Proof. Say the last valid match T [i, j − 1] was with suffix Z[1] . . . Z[p − 1]
for some p, thereafter we worked until T [i, i′ − 1] without finding any other
valid match, and then formed the phrase (with source p − 1). Then we will
retraverse T [j + 1, i′ − 1], which must be shorter than Z[p] since otherwise
Z[1] . . . Z[p] would have been a valid match.

Therefore, the expected construction time is O(n log2 n) on Markovian
sources (using compressed space). In practice N is usually slightly larger
than n: In our experiments it holds 1.05n ≤ N ≤ 1.37n, but on some
pathological texts the ratio can reach 10–14 [38, Sec. 4.5.2].

Implementation considerations. In practice, our construction works within
space (measured in bytes) (1) n to maintain T explicitly; plus (2) 2.02n
for the BWT (following Navarro’s “large” FM-index implementation [65]
that stores T bwt explicitly; this supports BWS steps efficiently); plus (3) 4n
for the explicit A; plus (4) 0.7n for Fischer’s implementation of RMQ [66];
plus (5) n for a sampling-based implementation of inverse permutations [45]
for A−1; plus (6) 12n′ for a balanced binary tree implementing F . This
adds up to ≈ 8n bytes (and ≈ 6n bytes for LZ77). A is built in time
O(n log n); other construction times are O(n). After this, the parsing time
is O(N log n′) = O(N log n).

new static memory area. If σ = O(1) the extra space is O(n); else the wavelet tree has
ω(1) levels and thus the extra memory for one level is o(n log σ).

27



5.3. Index Construction

As for the parsing, let us first give a construction using minimum time,
and then another achieving minimum space.

For the fastest possible index construction, the space is dominated by the
O(n log n) bits needed to build the parsing. Within this space we can easily
complete the index construction in timeO(n′ log n) = O(n log σ) (Lemma 3.9)
for the Range data structure, plus O(n) for the creation of the Patricia trees
(by pruning a suffix tree, for example), plus O(n) for creating compressed
bitmaps, plus O(n′) for permutations and other minor structures. The total
construction time can then be upper bounded by O(n log σ + N( log σ

log logn
+

log log n)). For LZ77 parsing this becomes just O(n log σ).
Instead, the construction in minimum space is dominated by the Patricia

trees. These can be built in time O(n′ log1+ε n) using O(n log σ) bits, for
any constant ε > 0 [67]. Within this space we can build all the other data
structures in time O(n + n′ log n) = O(n log σ). Within this space we can
also speed up the BWT construction to time O(n log log σ) [68]. Therefore
the parsing plus index construction time becomes O(n logε n log σ+N log n).
The following theorem gives a simplified summarization.

Theorem 5.2. The self-index based on the LZ-End parsing can be built in
O(N(log σ + log log n)) time and O(n log n) bits of space, or O(N log1+ε n)
time and O(n log σ) bits of space, for any constant ε > 0. On the LZ77
parsing the times drop to O(n log σ) and O(n log1+ε n), respectively.

Implementation considerations. We refer the reader to the full work [38,
Sec. 5.5] for a description of how the index is built in practice.

6. Experimental Evaluation

We ran all our experiments on a 3.0 GHz Core 2 Duo processor with 4GB
of main memory, running Linux 2.6.24 and g++ (gcc version 4.2.4) compiler
with -O3 optimization.

From our testbed http://pizzachili.dcc.uchile.cl/repcorpus.html

we have chosen four collections representative of distinct applications: Cere

(37 DNA sequences of S. Cerevisiae), Einstein (the versions of the Wikipedia
article on Albert Einstein up to Jan 12, 2010), Kernel (the 36 versions 1.0.x
and 1.1.x of the Linux Kernel), and Leaders (pdf files of the CIA World
Leaders report, from Jan 2003 to Dec 2009, converted with pdftotext).

