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Abstract

Operations rank and select over a sequence of symbols have many applications to
the design of succinct and compressed data structures managing text collections,
structured text, binary relations, trees, graphs, and so on. We are interested in
the case where the collections can be updated via insertions and deletions of sym-
bols. Two current solutions stand out as the best in the tradeoff of space versus
time (when considering all the operations). One solution, by Mäkinen and Navarro,
achieves compressed space (i.e., nH0 + o(n log σ) bits) and O(log n log σ) worst-case
time for all the operations, where n is the sequence length, σ is the alphabet size,
and H0 is the zero-order entropy of the sequence. The other solution, by Lee and
Park, achieves O(log n(1 + log σ

log log n
)) amortized time and uncompressed space, i.e.

n log2 σ +O(n)+ o(n log σ) bits. In this paper we show that the best of both worlds
can be achieved. We combine the solutions to obtain nH0 + o(n log σ) bits of space
and O(log n(1 + log σ

log log n
)) worst-case time for all the operations. Apart from the

best current solution to the problem, we obtain several byproducts of independent
interest applicable to partial sums, text indexes, suffix arrays, the Burrows-Wheeler
transform, and others.
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1 Introduction and Related Work

Compressed data structures aims at representing classical data structures such
as sequences, trees, graphs, etc., in little space while keeping the functionality
of the structure. That is, compressed data structures should operate without
the need to decompress them. This is a very active area of research stimulated
by today’s steep memory hierarchies and large available data sizes. See for
example a recent survey [26].

One of the most useful structures are the bit vectors with rank and select
operations: rank(B, i) gives the number of 1-bits in B[1, i] and select(B, i)
gives the position of the i-th 1 in B. Both can be solved in constant time using
o(n) bits on top of B[1, n] [25]. Moreover, B can be represented in compressed
form, so that the constant times are retained and the space becomes nH0(B)+
o(n) [29]. Here H0(B) is the zero-order entropy of B, H0(B) = n0

n
log n

n0
+

n1

n
log n

n1
, where B has n0 0s and n1 1s (logarithms are in base 2 by default in

this paper). From this compressed representation one can easily retrieve B[i] =
rank(B, i)−rank(B, i−1) in constant time, so the compressed representation
replaces B and in addition gives rank/select functionality on it.

Rank and select queries generalize to sequences T [1, n] over an alphabet Σ of
size σ, where one aims at a (hopefully compressed) representation efficiently
supporting the following operations:

• access(T, i) returns the symbol T [i].
• rankc(T, i) returns the number of times symbol c appears in the prefix

T [1, i].
• selectc(T, i) returns the position of the i-th c in T .

Improvements in rank/select operations on sequences have a great impact
on many other succinct data structures, especially on those aimed at text
indexing [26,12,8,21], but also labeled trees, structured texts, binary relations,
graphs, and others [1,2,15].

The first structure providing support for rank/select on a sequence of symbols
was the wavelet tree [14,10]. Wavelet trees are perfectly balanced static trees of
height log σ. They answer the three queries in O(logσ) time, by working O(1)
per tree level. They store a bitmap of length n per level, which is preprocessed
for constant-time binary rank/select queries. Their total space requirement is
n log σ + o(n log σ), where the extra sublinear term is the space needed by the
binary rank/select structures. By representing those bitmaps in compressed
form [29] the O(log σ) rank/select times are retained and the space becomes
nH0(T ) + o(n log σ), where H0(T ) is the zero-order empirical entropy of T
(that is,

∑
c∈Σ

nc

n
log n

nc

, where c occurs nc times in T ). Since the wavelet tree
gives access(T, i) to any symbol T [i], it can be used to replace T .
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A stronger version of wavelet trees are multiary wavelet trees [8], which achieve
the same space but improve the query times to O(1 + log σ

log log n
). The trick is

to make the tree ρ-ary for some ρ = O(logα n) and constant 0 < α < 1, so
that its height is reduced. Now the tree does not store a bitmap per level, but
rather a sequence over an alphabet of size ρ. They show how to do rank/select
on those sequences in constant time for such a small ρ.

Chan et al. [6] considered dynamic capabilities for the sequences, by including
insert/delete operations. The result is the problem we address in this paper,
which we now define formally

Definition 1. The Dynamic Sequence with Indels problem consists in main-
taining a sequence T = t1t2 . . . tn of symbols over an alphabet Σ of size σ,
supporting the queries access(T, i), rankc(T, i), and selectc(T, i) as defined
above, as well as the operations:

• insertc(T, i) inserts symbol c between T [i− 1] and T [i].
• delete(T, i) deletes T [i] from T .

Chan et al. presented a structure for binary sequences taking O(n) bits of space
and performing all the operations in O(log n) time. Blanford and Blelloch
[3] improved the space to O(nH0), and finally Mäkinen and Navarro [20,21]
achieved nH0(B)+o(n) bits of space, still solving all the operations in O(log n)
time. This is achieved with a binary tree that stores Θ(log2 n) bits at the
leaves, and at internal nodes stores summary rank/select information on the
subtrees.

