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Abstract. LRM-Trees are an elegant way to partition a sequence of
values into sorted consecutive blocks. They have been used to encode or-
dinal trees and to index integer arrays in order to support range minimum
queries on them. We describe how they yield many other convenient re-
sults in a variety of areas: compressed indices for range minimum queries
on partially sorted arrays, a new adaptive sorting algorithm, and a com-
pressed data structure for permutations supporting direct and inverse
application in time inversely proportional to the compressibility of the
permutation.

1 Introduction

Introduced by Fischer [12] as a data structure to support Range Minimum
Queries (RMQs) in constant time with no access to the main data, and by
Sadakane and Navarro [34] as an internal construction for supporting naviga-
tion on ordinal trees, Left-to-Right-Minima Trees (LRM-Trees for short) are an
elegant way to partition a sequence of values into sorted consecutive blocks,
and to express the relative position of the first element of each block within
a previous block. In this article we describe how the use of LRM-Trees yields
many other convenient results in the design of data structures and algorithms
on permutations:

1. We define three compressed indices supporting RMQs (Theorem 1, 2 and 3),
that use less space when the indexed array is partially sorted. This directly
improves upon the 2n+ o(n) bits of uncompressed solutions [12] (optimal in
the worst case over instances of size n), and is incomparable with compressed
data structures supporting RMQs that profit from repetitions in the input
(instead of partial order) [13].

2. Based on LRM-Trees, we define a new measure of presortedness for permu-
tations (Definition 4). It combines some of the advantages of two well-known
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measures, runs and shuffled up-sequences. The new measure is computable
in linear time (like the former), but considers sorted sub-sequences (instead
of only contiguous sub-arrays) in the input (like the latter, with some re-
strictions).

3. Based on this measure, we introduce a new sorting algorithm and its adaptive
analysis (Theorem 4), asymptotically superior to sorting algorithms based
on runs [3], and on many instances faster than sorting algorithms based on
subsequences [24].

4. Also based on this measure, we design a compressed data structure for per-
mutations that supports access to the permutation and its inverse in time
inversely proportional to the presortedness of the permutation (Theorem 5).
This improves upon previous similar results [3].

All of our results hold in the Ω(lg n)-word RAM model, where machine words
contain w ∈ Ω(lg n) bits and where arithmetic and logical operations are per-
formed in O(1) time on those. Without taking advantage of repetitions, our
results on RMQ-indexing and sorting can be easily extended to multisets, and
the results on the compression of permutations would require small additional
work: the permutations are only the worst case. Taking advantage of the repeti-
tions in multisets is unlikely to yield much better results for RMQ indexes given
that, from the point of view of RMQ indexes, instances varying in repetitions
such as (2, 1, 3) and (2, 1, 2) are indistinguishable. In the case of sorting, we ex-
pect further improvements from taking advantage of repetitions in addition of
partial order, but do not describe them in this work.

In our algorithms and data structures, we distinguish between the work per-
formed on the input (often called “data complexity” in the literature) and the
accesses to the internal data structures (“index complexity”). Data structures
with low data complexity are important when the input is large and cannot be
stored in the same level of the memory hierarchy where the index is stored. For
instance, in the context of compressed indices like our RMQ structures, given a
fixed limited amount of main memory, separating data complexity from index
complexity identifies the instances whose compressed index fits in main memory
while the main data must reside on disk. On these instances, between two data
structures that support operators with the same total asymptotic complexity
but distinct index complexity, the one with the lowest data complexity (0 in the
case of Theorems 1 and 3) is more desirable.

Our results integrate concepts from two different topics: compressed data
structures and range minimum query indices. In these areas, distinct names
have been introduced for similar structures (Left-to-Right Minimal Trees [34]
and 2d-Min Heaps [12]) and concepts (integrated encoding [2], self-index [25],
non-systematic data structure [12,16] or encoding data structure). An additional
contribution of this article is an overview of those concepts (in Section 2.1). The
rest of Section 2 reviews other concepts necessary to follow the article, while
already introducing other contributions such as a simplified construction algo-
rithm for LRM-Trees (Lemma 1) and an abstraction of the results on compressing
permutations (Lemma 3).
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Then the main results of the article follow. In Section 3 we give our new
results for RMQ data structures on compressible arrays (Theorems 1 to 3). In
Section 4 we show how LRM-Trees yield improved sorting algorithms (Theo-
rem 4), and also give novel insights on the structure of LRM-Trees (Lemmas 4
and 5). In Section 5 we use LRM-Trees to improve the representation of com-
pressible permutations (Theorem 5). Finally, we conclude in Section 6.

2 Previous Work and Concepts

2.1 On the Various Types of Succinct Data Structures

Some terms (e.g., succinct indices and systematic data structures) on succinct
data structures were introduced more than once, at similar times but with dis-
tinct names, which makes their classification more complicated than necessary.
Given that our results cross several areas (such as compressed data structures for
permutations and indices supporting range minimum queries), each using dis-
tinct names, we aim in this section to clarify the potential overlaps of concepts,
to the extent of our knowledge. Of course, the experienced reader is encouraged
to skip this section and to jump to those more directly related to our results.

Data Structures A Data Structure D (e.g., a run encoding of permutations [3])
specifies how to encode data from some Data Type T (e.g., permutations) so
as to support the operators specified by a given Abstract Data Type T (e.g.,
direct and inverse applications). An Encoding is merely a data structure that
supports access to the data, either through queries specific to this data type
(e.g., i-th value of a permutation) or through access to a binary representation
of the object (e.g., the i-th block of lg n bits of the integer array representing
the permutation). The access operator is any operator through which (after
sufficient applications) the data object represented can be uniquely identified.

Without any consideration on the support time of the access operator, infor-
mation theory indicates that the best possible encoding, in the worst case over
the f(n) instances of fixed size n, uses at least lg f(n) bits. This information
theory lower bound is used as a baseline (or uncompressed baseline) to express
the space taken by a given data structure.

By definition, any data structure supporting access, and possibly some other
operators, will use at least that much space. The additional space used to sup-
port operators efficiently is called the redundancy of the data structure. A data
structure whose redundancy is asymptotically negligible when the size of the
instance goes to infinity, that is, with o(lg f(n)) redundancy, is called a Succinct
Data Structure [20].

An example that is relevant in this paper is the abstract data type of bit-
vectors B[1, n] where the access operator B[i] gives the bit value at any position,
the operator rank1(B, i) gives the number of 1’s in the prefix B[1, i], the operator
select1(B, i) gives the position of the i-th 1 in B, reading B from left to right
(1 ≤ i ≤ n), and operators rank0(B, i) and select0(B, i) are defined analogously
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for 0-bits. A succinct data structure for this abstract data type requires n+o(n)
bits of space and supports all those operations in constant time [9, 26].

On the other hand, a data structure that does not support the access oper-
ator can use less space than the information theory lower bound. Its space usage
can still be expressed as a function of the information theory lower bound (e.g.,
there is a data structure supporting RMQs on arrays of n integers using o(n lg n)
bits without any access to the array; this space is less than the uncompressed
baseline of n lg n bits). We discuss this point in more detail at the end of this
section.

Compression Generally, one desires a data structure that can take less space
than the uncompressed baseline on specific classes of instances. In those cases, the
space used is analyzed through the definition of a measure µ(I) of the compress-
ibility of an instance I (e.g., the zero-order empirical entropy of a binary string
with n0 0s and n1 1s is n ·H0, where H0 = n0

n
lg n

n0

+ n1

n
lg n

n1

∈ lg
(
n
n1

)
+O(lg n)).

Again, without any consideration on the time to support an operator, informa-
tion theory indicates that the best possible encoding, in the worst case over the
f(n, µ) instances I of fixed size n and fixed compressibility µ = µ(I), uses at
least lg f(n, µ) bits. This information theory lower bound is used as a compressed
baseline in order to express the space taken by a given compressed data struc-
ture, for the specific measure µ(). Note that distinct measures can yield distinct
analyses and optimality results. When possible, compressibility measures are re-
duced one to another (e.g., the first-order entropy of a string is no larger than
its zero-order entropy), but in many cases they are incomparable.

Formally, a Compressed Data Structure (also called “opportunistic data struc-
ture” [11] or “ultra-succinct data structure” [21]) for a compressibility measure
µ is a data structure that requires lg f(n, µ) + o(lg f(n)) bits to encode any in-
stance of size n and compressibility µ. Note that, while the encoding of the data
is limited by the compressed baseline, the redundancy is only required to be
asymptotically negligible when compared with the uncompressed baseline. This
is of course undesirable when the data is highly compressible, since the redun-
dancy may dominate the overall space, but it is the case of most space-efficient
data structures in the literature (e.g., a bit-vector representation supporting the
access, rank and select operators in constant time and using nH0 + o(n) bits
of space [31]). A Compressed Encoding is a compressed data structure support-
ing at least the access operator, and a Compression Scheme is the algorithm
producing this compressed encoding.