28



Collection Cere Einstein Kernel Leaders

Size 440MB 446MB 247MB 45 MB
p7zip 1.14% 0.07% 0.81% 1.29%
repair 1.86% 0.10% 1.13% 1.78%
bzip2 2.50% 5.38% 21.86% 7.11%
ppmdi 24.09% 1.61% 18.62% 3.56%
lz77 1.48% 0.10% 1.35% 1.73%
lz-end 1.74% 0.10% 1.43% 1.93%
lz-begin 6.15% 4.27% 3.43% 7.97%
lz78 25.33% 9.29% 30.02% 15.89%

Collection Cere Einstein Kernel Leaders

Size 440MB 446MB 247MB 45 MB
LZIndex 79.37% 33.26% 85.94% 49.74%
ILZI 66.93% 13.28% 60.19% 35.08%
RLCSA 7.60% 0.23% 3.78% 3.32%
RLCSA512 8.57% 1.20% 4.71% 4.20%
LZ775 3.74% 0.18% 3.32% 3.86%
LZ771 4.52% 0.32% 5.38% 6.50%
LZ-End5 4.94% 0.25% 4.11% 5.12%
LZ-End1 7.93% 0.43% 6.63% 8.58%

Table 1: Compression ratios achieved by various compressors (left) and self-indexes (right),
as a percentage of a byte-based representation of the plain texts.

We have studied 5 variants of our indexes, from most to least space con-
suming: (1) with suffix and reverse Patricia trees; (2) binary search on ex-
plicit id array and reverse Patricia tree; (3) suffix Patricia tree and binary
search on rev id; (4) binary search on explicit id array and on rev id; (5)
binary search on implicit id and on rev id. In addition we test parsings LZ77
and LZ-End, so for example LZ-End3 means variant (3) on parsing LZ-End.
In all cases we represent the skips and rev id explicitly. We use δ-encoding
with sampling step 16 for all the sparse bitmaps.

Table 1 (left) gives compression ratios achieved with an excellent Lempel-
Ziv (p7zip, www.7-zip.org), grammar (repair, www.cbrc.jp/~rwan/en/
restore.html), Burrows-Wheeler (bzip2, www.bzip.org), and statistical
high-order compressor (ppmdi, pizzachili.dcc.uchile.cl/utils/ppmdi.
tar.gz). Lempel-Ziv and grammar compressors capture repetitiveness, while
Burrows-Wheeler captures only some due to the runs with limited contexts,
and the statistical one is blind to repetitiveness.

We also include compressors lz77, lz-end, lz-begin, and lz78, imple-
mented by ourselves. lz-end and lz-begin store source and L in plain form,
and B using delta-encoding. lz77 is similar but source refers to absolute text
positions. lz78 stores only source and L. We confirm that lz78 is unsuitable
for repetitive collections, and that p7zip uses more clever encodings than our
naive lz77. Note that lz-end is very close to lz77, using at most 20% more
space, while lz-begin can be significantly worse.

Table 1 (right) gives compression ratios achieved by self-indexes. We
include the LZIndex [26] (with ε = 1/128) and the ILZI [69] (both based on
LZ78), the RLCSA alone (which can count how many times a pattern appears
in T but cannot locate the occurrences nor extract text at random), and

29



LZ77 Index LZ-End Index RLCSA
Collection Time Space Time Space Time Space
Cere 1.01 5.83 4.22 8.25 2.21 9.48
Einstein 0.47 5.83 3.30 8.10 2.71 9.48
Kernel 0.50 5.79 3.56 8.17 2.19 9.61
Leaders 0.42 5.76 2.83 8.17 1.30 9.20

Table 2: Construction time and space for the indexes. Times are in seconds per MB and
spaces are the ratio between construction space and plain text space.

Collection L B P
a
tr

ic
ia

tr
ee

P
a
tr

ic
ia

sk
ip

s

R
ev

er
se

tr
ee

R
ev

er
se

sk
ip

s

r
ev

id

R
a
n

g
e

D P S

LZ77
Cere 1.87 8.60 12.72 6.85 12.42 6.45 13.06 13.72 3.55 14.12 6.64
Einstein 5.19 8.23 15.06 6.59 14.45 5.95 11.02 11.70 2.88 12.06 6.86
Kernel 5.09 7.47 13.41 6.01 13.25 5.72 12.71 13.37 3.37 13.78 5.82
Leaders 4.47 8.28 13.57 6.83 13.98 6.16 11.49 12.13 4.08 12.52 6.49

LZ-End
Cere 1.91 8.65 12.67 6.79 11.88 6.32 13.37 14.04 3.12 14.46 6.79
Einstein 5.16 8.23 14.71 6.57 13.98 5.84 10.97 11.59 3.32 12.00 7.60
Kernel 5.08 7.18 13.40 5.89 13.16 5.59 12.69 13.33 3.79 13.75 6.13
Leaders 4.50 8.18 13.59 6.53 13.99 6.15 11.58 12.19 3.46 12.62 7.20

Table 3: Space breakdown (in %) of LZ77 and LZ-End index structures.

