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Abstract

We introduce a new dimension to the widely studied on-line approximate string matching problem,
by introducing an error threshold parameter ε so that the algorithm is allowed to miss occurrences with
probability ε. This is particularly appropriate for this problem, as approximate searching is used to model
many cases where exact answers are not mandatory. We show that the relaxed version of the problem
allows us breaking the average-case optimal lower bound of the classical problem, achieving average case
O(n logσm/m) time with any ε = poly(k/m), where n is the text size, m the pattern length, k the
number of differences for edit distance, and σ the alphabet size. Our experimental results show the
practicality of this novel and promising research direction. Finally, we extend the proposed approach
to the multiple approximate string matching setting, where the approximate occurrence of r patterns
are simultaneously sought. Again, we can break the average-case optimal lower bound of the classical
problem, achieving average case O(n logσ(rm)/m) time with any ε = poly(k/m).

1 Introduction

In string matching one is interested in determining the positions (sometimes just deciding the occurrence)
of a given pattern P on a text T , where both pattern and text are strings over some fixed finite alphabet Σ
of size σ. The lengths of P and T are typically denoted by m and n respectively. In approximate string
matching there is also a notion of distance between strings, given say by d : Σ∗ × Σ∗ → R. One is given
an additional non-negative input parameter k and is interested in listing all initial or final positions (or just
deciding the occurrence) of substrings S of T such that S and P are at distance at most k. In the “on-line”
or “sequential” version of the problem, one is not allowed to preprocess the text.

Since the 60’s several approaches were proposed for addressing the approximate matching problem, see
for example the survey by Navarro [11]. Most of the work focused on the edit or Levenshtein distance d,
which counts the number of differences between two strings, that is, the number of character insertions,
deletions, and substitutions needed to make the strings equal. This distance turns out to be sufficiently
powerful to model many relevant applications (e.g., text searching, information retrieval, computational
biology, transmission over noisy channels, etc.), and at the same time sufficiently simple to admit efficient
solutions (e.g., O(mn) and even O(kn) time).

A lower bound to the (worst-case) problem complexity is obviously Ω(n) for the meaningful cases, k < m.
This bound can be reached by using automata, which introduce an extra additive term in the time complexity
which is exponential in m or k. If one is restricted to polynomially-bounded time complexities on m and k,
however, the worst-case problem complexity is unknown.

Interestingly, the average-case complexity of the problem is well understood. If the characters in P and
T are chosen uniformly and independently, the average problem complexity is Θ(n(k + logσm)/m) time.
This was proved in 1994 by Chang and Marr [4], who gave an algorithm reaching the lower bound for
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k/m < 1/3 − O(σ−1/2). In 2004, Fredriksson and Navarro [7] gave an improved algorithm achieving the
lower bound for k/m < 1/2−O(σ−1/2). In addition to covering the range of interesting k values for virtually
all applications, the algorithm was shown to be highly practical.

It would seem that, except for determining the worst-case problem complexity (which is mainly of the-
oretical interest), the on-line approximate string matching problem is closed. In this paper, however, we
reopen the problem under a relaxed scenario that is still useful for most applications and admits solutions
that beat the lower bound. More precisely, we relax the goal of listing all positions where pattern P occurs
in the text T to that of listing each such position with probability 1− ε, where ε is a new input parameter.

There are several relevant scenarios where fast algorithms that err (with a user-controlled probability)
are appropriate. Obvious cases are those where approximate string matching is used to increase recall when
searching data that is intrinsically error-prone. Consider for example an optical character recognition appli-
cation, where errors will inevitably arise from inaccurate scanning or printing imperfections, or a handwriting
recognition application, or a search on a text with typos and misspells. In those cases, there is no hope to
find exactly all the correct occurrences of a word. Here, uncertainty of the input translates into approximate
pattern matching and approximate searching is used to increase the chance of finding relevant occurrences,
hopefully without introducing too many false matches. As the output of the system is an approximation
to the ideal answer using a correct approximate string matching technique is a perfectly tolerable second
approximation, and even welcome if it allows for faster searches.

A less obvious application arises in contexts where we might have a priori knowledge that some pattern is
either approximately present in the text many times, or does not even approximately occur. Some examples
are genetic markers that might often appear or not at all, some modisms that might appear in several forms
in certain type of texts, some typical pattern variants that might appear in the denomination of certain drugs,
people names, or places, of which typically several instances occur in the same text. Further, we might only
be interested in determining whether the pattern occurs or not. (A feature actually available in the well
known grep string searching utility as options -l and -L, and also the approximate string searching utilities
agrep and ngrep.) In this context, a text with N approximate pattern occurrences will be misclassified by
the inexact algorithm with very low probability, εN (if failing to report different occurrences are independent
events).

Another interesting scenario is that of processing data streams which flow so fast that there is no hope for
scanning them exhaustively (e.g. radar derived meteorological data, browser clicks, user queries, IP traffic
logs, peer-to-peer downloads, financial data, etc.). Hence even an exact approximate search over part of the
data would give only partial results. A faster inexact algorithm could even give better quality answers as it
could scan a larger portion of the data, even if making mistakes on it with controlled probability.