A stronger concept is that of a Fully Compressed Data Structure for a com-
pressibility measure µ, which is a data structure requiring lg f(n, µ)+o(lg f(n, µ))
bits on any instance of size n and compressibility µ. While the o(·) term is asymp-
totic in n, it is useful to allow µ to depend on n too. Barbay et al. [1] gave an
example of such a structure for strings s[1..n] over an alphabet of size σ, sup-
porting the access, rank and select operators in time O(lg lg σ) while using
nH0(s) + o(nH0(s)) bits of space, where H0(s) is the zero-order entropy of s.
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Such a result is not always achievable. For example if we use a bitmap to
mark n1 ∈ O(n/ lg2 n) sampled positions in an array of length n, then the
zero-order entropy of this bitmap will be nH0 ∈ O(n lg lg n/ lg2 n) ∈ o(n). In
this case, the compressed data structure mentioned [31] has a redundancy of
Θ(n lg lg n/ lg n) ⊂ ω(nH0). A fully compressed data structure for this prob-
lem [28] requires nH0+O(n1) bits of space (and supports the access, rank and
select operators in super-constant time). This is fully compressed as long as
n1 ∈ o(n); otherwise nH0 ∈ Θ(n) and the previous structure [31] becomes fully
compressed.

Indices An Index is a structure that, given access to some data structure D sup-
porting a defined abstract data type T (e.g., a data structure for bit-vectors sup-
porting the access operator), extends the set of operators supported to a more
general abstract data type T ′ (e.g., rank and select operators). By analogy
with succinct data structures, the space used by an index is called redundancy.

A Succinct Index [2] or Systematic Data Structure [16] I is simply an in-
dex whose redundancy is asymptotically negligible in comparison to the un-
compressed baseline when the size n of the instance goes to infinity, that is,
o(lg f(n)) bits. Although the concept of separating the encoding from the index
was introduced to prove lower bounds on the trade-off between space and op-
eration times of succinct data structures [17] (it had only been implicitly used
before [33]), it has other advantages. In particular, the concept of succinct index
is additive in the sense that, if D is a succinct data structure, then the data
structure formed by the union of D and I is a succinct data structure as well.
This property permits the combination of succinct indices for distinct abstract
data types on similar data types [2], and suggests the possibility of a library of
succinct indices that can be combined for each particular application. For exam-
ple, the discussed compressed data structure for bit-vectors [31] is indeed formed
by a compressed encoding of the data using nH0 + o(n) bits and offering access
to O(lg n) consecutive bits, plus a succinct index using o(n) bits. The succinct
index can be used alone if we have a different encoding of the bitmap offering
the same functionality.

A Compressed Index for a compressibility measure µ is an index whose re-
dundancy is asymptotically negligible in comparison to the compressed baseline
for µ when n goes to infinity, that is, it uses o(lg f(n, µ)) bits of space.

Some clarifications The terms integrated encoding [2], self-index [25], non-
systematic data structure [12,16] or encoding data structure [7] were introduced
to emphasize the distinction between indexing data structures (with the possi-
bility to access the data that is being indexed) and those data structures that
do not require access to any other data structure than themselves. The intro-
duction of these new terms might seem superfluous as indexing data structures
are part of the larger class of data structures, and an indexing data structure
I for the abstract data type T immediately yields a data structure D for T
when combined with any encoding scheme for T . Yet the property highlighted
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by those terms matters since, dropping the requirement of accessing the data
through certain operator access, those data structures yield potentially lower
redundancies than the combination of an index and an encoding. For example,
concerning bit vectors, Golynski [17] showed that if a bit vector B is stored
verbatim using n bits, then every index supporting the operators access, rank,
and select in constant time must have redundancy Ω(n lg lg n/ lg n) bits, while
Pǎtraşcu [30] gave an integrated encoding for B with constant time support of
these operators and redundancy O(n/polylg n) bits. In general an “integrated
encoding”, having less restrictions than an index, is potentially stronger in terms
of space and/or time.

In the case of non-systematic data structures [12, 16] and encoding data
structures [7], the emphasis is that those indexing data structures require much
less space than the data they index, and are able to answer some queries (other
than access, obviously) without any access to the main data. Of course, such
an index can be seen as a data structure by itself, for a distinct data type (e.g.,
a Lowest Common Ancestor non-systematic succinct index of 2n+ o(n) bits for
labeled trees is also a simple data structure for ordinal trees). Those notions are
relative to their context.

2.2 On the various Complexity Measures

Data vs Index Complexity of an operator We distinguish between the data
complexity and the index complexity of operators supported by succinct indices,
both of which compose the overall complexity. These measure separately the
number of operations performed on the data (i.e., supported by the encoding)
and on the index, respectively. This distinction is important in two contexts:

– In the external memory model, if the data structure is too large to reside in
main memory and is therefore kept in external memory (that is expensive to
access), while its index is small enough to be stored in RAM, it is preferable
to use a succinct index of minimal data complexity, even if it comes at the
expense of a larger index complexity. Traditional time complexity mixing
both index and data complexity does not give enough information to make
an informed choice.

– When applying a succinct index I to a data structure D that supports
the access operator in time a(n) ∈ ω(1), the time complexity t(n) of a
given operator of data complexity d(n) and index complexity i(n) is t(n) =
a(n)d(n)+ i(n). Once again, the traditional time complexity of the operator
counting just d(n) + i(n) does not give enough information for an informed
choice.

Following these definitions, a non-systematic data structure can be seen as a
succinct index of data complexity equal to zero, and the usual complexity of an
operator supported by a succinct index is the sum of its data complexity and its
index complexity.
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Data vs Internal Complexity of an algorithm In a similar way, for a given
algorithm A receiving as input an instance I that it accesses through the abstract
data type T without specifying which data structure encodes I, we distinguish
its data complexity, the number of accesses to I through the various operators of
T , from its internal complexity, the number of operations performed internally
without any access to the input data. The sum of data and internal complexity
is the overall algorithm complexity.

For example, consider the compression of a text of n symbols on alphabet
[1..σ] via Huffman’s code, represented as a tree: the data complexity is linear
(2n, to be precise), as each symbol is accessed exactly twice (once to count
frequencies and once to encode), while the internal complexity is O(n lg σ) to
encode the output bit by bit.

This distinction matters for similar reasons as the distinction between the
data and index complexity of succinct indices:

– In the external memory model, the data might be too large to reside in main
memory, as opposed to the internal structures.

– When applying the algorithm to a data structure D that supports the access
operator in time a(n) ∈ ω(1), the time complexity t(n) of an algorithm of
data complexity d(n) and internal complexity i(n) is t(n) = a(n)d(n)+ i(n).

This is relevant to our results concerning the sorting of permutations and
the construction of our compressed data structure for permutations, where some
extensive computation is performed locally (e.g., computing an optimal parti-
tion of an LRM-Tree, computing an optimal merging tree of this partition) and
other is performed on the data (e.g., identifying the runs, merging the sorted
sequences).

2.3 Left-to-Right-Minima Trees

LRM-Trees partition a sequence of values into consecutive sorted blocks, and
express the relative position of the first element of each block within a previous
block. They were introduced under this name as an internal tool for basic nav-
igational operations in ordinal trees [34] and, under the name “2d-Min Heaps”,
to index integer arrays in order to support range minimum queries on them [12].

Let A[1..n] be an integer array. For technical reasons, we define A[0] = −∞
as the “artificial” overall minimum of the array.

Definition 1 (Fischer [12]; Sadakane and Navarro [34]). Consider an ar-
ray A[1..n] of n totally ordered objects, all larger than A[0] = −∞. For 1 ≤ i ≤ n,
let psvA(i) = max{j ∈ [0..i − 1] : A[j] < A[i]} denote the Previous Smaller
Value (PSV) of position i. The Left-to-Right-Minima Tree (LRM-Tree) TA of A
is an ordered labeled tree with n+1 vertices, each labeled uniquely from {0, . . . , n}.
For 1 ≤ i ≤ n, psvA(i) is the parent node of i. The children of each node are
ordered in increasing order from left to right.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A[i] 15 8 13 7 11 16 1 10 9 14 2 12 3 6 5 4

−∞

15(1) 8(2)

13(3)

7(4)

11(5)

16(6)

1(7)

10(8) 9(9)

14(10)

2(11)

12(12) 3(13)

6(14) 5(15) 4(16)

Fig. 1. An example of an array and its LRM-Tree. The numbers at the nodes are
the array values, and the smaller numbers in parentheses are their positions in the
array.