RLCSA using a sampling of 512 (the minimum space that gives reasonable
times for locating and extraction). We also show the most and least space
consuming of our variants over both parsings.

Our least-space variants take 2.5–4.0 times the space of p7zip, and 1.8–
2.5 times the space of lz77. They are also always smaller than RLCSA512 (up
to 6.6 times less) and even competitive with the crippled self-index RLCSA-
with-no-sampling. As Einstein is extremely compressible, it illustrates how
the RLCSA achieves much compression in terms of the runs of Ψ, yet it is
unable to compress the sampling despite many theoretical efforts [30]. Thus
even a sparse sampling has a very large relative weight when the text is so
repetitive. The data our index needs for locating and extracting, instead, is
proportional to the compressed text size.

Table 2 shows the time and space required to build the indexes. Both
the LZ77 and the LZ-End indexes require less construction space than the
RLCSA. In addition, the LZ77 index is built much faster than the RLCSA.

Indexes LZ771 and LZ-End1 are the largest, and closest to the theoretical
description. The ratio between their size and that of compressors lz77 and
lz-end are 3.0–4.0 and 4.3–5.4, respectively. Table 3 gives a space breakdown
of the structures that form these self-indexes, to help understand why the

30



ratio deviates from the 3 predicted by the asymptotic analysis. Structures
that require space of the form n′ log n′ (rev id, Range, P ) take around 13%
of the total space, whereas those requiring n′ log n

n′ bits (B, S, skips) require
around 7%. Hence the main space term in the asymptotic analysis, 3n′ log n,
accounts for just about 60% of the actual space in practice. From the rest,
30% is in the O(n′ log σ) term (L and Patricia trees) and 10% in structures
not considered in the theory (D, suffix trie skips). A clever LZ77 compressor
requiring n′ log n + n′ log σ bits takes around 25% of the space of the self-
index. This predicts a ratio of 4, closer to the practical figures.

Figure 4 shows times for extracting random snippets, and Figure 5 shows
times for locating random patterns of length 10 and 20. We test RLCSA
with various sampling rates (a smaller rate requires more space). It can
be seen that our LZ-End-based index extracts text faster than the RLCSA,
while for LZ77 the results are mixed. For locating, LZ77 dominates LZ-End,
and it operates within much less space than the RLCSA, and is also faster
in several cases. Yet, LZ77 and LZ-End performance worsens with m faster
than RLCSA, as expected. On the other hand, direct comparisons between
our self-indexes and grammar-based self-indexes [21, 22] show that ours use
less space and are faster. See the extended version [38] for more results.

7. Conclusions and Future Work

We have presented the first self-index based on the LZ77 parsing, aimed
at representing highly repetitive text collections in compressed form while
offering efficient access to arbitrary substrings and indexed searches.

Our self-index is the first in achieving a space that is of the same order
of the output of an LZ77 compressor, with asymptotic constant 3. Previous
self-indexes for repetitive texts require space proportional to the number of
runs in the BWT of the text [29], or the size of a grammar that generates
the text [18], or the size of the more restricted LZ78 parsing of the text
[24, 25, 26, 69]. All those measures of compressibility are weaker than the
size of the LZ77 parse of the text.

Our index finds the occ occurrences of a pattern of length m in time
O(m2h+ (m+ occ) log n), where n is the text size and h is a measure of the
nesting of the parsing (h is logarithmic on n on Markovian sources). The
extraction time for a substring of length ` is O(`h). This is improved to
O(` + h) by using another parsing we introduce, LZ-End, which is shown
to be coarsely optimal and conjectured to be 2-competitive with LZ77. The

31



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10  12

E
x
tr

a
c
ti
o
n
 s

p
e
e
d
 (

M
c
h
a
rs

/s
)

log(Pattern Length)

Extraction Speed
Cere

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12

E
x
tr

a
c
ti
o
n
 s

p
e
e
d
 (

M
c
h
a
rs

/s
)

log(Pattern Length)

Extraction Speed
Einstein (en)