The solution is easily extended to handle sequences. A wavelet tree using dy-
namic bitmaps yields a dynamic sequence representation that takes nH0(T )+
o(n log σ) bits and solves all the operations in time O(log n log σ) [21].

Recently, Lee and Park [19] manage to improve the time complexities of this
solution. They show that the O(log n) time complexities can be achieved for
alphabets of size up to σ = O(log n), yet only in an amortized way. They
combine this tool with a multiary wavelet tree to achieve O(logn(1+ log σ

log log n
))

time.

The key to the success of Lee and Park is a clever detachment of two roles
of tree leaves that are entangled in Mäkinen and Navarro’s solution: In the
latter, the leaves are the memory allocation unit (that is, whole leaves are allo-
cated or freed), and also the information summarization unit (that is, the tree
maintains information up to leaf granularity, and the rest has to be collected
by sequentially scanning a leaf). In Lee and Park’s solution leaves are the in-
formation summarization unit, but handle an internal linked list with smaller
memory allocation units. This permits moving symbols to accommodate the
space upon insertions/deletions within a leaf, without having to update sum-
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marization information for the data moved. This was the main bottleneck
that prevented the use of larger alphabets in O(log n) time in Mäkinen and
Navarro’s method.

Despite these improvements compared to Mäkinen and Navarro’s, the work by
Lee and Park has several weaknesses: (1) it is not compressed, but rather takes
n log σ + O(n) + o(n log σ) bits of space; (2) in addition to not compressing
T , the extra space includes an O(n) term, as shown; (3) times are amortized,
not worst-case.

In this paper we show that it is possible to obtain the best from both worlds.
We combine the works [21,19] to obtain a structure that (1) takes nH0(T ) +
o(n log σ) bits of space, and (2) performs all the operations in O(log n(1 +

log σ

log log n
)) worst-case time. (This is achieved even for the case where ⌈log n⌉

changes and so does the length of the structure pointers in order to maintain
the promised space bounds.) The result becomes the most efficient dynamic
representation of sequences, both in time and space, and its benefits have
immediate applications to other succinct data structures such as compressed
text indexes, as we show at the end.

The combination of both methods is by no means simple. Some parts are
not hard to merge, such as the role detachment for leaves [19] with the com-
pressed representation of sequences [8] and multi-ary wavelet trees, plus the
memory management techniques to support changes of ⌈log n⌉ within the same
worst-case time bounds and no extra space [21]. However, others require new
algorithmic ideas. Lee and Park spend O(n) extra bits in bitmaps that main-
tain leaf-granularity information on rank/select. We show that this can be
replaced by dynamic partial sums, which use sublinear space. However, we
need σ partial sums and cannot afford to update them individually upon a
leaf insertion/deletion. Hence we create a new structure where a collection of
σ sequences are maintained in synchronization, and this can be of indepen-
dent interest. The second problem was that leaf splitting/merging in Lee and
Park’s work triggered too many updates to summarization data, which could
not be handled in O(log n) worst-case time, only in O(log n) amortized time.
To get rid of this problem we redefined the leaf fill ratio invariants, preferring
a weaker condition that still ensures that leaves are sufficiently full and can
be maintained within the O(log n)-worst-case-time bound. This can also be of
independent interest.

Our result is not only interesting by itself, but also derives into the best
current algorithm to maintain a dynamic collection of texts that can be
searched for patterns, and to build indexes for static text collections within
compressed space. In addition, our results permit building suffix arrays [23]
in competitive time, improving in particular the best algorithm to build it
within O(n logσ) bits of space when the alphabet is not too large. Finally, we
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derive the best current algorithm to compute the Burrows-Wheeler Transform
[4] within n log σ + O(n) bits of space.

We remind that there is a static sequence representation [12] that requires
n log σ + n o(log σ) bits and answers the queries in O(log log σ) time. There
has been work on dynamizing this structure [15], where they achieve the same
space plus o(n) bits, the query times are increased by O(1

ǫ
log log n), and the

update times are O(1
ǫ
nǫ) amortized, for any constant 0 < ǫ < 1. In fact the

method can be used to dynamize any other scheme (such as the wavelet-
tree-based ones [8]), at the same extra cost. This is extremely relevant when
query times are more important than update times. In this paper we focus
on achieving the best time for all the operations. In particular, this is crucial
when using the scheme to achieve good construction times within compressed
space.

The paper proceeds as follows. In Section 2 we describe a solution to handle
a collection of several synchronized partial sums. This is used in Section 3
to design a dynamic rank/select solution for small alphabets (O(logn)) with
no compression. In Section 4 we introduce compression, first for even smaller
alphabets (o(log n/ log log n)), and then generalizing for arbitrary alphabets
via multi-ary wavelet trees. We explore some consequences and future work
directions in the Discussion section.