Figure 1 gives an example of an integer array and its LRM-Tree. Fischer [12]
gave a (complicated) linear-time construction algorithm with advantages that
are not relevant for this paper. The following lemma shows a simpler way to
construct the LRM-Tree in at most 2(n − 1) comparisons within the array and
overall linear time, which will be used in Theorems 4 and 5. The construction is
similar to that of Cartesian Trees [15].

Lemma 1. Given an array A[1..n] of n totally ordered objects, there is an al-
gorithm computing its LRM-Tree in at most 2(n− 1) comparisons within A and
O(n) total time.

Proof. The computation of the LRM-Tree corresponds to a simple scan over
the input array, starting at A[0] = −∞, building down iteratively the current
rightmost branch of the tree with increasing elements of the sequence until an
element x smaller than its predecessor is encountered. At this point one climbs
the rightmost branch up to the first node v holding a value smaller than x, and
starts a new branch with a rightmost child of v of value x. As the root of the
tree has value A[0] = −∞ (smaller than all elements), the algorithm always
terminates.

The construction algorithm performs at least n − 1 comparisons (e.g., A =
(1, 2, . . . , n)) and at most 2(n− 1) comparisons: the first two elements A[0] and
A[1] can be inserted without any comparison as a simple path of two nodes
(so A[1] will be charged only once). For the remaining elements, we charge the
last comparison performed during the insertion of an element x to the node of
value x itself, and all previous comparisons to the elements already in the LRM-
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Tree. Thus, each element is charged at most twice: once when it is inserted into
the tree, and once when scanning it while searching for a smaller value on the
rightmost branch. As in the latter case all scanned elements are removed from
the rightmost path, this second charging occurs at most once for each element.
Finally, the last element A[n] is never scanned, and the first element A[1] is
inserted without any comparison. Hence the total number of comparisons is at
most 2n − 2 = 2(n − 1). Since the number of comparisons within the array
dominates the number of other operations, the overall construction time is also
in O(n). ⊓⊔

2.4 Range Minimum Queries

Range Minimum Queries (RMQ) have a wide range of applications in various
data structures and algorithms, including text indexing [14], pattern match-
ing [10], and more elaborate kinds of range queries [8]. We define them as follows:

Definition 2 (Range Minimum Queries [6]). Consider an array A[1..n] of
n ordered objects. A Range Minimum Query consists of a pair of integers i and
j such that 1 ≤ i ≤ j ≤ n, and its answer rmqA(i, j) is the leftmost position of
a minimum in A[i, j].

For two given nodes i and j in a tree T , let lcaT (i, j) denote their Lowest
Common Ancestor (LCA) [6], that is, the deepest node that is an ancestor of
both i and j. Now let TA be the LRM-Tree of A. For two arbitrary nodes iden-
tified by their preorder ranks i and j in TA, 1 ≤ i < j ≤ n, let ℓ = lcaTA

(i, j).
Then rmqA(i, j) is i if ℓ = i and is otherwise given by the child of ℓ that is on
the path from ℓ to j [12].

Since there are succinct data structures supporting the LCA operator [12,21]
in succinctly encoded trees in constant time, this yields a succinct index (which
we improve in Theorems 1 and 3).

Lemma 2 (Fischer [12]). Given an array A[1..n] of n totally ordered objects,
there is a non-systematic succinct index using 2n + o(n) bits and supporting
RMQs in zero accesses to A and O(1) accesses to the index. This index can be
built in O(n) time.

Since we use LCA succinct data structures to define a succinct index for
RMQ, it should be noted that, in these data structures, LCA queries are reduced
to a particular case of RMQs, where the neighbors differ by exactly 1, denoted as
+−1RMQs. For +−1RMQs, succinct data structures exist independently of LCAs,
so there is no circular dependency in the definition of the solution.

2.5 Adaptive Sorting and Compression of Permutations

Sorting a permutation in the comparison model requires Θ(n lg n) comparisons
in the worst case over permutations of n elements. Yet, better results can be
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achieved for some parameterized classes of permutations. Petersson and Mof-
fat [29] summarized many of them; we describe here a few that are relevant to
our work.

For a permutation π, Knuth [23] considered Runs (contiguous ascending sub-
sequences), counted by ρ = 1 + |{i, 1 ≤ i < n, πi+1 < πi}|; Levcopoulos and
Petersson [24] introduced Shuffled Up-Sequences and its generalization Shuffled
Monotone Sequences, respectively counted by |SUS| = min{k, π is covered by k
increasing subsequences }, and |SMS| = min{k, π is covered by k monotone sub-
sequences }. Barbay and Navarro [3] introduced strict variants of some of those
concepts, namely Strict Runs and Strict Shuffled Up-Sequences, where sorted
subsequences are composed of consecutive integers (e.g., (2,3,4, 1, 5 , 6 , 7 , 8 )
has two runs but three strict runs), counted by |SRuns| and |SSUS|, respectively.
For any measure of disorder X() taken among those five, there is a variant of
the merge-sort algorithm that sorts a permutation π, of size n and of measure of
presortedness X(π) = x, in time O(n(1+ lg x)), which is within a constant factor
of optimal in the worst case among instances of fixed size n and fixed values
of X(π) = x (this is not necessarily true for other measures of disorder [3, 24]).
The idea central to those results is that, once we have identified x increasing
subsequences in π that are already sorted, we can merge them in a balanced
merging tree.

In this merging tree, each element is compared once in its way to the root.
Thus the total merging cost is the sum of the number ni of elements in each
merging tree leaf (i.e., partition) times the depth li of such leaf, that is,

∑r
i=1 nili.

When the leaves store partitions of different length, the merging cost can be
reduced by rebalancing the tree so that leaves with longer sequences are closer
to the root [3]. Actually, finding the optimal merging tree is exactly the same
as finding an optimal code for the vector of frequencies Seq = 〈n1, n2, . . . , nr〉,
and the optimal tree is precisely the Huffman tree [19] of such sequence, as it
minimizes

∑r
i=1 nili. The merging cost can then be expressed more precisely

as a function of the entropy of the relative sizes of the sorted subsequences
identified, where the entropy H(Seq) of a sequence Seq = 〈n1, n2, . . . , nr〉 of r
positive integers adding up to n is defined as H(Seq) =

∑r
i=1

ni

n
lg n

ni
. Then the

merging cost is upper bounded by n(1+H(Seq)). The overall sorting cost is that
of merging plus the time to determine the partitions. Note the entropy satisfies
(r − 1) lg n ≤ nH(Seq) ≤ n lg r by concavity of the logarithm.

Barbay and Navarro [3] observed that each adaptive sorting algorithm in
the comparison model also describes an encoding of the permutation π that
it sorts, so that it can be used to compress permutations from specific classes
to less than the information-theoretic lower bound of lg(n!) ∈ n lg n − n lg e +
(lg n)/2 + Θ(1) bits. Furthermore they used the similarity of the execution of
the merge-sort algorithm with a Wavelet Tree [18], to support the application of
π() and its inverse π−1() in time logarithmic in the disorder of the permutation
π (as measured by ρ, |SRuns|, |SUS|, |SSUS| or |SMS|) in the worst case. We
summarize their technique in Lemma 3 below, in a way parameterized by the
partition chosen for the permutation, and focusing only on the merging part
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of the sorting (e.g., the complexity of the SUS-Sorting algorithm differs from
this result by a factor of two, because of the additional cost of computing the
SUS-partition). We build on their slightly improved extended version [4], which
reduces redundancy and improves time by combining compressed data structures
for bitmaps with multiary wavelet trees.

Lemma 3 (Barbay and Navarro [3, 4]). Given a partition of an array π
of n totally ordered objects into |Seq| sorted subsequences of respective lengths
Seq = 〈n1, n2, . . . , n|Seq|〉, these subsequences can be merged with n(1 +H(Seq))
comparisons on π and O(n(1 +H(Seq))) total running time. This merging can
be encoded using at most nH(Seq) +O(|Seq| lg n) + o(n) bits so that it supports
the computation of π(i) and π−1(i) in time O(1 + lg |Seq|/ lg lg n) in the worst
case ∀i ∈ [1..n], and in time O(1 +H(Seq)/ lg lg n) on average when i is chosen
uniformly at random in [1..n].

The encoding of the merging is an encoding of the permutation: no further
access is performed on the original array after the construction. Barbay et al. [1]
give other similar tradeoffs by combining these ideas with novel sequence repre-
sentations.

3 Compressed Indices for Range Minima

We now explain how to improve on the result of Lemma 2 for permutations
that are partially ordered. We consider only the case where the input A is a
permutation of [1..n]. If this is not the case, we can identify the elements in A
with their rank, considering earlier occurrences of equal elements as smaller.