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10  12

E
x
tr

a
c
ti
o
n
 s

p
e
e
d
 (

M
c
h
a
rs

/s
)

log(Pattern Length)

Extraction Speed
Kernel

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12

E
x
tr

a
c
ti
o
n
 s

p
e
e
d
 (

M
c
h
a
rs

/s
)

log(Pattern Length)

Extraction Speed
World Leaders

RLCSA512
RLCSA256
RLCSA128
RLCSA64

LZ77
LZ-End

Figure 4: Extraction speed as a function of the snippet size (higher is better).

index can be built in linear space and time O(n log σ) with LZ77 parsing, and
O(N(log σ + log log n)) time with LZ-End parsing, where σ is the alphabet
size and N is O(n log n) on Markovian sources.

In practical terms, our experiments show that our indexes provide a much
better space/time trade-off than the previous ones for repetitive collections.
The smallest variants of our self-index uses 1/10 of the space of LZ78-based
ones, and 1/2 of that of runs- or grammar-based ones [21, 22], while achieving
similar time efficiency (each occurrence of a short pattern, for example, is
located in 10–50 microseconds). Compared to pure LZ77 compression, the
smallest variant of our index takes 2.5-4.0 times the space achieved by p7zip.
Our LZ-End parsing yields compression ratios close to those of LZ77 (no more
than 20% extra), and extracts substrings up to 4 times faster, at around 2
million symbols per second. Our construction needs 6–8 times the original
text size and indexes 0.2–2.0 MB/sec.

Our index is universal, in the sense that it compresses repetitive collec-
tions without knowing the versioning structure of the data, that is, which
documents are near-copies of which. In several applications (particularly
Bioinformatics), there is no such thing as a versioning structure.

32



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 2  4  6  8  10  12  14  16  18  20

T
im

e
 (

m
s
/o

c
c
)

Compression Ratio

Locate Time (|P|=10)
Cere

RLCSA
LZ77

LZ-End

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  5  10  15  20

T
im

e 
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Cere

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  2  4  6  8  10  12  14

T
im

e
 (

m
s
/o

c
c
)

Compression Ratio

Locate Time (|P|=10)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.1  1  10  100

T
im

e 
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Einstein (en)

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 2  4  6  8  10  12  14  16

T
im

e
 (

m
s
/o

c
c
)

Compression Ratio

Locate Time (|P|=10)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  2  4  6  8  10  12  14  16

T
im

e 
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
Kernel

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 2  4  6  8  10  12  14

T
im

e
 (

m
s
/o

c
c
)

Compression Ratio

Locate Time (|P|=10)
World Leaders

RLCSA
LZ77

LZ-End

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  2  4  6  8  10  12  14

T
im

e 
(m

s/
oc

c)

Compression Ratio

Locate Time (|P|=20)
World Leaders

RLCSA
LZ77

LZ-End

Figure 5: Time per located occurrence for m = 10 as a function of the space used by the
index, in percentage of text size (lower and leftwards is better). The points for RLCSA
refer to different sampling rates; for LZ77 and LZ-End the points refer to the 5 variants
(LZ5 is leftmost, LZ1 is rightmost).

33



We have also created a text corpus oriented to repetitive texts, publicly
available at http://pizzachili.dcc.uchile.cl/repcorpus.html. Our im-
plementation is also public in there, to promote its use in real-world and
research applications and to serve as a baseline for future developments.

There are several natural improvements to pursue. An obvious one is to
get rid of the dependence on parameter h in the search and extraction time
complexity. This is related to the more basic problem of providing direct
access to Lempel-Ziv compressed text. This problem is currently active in
the community and good solutions have been devised for the simpler cases
of LZ78 parsing [23] and grammar compression [19]. Another undesirable
factor is the dependence on m2 in the search time. Such dependence is also
present on some self-indexes built on the simpler LZ78 parsing [24, 26], but
it has been reduced to linear in different ways [25, 70, 27].

With respect to construction, it is desirable that the time of the LZ-End
parsing depends on n instead of N , or better bound N . Another problem is
the space required. Our implementation builds the index using uncompressed
space. Still switching to compact constructions [68, 61] poses the problem
that the space is compressed in terms of, at best, the k-th order empirical
entropy of the text, not in terms of the size of its LZ77 parse. For a repetitive
sequence the difference can be huge, as shown in our experiments. A real
solution would be a dynamic variant of our self-index, that supported at least
adding text at the end of the collection. Then the index could be built within
(Lempel-Ziv) compressed space by successive insertions.