1.1 Related Work

Approximate string matching is a central problem in many areas such as information retrieval, computational
biology, transmission over noisy channels, etc. Each application uses a different model to define how different
two strings are. This leads to the notion of “distance” between strings — the idea is that the distance should
be small if one of the strings is likely to be an erroneous variant of the other one in the model under
consideration. The algorithmic nature of the problem depends strongly on the distance function considered,
and the solutions range from linear time to NP-hard. The scope of the area is broad, moreover its relevance
is undisputed. It is thus not surprising that it has received much attention by researchers. In this short
contribution we cannot make true justice to all who have contributed to the study of the area. We refer the
interested reader to the extensive survey of the subject by Navarro [11]

The concrete proposals of d-Approximate String Matching algorithms with errors that we introduce in
this work are based in the so called filtering algorithms [11, § 8]. This latter technique was introduced in
the 1990’s by Tarhio and Ukkonen [15]. It consists of algorithms that quickly discard areas of the text that
cannot approximately match the pattern. Here quickly means carrying out O(n) or even less comparisons on
average. Filtering algorithms have been proposed with optimal average cost O(n(k+logσm)/m). In practice,
filters are also the fastest approximate string matching algorithms. Since the main objective of this work is
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to introduce a new model for approximate string matching for which it is possible to beat the complexity
of the fastest currently known algorithms for the problem, it is natural to focus attention and adapt ideas
from filtering type algorithms to the new setting we introduce. Specifically, the algorithmic proposals we put
forth are particularly inspired in the filtering algorithms of Tarhio and Ukkonen [15], Ukkonen [16], Chang
and Lawler [2], and Chang and Marr [4].

The main motivation for the new framework proposed in this work comes from the so called testing and
property testing literature, where the aim is to devise sublinear time algorithms obtained by avoiding having
to read all of the input of a problem instance. These procedures typically use randomization, reading a
very small fraction of the input while providing answers which in some sense are approximate, or wrong
with some probability. The testing paradigm was pioneered by Blum and his collaborators as an alternative
approach to classical program verification techniques. A seminal and influential paper in this area is due to
Blum, Luby and Rubinfeld [1]. The new framework quickly found many applications, both of a theoretical
and practical nature. The theory was later extended to what has become also known as sublinear time
algorithms. The interested reader is referred to the excellent surveys concerning these topics of Fischer [6],
Goldreich [8], Ron [13], and Rubinfeld [14].

1.2 Main Contributions

The contributions of our work are both conceptual and technical in nature. Concerning the former aspect,
we add a new dimension to an important category of information retrieval problems by relaxing the typical
goal of finding every occurrence of the object sought, and instead allowing each occurrence to be missed with
a small probability. We establish both the plausibility of our proposal as well as its practicality.

Concerning the technical aspects of our work, we show how to break the average-case optimal lower
bound for the classical approximate string matching problem. In Section 3.1 we describe a procedure based
on sampling q-grams motivated by the filtering algorithm of Ukkonen [16]. For a fixed constant t > 0 and
k < m/ logσm, the derived algorithm has an average case complexity of O(tn logσm/m) and misses pattern
occurrences with probability ε = O((k logσm/m)t). Note that the time equals Yao’s lower bound for exact
string matching (k = 0). In contrast, Ukkonen’s original algorithm takes O(n) time. In Section 3.2 we
describe an algorithm based on Chang and Marr’s [4] average-optimal algorithm. For fixed t > 0, we derive
an O(tn logσm/m) average-time approximate matching algorithm with error ε = O((k/m)t). Note that the
latter achieves the same time complexity for a smaller error, and that it works for k = O(m), whereas the
former needs k < m/ logσm. The discrepancy between both algorithms inherits from that of the original
classical algorithms they derive from, where the original differences in time complexities has now translated
into their error probabilities. It is important to stress that both algorithms beat the average-complexity
lower bound of the problem when errors are not allowed, Ω(n(k + logσm)/m) time, as they remove the
Ω(kn/m) term in the complexity (the k/m term now shows up in the error probability).

In Section 4 we present some experimental results that corroborate the theoretical results of Section 3
and give supporting evidence for the practicality of our proposals. In particular, the experiments favor the
technique of Section 3.1 over that of Section 3.2, despite the theoretical superiority of the latter.

The derived average case complexity results are for random text, but hold even for fixed patterns. Our
analyzes focus exclusively on Levenshtein distance d, but can probably be adapted to other scenarios. We
give a minor hint in this direction by showing in Section 5 how easily one can adapt the arguments of Section 3
to address the problem of approximate multi-pattern string searching. In particular, we again can break the
average-case optimal lower bound of the classical problem, achieving average case O(n logσ(rm)/m) time
with any ε = poly(k/m), where r denotes the number of patterns whose occurrences in the text are being
sought.

In Section 6 we discuss some possible future research directions and extensions of our work.
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2 Model for Approximate Searching allowing Errors

In this section we formalize the main concepts concerning the notion of approximate matching algorithms
with errors. We adopt the standard convention of denoting the substring Si . . . Sj of S = S1 . . . Sn by Si..j
and refer to the number of characters of S by the length of S, which we also denote by |S|. We start by
recalling the formal definition of the approximate string matching problem when the underlying distance
function is d. Henceforth, we abbreviate d-Approximate String Matching as d-ASM.

Problem d-Approximate String Matching
Input Text T ∈ Σ∗, pattern P ∈ Σ∗ and parameter k ∈ N.

Output S = S(T, P, k) ⊆ {1, . . . , n} such that j ∈ S if and only if there is
an i such that d(Ti..j , P ) ≤ k.

When the text T and pattern P are both in Σ∗, and the parameter k is in N we say that (T, P, k) is
an instance of the d-ASM problem, or simply an instance for short. We henceforth refer to S(T, P, k) as
the solution set of instance (T, P, k). We say that algorithm A solves the d-ASM problem if on instance
(T, P, k) it outputs the solution set S(T, P, k). Note that A might be a probabilistic algorithm, however its
output is fully determined by (T, P, k).

We consider the possibility of missing some occurrences in S(T, P, k). For a randomized algorithm A
that takes as input an instance (T, P, k), let A(T, P, k) be the distribution over sets S ⊆ {1, . . . , n} that it
returns.