3.1 Strict Runs

Our first and simplest compressed data structure for RMQs uses an amount of
space that is a function of |SRuns|, the number of strict runs in π. Beside its
simplicity, its interest resides in that it uses a total space within o(n) bits on
permutations such that |SRuns| ∈ o(n), and introduces techniques that we will
use in Theorems 2 and 3.

Theorem 1. Consider an array A[1..n] of n totally ordered objects, composed
of |SRuns| ∈ o(n) strict runs. Then there is a non-systematic compressed index
using lg

(
n

|SRuns|

)
+o(n) bits that can be computed in n−1+2(|SRuns|−1) ∈ n+o(n)

data comparisons and O(n) overall time, and supports RMQs in zero accesses
to A and O(1) accesses to the index.

Proof. To build the index we mark the beginnings of the runs in A with a
1 in a bit-vector B[1, n], and represent B with the compressed data structure
from Raman et al. [32], using lg

(
n

|SRuns|

)
+ o(n) bits, in n − 1 comparisons and

O(n) overall time. Further, we define A′ as the (conceptual) array consisting of
the heads of A’s runs (A′[i] = A[select1(B, i)]). We build the LRM-Tree from
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Lemma 2 on A′, using 2|SRuns|(1+ o(1)) bits in 2(|SRuns| − 1) comparisons and
O(|SRuns|) overall time.

To answer query rmqA(i, j), we compute x = rank1(B, i) and y = rank1(B, j),
then compute m′ = rmqA′(x, y) as the minimum of the heads of those runs
that overlap the query interval, and map it back to its position in A by m =
select1(B,m′). Then if m < i, we return i as the final answer to rmqA(i, j),
otherwise we return m. The correctness of this algorithm follows from the fact
that only i and the heads that are contained in the query interval can be the
range minimum. Because the runs are strict, the former occurs if and only if
the head of the run containing i is smaller than all other heads in the query
range. ⊓⊔

For instance, given the permutation A = (5, 6, 7, 8, 9, 1, 2, 3, 4) and a query
from i = 4 to j = 8, the data structures can be represented as

︷ ︸︸ ︷

i j
1 2 3 4 5 6 7 8 9

A = 5 6 7 8 9 1 2 3 4
B = 1 0 0 0 0 1 0 0 0
A′ = 5 1

Then x = 1 and y = 2, m′ = 2, m = 6, etc.

Note that, without the condition that |SRuns| ∈ o(n), the structure is not a
compressed index, and holds little interest compared to the worst-case baseline.
We explore in the following section a more general measure of partial order, ρ.

3.2 General Runs

The same idea of Theorem 1, applied to more general runs, yields another com-
pressed index for RMQs, potentially smaller but this time requiring to compare
two elements from the input to answer RMQs.

Theorem 2. Consider an array A[1..n] of n totally ordered objects, composed of
ρ ∈ o(n) runs. Then there is a systematic compressed index using lg

(
n
ρ

)
+ o(n)

bits, that can be computed in n − 1 + 2(ρ − 1) ∈ n + o(n) data comparisons
and O(n) overall time, and supports RMQs in 1 comparison within A and O(1)
accesses to the index.

Proof. We build the same data structures as in Theorem 1, using lg
(
n
ρ

)
+2ρ+

o(n) bits and in n−1+2(ρ−1) ≤ 3(n−1) data comparisons andO(n) overall time.
To answer a query rmqA(i, j), we compute x = rank1(B, i) and y = rank1(B, j).
If x = y, we return i. Otherwise, we compute m′ = rmqA′(x + 1, y), and map
it back to its position in A by m = select1(B,m′). The final answer is i if
A[i] < A[m], and m otherwise. ⊓⊔
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To achieve a non-systematic compressed index, which never accesses the ar-
ray, and whose space usage is a function of ρ, we need more space and a more
heavy machinery, as shown next. The main idea is that a permutation with few
runs results in a compressible LRM-Tree, where many nodes have out-degree 1.

Theorem 3. Consider an array A[1..n] of n totally ordered objects, composed
of ρ ∈ O(n/ lg n) runs. Then there is a non-systematic compressed index using
2ρ lg n − ρ lg(ρ/e) + o(n) bits, that can be computed in O(n) overall time, and
supports RMQs in zero accesses to A and O(1) accesses to the index.

Proof. We build the LRM-Tree TA from Lemma 1 directly on A, and then
compress it with the tree representation of Jansson et al. [21], all in linear time.

To see that this results in the claimed space, let nk denote the number of
nodes in TA with out-degree k ≥ 0. Let (i1, j1), . . . , (iρ, jρ) be an encoding of the
runs in A as (start, end), and look at a pair (ix, jx). We have psvA(k) = k − 1
for all k ∈ [ix + 1..jx], and so the nodes in [ix..jx] form a path in TA, possibly
interrupted by branches stemming from heads iy of other runs y > x with
psvA(iy) ∈ [ix..jx − 1]. Hence n0 = ρ, and n1 ≥ n− ρ− (ρ− 1) > n− 2ρ, as in
the worst case the values psvA(iy) for iy ∈ {i2, i3, . . . , iρ} are all different.

As an illustrative example, look again at the tree in Figure 1. It has n0 = 9
leaves, corresponding to the runs (15), (8, 13), (7, 11, 16), (1, 10), (9, 14), (2, 12),
(3, 6), (5), and (4) in A. The heads of the first four runs have a PSV of A[0] =
−∞, the next two head-PSVs point to A[7] = 1, the next one to A[11] = 2, and
the last two to A[13] = 3. Hence, the heads of the runs “destroy” exactly four
of the n− n0 + 1 potential degree-1 nodes in the tree, so n1 = n− n0 − 4 + 1 =
16− 9− 3 = 4.

Now TA, with degree-distribution n0, . . . , nn−1, is compressed into nH∗(TA)+

O
(

n(lg lgn)2

lgn

)

bits [21], where

nH∗(TA) = lg

(
1

n

(
n

n0, n1, . . . , nn−1

))

is the so-called tree entropy [21] of TA. This representation supports all navi-
gational operations in TA in constant time, and in particular those required for
Lemma 2. A rough inequality yields a bound on the number of possible such
LRM-Trees:

(
n

n0, n1, . . . , nn−1

)

=
n!

n0!n1! . . . nn−1!

≤
n!

n0!n1!

<
n!

ρ!(n− 2ρ)!

≤
n2ρeρ

ρρ
,
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from which one easily bounds the space usage of the compressed index:

nH∗(T ) ≤ lg

(
1

n

n2ρeρ

ρρ

)

= lg

(
n2ρ−1eρ

ρρ

)

= (2ρ− 1) lg n+ ρ lg e− ρ lg ρ

< 2ρ lg n− ρ lg(ρ/e).

Adding the space required to index the structure of Jansson et al. [21] yields the
claimed space bound. ⊓⊔

Note that when there are “few” runs, ρ ∈ o(n/ lg n), the overall space is
simply o(n), asymptotically less than the worst-case uncompressed baseline over
instances of fixed size n. Without the hypothesis that ρ ∈ O(n/ lg n), there would
be too many runs for our analysis to give any interesting bound (as 2n + o(n)
is already the worst-case baseline). Finally, if ρ ∈ cn/ lg n+ o(n/ lg n), for some
constant c < 2, our analysis still shows an interesting space reduction, to cn+o(n)
bits.

4 Sorting Permutations

Barbay and Navarro [3] showed how to use the decomposition of a permutation
π into ρ ascending consecutive runs of respective lengths Runs to sort adaptively
to the entropy H(Runs). Those runs entirely partition the LRM-Tree of π: one
can easily draw the partition corresponding to the runs considered by Barbay
and Navarro [3] by iteratively tagging the leftmost maximal untagged leaf-to-
root path of the LRM-Tree. For instance, the permutation of Figure 1 is of size
n = 16 and has nine runs, {(15), (8, 13), (7, 11, 16), (1, 10), (9, 14), (2, 12), (3, 6),
(5), (4)}, of respective sizes given by the vector 〈1, 2, 3, 2, 2, 2, 2, 1, 1〉, which has
entropy 3× 1

16 × lg 16
1 + 5× 2

16 × lg 16
2 + 1× 3

16 × lg 16
3 ≈ 3.0778.