Finally, an interesting open theoretical problem is to prove or disprove our
conjecture about the 2-optimality of LZ-End with respect to LZ77 parsing,
also considering the case of bounded alphabets.

References

[1] S. Kreft, G. Navarro, LZ77-like compression with fast random access,
in: Proc. 20th Data Compression Conference (DCC’10), pp. 239–248.

[2] S. Kreft, G. Navarro, Self-indexing based on LZ77, in: Proc. 22nd An-
nual Symposium on Combinatorial Pattern Matching (CPM’11), LNCS
6661, pp. 41–54.

[3] N. Ziviani, E. S. de Moura, G. Navarro, R. Baeza-Yates, Compression:
A key for next-generation text retrieval systems, IEEE Computer 33
(2000) 37–44.

34



[4] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Comput-
ing Surveys 39 (2007) article 2.

[5] P. Ferragina, G. Manzini, Opportunistic data structures with applica-
tions, in: Proc. 41st Annual Symposium on Foundations of Computer
Science (FOCS’00), pp. 390–398.

[6] R. Grossi, J. S. Vitter, Compressed suffix arrays and suffix trees with ap-
plications to text indexing and string matching, in: Proc. 32nd Annual
ACM Symposium on Theory of Computing (STOC’00), pp. 397–406.

[7] A. Apostolico, The myriad virtues of subword trees, in: Combinatorial
Algorithms on Words, NATO ISI Series, Springer-Verlag, 1985, pp. 85–
96.

[8] U. Manber, G. Myers, Suffix arrays: a new method for on-line string
searches, SIAM Journal on Computing 22 (1993) 935–948.

[9] G. Manzini, An analysis of the Burrows-Wheeler transform, Journal of
the ACM 48 (2001) 407–430.

[10] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text
indexes, in: Proc. 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’03), pp. 841–850.

[11] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed rep-
resentations of sequences and full-text indexes, ACM Transactions on
Algorithms 3 (2007) article 20.

[12] T. Gagie, Large alphabets and incompressibility, Information Processing
Letters 99 (2006) 246–251.

[13] C. Nevill-Manning, I. Witten, D. Maulsby, Compression by induction
of hierarchical grammars, in: Proc. 4th Data Compression Conference
(DCC’94), pp. 244–253.

[14] N. J. Larsson, A. Moffat, Off-line dictionary-based compression, Proc.
IEEE 88 (2000) 1722–1732.

[15] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans-
actions on Information Theory 22 (1976) 75–81.

35



[16] J. Ziv, A. Lempel, A universal algorithm for sequential data compres-
sion, IEEE Transactions on Information Theory 23 (1977) 337–343.

[17] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate
coding, IEEE Transactions on Information Theory 24 (1978) 530–536.

[18] F. Claude, G. Navarro, Self-indexed text compression using straight-
line programs, in: Proc. 34th International Symposium on Mathematical
Foundations of Computer Science (MFCS’09), LNCS 5734, pp. 235–246.

[19] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti,
O. Weimann, Random access to grammar-compressed strings, in:
Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’11), pp. 373–389.

[20] S. Kuruppu, B. Beresford-Smith, T. Conway, J. Zobel, Repetition-based
compression of large DNA datasets, in: Proc. 13th Annual Interna-
tional Conference on Computational Molecular Biology (RECOMB’09).
Poster.

[21] F. Claude, A. Fariña, M. Mart́ınez-Prieto, G. Navarro, Compressed q-
gram indexing for highly repetitive biological sequences, in: Proc. 10th
IEEE Conference on Bioinformatics and Bioengineering (BIBE’10), pp.
86–91.

[22] F. Claude, A. Fariña, M. Mart́ınez-Prieto, G. Navarro, Indexes for highly
repetitive document collections, in: Proc. 20th ACM International Con-
ference on Information and Knowledge Management (CIKM’11), pp.
463–468.

[23] K. Sadakane, R. Grossi, Squeezing Succinct Data Structures into En-
tropy Bounds, in: Proc. 17th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’06), pp. 1230–1239.