As for the model of computation, our results (and all the mentioned ones)
assume a RAM model with word size w = Ω(log n), so that operations on
O(log n) contiguous bits can be carried out in constant time. For the dynamic
structures, we always allocate ω(log n)-bit chunks of the same size (or a finite
set of sizes), which can be handled in constant time and asymptotically no
extra space [30].

2 Collection of Searchable Partial Sums with Indels

In this section we generalize the well-known partial sums problem to handle a
collection of somehow “synchronized” sequences. Apart from having indepen-
dent interest, this will be an essential tool for the main development in the
paper.

Definition 2. The Searchable Partial Sums with Indels (SPSI) problem [17]
consists in maintaining a sequence S of nonnegative integers s1, . . . , sn, each
one of k = O(log n) bits, supporting the following queries and operations:

• sum(S, i) is
∑i

ℓ=1 sℓ.
• search(S, y) is the smallest i′ such that sum(S, i′) ≥ y.
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• update(S, i, x) updates si to si + x (x can be negative as long as the result
is not).
• insert(S, i, x) inserts a new integer x between si−1 and si.
• delete(S, i) deletes si from the sequence.

It is possible to solve the SPSI problem using kn + o(kn) bits of space and
O(log n) time per operation [21]. We now define our extension of this problem.

Definition 3. The Collection of Searchable Partial Sums with Indels (CSPSI)
problem consists in maintaining a collection of σ sequences C = {S1, . . . , Sσ}
of nonnegative integers {sj

i}1≤j≤σ,1≤i≤n, each one of k = O(logn) bits. The
following operations must be supported:

• sum(C, j, i) is
∑i

ℓ=1 sj
ℓ;

• search(C, j, y) is the smallest i′ such that sum(C, j, i′) ≥ y;
• update(C, j, i, x) updates sj

i to sj
i + x;

• insert(C, i) inserts 0 between sj
i−1 and sj

i for all 1 ≤ j ≤ σ.;

• delete(C, i) deletes sj
i from the sequence Sj for all 1 ≤ j ≤ σ; To perform

delete(C, i) it must hold sj
i = 0 for all 1 ≤ j ≤ σ.

Note the limitations about inserting/deleting only zeros, and at the same place
in all sequences. In the sequel we show how to solve the CSPSI problem in
O(σ + log n) time, using O(σkn) bits of space.

Data structure. We construct a red-black tree over C, where each leaf
contains a non-empty superblock, whose size goes from 1

2
log2 n to 2 log2 n

bits 1 . The leftmost leaf contains s1
1 · · · s1

b1
s2
1 · · · s2

b1
· · · sσ

1 · · · sσ
b1

, the second
leftmost leaf contains s1

b1+1 · · · s1
b2

s2
b1+1 · · · s2

b2
· · · sσ

b1+1 · · · sσ
b2

, and so on. The
size of the leftmost leaf is σkb1 bits, the size of the second leftmost leaf is
σk(b2 − b1) bits, and so on. The size of the leaves is variable and bounded,
so b1, b2, . . . are such that 1

2
log2 n ≤ σkb1, σk(b2 − b1), . . . ≤ 2 log2 n. 2 Each

internal node v stores counters {rj(v)}1≤j≤σ and p(v), where rj(v) is the sum
of the integers in the left subtree for sequence Sj and p(v) is the number of
positions stored in the left subtree (for any sequence).

Each superblock is further divided into blocks of
√

log n log n bits, so each
superblock has between 1

2

√
log n and 2

√
log n blocks. We maintain these blocks

using a linked list. Only the last block in the list could have some free space,
all the other use all of their bits. To scan a leaf we proceed block by block. To
directly access an arbitrary element in a leaf we must also follow the links of
the blocks until we arrive at the correct block. This takes O(

√
log n) steps.

1 In most cases we ignore floors and ceilings for simplicity.
2 If σk > 2 log2

n, we just store σk bits per leaf. All the algorithms in the sequel
get simplified and the complexities are maintained.
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Computing sum(C, j, i). We traverse the tree to find the leaf containing
the i-th position. We start with sum ← 0 and v ← root. If p(v) ≥ i we
enter the left subtree, otherwise we enter the right subtree with i← i − p(v)
and sum← sum + rj(v). We reach the leaf that contains the i-th position in
O(log n) time. Then we scan the leaf, summing up from where the sequence
Sj begins, in chunks of size 1

2
log n bits using a universal precomputed table

Y , until we reach position i. Table Y receives any possible sequence of dk bits,

for d = ⌊
1
2

log n

k
⌋, and gives the sum of the d k-bit numbers encoded. The last

(at most d − 1) integers must be added individually. 3 The sum query takes
in total O(logn) time, and table Y adds only O(

√
n polylog(n)) bits of space.

Block boundaries do not affect the procedure. If the sequence of dk bits we
must input to Y is split between the current and next block, we read the
corresponding bits from both blocks to compose the sequence before applying
Y . Thus the complexities are not affected.