4.1 Optimal LRM-Partition

Note that any partition of the LRM-Tree into downward paths (so the values
traversed by the paths are increasing) can be used to sort π, and a partition
of smaller entropy yields a faster merging phase. To continue with the previous
example, the nodes of the LRM-Tree of Figure 1 can be partitioned differently,
so that the vector formed by the sizes of the increasing subsequences it de-
scribes has lower entropy. One such partition would be {(15), (8, 13), (7, 11, 16),
(1,2,3,4), (10), (9, 14), (12), (6), (5)}, of respective sizes given by the vector
LRM = 〈1, 2, 3,4,1, 2,1, 1, 1〉, which has entropy 5× 1

16 × lg 16
1 +2× 2

16 × lg 16
2 +

1 × 3
16 × lg 16

3 + 1 × 4
16 × lg 16

4 ≈ 2.9528, which is smaller than the entropy of
3.0778 of the partition given in the previous paragraph. See Figure 2 for a vi-
sual representation of this LRM-Partition, the one corresponding to the example
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−∞
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3
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4 5

5

6

6 7

7 8 9
〈1, 2, 3, 2, 2, 2, 2, 1, 1〉
H(LRM) ≈ 3.0778

−∞

1 2

2

3

3

3

4

5 6

6

4

7 4

8 9 4
〈1, 2, 3, 4, 1, 2, 1, 1, 1〉
H(LRM) ≈ 2.9528

−∞

2 3

3

4

4

4

1

5 6

6

1

7 1

1 8 9
〈1, 2, 3, 4, 1, 2, 1, 1, 1〉
H(LRM) ≈ 2.9528

Fig. 2. Examples of LRM-Partitions of the LRM-Tree of Figure 1, where the num-
bers indicate the rank of the subsequence in the partition. On the left, the partition
corresponding to a standard decomposition of the permutation into runs of con-
secutive positions; on the center, a general partition (here of optimal entropy); and
finally on the right the left-most spinal LRM-Partition of the permutation.

of the previous paragraph, and the one corresponding to the optimal partition
defined below.

Definition 3 (LRM-Partition). An LRM-Partition P of an LRM-Tree T
for an array A is a partition of the nodes of T into ρ down-paths, that is, paths
starting at some branching node of the tree, and ending at a leaf. The entropy
of P is H(P ) = H(r1, . . . , rρ), where r1, . . . , rρ are the lengths of the down-paths
in P . P is optimal if its entropy is minimal among all the LRM-partitions of T .
The entropy of such an optimal partition is the LRM-entropy of the LRM-Tree
T and, by extension, the LRM-entropy of the array A.

Note that, since there are exactly ρ leaves in the LRM-Tree, there will always be
ρ down-paths in an LRM-partition. We first define a particular LRM-partition
and prove that its entropy is minimal. Then we show how it can be computed
in linear time.

Definition 4 (Left-Most Spinal LRM-Partition). Given an LRM-Tree T ,
the left-most spinal chord of T is the leftmost path among the longest root-to-
leaf paths in T ; and the left-most spinal LRM-partition is defined recursively
as follows. Removing the left-most spinal chord of T leaves a forest of shallower
trees, which are partitioned recursively. The left-most spinal partition is the union
of all the resulting LRM-partitions. LRM denotes the vector formed by the ρ
lengths of the subsequences in the partition.

For instance, the left-most spinal LRM-partition of the LRM-tree given in
Figure 1 is quite easy to build: the first left-most spinal chord is (−∞, 1, 2, 3, 6) =
(−∞ → 6), whose removal leaves a forest of simple branches. The resulting
partition is {(15), (8, 13), (7, 11, 16), (1, 2, 3, 6), (10), (9, 14), (12), (5), (4)}, of
respective sizes given by the vector LRM = 〈1, 2, 3, 4, 1, 2, 1, 1, 1〉, whose entropy
is the same as our last example, ≈ 2.9528 (that was another optimal LRM-
partition, different from the left-most spinal LRM-partition).
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The left-most spinal LRM-partition, by successively extracting increasing
subsequences of maximal length, actually yields a partition of minimal entropy,
and hence an optimal LRM-partition, as shown in the following lemma.

Lemma 4. The left-most spinal LRM-partition is optimal.

Proof. Given an LRM-Tree T , consider the leftmost leaf L0 among the leaves
of maximal depth in T . We prove that there is always an optimal LRM-partition
that contains the down-path (−∞ → L0). Applying this property recursively in
the trees produced by removing the nodes of (−∞ → L0) from T yields the
optimality of the left-most spinal LRM-partition.

r















R

M

d0







N0 N1

L0 L1







d1

Fig. 3. Consider an arbitrary LRM-partition P and
the down-path (N0 → L0) in P finishing at L0. If
N0 6= −∞ (that is, N0 is not the root), then consider
the parent M of N0 and the down-path (R → L1)
that contains M and finishes at some leaf L1. Call
N1 the child of M on the path to L1. Call r the
number of nodes in (R → M), d0 the number of
nodes in (N0 → L0), and d1 the number of nodes in
(N1 → L1).

Consider an arbitrary LRM-partition P , the nodes R, M , N0, N1 and L1 and
the lengths r, d0 and d1 as described in Figure 3. Note that d1 ≤ d0 because L0

is one of the deepest leaves. Thus the LRM-partition P contains a down-path
(N0 → L0) of length d0 and another (R → L1) of length r + d1. We build a
new LRM-partition P ′ by switching some parts of the down-paths, so that one
is (R → L0) and the other is (N1 → L1), with new down-path lengths r + d0
and d1, respectively.

Let 〈n1, n2, . . . , nρ〉 be the lengths of the down-paths in P , such that nH(P ) =
nH(n1, n2, . . . , nρ) = n lg n −

∑ρ
i=1 ni lg ni. Without loss of generality (the en-

tropy is invariant to the order of the parameters), assume that n1 = d0 and
n2 = r + d1 are the down-paths we have considered. They are replaced in P ′

by down-paths of length n′
1 = r + d0 and n′

2 = d1. The variation of nH(P ) is
[(r+d1) lg(r+d1)+d0 lg d0]−[(r+d0) lg(r+d0)+d1 lg d1], which can be rewritten
as f(d1) − f(d0) with f(x) = (r + x) lg(r + x) − x lg x. Since the function f(x)
has a positive derivative and d1 ≤ d0, the difference is non-positive (and strictly
negative if d1 < d0, which would imply that P was not optimal). Iterating this
argument until the path of the LRM-partition containing L0 is rooted in −∞
yields an LRM-partition of entropy no larger than that of the LRM-partition P ,
and one that contains the down-path (−∞ → L0).

Applying this argument to an optimal LRM-partition demonstrates that
there is always an LRM-partition that contains the down-path (−∞ → L0).
This, in turn, applied recursively to the subtrees obtained by removing the nodes
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from the path (−∞ → L0) from T , shows the minimality of the entropy of the
left-most spinal LRM-partition. ⊓⊔

The definition of the left-most spinal LRM-partition is constructive, but
building this partition in linear time requires some more sophisticated tech-
niques, described in the following lemma.

Lemma 5. Given an LRM-Tree T , there is an algorithm that computes its left-
most spinal LRM-partition in linear overall time and zero accesses to the original
array.

Proof. Given an LRM-Tree T (and potentially no access to the array from
which it originated), we first set up in linear time an array D containing the
depths of the nodes in T , listed in preorder. We then indexD for range maximum
queries in linear time using Lemma 2. Since D contains only internal data, the
number of accesses to it matters only to the running time of the algorithm
(they are distinct from accesses to the array at the construction of T ). Now
the deepest node in T can be found by a range maximum query over the whole
array, supported in constant time. From this node, we follow the path to the
root, and save the corresponding nodes as the first subsequence. This divides
A into disconnected subsequences, which can be processed recursively using the
same algorithm, as the nodes in any subtree of T form an interval in D. We
do so until all elements in A have been assigned to a subsequence. Note that,
in the recursive steps, the numbers in D are not anymore the depths of the
corresponding nodes in the remaining subtrees. Yet, as all depths listed in D
differ by the same offset from their depths in any connected subtree, this does
not affect the result of the range maximum queries. ⊓⊔

Of course, all operations can (and should) be performed directly on the array
without the need to build an intermediary tree. For instance, each chord can be
found recursively by parsing the array from the end to the begining, skipping
elements larger than the last element added to the chord.

The left-most spinal LRM-partition is not much more expensive to com-
pute than the partition into ascending consecutive runs [3]: at most 2(n − 1)
comparisons between elements of the array (to build the LRM-Tree) for the left-
most spinal LRM-partition instead of n − 1 for the Runs-partition. Note that
H(LRM) ≤ H(Runs), since the partition of π into consecutive ascending runs is
just one LRM-partition among others.