Henceforth we denote by X ← D the fact that the random variable X is chosen according to distribu-
tion D. For any set C, we denote X ← C a random variable X that is uniform on C. In general, we denote
the probability that X ∈ C when X is chosen according to the distribution D by Pr [X ∈ C;X ← D] or
PrX←D [X ∈ C]. Also, we might simply write PrX [X ∈ C] or Pr [X ∈ C] when it is clear from context that
X ← D. The notation generalizes in the obvious way to the case where X is a random vector, and/or when
instead of a probability one is interested in taking expectation (denoted by Ex [·]).

We say that randomized algorithm A solves the d-ASM problem with (ε, ε′)-error provided that on any
instance (T, P, k) the following holds:

Completeness: if i ∈ S(T, P, k), then Pr [i ∈ S′;S′ ← A(T, P, k)] ≥ 1− ε,

Soundness: if i 6∈ S(T, P, k), then Pr [i ∈ S′;S′ ← A(T, P, k)] ≤ ε′,

where the two probabilities above are taken only over the source of randomness of A.
When ε′ = 0 we say that A has one–sided ε-error or that it is one–sided for short. When ε = ε′ = 0 we

say that A is an errorless or exact algorithm.

Although a d-ASM algorithm with errors is guaranteed to output any index in the solution set S(T, P, k)
with probability at least 1 − ε (and an index not in S(T, P, k) with probability at most ε′) there could
potentially be correlations between the events {i ∈ A(T, P, k)} and {i′ ∈ A(T, P, k)} for i 6= i′. Some sort of
correlation is to be expected when i and i′ are close to each other. However, in order to guarantee that it will
be highly unlikely that a d-ASM algorithm will miss many sufficiently spread-out occurrences of the pattern,
one desires that correlations are weak or non-existent when i and i′ are far apart. In fact, one desires even
more. Indeed, for any “sufficiently far apart” set of indices L ⊆ {1, . . . , n}, one would like that the family
of events {l ∈ A(T, P, k)} with l ∈ L is independent. All of the d-ASM type algorithms we discuss in this
paper do in fact have the aforementioned property when sufficiently far apart is interpreted as a collection
of indices whose pairwise difference is at least Ω(m).

We say that randomized algorithm F is a d-ASM probabilistic filter with α-error or simply is an α-filter
for short, provided that on any instance (W,P, k) the following holds: if d(Pi..j ,W ) ≤ k for some pattern
substring Pi..j , then Pr [F(W,P, k) = Check ] ≥ 1 − α, where the probability is taken over the source of
randomness of F . If a filter does not return Check we assume without loss of generality that it returns
Discard.

4



Text T
Current window W

Discard
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Figure 1: Generic d-Approximate String Matching algorithm.

The notion of an α-filter is crucial to the ensuing discussion. Roughly said, a filter F will allow us
to process a text T by considering non-overlapping consecutive substrings W of T , running the filter on
instance (W,P, k) and either: (1) in case the filter returns Check, perform a costly approximate string
matching procedure to determine whether P approximately occurs in T in the surroundings of window W ,
or (2) in case the filter does not return Check, discard the current window from further consideration and
move forward in the text and process the next text window. The previously outlined general mechanism is
the basis of the generic algorithm we illustrate in Figure 1 and describe below.

The attentive reader would have noticed that when defining probabilistic filters we substituted the no-
tation T for texts by W . This is done in order to stress that the probabilistic filters that we will talk about
access the text T by sequentially examining substrings of T which we will refer to as windows. These windows
will typically have a length which is independent of n, more precisely they will be of length O(m).

We now precisely describe the central role played by probabilistic filters in the design of d-ASM algorithms
with errors. First, from now on, let w denote b(m − k)/2c. Henceforth, let W1, . . . ,Ws be such that
T = W1 . . .Ws and |Wp| = w (pad T with an additional character not in Σ as necessary). More precisely,
let s = dn/we and Wp = T(p−1)w+1..pw. Given any probabilistic filter F and an exact algorithm E we can
devise a generic d-ASM algorithm with errors such as the one specified in Algorithm 1.1

Algorithm 1 Generic d-Approximate String Matching with Errors

1: procedure G(T, P, k) . T ∈ Σn, P ∈ Σm, k ∈ N
2: S ← ∅
3: w ← b(m− k)/2c
4: s← dn/we
5: for p ∈ {1, . . . , s} do
6: if F(Wp, P, k) = Check then . Where Wp = T(p−1)w+1..pw

7: S ← S ∪
(
(pw −m− k) + E(Tpw−m−k+1..(p−1)w+m+k, P, k)

)
. See footnote2

8: return S

We will shortly show that the generic algorithm G is correct. We also would like to analyze its complexity
in terms of the efficiencies of both the probabilistic filter F and the exact algorithm E . However, we first
need to introduce the complexity measures that we will be looking at. Let TimeA(T, P, k) ∈ N ∪ {+∞} be
the expected time complexity of A on the instance (T, P, k), where the expectation is taken over the random
choices of A. We also associate to A the following average time complexity measures:

AvgA(n, P, k) = ExT←Σn [TimeA(T, P, k)] ,

AvgA(n,m, k) = ExT←Σn,P←Σm [TimeA(T, P, k)] .

1For A ⊆ Z we use the standard convention of denoting {a + x : x ∈ A} by a + A.
2If pw −m− k + 1 < 1, pad T to the left when running algorithm E.
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Let MemA(T, P, k) ∈ N ∪ {+∞} be the maximum amount of memory required by A on instance (T, P, k),
where the maximum is taken over all possible sequences of random bits on which A may act, and let

MemA(n, P, k) = max
T∈Σn

MemA(T, P, k),

MemA(n,m, k) = max
T∈Σn,P∈Σm

MemA(T, P, k).

We similarly define RndA(T, P, k), RndA(n, P, k), and RndA(n,m, k), but with respect to the maximum
number of random bits used by A. Also, the same complexity measures can be defined for probabilistic
filters and exact algorithms.