Computing search(C, j, y). We enter the tree to find the smallest i′ such
that sum(C, j, i′) ≥ y. We start with pos ← 0 and v ← root. If rj(v) ≥ y we
enter the left subtree, otherwise we enter the right subtree with y ← y− rj(v)
and pos ← pos + p(v). We reach the leaf that contains the i′-th position in
O(log n) time. Then we scan the leaf, summing up from where the sequence
Sj begins, in chunks of size 1

2
log n bits using table Y , until this sum is greater

than y after adding up i′ integers; the answer is then pos+ i′. (More precisely,
once an application of the table exceeds y, we must reprocess the last chunk
number-wise.) The search query takes in total O(log n) time.

Operation update(C, j, i, x). We proceed similarly to sum, updating rj(v)
as we traverse the tree. That is, we update rj(v) to rj(v) + x each time we
go left from v. When we reach the leaf we directly update sj

i to sj
i + x in

O(
√

log n) time (direct access). The update operation takes in total O(log n)
time.

For the next operations, we note that a leaf has at most m = ⌊2 log2 n

σk
⌋ inte-

gers from any sequence. Then a subsequence of a given sequence has at most
mk bits. So if we copy a subsequence in chunks of 1

2
log n bits, the process

will take 1 + ⌈ 2mk
log n
⌉ = O(1 + log n

σ
) time in the RAM model 4 . As we have σ

sequences, we can copy a given subsequence of them all in O(σ + log n) time.

3 Note that if k >
1
2 log n we can just add each number individually within the time

bounds.
4 This requires shifting bits, which in case it is not supported by the model, can be
handled using small universal tables of the kind of Y .
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The next operations are solved by a constant number applications of these
copying operations. Again, block boundaries do not affect the complexities.

Operation insert(C, i). We traverse the tree similarly to sum, updating
p(v) as we traverse the tree. That is, we increase p(v) by 1 each time we go left
from v. Then we create a new copy of the leaf arrived at (by allocating new
blocks as needed), adding a 0 between sj

i−1 and sj
i for all j. This is done by first

copying the subsequences . . . sj
i−1 for all j, then adding 0 to each sequence,

and finally copying the subsequences sj
i . . . for all j. As we have just explained,

this can be done in O(σ + log n) time.

If the new leaf uses more than 2 log2 n bits, it is split into two. An overflowed
leaf has m = ⌊2 log2 n

σk
⌋ + 1 integers in each sequence. So we store in the left

leaf the first ⌊m/2⌋ integers of each sequence and in the right leaf we store the
rest. These two copies can be done again in O(σ +log n) time. The new leaves
are made children of a new node µ. We compute each rj(µ) by scanning and
summing on the left leaf. This summing can be done in O(σ+log n) time using
table Y . We also set p(µ) = ⌊m/2⌋. Finally, we check if we need to rebalance
the tree. If needed, the red-black tree is rebalanced with O(1) rotations and
O(log n) red-black tag updates [7, Chapter 13.3]. After a rotation we need to
update rj(· ) and p(· ) only for one tree node, which is easily done in O(σ)
time. The insert operation takes in total O(σ + log n) time.

Operation delete(C, i). We traverse the tree similarly to sum, updating
p(v) while we traverse the tree. That is, we decrease p(v) by 1 each time we
go left from v. Then, similarly to insert, we make a new copy of the leaf
(allocating blocks as needed), deleting sj

i for all j. This takes O(σ + log n)
time.

There are three possibilities after this deletion: (i) The new leaf uses more
than 1

2
log2 n bits, in which case we are done. (ii) The new leaf uses less than

1
2
log2 n and its sibling is also a leaf, in which case we merge it with its sibling,

again in O(σ + log n) time. Note that this merging removes the leaf’s parent
but does not require any recomputation of rj(· ) or p(· ). (iii) The new leaf uses
less than 1

2
log2 n and its sibling is an internal node µ, in which case by the

red-black tree properties we have that µ must have two leaf children 5 In this
case we merge our new leaf with the closest child of µ, updating the counters
of µ in O(σ) time, and letting µ replace the parent of our original leaf.

5 For each node, all paths from the node to descendant leaves contain the same
number of black nodes and all the leaves are black. In particular, for the parent of
the deleted leaf, if the sibling is an internal node then it is red and its children must
be black and leaves.
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In cases (ii) and (iii), the merged leaf might use more than 2 log2 n bits. In this
case we split it again into two halves, just as we do in insert (and including
the recomputation of rj(· ) and p(· )). The tree might have to be rebalanced
as well. The delete operation takes in total O(σ + log n) time.

The breakdown of the space requirement for the structure is as follows.

• All the sequence representations add up to σkn bits of space.
• Each pointer of the linked list of blocks uses O(log n) bits and we have

O( σkn√
log n log n

) full blocks, totalizing O( σkn√
log n

) bits.

• The last block in each superblock is not necessarily fully used. We have at
most ⌈ 2σkn

log2 n
⌉ superblocks, each of which can waste an underused block of

size
√

log n log n bits, totalizing O( σkn√
log n

) bits.