[24] G. Navarro, Indexing text using the Ziv-Lempel trie, Journal of Discrete
Algorithms 2 (2004) 87–114.

[25] P. Ferragina, G. Manzini, Indexing compressed text, Journal of the
ACM 52 (2005) 552–581.

36



[26] D. Arroyuelo, G. Navarro, K. Sadakane, Reducing the space require-
ment of LZ-index, in: Proc. 17th Annual Symposium on Combinatorial
Pattern Matching (CPM), LNCS 4009, pp. 319–330.

[27] L. Russo, A. Oliveira, A compressed self-index using a Ziv-Lempel dic-
tionary, Information Retrieval 5 (2008) 501–513.

[28] S. Kuruppu, S. Puglisi, J. Zobel, Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval, in: Proc. 17th Inter-
national Symposium on String Processing and Information Retrieval
(SPIRE’10), pp. 201–206.

[29] J. Sirén, N. Välimäki, V. Mäkinen, G. Navarro, Run-length compressed
indexes are superior for highly repetitive sequence collections, in: Proc.
15th International Symposium on String Processing and Information
Retrieval (SPIRE’08), LNCS 5280, pp. 164–175.

[30] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, Storage and retrieval of
highly repetitive sequence collections, Journal of Computational Biology
17 (2010) 281–308.

[31] M. Burrows, D. Wheeler, A block sorting lossless data compression al-
gorithm, Technical Report 124, Digital Equipment Corporation, 1994.

[32] R. Grossi, J. S. Vitter, Compressed suffix arrays and suffix trees with
applications to text indexing and string matching, SIAM Journal of
Computing 35 (2005) 378–407.

[33] V. Mäkinen, G. Navarro, Succinct suffix arrays based on run-length
encoding, Nordic Journal of Computing 12 (2005) 40–66.

[34] K. Sadakane, New text indexing functionalities of the compressed suffix
arrays, Journal of Algorithms 48 (2003) 294 – 313.

[35] W. Rytter, Application of Lempel–Ziv factorization to the approxima-
tion of grammar-based compression, Theoretical Computer Science 302
(2003) 211–222.

[36] J. Kärkkäinen, E. Ukkonen, Lempel-Ziv parsing and sublinear-size index
structures for string matching, in: Proc. 3rd South American Workshop
on String Processing (WSP’96), pp. 141–155.

37



[37] J. Kärkkäinen, Repetition-Based Text Indexes, Ph.D. thesis, Depart-
ment of Computer Science, University of Helsinki, Finland, 1999.

[38] S. Kreft, Self-Index based on LZ77, MSc thesis, Univer-
sity of Chile, 2010. Available as Tech. Report TR/DCC-
2011-13, Dept. of Computer Science, University of Chile,
http://www.dcc.uchile.cl/TR/2011/DCC-20111220-013.pdf.

[39] M. Farach, M. Thorup, String matching in Lempel-Ziv compressed
strings, in: Proc. 27th ACM Annual Symposium on the Theory of
Computing (STOC), pp. 703–712.

[40] S. R. Kosaraju, G. Manzini, Compression of low entropy strings with
Lempel-Ziv algorithms, SIAM Journal on Computing 29 (1999) 893–911.

[41] E. Plotnik, M. Weinberger, J. Ziv, Upper bounds on the probability of
sequences emitted by finite-state sources and on the redundancy of the
Lempel-Ziv algorithm, IEEE Transactions on Information Theory 38
(1992) 66–72.

[42] R. Hamming, Coding and Information Theory, Prentice-Hall, 1986.

[43] E. R. Fiala, D. H. Greene, Data compression with finite windows, Com-
munications of the ACM 32 (1989) 490–505.

[44] R. Raman, V. Raman, S. S. Rao, Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets, in: Proc. 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pp.
233–242.

[45] J. I. Munro, R. Raman, V. Raman, S. S. Rao, Succinct representations
of permutations, in: Proc. 30th International Colloquium on Automata,
Languages and Computation (ICALP’03), LNCS 2719, pp. 345–356.

[46] D. Morrison, PATRICIA-Practical algorithm to retrieve information
coded in alphanumeric, Journal of the ACM 15 (1968) 514–534.

[47] D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, S. Rao, Rep-
resenting trees of higher degree, Algorithmica 43 (2005) 275–292.

[48] V. Mäkinen, G. Navarro, Rank and select revisited and extended, The-
oretical Computer Science 387 (2007) 332–347.