Theorem 1 Suppose m > k. Let F be an α-filter and let E be the standard deterministic O(kn) dynamic
programming algorithm for the d-ASM problem. Let W ⊆ Σw. Then, the generic algorithm G is a d-ASM
algorithm with one-sided α-error such that

AvgG(n, P, k) ≤ s ·AvgF (w,P, k)

+ s ·O (mk) · (PrW←Σw [W ∈ W] + maxW 6∈W Pr [F(W,P, k)=Check ]) +O(s).

Also, MemG(n, P, k) = MemE(3w + 4k + 2, P, k) + MemF (w,P, k) (ignoring the space required to output
the result), and RndG(n, P, k) = s ·RndF (w,P, k).

Proof: First, let us establish completeness of G. Assume i ∈ S(T, P, k). Let p + 1 be the index of the
window to which the character Ti belongs. As any occurrence of P in T has length at least m − k, Wp

is completely contained in the occurrence finishing at i, and thus Wp must be at distance at most k of a
substring of P . It follows that F(Wp, P, k) = Check with probability at least 1 − α, in which case line 7 of
the algorithm will run an exact verification with E over a text area comprising any substring of length m+k
that contains Wp. Since m + k is the maximum length of an occurrence of P in T , it follows that i will be
included in the output returned by G. Hence, with probability at least 1−α we have that i is in the output
of G.

To establish soundness, assume i 6∈ S(T, P, k). In this case, i will never be included in the output of G in
line 7 of the algorithm.

We now determine G’s complexity. By linearity of expectation and since TimeE(O(m),m, k) = O(mk),
we have

AvgG(n, P, k) =
s∑
p=1

(ExT [TimeF (Wp, P, k)] +O(mk) ·PrT [F(Wp, P, k) = Check ] +O(1))

= s ·AvgF (w,P, k) +O(mk) ·
s∑
p=1

PrT [F(Wp, P, k) = Check ] +O(s) .

Conditioning according to whether Wp belongs to W, we get for any W that

PrT [F(Wp, P, k)=Check] ≤ PrW←Σw [W ∈ W] + max
W 6∈W

Pr [F(W,P, k)=Check] .

The stated bound on AvgG(n, P, k) follows immediately. The memory and randomized complexity bounds
are obvious.

The intuition behind the preceding theorem is that, given any class W of “interesting” windows, if we
have a filter that discards the uninteresting windows with high probability, then the probability that the
algorithm has to verify a given text window can be bounded by the sum of two probabilities: (i) that of
the window being interesting, (ii) the maximum probability that the filter fails to discard a noninteresting
window. As such, the theorem gives a general framework to analyze probabilistic filtration algorithms. An
immediate consequence of the result is the following:
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Corollary 2 Under the same conditions of Theorem 1, if in addition

PrW←Σw [W ∈ W] = max
W 6∈W

Pr [F(W,P, k) = Check ] = O
(
1/m2

)
,

then AvgG(n, P, k) = O(s · AvgF (w,P, k)). This also holds if E is the classical O(m2) time dynamic
programming algorithm.

The previous results suggests an obvious strategy for the design of d-ASM algorithms with errors. Indeed,
it suffices to identify a small subset of windows W ⊆ Σw that contain all windows of length w that are at
distance at most k of a pattern substring, and then design a filter F such that: (1) the probability that
F(W,P, k) = Check is high when W ∈ W (in order not to miss pattern occurrences), and (2) the probability
that F(W,P, k) = Check is low when W 6∈ W (in order to avoid running an expensive procedure over regions
of the text where there are no pattern occurrences).

The next error amplification result is a simple observation whose proof we omit since it follows by standard
methods (running A repeatedly).

Proposition 3 Let A be a randomized algorithm that solves the d-ASM problem with (ε, ε′)-error.

• Let α ≤ ε = ε′ < 1/2 and N = O(log(1/α)/(1−2ε)2). Then, there is a randomized algorithm A′ that
solves the d-ASM problem with (α, α)-error.3

• If A is one-sided, there is a randomized algorithm A′ solving the d-ASM problem with (εN , 0)-error.

Moreover, it holds that AvgA′(n, P, k) = N ·AvgA(n, P, k), MemA′(n, P, k) = MemA(n, P, k) +O(logN),
and RndA′(n, P, k) = N ·RndA(n, P, k).

3 Algorithms for Approximate Searching with Errors

In this section we derive two probabilistic filters inspired on existing (errorless) filtration algorithms. Note
that according to the previous section, we focus on the design of the window filters, and the rest follows from
the general framework.

3.1 Algorithm based on q-gram sampling

A q-gram is a substring of length q. Thus, a pattern of length m has (m− q+ 1) overlapping q-grams. Each
difference can alter at most q of the q-grams of the pattern, and therefore (m− q + 1− kq) pattern q-grams
must appear in any approximate occurrence of the pattern in the text. Ukkonen’s idea [16] is to sequentially
scan the text while keeping count of the last q-grams seen. The counting is done using a suffix tree of P and
keeping the relevant information attached to the m − q + 1 important nodes at depth q in the suffix tree.
The key intuition behind the algorithm is that in random text it is difficult to find substrings of the pattern
of length q > logσm. The opposite is true in zones of the text where the pattern approximately occurs.
Hence, by keeping count of the last q-grams seen one may quickly filter out many uninteresting areas.

We now show how to adapt the ideas mentioned so far in order to design a probabilistic filter. The
filtering procedure randomly chooses several indices i ∈ {1, . . . , |W | − q+ 1} and checks whether the q-gram
Wi..i+q−1 is a pattern substring. Depending on the number of q-grams that are present in the pattern the
filter decides whether or not to discard the window. See Algorithm 2 for a formal description of the derived
probabilistic filter Q-PE-Fc,ρ,q, where c and ρ are parameters to be tuned later. Using the filter as a
subroutine for the generic algorithm with errors described in Algorithm 1 gives rise to a procedure to which
we will henceforth refer to as Q-PE.