• For each internal node we have two pointers, red-black data, a counter p(· ),
and σ counters rj(· ) ≤ 2k ·n, totalizing O(log n)+σ(k +log n) = O(σ log n)
bits per node. So, the internal nodes use O( σkn

log2 n
σ log n) = O(σ2kn

log n
) bits

overall.

We have proved our main result in this section.

Theorem 1 The Collection of Searchable Partial Sums with Indels problem
with σ sequences of n numbers of k bits can be solved, in a RAM machine of
w = Ω(log n) bits, using σkn(1 + O( 1√

log n
+ σ

log n
))) bits of space, supporting

all the operations in O(σ + log n) worst-case time. Note that, if σ = O(log n)
the space is O(σkn) and the time is O(log n).

If we had tried to solve the CSPSI problem by just managing σ SPSI individual
problems, the time complexities would have raised to O(σ log n).

We note that we have actually assumed that w = Θ(log n) in our space compu-
tation (as we have used w-bit system pointers). The general case w = Ω(log n)
can be addressed using the same technique developed in previous work [21,
Sec. 4.5, 4.6, and 6.4], which uses a more refined memory management with
pointers of (log n) ± 1 bits, and splits the sequence into three in a way that
retains the worst-case complexities.

The three subsequences are called previous, current and next [21, Sec. 4.5].
Let l = ⌈log n⌉ be the current pointer width in use, where n is the current
length of the sequences. A prefix of all sequences is in previous using l − 1
bits, and a suffix in next using l + 1 bits. The middle part is in current and
uses l bits. Upon insertions and deletions, some elements are moved across the
three structures so as to ensure that, when n becomes a new power of 2 (i.e.,
⌈log n⌉ changes), all the elements reside in previous (if n becomes n/2) or in
next (if n becomes 2n) and we can smoothly change l.
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To carry out the queries over this split structure we must maintain, for each
of the three trees, summary p(·) and rj(·) data on the whole trees. This allows
us to know on which of the trees to operate and also gives us information to
translate the local result of one tree into the final answer of the structure.

3 Uncompressed Dynamic Rank-Select Structures for a Small Al-
phabet

We now turn our attention into the dynamic rank/select problem. We start
with a simpler setting, where the alphabet is small, σ = O(log n), and we do
not yet attempt to achieve compressed space. In the next section we build on
this one to achieve our stronger result.

Data structure. We construct a red-black tree over T [1, n] where each leaf
contains a non-empty superblock of size up to 2 log2 n bits. Each internal node
v stores counters r(v) and p(v), where r(v) is the number of superblocks in
the left subtree and p(v) is the number of symbols stored in the left subtree.

A superblock storing less than log2 n bits will be called sparse. Operations
insert and delete will maintain the invariant that no two consecutive sparse
superblocks may exist. This ensures that every consecutive pair of superblocks
holds at least log2 n bits from T , that is, an average fill ratio of at least 1/2,
and thus there are at most 1 + 2n log σ

log2 n
superblocks.

For each superblock i, we maintain sj
i , the number of occurrences of symbol j

in superblock i, for 1 ≤ j ≤ σ. We store all these sequences of numbers using
a Collection of Searchable Partial Sums with Indels, C (Section 2). The length
of each sequence will be at most 1 + 2n log σ

log2 n
integers, we assume σ = O(logn),

and k = O(log log n) holds because sj
i ≤ 2 log2 n

log σ
. So the partial sums operate

in O(log n) worst-case time (Theorem 1).

Just as in Sec. 2, each superblock is further divided into blocks of
√

log n log n
bits, so each superblock has up to 2

√
log n blocks. We maintain these blocks

using a linked list. Only the last block could be not fully used, the rest use all
of their bits.

The overall space usage of our structure is n log σ+O( n log σ√
log n

), as σ = O(logn):

• The text itself uses n log σ bits of space.
• The CSPSI C uses O(σ log log nn log σ

log2 n
) = O(n log log n log σ

log n
) bits of space.
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• Each pointer of the linked list of blocks uses O(log n) bits and we have full
O( n log σ√

log n log n
) blocks, totalizing O( n log σ√

log n
) bits.

• The last block in each superblock is not necessarily fully used. We have at
most 1 + 2n log σ

log2 n
superblocks, each of which can waste an underused block

of size
√

log n log n bits, totalizing O( n log σ√
log n

) bits.

• The tree pointers and counters use O(n log σ

log2 n
· log n) = O(n log σ

log n
) bits.

Now we show how to carry out all the queries/operations in O(log n) time.
First, it is important to notice, as in Section 2, that each block can be scanned
or shifted in O(

√
log n) time, using tables that process chunks of 1

2
log n bits 6 .

Given that there are O(
√

log n) blocks in a superblock, we can scan or shift
elements within a superblock in O(logn) time, even considering block bound-
aries.