4.2 LRM-Sorting

The concept of optimal LRM-partitions yields a new adaptive sorting algorithm,
LRM-Sorting, which partitions a permutation using a LRM-Tree and merges the
corresponding subsequences:

Theorem 4. Let π be a permutation of size n, and of LRM-entropy H(LRM).
The LRM-Sorting algorithm sorts π in a total of at most n(3 + H(LRM)) −
2 comparisons between elements of π and in total running time of O(n(1 +
H(LRM))).
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Proof. Obtaining the left-most spinal LRM-partition P composed of runs of re-
spective lengths LRM through Lemmas 1 and 5 uses at most 2(n−1) comparisons
between elements of π and O(n) total running time. Now sorting π is just a mat-
ter of applying Lemma 3: We merge the subsequences of P in n(1 + H(LRM))
additional comparisons between elements of π and O(n(1 + H(LRM)) overall
time. The sum of those complexities yields n(3+H(LRM))−2 data comparisons
and O(n(1 +H(LRM))) running time. ⊓⊔

4.3 Comparison with Runs-Sorting

The additional sophistication of LRM-Sorting compared to Runs-Sorting comes
with a cost: on instances where H(LRM) = H(Runs), that is, where the LRM-
Partition is no better than that of contiguous runs, Runs-Sorting outperforms
LRM-Sorting as it carries out n − 1 fewer comparisons (this is the difference
between building the LRM-Tree and just scanning for runs). Yet, the asymptotic
performance of LRM-Sorting is never worse than that of Runs-Sorting, since
H(LRM) ≤ H(Runs). On the other hand, LRM-Sorting can be asymptotically
faster than Runs-Sorting, by a factor of up to ρ on some instances. For instance,
consider the permutation π = (1, 2, 4, 3, 5, 7, 6, 8, 10, 9, 11, 12) of length n = 12.
It has ρ = 4 runs whose lengths form the vector Runs = 〈3, 3, 3, 3〉 of entropy
H(Runs) = lg 4 = 2, while the LRM-Sorting algorithm yields a partition of
sequences whose lengths form the vector LRM = 〈9, 1, 1, 1〉, of entropyH(LRM) =
9
12 lg

12
9 + 3× 1

12 lg
12
1 ≈ 1.2075 < 2. A generalization of this example yields the

following lemma.

Lemma 6. LRM-Sorting performs asymptotically no worse than Runs-Sorting,
and it outperforms Runs-Sorting on all instances where H(LRM) < H(Runs) −
1 + 1/n, by a factor of up to Θ(lg n) for some classes of instances.

Proof. The exact cost of both sorting algorithms is summarized as follows:

Run-Sorting LRM-Sorting
Partition n− 1 2(n− 1)
Merge n(1 +H(Runs)) n(1 +H(LRM))
Data comparisons n(2 +H(Runs))− 1 n(3 +H(LRM))− 2
Time complexity O(n(1 +H(Runs))) O(n(1 +H(LRM)))

Since H(LRM) ≤ H(Runs), n(3 + H(LRM)) − 2 ∈ O(n(1 + H(Runs))) and
hence LRM-Sorting performs asymptotically no worse than Runs-Sorting.

The extra data comparisons carried out by Runs-Sorting on top of LRM-
Sorting are exactly n(H(Runs)−H(LRM)−1)+1, thus LRM-Sorting outperforms
Runs-Sorting whenever H(Runs) − H(LRM) > 1 − 1/n, and concedes to Runs-
Sorting only when the value of H(LRM) is within [H(Runs)− 1+ 1/n,H(Runs)].

Now consider the class of permutations made of ρ runs of length n/ρ (we
consider classes where ρ divides n to simplify), such that the insertion point
(in the LRM-Tree) of each run is just before the last element of the previous
run. Then, the Runs-partition has entropy H(Runs) = lg ρ (the lengths of the
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runs form the vector Runs = 〈n/ρ, . . . , n/ρ〉), while the leftmost-spinal LRM-
partition yields sequences forming the vector LRM = 〈n − ρ + 1, 1, . . . , 1〉, of
entropy H(LRM) = n−ρ+1

n
lg n

n−ρ+1 + ρ−1
n

lg n ∈ O((ρ/n) lg n). For this class of
permutations, the number of comparisons and time complexity of Runs-sorting
are O(n lg ρ), whereas those of LRM-sorting are O(n + ρ lg n). The latter is
asymptotically smaller whenever ρ ∈ o(n) and ρ ∈ ω(1), by a factor of up to lg ρ
whenever ρ ∈ O(n/ lg n). This factor can thus be as large as Θ(lg n). ⊓⊔

4.4 Comparison with SUS-Sorting

The relation between the complexities of LRM-Sorting and SUS-Sorting is more
complex. SUS-Sorting is asymptotically superior, as its performance is never
more than a constant factor of the performance of LRM-Sorting, but the class of
instances on which LRM-Sorting is in practice superior to SUS-Sorting is wider
than the (narrow) class of instances on which Runs-Sorting is in practice superior
to LRM-Sorting. Moreover, it is not easy to find the optimal SUS-partition.

SUS-Sorting can asymptotically outperform LRM-Sorting. Each down-path of
the LRM-Tree corresponds to an ascending subsequence in π, but not all ascend-
ing subsequences correspond to down-paths of the LRM-Tree. For the array of
Figure 1, for example, the SUS-partitioning algorithm described by Levcopoulos
and Petersson [24] yields the partition {(15, 16), (8, 13, 14), (7, 11, 12), (1, 10), (9),
(2, 3, 6), (5), (4)}, of |SUS| = 8 runs (less than ρ = 9) of lengths forming the vec-
tor 〈2, 3, 3, 2, 1, 3, 1, 1〉 of entropy H(SUS) = 3× 3

16 × lg 16
3 +2× 2

16 × lg 16
2 +3×

1
16 × lg 16

1 ≈ 2.8585, lower than H(LRM) ≈ 2.9528, itself already lower than the
entropy of the decomposition into runs, H(Runs) ≈ 3.0778. Hence, partitioning
π optimally into |SUS| ascending subsequences potentially yields partitions with
fewer runs and of smaller entropy.

On those instances where H(LRM) is much larger than H(SUS), the merg-
ing of an optimal LRM-partition can actually require many more comparisons
than the merging of a SUS-partition. For example, for even n > 2, consider the
permutation π = (1 , n/2+1, 2 , n/2+2, . . . , n/2 , n). It has ρ = n/2 runs and
the entropy of its left-most spinal LRM-partition is H(LRM) = lg n

2 , whereas
it can be partitioned into |SUS| = 2 increasing subsequences, which yields a
SUS-partition of entropy H(SUS) = lg 2. Figure 4 gives an example.

−∞

1

33

2

34

. . .
32

64

Fig. 4. The LRM-Tree of the permuta-
tion π = (1 , 33, 2 , 34, . . . , 32 , 64)), where
H(LRM) is much larger than H(SUS). Here
ρ = 32 and H(LRM) = lg 64

2
= 5, whereas

|SUS| = 2 and H(SUS) = lg 2 = 1.

This shows that the time complexity of LRM-Sorting can be larger than that
of SUS-Sorting, by a factor of up to Θ(lg n), even over classes of instances of
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fixed H(SUS). On the other hand, since H(SUS) ≤ H(LRM), the complexity of
SUS-Sorting is within a constant factor of the complexity of LRM-Sorting.

SUS-Sorting does not find an optimal SUS-Partition. The SUS-partitioning al-
gorithm described by Levcopoulos and Petersson [24] makes a single pass over
the permutation, keeping a set of increasing subsequences. Each new element
is inserted at the end of the subsequence with the largest final element that is
smaller than the new element. If there is none, the element starts a new sub-
sequence. Their algorithm runs in time O(n(1 + lg |SUS|)), and an improved
variant [3] runs in time O(n(1 +H(SUS))), where SUS is the vector formed by
the lengths of the subsequences found by the algorithm.

This algorithm guarantees |SUS| to be minimal, but does not guarantee that
the entropy H(SUS) of the partition produced is optimal, and no efficient algo-
rithm is known to find the partition that minimizes this entropy. Furthermore,
even though the optimal partition into increasing subsequences cannot have en-
tropy higher than H(LRM), there exists permutations for which the partition
found by both versions of the SUS-Sorting algorithm [3, 24] has entropy higher
than H(LRM) (see Figure 5 for an example).

1

2

3

4

5

6

7

8

−∞

5 1

2

3

4

6

7

8

Fig. 5. On the permutation π = (5, 1, 2, 3, 4, 6, 7, 8),
the SUS-Sorting algorithm finds the partition
{(5, 6, 7, 8), (1, 2, 3, 4)} (on the left), which has en-
tropy H(SUS) = 1, whereas the LRM-Sorting al-
gorithm finds the partition {(5), (1, 2, 3, 4, 6, 7, 8)}
(LRM-Tree on the right), of entropy H(LRM) =
1
8
lg 8

1
+ 7

8
lg 8

7
≈ 0.5436.

Lemma 7. For every value of n > 0, there is a permutation over [1..n] of LRM-
Entropy H(LRM) on which both variants of the SUS-Sorting algorithm find a
partition into increasing subsequences of entropy H(SUS) higher than H(LRM),
by a factor of up to nα for any constant 0 < α < 1.