Remark 4 The set of the q-grams of P can be precomputed, so Algorithm 2 requires only O(cq) time.

3By running the algorithm repeatedly and determining the occurrences using majority rule, see for example [5].
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Algorithm 2 Probabilistic filter based on q-grams

1: procedure Q-PE-Fc,ρ,q(W,P, k) . W ∈ Σw, P ∈ Σm, k ∈ N
2: ctr ← 0
3: for i ∈ {1, . . . , c} do
4: Choose ji uniformly at random in {1, . . . , |W | − q + 1}
5: if Wji..ji+q−1 is a substring of P then ctr ← ctr + 1
6: if ctr > ρ · c then return Check else return Discard

Let W be the collection of all windows in Σw for which at least β of its q-grams are substrings of the
pattern. Let w′ = w − q + 1 be the number of q-grams (counting repetitions) in a window of length w.
Finally, let p denote the probability that a randomly chosen q-gram is a substring of the pattern P , that is,

p =
1

σq
· |{Pi..i+q−1 : i = 1, . . . ,m− q + 1}| .

The following result shows that a window chosen randomly in Σw is unlikely to be in W.

Lemma 5 Let β ≥ pw′. Then, PrW←Σw [W ∈ W] ≤ exp

(
− 24(β − pw′)2

25q(β + 2pw′)

)
.

Proof: For i = 1, . . . , w′ let Yi be the indicator variable of the event “Wi..i+q−1 is a substring of P” when W

is randomly chosen in Σw. Clearly, Ex [Yi] = p. Moreover, W ∈ W if and only if
∑w′

i=1 Yi ≥ β. Unfortu-
nately, a standard Chernoff type bound cannot be directly applied given that the Yi’s are not independent.
Nevertheless, the collection {Y1, . . . , Yw′} can be partitioned into q families according to i mod q, each one
an independent family of random variables. The desired result follows applying a Chernoff bound for such
type of independent families [9, Corollary 2.4].

Lemma 6 Let β ≤ ρw′. If W 6∈ W, then

Pr [Q-PE-Fc,ρ,q(W,P, k) = Check ] ≤ exp

(
ρc− cβ

w′

)(
β

ρw′

)ρc
,

where the probability is taken exclusively over the sequence of random bits of the probabilistic filter.

Proof: Let Xji denote the indicator of whether Wji..ji+1−1 turns out to be a substring of the pattern P
in line 5 of the description of Q-PE-Fc,ρ,q. Note that the Xji ’s are independent, each with expectation at
most β/w′ when W 6∈ W. The claim follows by a standard Chernoff type bound from the fact that:

PrW←Σw [Q-PE-Fc,ρ,q(W,P, k) = Check] = Pr

[
c∑
i=1

Xji > ρ · c

]
.

Lemma 7 If kq ≤ w′(1− ρ), then Q-PE-Fc,ρ,q is an α-filter for

α ≤ exp

(
(1−ρ)c− ckq

w′

)(
kq

w′(1−ρ)

)c(1−ρ)
.

Proof: Let W ∈ Σw. Assume d(Pi..j ,W ) ≤ k for some pattern substring Pi..j . Then, at least w′ − kq of
W ’s q-grams are substrings of P . Defining Xji as in Lemma 6 we still have that the Xji ’s are independent
but now their expectation is at least 1− kq/w′. The claim follows by a standard Chernoff type bound from
the fact that:

Pr [Q-PE-Fc,ρ,q(W,P, k) = Discard] = Pr

[
c∑
i=1

Xji ≤ ρ · c

]
,

where the probabilities are taken exclusively over the sequence of random bits of the probabilistic filter.
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Theorem 8 Let t > 0 be a fixed constant. If k < (m − 4 logσm)/(1 + 8 logσm), then Q-PE is a d-
ASM algorithm with one-sided error O((k logσm/m)t) and average time complexity AvgQ-PE(n, P, k) =

O(tn logσm/m).

Proof: Choose q = 2dlogσme, so p ≤ m/σq ≤ 1/m2. Taking β = Θ(log2m) where the hidden constant
is sufficiently large, we have by Lemma 5 that PrW←W [W ∈ W] = O(1/m2). By Lemma 6 and taking
ρ = 1/2 and c a sufficiently large constant, we get that Pr [Q-PE-Fc,ρ,q(W,P, k) = Check] = O(1/m2)
when W 6∈ W.

Choose c(1− ρ) ≥ t. Note that the bound on k in the theorem’s statement implies that kq ≤ w′(1− ρ).
Lemma 7 thus applies and yields that Q-PE-Fc,ρ,q has O((k logσm/m)t)-error.

Clearly AvgQ-PE-F c,ρ,q (w,P, k) = O(cq) = O(t logσm). The result follows from Theorem 1 and

Corollary 2.

We can obtain different trade-offs between the time and error of the algorithm Q-PE by adjusting the
parameters of the algorithm. By choosing a non-constant t in the proof of Theorem 8, it is easy to
see that Q-PE is a d-ASM algorithm with any desired error tolerance ε and average time complexity
AvgQ-PE(n, P, k) = O(tn logσm/m) where t = logσ(1/ε)/ logσ(m/(k logσm)).