Computing access(T, i). We traverse the tree to find the leaf containing
the i-th position. We start with sb ← 1 and pos ← i. If p(v) ≥ pos we enter
the left subtree, otherwise we enter the right subtree with sb← sb + r(v) and
pos← pos−p(v). We reach the leaf that contains the i-th position in O(log n)
time. Then we directly access the pos-th symbol of superblock sb. 7 Note that,
within the same O(log n) time, we can extract any O(log2 n)-bit long sequence
of symbols from T (by moving to next leaves if necessary).

Computing rankc(T, i). We find the leaf containing the i-th position, just
as for access. Then we scan superblock sb from the first block summing up
the occurrences of c up to the position pos, using a table Z to sum the c’s. Z
receives a symbol c and ⌊1

2
logσ n⌋ symbols (≤ 1

2
log n bits), and tells how many

times does c appear in the sequence (again, we can just proceed symbolwise
if log σ > 1

2
log n). We add to this quantity sum(C, c, sb − 1), the number

of times that c appears before superblock sb. The rank query takes in total
O(log n) time. Table Z requires O(σ

√
n polylog(n)) = O(

√
n polylog(n)) bits.

Computing selectc(T, i). We calculate j = search(C, c, i); this way we
know that the i-th c belongs to superblock j and it is the i′-th appearance of c
within superblock j, for i′ = i− sum(C, c, j− 1). Then we traverse the tree to
find the leaf representing superblock j. We start with sb← j and pos← 0. If
r(v) ≥ sb we enter the left subtree, otherwise we enter the right subtree with

6 Again, if log σ >
1
2 log n, we can process each symbol individually within the time

bounds. This can happen even if σ = O(log n).
7 Actually we do not need to know the superblock number sb for the access query,
but we need it for the next ones.
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sb ← sb − r(v) and pos ← pos + p(v). We reach the correct leaf in O(log n)
time. Then we scan superblock j from the first block, searching for the position
of the i′-th appearance of symbol c within superblock j, using table Z. To this
position we add pos to obtain the final result. The select query takes in total
O(log n) time.

Operation insertc(T, i). We obtain sb and pos just like in the access query,
except that we start with pos← i−1, so as to insert right after position i−1.
Then, if superblock sb contains room for one more symbol, we insert c right
after the pos-th position of sb, by shifting the symbols through the blocks as
explained. If the insertion causes an overflow in the last block of sb, we simply
add a new block at the end of the linked list to hold the trailing bits.

We also carry out update(C, c, sb, 1) and retraverse the path from the root
to sb adding 1 to p(v) each time we go left from v. In this case we finish in
O(log n) time.

If, instead, the superblock is full, we cannot carry out the insertion yet. We
first move one symbol to the previous superblock (creating a new one if this
is not possible): We first delete(T, d) the first symbol c′ from block sb (the
global position of c′ is d = i− pos), and this cannot cause an underflow of sb.
Now, we check how many symbols does superblock sb−1 have (this is easy by
subtracting the pos numbers corresponding to accessing blocks sb−1 and sb).
If superblock sb− 1 can hold one more symbol, we insert the removed symbol
c′ at the end of superblock sb − 1. This is done by calling insertc′(T, d), a
recursive invocation that now will arrive at block sb− 1 and will not overflow
it (thus no further recursion will occur). 8

If superblock sb−1 is also full or does not exist, then we are entitled to create
a sparse superblock between sb− 1 and sb, without breaking the invariant on
sparse superblocks. We create such an empty superblock and insert symbol c′

into it, using the following procedure: We retraverse the path from the root
to sb, updating r(v) to r(v) + 1 each time we go left from v. When we arrive
again at leaf sb we create a new node µ with r(µ) = 1 and p(µ) = 1. Its left
child is the new empty superblock, where the single symbol c′ is inserted, and
its right child is sb. We also execute insert(C, sb) and update(C, sb, c′, 1).

After creating µ, we must check if we need to rebalance the tree. If it is needed,
it can be done with O(1) rotations and O(log n) red-black tag updates. After
a rotation we need to update r(· ) and p(· ) only for one tree node. These
updates can be done in constant time.

8 We note that, if one deletes the first symbol of a block and reinserts it at the
same position, it will get inserted into the previous block.
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Now that we have finally made room to carry out the original insertion, we
rerun insertc(T, i) and it will not overflow again. The whole insert operation
takes O(log n) time.

Operation delete(T, i). We obtain sb and pos just as in the access query,
updating p(v) to p(v)−1 each time we go left from v. Then we delete the pos-
th position (let c be the symbol deleted) of the sb-th superblock, by shifting
the symbols back through the blocks. If this deletion empties the last block,
we free it. In any case we call update(C, c, sb,−1) on the partial sums.

There are three possibilities after this deletion: (i) superblock sb is not sparse
after the deletion, in which case we are done; (ii) sb was already sparse before
the deletion, in which case we have only to check that it has not become
empty; (iii) sb turned to sparse due to the deletion, in which case we have to
care about the invariant on sparse superblocks.