Proof. Without loss of generality, assume that n = k×a for some integers k and
a. Consider the following permutation formed of 2k runs, basically “stealing” the
first elements of k−1 straight ascending runs of length a to form a first descending
sequence of length k: ( (k – 1)a + 1, (k – 2)a + 1, . . . , 2a + 1, a + 1, 1,
2, 3, . . . , a, a + 2 , a + 3 , . . . , 2a, 2a+2, 2a+3, . . . , 3a, . . . , (k − 1 )a + 2 , . . . , ka = n).
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The SUS-Sorting algorithm [24] finds the partition { (1, 2, . . . , a), (a+1, a+
2, . . . , 2a), (2a + 1, 2a + 3, . . . , 3a), . . ., ((k − 1)a + 1, ((k − 1)a) + 2, . . . , n)}, of
size |SUS| = k and entropy H(SUS) = lg k.

However, the left-most spinal LRM-partition of the permutation has a much
better entropy: it contains the singletons (ia + 1) for i = 1, . . . , k − 1 and then
a single increasing subsequence with all the rest. This decomposition has ρ = k
runs and entropy H(LRM) ∈ O((k/n) lg n). In particular, if k = n1−α for any
0 < α < 1, then H(SUS) ∈ Θ(lg n) and H(LRM) ∈ Θ(n−α lg n) ⊆ o(1).

(Note that the SMS-Sorting algorithm [24] would find a much shorter par-
tition into only two runs, { ((k − 1)a + 1, ((k − 2)a) + 1, . . . , 2a + 1, a + 1, 1),
(2, 3, . . . , a, a+2, a+3, . . . , 2a, 2a+2, 2a+3, . . . , 3a, . . . (k−1)a+2, . . . , ka = n) },
of size |SMS| = 2 and entropyH(vSMS) = H(k−1, n−k+1) ∈ O((k/n) lg(n/k)).)

⊓⊔

LRM-Sorting outperforms SUS-Sorting in practice on a large class of instances.
An optimal LRM-partition can be computed in 2(n− 1) comparisons and O(n)
time, while SUS-partitions are computed in n(1+H(SUS)) comparisons [3], and
they may be suboptimal, as explained. Even if we assume that the optimal SUS-
partitioning is found, on instances where the merging of the sequences identified
by the LRM and SUS-partitions do not differ much in complexity (e.g., because
they have the same entropy), this difference in the complexity of computing the
partition makes LRM-Sorting a better choice.

For example, for n > 2 multiple of 3, consider the permutation given by
π = (1, 2, n, 3, 4, n − 1, 5, 6, n − 2, . . . , 2n/3 − 1, 2n/3, 2n/3 + 1). Its left-most
spinal LRM-partition is the same as the SUS-partition of minimal size, resulting
in the same vector LRM = SUS = 〈2n/3+1, 1, . . . , 1〉 and the same entropies, so
that LRM-sorting outperforms SUS-sorting. Figure 6 exemplifies.

−∞

1

2

12 3

4

11 5

6

10 7

8

9

Fig. 6. The LRM-Tree of the permuta-
tion π = (1, 2, 12, 3, 4, 11, 5, 6, 10, 7, 8, 9),
where LRM = SUS = 〈9, 1, 1, 1〉 so that
H(LRM) = H(SUS).
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The high cost of computing the SUS-partition (n(1 + H(SUS)) additional
comparisons within the array, as opposed to only 2(n−1) for the LRM-partition)
means that on instances where H(LRM) < 2H(SUS) − 1 + 2/n, LRM-Sorting
actually performs fewer comparisons within the array than SUS-Sorting.

Lemma 8. On permutations such that H(LRM) < 2H(SUS) − 1 + 2/n, LRM-
Sorting performs n(2H(SUS) −H(LRM) − 1) + 2 fewer comparisons than SUS-
Sorting.

Proof. Barbay and Navarro’s improvement [3] of SUS-Sorting performs 2n(1+
H(SUS)) comparisons within the array, which can be decomposed into two parts:

– n(1 +H(SUS)) comparisons within the array to compute a partition π into
|SUS| sub-sequences that are minimal in size, yet not necessarily in entropy;

– n(1 + H(SUS)) additional comparisons within the array to merge the sub-
sequences into a single ordered one (and O(n(1 + H(SUS))) overall time
complexity).

On the other hand, the combination of Lemmas 1 and 5 yields an optimal
LRM-partition in 2(n − 1) comparisons within the array (and O(n) additional
internal operations), which is then merged in n(1+H(LRM)) comparisons within
the array (and O(n(1 +H(LRM))) additional internal operations) to merge the
subsequences into a single ordered one.

The exact number of data comparisons performed by both sorting algorithms
is summarized as follows:

SUS-Sorting LRM-Sorting
Partition n(1 +H(SUS)) 2(n− 1)
Merge n(1 +H(SUS)) n(1 +H(LRM))
Data comparisons 2n(1 +H(SUS)) n(3 +H(LRM))− 2
Time complexity O(n(1 +H(SUS))) O(n(1 +H(LRM)))

Comparing the 2n(1+H(SUS)) comparisons performed by SUS-Sorting with the
n(3 +H(LRM)) − 2 comparisons performed by LRM-Sorting shows that LRM-
Sorting performs fewer comparisons on instances where H(LRM) < 2H(SUS) −
1 + 2/n. ⊓⊔

We show in the next section that this new sorting algorithm yields another
compressed data structure for permutations.

5 Compressing Permutations

As shown by Barbay and Navarro [3], sorting opportunistically in the comparison
model yields a compression scheme for permutations and, with some more work,
also yields a compressed data structure giving access to the direct and inverse
permutations in time proportional to the entropy of the vector formed by the
lengths of the runs (of whatever kind) of the permutation. We show that the
sorting algorithm of Theorem 4 corresponds to a compressed data structure for
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permutations that supports direct and inverse access in time proportional to the
LRM-entropy (Definition 3 page 15), while often using less space than previous
solutions.

The essential component of our solution is a data structure for encoding an
LRM-partition P . In order to apply Lemma 3, our data structure must efficiently
support two operators:

– the operator map(i) that indicates, for each position i ∈ [1..n] in the in-
put permutation π, the corresponding subsequence s of P , and the relative
position p of i in this subsequence; and

– the operator unmap(s, p) that is the reverse of map(): given a subsequence
s ∈ [1..ρ] of P and a position p ∈ [1..ns] in s, it indicates the corresponding
position i in π.

We obviously cannot afford to rewrite the numbers of π in the order described
by the partition, which would use lg(n!) ≥ n lg n− n lg e+O(lg n) bits. A naive
solution would be to encode this partition as a string S over alphabet [1..ρ], using
a succinct data structure supporting the access, rank and select operators on
S, as done for a general SUS-partition [3]. This solution is not suitable as it would
require at the very least nH(LRM) bits only to encode the LRM-partition, plus
other nH(LRM) bits to encode the merging tree. This would make this encoding
worse than the optimal one for SUS-partition, which requires 2nH(SUS) plus
lower-order terms bits [3, 4], given that H(SUS) ≤ H(LRM).1

We describe a more complex data structure that uses much less space, and
that supports the desired operators in constant time.

Lemma 9. Let P be an LRM-partition consisting of ρ subsequences of respective
lengths given by the vector LRM, adding up to n. Then there is a data structure
using 2ρ lg n+O(ρ) + o(n) bits that can be computed in time O(n) and supports
the operators map and unmap on P in constant time and with zero accesses to
the original data.

Proof. The main idea of the data structure is that the subsequences of an LRM-
partition P for a permutation π are not as general as, say, the subsequences of a
partition into |SUS| up-sequences. For each pair of subsequences (u, v), either the
positions of u and v belong to disjoint intervals of π, or the values corresponding
to u (resp. v) all fall between two values from v (resp. u). To see this, assume
position z is a child of position x in path u, and that y is a position of path v,
so that y is between positions x and z, that is, x < y < z. Then, by the time
y was processed by the LRM-Tree construction algorithm (Lemma 1), x must
have been on the rightmost path and y must have been made a child of x or
of a descendant of x, as otherwise z could not have been connected to x later.
However, once z was added to the rightmost path as a child of x, y was not
anymore on the rightmost path, so any child (and descendant) of y must be at
positions between y and z.

1 Assuming that we have spent all the necessary time to find the optimal SUS-
partitioning.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A[i] 15 8 13 7 11 16 1 10 9 14 2 12 3 6 5 4

<8,13>(2−3)

8 13(3)(2)

<4><5> (16)(15)

(16)4(15)5

<15>(1)

15(1) 7 1611(4) (5) (6)

<7,11,16> (4−6)

1(7) <10>(8)

10 (8)

<9,14>(9−10)

9 (9) 14 (10)

2 (11) <12>

12 (12)

6 (14)

<1,2,3,6>(7−14)

(12) (13)3

Fig. 7. The forest (with a fake root added) corresponding to the LRM-partition
{(1, 2, 3, 6), (5), (4), (12), (9, 14), (10), (7, 11, 16), (8, 13), (15)} of the permutation
of Figure 1 (repeated on top). The smaller numbers below the nodes are the ranges
of positions covered by each subsequence.