3.2 Algorithm based on covering by pattern substrings

In 1994 Chang and Marr [4] proposed a variant of SET [3] with running time O(n(k + logσm)/m) for
k/m ≤ 1/3−O(σ−1/2). As in SET, Chang and Marr consider text windows of size (m− k)/2, and pinpoint
occurrences of the pattern by identifying blocks that approximately match a substring of the pattern. This
identification is based on splitting the text window into contiguous blocks of length ` = dα logσme. Those
blocks are considered consecutively. For each one, the algorithm counts the minimum number differences for
the block to match inside P . The scanning of blocks continues until the accumulated number of differences
exceeds k or all the blocks are considered. If k differences occur before (m−k)/2 text characters are covered
with the scanned blocks, then the rest of the window can be safely skipped.

The adaptation of Chang and Marr’s approach to the design of probabilistic filters is quite natural.
Instead of looking at `-grams sequentially we just randomly choose sufficiently many non-overlapping `-
substrings in each block. We then determine the fraction of them that approximately appear in the pattern.
If this fraction is small enough, then the block is discarded. See Algorithm 3 for a formal description of the
derived probabilistic filter CM-PE-Fc,ρ,`,g. Using the filter as a subroutine for the generic algorithm with
errors described in Algorithm 1 gives rise to a procedure to which we will henceforth refer to as CM-PE.

Algorithm 3 Probabilistic filter based on covering by pattern substrings

1: procedure CM-PE-Fc,ρ,`,g(W,P, k) . W ∈ Σw, P ∈ Σm, k ∈ N
2: ctr ← 0
3: for i ∈ {1, . . . , c} do
4: Choose ji uniformly at random in {1, . . . , bw/`c}
5: if asm(W(ji−1)`+1..ji`, P ) ≤ g then ctr ← ctr + 1 . asm(S, P ) = mina≤b d(S, Pa..b)
6: if ctr > ρ · c then return Check else return Discard

Remark 9 Values asm(S, P ) of Algorithm 3 can be precomputed for all values of S ∈ Σ`, so Algorithm 3
performs in O(c`) time.

The analysis of Algorithm 3 establishes results such as Lemmas 5-7 and Theorem 8 but concerning
CM-PE-Fc,ρ,`,g. Below we provide the corresponding details. Throughout this section let d = bw/`c. Let
W be the collection of all windows W in Σw for which at least β of the W(i−1)`+1..i`’s with i varying in
{1, . . . , d} are at distance at most g of some substring of P .
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Lemma 10 There are α > 0 and 0 < ε < 1 such that for ` = dα logσme, g = ε`, d ≤ βm3 and m sufficiently

large, PrW←Σw [W ∈ W] ≤ exp
(
β − dm−3

) (
d

βm3

)β
.

Proof: For 1 ≤ i ≤ d let Yi be the indicator variable of the event “asm(W(i−1)`+1..i`, P ) ≤ g” when W is
randomly chosen in Σw. The Yi’s are clearly independent and have all the same expected value which we
will denote p = p(g, `). In [4] it is shown that there exists α > 0 and 0 < ε < 1 such that p(ε`, `) = O(m−3)

for ` = dα logσme. Since W ∈ W if and only if
∑d
i=1 Yi ≥ β, the desired result follows applying a standard

Chernoff type bound.

Lemma 11 Let β ≤ ρd. If W 6∈ W, then

Pr [CM-PE-Fc,ρ,`,g(W,P, k) = Check ] ≤ exp

(
ρc− cβ

d

)(
β

ρd

)ρc
,

where the probability is taken exclusively over the sequence of random bits of the probabilistic filter.

Proof: For 1 ≤ i ≤ d, let Xji be the indicator variable of the event “asm(W(ji−1)`+1..ji`, P ) ≤ g” when the
ji’s are randomly chosen in {1, . . . , d}. Note that the Xji ’s are independent, each with expectation at most
β/d when W 6∈ W. The claim follows by a standard Chernoff type bound from the fact that

Pr [CM-PE-Fc,ρ,`,g(W,P, k) = Check] = Pr

[
c∑
i=1

Xji > ρ · c

]
.

Lemma 12 If k ≤ dg(1− ρ), then CM-PE-Fc,ρ,`,g is an α-filter where

α ≤ exp

(
(1−ρ)c− ck

dg

)(
k

dg(1−ρ)

)c(1−ρ)
.

Proof: Let W ∈ Σw. Assume d(Pi..j ,W ) ≤ k for some pattern substring Pi..j . Then, the fraction of j’s
in {1, . . . , d} such that asm(W(j−1)`+1..j`, P ) > g is at most k/dg. Defining Xji as in Lemma 11 we still
have that the Xji ’s are independent but now their expectation is at least 1− k/dg. The claim follows by a
standard Chernoff type bound from the fact that:

Pr [CM-PE-Fc,ρ,`,g(W,P, k) = Discard] = Pr

[
c∑
i=1

Xji ≤ ρ · c

]
.

Theorem 13 There is a sufficiently small constant C such that if k < Cm and t > 0, then CM-PE is
a d-ASM algorithm with one-sided error O((k/m)t). Its average running time is AvgCM-PE(n, P, k) =
O(tn logσm/m).

Proof: Choose ρ = 1/2, c = max{2t, 6}, g = ε`, and ` = dα logσme, where ε and α are the constants of
Lemma 10. Taking β = 2 and applying Lemma 10 we get that PrW←Σw [W ∈ W] = O(1/m4). Since w ≥ 4`
for m sufficiently large, it holds that β ≤ ρd. Hence, by Lemma 11 and observing that ρ · c ≥ 3, we get that
Pr [CM-PE-Fc,ρ,`,g(W,P, k) = Check] = O(log3

σm/m
3) = O(1/m2) when W 6∈ W. If k ≤ (εm)/(4 + ε),

then k ≤ dg(1− ρ), and applying Lemma 12 we get that CM-PE-Fc,ρ,`,g has O((k/m)t)-error.
Clearly AvgCM-PE-F c,ρ,`,g (w,P, k) = O(c`) = O(t logσm). The result follows from Theorem 1 and

Corollary 2.