If superblock sb becomes empty, we retraverse the path from the root to it,
updating r(v) to r(v)− 1 each time we go left from v, in O(log n) time. When
we arrive at leaf sb again, we remove it and invoke delete(C, sb). Finally,
we check if we need to rebalance the tree, in which case O(1) rotations and
O(log n) red-black tag updates suffice, just as for insertion. After a rotation
we also need to update r(· ) and p(· ) only for one tree node. These updates
take constant time.

If, instead, superblock sb turned to sparse, we make sure that neither su-
perblocks sb− 1 or sb + 1 are also sparse. If they are not, then superblock sb
can become sparse and hence we finish without further intervention.

If superblock sb + 1 is sparse, we delete(T, d) its first symbol c′ (at position
d), and insertc′(T, d) at the end of superblock sb (as done for the insertion).
This recursive call brings no problems because sb + 1 is already sparse, and
we restore the non-sparse status of sb. If superblock sb + 1 becomes empty,
we remove it just as explained for the case of superblock sb. The action is
symmetric if sb + 1 is not sparse but sb− 1 is. 9

The delete operation takes in total O(log n) time.

Theorem 2 Given a text T of length n over a small alphabet of size σ =
O(log n), the Dynamic Sequence with Indels problem under RAM model with
word size w = Ω(log n) can be solved using n log σ + O( n log σ√

log n
) bits of space,

9 For the symmetric case one needs a slightly different version of procedure insert,
which inserts after, not before, position i.
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supporting all the queries access, rank, select, insert and delete, in O(log n)
worst-case time.

We note again that we have actually assumed that w = Θ(log n) in our space
computation. The general case w = Ω(log n) can be obtained using exactly
the same techniques developed previously [21, Sec. 4.5, 4.6, and 6.4], with no
changes.

4 Compressed Dynamic Rank-Select Structures

We now extend our results to use a compressed sequence representation, by
just changing the way we store/manage the blocks. The key idea is to detach
the representational and the physical (i.e., compressed) sizes of the storage
units at different levels.

We use the same red-black tree over T [1, n], where each leaf contains a non-
empty superblock representing up to 2 log2 n bits of the original text T (they
will actually store more or less bits depending on how compressible is the
portion of T they represent). The same superblock splitting/merging policy
related to sparse superblocks is used. Each internal node has the same counters
and they are managed in the same way. So all the queries/operations are
exactly the same up to the superblock level. Compression is encapsulated
inside the superblocks.

In physical terms, a superblock is divided into blocks just as before, and they
are still of the same physical size,

√
log n log n bits. Depending on compress-

ibility, blocks will represent more or less symbols of the original text, as their
physical size is fixed.

In logical terms, a superblock is divided into segments representing ⌊1
2
logσn⌋

original symbols 10 from T . We represent each segment using the (c, o)-pair
encoding of Ferragina et al. [8]: The c part is of fixed width and tells how many
occurrences of each alphabet symbol are there in the segment; whereas the o
part is of variable width and gives the identifier of the segment among those
sharing the same c component. Each c component uses at most σ log log n bits;
while the o components use at most 1

2
log n bits each, and overall add up to

nH0(T ) + O(n log σ/ log n) bits [8, Sec. 3.1].

In a block of
√

log n log n bits, we store as many bits as they fit. The universal
tables (like Y ) used to sequentially process the blocks in chunks of 1

2
log n bits

must now be modified to process the compressed sequence of (c, o) pairs. This
is complex because an insertion in a segment introduces a displacement that

10 Or just one symbol if 1
2 logσ n < 1.
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propagates over all the segments of the superblock, which must be completely
recomputed and rewritten (and it can even cause the physical size of the
whole superblock to double!). Fortunately all those tedious details have been
already sorted out in previous work [21, Sec. 5.2, 6.1, and 6.2], where their
“superblocks” play the role of our “blocks”, and their tree rearrangements are
not necessary for us because we are within a leaf now. Their “partial blocks”
mechanism is also not useful for us, because we can tolerate those propagations
to extend over all the blocks of our superblocks. Hence only the last block of
our superblocks is not completely full.

The time achieved in there [21] is O(1) per Θ(log n) physical bits. Even in
the worst case (where compression does not work at all in the superblock),

the number of physical bits will be 2 log2 n
1
2

log n
(σ log log n + 1

2
log n) = O(log2 n +

σ log n log log n), and thus the time to solve any query or carry out any update
on a superblock will be O(log n + σ log log n).

Let us now consider the space usage of these new structures, focusing only on
what differs from the uncompressed version:

• The text itself (as a sequence of pairs (c, o)) uses nH0(T ) + O(σn log log n

log
σ

n
)

bits.

• The number of full blocks is O(
nH0(T )+ σn log log n

log
σ

n√
log n log n

), and thus the space wasted

by their pointers is O(n log σ(σ log log n+log n)√
log n log n

) bits.

• The extra space in bits for the tables to operate the (c, o) encoding is
O(
√

n σ polylog(n)).