38



[49] M. Pǎtraşcu, Succincter, in: Proc. 49th IEEE Annual Symposium on
Foundations of Computer Science (FOCS’08), pp. 305–313.

[50] N. Brisaboa, S. Ladra, G. Navarro, Directly addressable variable-length
codes, in: Proc. 16th International Symposium on String Processing
and Information Retrieval (SPIRE’09), pp. 122–130.

[51] D. Arroyuelo, R. Cánovas, G. Navarro, K. Sadakane, Succinct trees
in practice, in: Proc. 11th Workshop on Algorithm Engineering and
Experiments (ALENEX’10), pp. 84–97.

[52] J. Fischer, Optimal succinctness for range minimum queries, in: Pro-
ceedings of the Latin American Symposium on Theoretical Informatics
(LATIN’10), LNCS 6034, pp. 158–169.

[53] S. Muthukrishnan, Efficient algorithms for document retrieval problems,
in: Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’02), pp. 657–666.

[54] S. Gog, J. Fischer, Advantages of shared data structures for sequences
of balanced parentheses, in: Proc. 20th Data Compression Conference
(DCC’10), pp. 406–415.

[55] J. Fischer, V. Mäkinen, G. Navarro, Faster entropy-bounded compressed
suffix trees, Theoretical Computer Science 410 (2009) 5354–5364.

[56] M. Crochemore, C. S. Iliopoulos, M. Kubica, M. S. Rahman, T. Walen,
Improved algorithms for the range next value problem and applications,
in: Proc. 25th International Symposium on Theoretical Aspects of Com-
puter Science (STACS’08), pp. 205–216.

[57] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select
dictionary, in: Proc. 9th Workshop on Algorithm Engineering and Ex-
periments (ALENEX’07).

[58] G. Chen, S. J. Puglisi, W. F. Smyth, Lempel-Ziv factorization using
less time & space, Mathematics in Computer Science 1 (2008) 605–623.

[59] J. Kärkkäinen, P. Sanders, Simple linear work suffix array construction,
in: Proc. 30th International Colloquium on Automata, Languages and
Programming (ICALP’03), LNCS 2719, pp. 943–955.

39



[60] D. Willard, Log-logarithmic worst-case range queries are possible in
space Θ(n), Information Processing Letters 17 (1983) 81–84.

[61] G. Navarro, K. Sadakane, Fully-functional static and dynamic succinct
trees, CoRR 0905.0768v5 (2010).

[62] J. I. Munro, An implicit data structure supporting insertion, deletion,
and search in O(log n) time, Journal of Computer System Sciences 33
(1986) 66–74.

[63] D. Arroyuelo, G. Navarro, K. Sadakane, Stronger Lempel-Ziv based
compressed text indexing, Algorithmica (2011). To appear.

[64] D. Okanohara, K. Sadakane, An online algorithm for finding the longest
previous factors, in: Proc. 16th Annual European Symposium on Algo-
rithms (ESA’08), pp. 696–707.

[65] G. Navarro, Implementing the LZ-index: Theory versus practice, ACM
Journal of Experimental Algorithmics 13 (2009) article 2.

[66] J. Fischer, V. Heun, A New Succinct Representation of RMQ-
Information and Improvements in the Enhanced Suffix Array, in: Proc.
1st International Symposium on Combinatorics, Algorithms, Probabilis-
tic and Experimental Methodologies (ESCAPE’07), LNCS 4614, pp.
459–470.

[67] F. Claude, G. Navarro, Self-indexed grammar-based compression, Fun-
damenta Informaticae 111 (2010) 313–337.

[68] W.-K. Hon, K. Sadakane, W.-K. Sung, Breaking a Time-and-Space
Barrier in Constructing Full-Text Indices, SIAM Journal on Computing
38 (2009) 2162–2178.

[69] L. M. S. Russo, G. Navarro, A. L. Oliveira, Fully-compressed suffix
trees, in: 8th Latin American Symposium on Theoretical Informatics
(LATIN’08), LNCS 4957, pp. 362–373.

[70] D. Arroyuelo, G. Navarro, Smaller and faster Lempel-Ziv indices,
in: Proc. 18th International Workshop on Combinatorial Algorithms
(IWOCA’07), pp. 11–20.

40