We can obtain different trade-offs between the time and error of CM-PE by adjusting the parameters of
the algorithm. It can be shown that CM-PE is a d-ASM algorithm with any desired error tolerance ε and
average time complexity AvgCM-PE(n, P, k) = O(tn logσm/m) where t = logσ(1/ε)/ logσ(m/k).
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4 Experimental Results

We implemented the algorithms of Sections 3.1 and 3.2. We extracted three real-life texts of 50MB from
Pizza&Chili (http://pizzachili.dcc.uchile.cl): English text, DNA, and MIDI pitches. We used patterns
of length 50 and 100, randomly extracted from the text, and some meaningful k values. Each data point
is the average over 50 such search patterns, repeating each search 15 times in the case of the randomized
algorithms. We measured the average number of character inspections and the average percentage of missed
occurrences.

We used the following setup for the algorithms. For q-gram algorithms (Section 3.1), we used q = 4. Our
preliminary results show that ρ = 0.7 is a good choice. For covering by pattern substrings (Section 3.2), we
used ε = 0.2 and ρ = 0.3. In our algorithms, we only moved parameter c in order to change the accuracy/time
tradeoff. We compared our algorithms with the corresponding errorless filtering algorithms.

Figure 2 shows the experimental results for the q-gram based procedure, and Figure 3 for the covering
by pattern substrings process. The errorless version of the q-grams algorithm inspects all text characters.
In contrast, our q-gram based procedure achieves less than 1% error rate and looks at up to 6 times less
characters on English and MIDI corpora. For our second algorithmic proposal, the result of the comparison
against the errorless version is not as good. Nevertheless, we emphasize that it beats the average-optimal
(errorless) algorithm by a wide margin, specifically it inspects about half the characters with 15% errors on
the English corpus.
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Figure 2: Experimental results for Q-PE. Straight horizontal lines correspond to the errorless version. The y
axis represents the number of character inspections times 1024.
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Figure 3: Experimental results for CM-PE. Straight horizontal lines correspond to the errorless version.
The y axis represents the number of character inspections times 1024.

5 Extensions to Multiple Pattern Approximate String Matching

The d-Multiple Pattern Approximate String Matching (d-MASM) problem is the natural general-
ization of the d-ASM problem to the case that r patterns are given as part of the input (see formal definition
in Figure 5).

Problem d-Approximate Multi–pattern String Matching

Input Text T ∈ Σ∗, multi–pattern ~P = (P (1), . . . , P (r)) ∈ (Σ∗)r and parameter k ∈ N.

Output S = S(T, ~P , k) ⊆ {1, . . . , r} × {1, . . . , n} such that (a, j) ∈ S if and only if there is an i
such that d(Ti..j , P

(a)) ≤ k.

It is straightforward to extend to the multi–pattern case the notions of solving the d-ASM problem with
errors, the concept of probabilistic filters, and the notion of d-ASM algorithm with errors. We henceforth
refer to the latter type of algorithms as d-approximate multi-pattern string matching algorithms with error.

The generic principle described in Section 2 for designing d-ASM algorithms with errors is well adapted
to the design of similar algorithms for the d-MASM problem. Indeed, one can again focus on deriving a
probabilistic filter that again either checks/discards text windows of length w = b(m − k)/2c. Each time
a window is chosen for verification, an appropriate neighborhood of the window in the text is verified for
pattern occurrences. The only required adaptations to the multi-pattern scenario is in the design of the
probabilistic filter. We now briefly discuss how to carry out this adaptation for the filtering algorithms
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discussed in Sections 3.1 and 3.2.
The adaptation of the q-gram filter of Section 3.1 to the multi-pattern case consists in sampling q-grams

from the text window in the same way as in the single pattern case, but we now discard a window provided
at most ρ · c of the c sampled q-grams are not present in any of the r patterns P (1), . . . , P (r). We denote
the resulting probabilistic filter and d-approximate multi-pattern string matching algorithm with errors by
QMP-PE-Fc,ρ,q and QMP-PE respectively.

For the analysis of QMP-PE, let w′ = w − q + 1 and p denote the probability that that a randomly
chosen q-gram is a substring of one of the patterns P (1), . . . , P (r). Also, let W be the collection of windows
in Σw for which at least β of its q-grams are substrings of some pattern P (1), . . . , P (r). Lemmas 5 through 7
are still valid, and we can use them to derive the following:

Theorem 14 Let u > 0 and r = O(mu). Let t > 0 be a fixed constant. If k < (m − 4 logσ(rm))/(1 +
8 logσ(rm)), then QMP-PE is a d-approximate multi-pattern string matching algorithm with one sided
O((k logσ(rm)/m)t)-error. Moreover, AvgQMP-PE(n,m, k) = O(tn logσ(rm)/m).

Proof: Since there are at most rm distinct q-grams that can show up in P (1), . . . , P (r), we have that
p ≤ rm/σq. Thus, taking q = 2dlogσ(rm)e it follows that p ≤ 1/(rm). Taking β = Θ(log2

σ(rm)) with a
sufficiently large hidden constant, by Lemma 5 we get that PrW←Σw [W ∈ W] = O(1/rm2). Now, taking
ρ = 1/2 and c a constant strictly greater than 2(2 + u), by Lemma 6 we get that

Pr
[
QMP-PE-Fc,ρ,q(W,P (1), . . . , P (r), k) = Check

]
= O

(
1

rm2

)
.

By hypothesis, k < (m − 4 logσ(rm))/(1 + 8 logσ(rm)), so kq ≤ w′(1 − ρ) and Lemma 7 can be applied.
Taking c ≥ 2t, we thus conclude that QMP-PE-Fc,ρ,q is an α-filter with α = O((k logσ(rm)/m)t).