As a result, the subsequences in P can be organized into a forest of ordinal
trees, where

– the internal nodes of the trees of this forest correspond to the ρ subsequences
of P , organized so that node v is a descendant of node u if and only if the
positions of the subsequence corresponding to v are contained between two
positions of the subsequence corresponding to u;

– the leaves of the trees correspond to the n positions in π, and are children
of the internal node u corresponding to the subsequence they belong to; and

– the children of a node are ordered in the same order as their corresponding
subsequences (if they are internal nodes) or elements (if they are leaves) in
the permutation.

It is easy to see that these conditions define a forest: An internal node v can-
not have two parents u and u′, as its subsequence would be inside two positions
of u and of u′, thus subsequences u and u′ cannot be disjoint and hence, by
the above property, one must descend from the other. We will use the balanced
parentheses representation of this forest to implement operations map and unmap.
Figure 7 shows the forest corresponding to the permutation of Figure 1.

Given a position i ∈ [1..n] in π, the corresponding subsequence s of P is
simply obtained by finding the parent of the i-th leaf, and returning its preorder
rank among internal nodes. The relative position p of i in this subsequence is
given by the number of its left siblings that are leaves. Conversely, given the rank
s ∈ [1..ρ] of a subsequence in P and a position p ∈ [1..ns] in this subsequence,
the corresponding position i in π is computed by finding the s-th internal node
in preorder, selecting its p-th child that is a leaf, and computing the preorder
rank of this node among all the leaves of the tree.

We represent our forest, with the fake root added, using the structure of
Jansson et al. [21]. The only required operation that this representation does
not support is counting the number of leaf siblings to the left of a node, and
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finding the p-th leaf child of a node. We show next how to extend the structure
to support these.

Jansson et al.’s structure [21] encodes a DFUDS representation [5] of the tree,
where the nodes are represented in preorder and each node with d children is
represented as d 1s followed by a 0: “1 · · · 10”. In our example, this representation
yields the bit sequence (where we added spaces between nodes for legibility):

1111110 10 0 110 0 0 1110 0 0 0 11111110 0 10 0 110 0 0 0 10 0 0 0 10 0 10 0.

Therefore, the preorder rank among internal nodes corresponds to the number of
occurrences of the substring ‘10’ before the position of the node, and conversely,
the s-th internal node in preorder is found by locating the s-th occurrence of ‘10’
in the bit-vector and then seeking the preceding 0. The number of leaves to the
left of a position corresponds to the number of substrings ‘00’ to the left of the
node, and the i-th leaf is found by locating the position of the i-th occurrence
of ‘00’. Those are simple extensions of rank and select operations on bitmaps
that can be carried out in constant time and o(n) bits of space.

For the operations not yet supported, we set up an additional bitmap, of the
same length and aligned to the bit-vector of Jansson et al.’s structure, where
we mark with a one each 1-bit (i.e., child) that corresponds to an internal node,
and the remaining positions are set to zero. In our example, this yields the bit
sequence

0111000 00 0 000 0 0 0000 0 0 0 01101000 0 00 0 000 0 0 0 00 0 0 0 00 0 00 0.

Then the operations are easily carried out using rank and select on this bit-
vector and the one from Jansson et al.’s structure: Once we know that v is the
i-th child of node u, and that u’s children are at positions x to y in the bit-vectors
(all of which is given by Jansson et al.’s structure), the number of left siblings
of v that are leaves is the number of 0s in the zone [x, x+ i− 2]. Conversely, the
p-th child of u that is a leaf is its i-th child, where i is the relative position of
the p-th zero in [x, y].

Since the forest T has n leaves and ρ internal nodes, Jansson et al.’s struc-
ture [21] takes space

nH∗(T ) +O

(
n(lg lg n)2

lg n

)

∈ nH∗(T ) + o(n)

bits, where

nH∗(T ) = lg

(
n+ ρ

n, n1, . . . , nn−1

)

≤ lg
(n+ ρ)!

n!
≤ lg ((n+ ρ)ρ)

= ρ lg(n+ ρ) = ρ lg(n(1 + ρ/n))

∈ ρ lg n+O(ρ2/n) ⊂ ρ lg n+O(ρ).



26

On the other hand, the bitmap that we added is of length 2(n+ρ) ≤ 4n and has
exactly ρ 1s, and thus a compressed representation [32] requires ρ lg n+O(ρ) +
o(n) bits in total. Adding both we get 2ρ lg n+O(ρ) + o(n). ⊓⊔

Combining the data structure for LRM-partitions from Lemma 9 with the
merging data structure from Lemma 3 yields a compressed data structure for
permutations. Note that the index and the data are interwoven in a single data
structure (i.e., this encoding is not a succinct index [2]), so we express the com-
plexity of its operators as a single measure (as opposed to previous ones, for
which we distinguished data and index complexity).

Theorem 5. Let π be a permutation of size n, such that it has an optimal
LRM-partition of size ρ and entropy H(LRM). Then there is a compressed data
structure using nH(LRM) +O(ρ lg n) + o(n) bits, supporting the computation of
π(i) and π−1(i) in time O(1 + lg ρ/ lg lg n) in the worst case ∀i ∈ [1..n], and in
time O(1 +H(LRM)/ lg lg n) on average when i is chosen uniformly at random
in [1..n]. It can be computed in at most n(3 + H(LRM)) − 2 comparisons in π
and total running time of O(n(1 +H(LRM))).

Proof. Lemma 5 yields an optimal LRM-partition for π in 2(n− 1) data com-
parisons and linear overall time. Lemma 9 yields a data structure for this LRM-
partition using 2ρ lg n + O(ρ) + o(n) bits, and supporting the map and unmap

operators in constant time. This structure is built in linear time and with no
further accesses to the permutation. The merging data structure from Lemma 3
requires nH(LRM) + O(ρ lg n) + o(n) bits, is built using n(1 + H(LRM)) data
comparisons, and supports the operators π() and π−1() in the time described,
through the additional (constant-time) calls to the operators map() and unmap().
Adding up, we obtain the result. ⊓⊔

Note that this is a compressed data structure, as we stated, as long as ρ lg n ∈
o(nH(LRM)). Since nH(LRM) =

∑
ni lg

n
ni
, it suffices that there is one partition

of length ni ∈ ω(1) for the condition to hold. If the condition does not hold, on
the other hand, we have nH(LRM) ∈ Θ(n lg n) and there is no hope to compress
the permutation under this model.

On the other hand, if we use a coarser-grained entropy measure, such as lg ρ,
then our data structure is a fully compressed one, as long as ρ ∈ o(n). Again,
the data is basically not compressible otherwise.

6 Final Remarks

LRM-Trees have proved to be a useful tool to describe a partitioning into in-
creasing runs that is more general than the simple partitioning into contiguous
subsequences, and more tractable than the one allowing any such partitioning. It
is natural to ask whether other intermediate points exist, more powerful than (or
incomparable with) LRM-Trees, and still manageable (i.e., allowing to efficiently
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find the optimum partition). Each such result may yield improved sorting algo-
rithms and compressed data structures for interesting classes of permutations
that arise in practice.

When implementing these techniques, one should consider a variant of LRM-
Trees, Roller Coaster Trees (RC-Trees), which take advantage of permutations
formed by the combinations of ascending and descending runs. This approach
is simple when considering subsequences of consecutive positions, but it gets
more technical when considering the insertion of descending runs, and requires
new techniques to adapt our compressed data structure to this new setting.
Since finding a minimum-size partitioning into up- and down-sequences when
considering general subsequences [24] is NP-complete [22], RC-Sorting seems a
much desirable improvement on merging ascending and descending runs, as well
as a more practical alternative to a hypothetical exponential-time SMS-Sorting
algorithm, in an even stronger way than LRM-Trees improved on Runs-Sorting
while staying more practical than SUS-Sorting.

Another perspective is the generalization of our results to the compression of
general sequences and functions (our techniques already apply to the indexing
and sorting of such multisets with redundant values), taking advantage of the
redundancy in a general sequence to sort faster and encode in even less space, in
function of both the entropy of the frequencies of the symbols and the entropy of
the lengths of the subsequences of an optimal LRM-partition. Finally, studying
the integration of those compressed data structures into compressed text indices
like suffix arrays [27] is likely to yield interesting results, too, as demonstrated
in previous work [3].
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