Observing that QMP-PE-Fc,ρ,q(W,P (1), . . . , P (r), k) has an average case complexity of O(cq) (provided
all q-grams of P (1), . . . , P (r) are precomputed), recalling that all occurrences of W in P (1), . . . , P (r) can
be determined in time O(rm2), and following the argument used to derive Theorem 1, yields the desired
conclusion.

The adaptation of the covering by pattern substrings filter of Section 3.2 to the multi-pattern case consists
in sampling `-grams from the text in the same way as in the single pattern case, but now we discard a window
if at most ρ · c of the c sampled `-grams are at distance at most g of some substring of any of the r patterns
P (1), . . . , P (r). We denote the resulting probabilistic filter and d-approximate multi-pattern string matching
algorithm with errors by CMMP-PE-Fc,ρ,`,g and CMMP-PE respectively.

For the analysis of CMMP-PE, we let w′ = w − `+ 1 and d = bw/`c. Also, let W be the collection of
windows W in Σw such that at least β of the W(i−1)`+1..i`’s with i varying in {1, . . . , d} are at distance at

most g of some pattern P (1), . . . , P (r). In addition, let

multAsm(S, P (1), . . . , P (r)) = min
s=1,...,r

min
a≤b

d(S, P
(s)
a..b) .

It is easy to verify that Lemmas 11 and 12 still hold. An argument similar to the one used to prove Lemma 10
can be applied to obtain the following:

Lemma 15 Let u > 0 and r = O(mu). There are α > 0 and 0 < ε < 1 such that for ` = dα logσme, g = ε`,

d ≤ βm3 and m sufficiently large, PrW←Σw [W ∈ W] ≤ exp
(
β − dm−3

) (
d

βm3

)β
.

Proof: For 1 ≤ i ≤ d let Yi be the indicator variable of the event “multAsm(W(i−1)`+1..i`, P
(1), . . . , P (r)) ≤

g” when W is randomly chosen in Σw. The Yi’s are clearly independent and have all the same expected value
which we will denote p = p(g, `, r). Clearly, p ≤ rp(g, `) where p(g, `) is as defined in the proof of Lemma 10.
In [4] it is shown that for any u > 0 there exists α > 0 and 0 < ε < 1 such that p(ε`, `) = O(m−u−3) for

` = dα logσme. Since W ∈ W if and only if
∑d
i=1 Yi ≥ β, the desired result follows applying a standard

Chernoff type bound.
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We can now establish our main result concerning multiple pattern approximate string matching with bounded
errors.

Theorem 16 Let u, t > 0 and let r = O(mu). There is a sufficiently small constant C such that if k ≤ Cm,
then CMMP-PE is a d-ASM algorithm with one sided O((k/m)t)-error. Moreover, AvgQ-PE(n,m, k) =

O(tn logσm/m).

Proof: Let α, ε, ` and g be as in Lemma 15, set set β = u/2 + 2, and apply the lemma to obtain that
PrW←Σw [W ∈ W] is O(1/rm2). Let ρ = 1/2, choose c a constant strictly greater than 2(2 + u), and apply
Lemma 11 to obtain that when W 6∈ W,

Pr
[
CMMP-PE-Fc,ρ,`,g(W,P (1), . . . , P (r), k) = Check

]
= O

(
1

rm2

)
.

Assuming that C is small enough so Cm ≤ wε/2, we can apply Lemma 12 with c ≥ 2t and conclude that
CMMP-PE-Fc,ρ,`,g has O((k/m)t)-error.

Observing that CMMP-PE-Fc,ρ,`,g(W,P (1), . . . , P (r), k) has an average case complexity of O(c`) (pro-
vided all `-grams of P (1), . . . , P (r) are precomputed), recalling that all occurrences of W in P (1), . . . , P (r)

can be determined in time O(rm2), and following the argument used to derive Theorem 1, yields the desired
conclusion. The result follows from Theorem 1 and Corollary 2.

6 Final Comments

In this paper we have advocated considering a new dimension of the approximate string matching problem,
namely the probability of missing an approximate occurrence. This relaxation is particularly natural for a
problem that usually arises when modeling processes where errors have to be tolerated, and it opens the
door to novel approaches to approximate string matching which break the average-case lower bound of the
original problem. In particular, we have shown that much faster text scanning is possible if one allows a
small probability of missing occurrences. We achieved an average time complexity of O(n logσm/m) (which
is the complexity of exact string matching, k = 0) with error probability bounded by any polynomial in k/m.
Empirically, we have shown that our algorithms inspect a fraction of the text with virtually no mistakes.

We have just scratched the surface of this new area. In particular, we have not considered filtration
algorithms that use sliding instead of fixed windows. Sliding-window algorithms have the potential of being
more efficient (cf. Fredriksson and Navarro’s variant [7] with the original Chang and Marr’s average-optimal
algorithms [4]). It is not hard to design those variants, yet analyzing them is more challenging. On the
other hand, it is rather simple to extend our techniques to multiple ASM, as we have shown. Preliminary
explorations suggest that the approach and techniques proposed in this work can also be applied to tackle
pattern matching problems where preprocessing of the text is possible, that is, indexed algorithms can be
used [12]. Several indexes build on sequential filtration algorithms, and thus adapting them is rather natural.

Another interesting aspect is to determine the average time complexity of this relaxed problem, consid-
ering the error probability ε in the formula. This would give an idea of how much can one gain by allowing
errors in the outcome of the search. For example, our algorithms break the Ω(kn/m) term in the problem
complexity, yet a term poly(k/m) appears in the error probability. Which are the best tradeoffs one can
achieve?

Finally, and potentially even more fruitful, is to extend the approach put forth in this work to other
information retrieval problems.
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