It can be seen that the time and space complexities depend sharply on σ. Thus
the solution is indeed of interest only for rather small σ = o(log n/ log log n).
For such a small alphabet we have the following theorem. Again, all the issues
of varying ⌈log n⌉ and the case w = ω(log n) are handled just as in previous
work [21, Sec. 4.5, 4.6, and 6.4]

Theorem 3 Given a text T of length n over a small alphabet of size σ =

O(

√
log n

log log n
) and zero-order entropy H0(T ), the Dynamic Sequence with Indels

problem under RAM model with word size w = Ω(log n) can be solved using
nH0(T )+ O( n log σ√

log n
) bits of space, supporting the queries access, rank, select,

insert and delete in O(log n) worst-case time.

To extend our results to a larger alphabet of size σ = Ω(
√

log n/ log log n), we
use a generalized ρ-ary wavelet tree [8] over T , where ρ = Θ(

√
log n/ log log n).

Essentially, this generalized wavelet tree makes a sequence with the first log ρ
bits of the symbols at the first level, the next log ρ bits at the second level
(where the symbols with the same first log ρ bits are grouped in the same child

15



of the root), and so on. The tree has O(logρ σ) = O( log σ

log log n
) levels. We store

on each level a sequence over an alphabet of size ρ, which is handled using
the solution of Theorem 3, for which ρ is small enough. Hence each query and
operation takes O(logn) time per level, adding up O(log n log σ

log log n
) worst-case

time overall.

As shown by Ferragina et al. [8], the sum of the zero-order-entropy representa-
tions of the sequences at each level adds up to the zero-order entropy of T . In
addition, the generalized ρ-ary wavelet tree handles changes in ⌈log n⌉ auto-
matically, as this is encapsulated within each level. We thus obtain our main
theorem, where we have included the case of small σ as well. We recall that,
within the same time, access can retrieve O(logσ n log n) consecutive symbols
from T .

Theorem 4 Given a text T of length n over an alphabet of size σ and zero-
order entropy H0(T ), the Dynamic Sequence with Indels problem under RAM
model with word size w = Ω(log n) can be solved using nH0(T ) + O( n log σ√

log n
)

bits of space, supporting queries access, rank, select, insert and delete in
O(log n(1 + log σ

log log n
)) worst-case time.

5 Discussion

We have shown that the best two existing solutions to the Dynamic Sequence
with Indels problem [21,19] can be merged so as to obtain the best from both.
This merging is not trivial and involves some byproducts that can be of in-
dependent interest. In particular, we have shown how to handle efficiently a
synchronized collection of partial sums. We show now a couple of immediate
consequences of our improved result.

Very recently [21,22] it has been shown that a wavelet tree built over the
Burrows-Wheeler Transform T bwt of a text T [4], and compressed using the
(c, o) pair technique, achieves high-order entropy space, namely nHh(T ) +
o(n log σ) for any h+1 ≤ α logσ n and constant 0 < α < 1, where Hh(T ) is the
h-th order empirical entropy of T [24]. This is used by Mäkinen and Navarro
[21] to obtain a dynamic text index that handles a collection C of texts and
permits searching for patterns, extracting text snippets, and inserting/deleting
texts in/from the collection. Using their definitions [21, Sec. 7] and using their
same sampling step, we can state a stronger version of those theorems:

Theorem 5 The Dynamic Text Collection problem can be solved with a data
structure of size nHh(C) + o(n log σ) + O(σh+1 log n + m log n + w) bits, si-
multaneously for all h. Here n is the length of the concatenation of m texts,
C = 0 T10 T2 · · · 0 Tm, and we assume that σ = o(n) is the alphabet size and
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w = Ω(log n) is the machine word size under the RAM model. The structure
supports counting of the occurrences of a pattern P in O(|P | logn(1+ log σ

log log n
))

time, and inserting and deleting a text T in O(|T | logn(1 + log σ

log log n
)) time.

After counting, any occurrence can be located in time O(log2 n(1 + log log n

log σ
)).

Any substring of length ℓ from any T in the collection can be displayed in time
O(log2 n(1 + log log n

log σ
) + ℓ log n(1 + log σ

log log n
)). For h ≤ (α logσ n) − 1, for any

constant 0 < α < 1, the space complexity simplifies to nHh(C) + o(n log σ) +
O(m log n + w) bits.

When the alphabet is of moderate size, that is, σ = O(polylog(n)), the times
obtained above become O(|P | logn) for counting, O(|T | logn) for text inser-
tion/deletion, O(logn logσ n log log n) for locating, and O(log n(logσ n log log n+
ℓ)) for displaying.

Another important application that derives from this one is the compressed
construction of text indexes. For example, a variant of the FM-index [8] re-
quires h-th entropy space once built, but in order to build it we need O(n log n)
bits of space. The previous theorem can be used to build the FM-index of a
text by starting with an empty collection and inserting the text T of interest.
Our new results make this process faster.

Theorem 6 The Alphabet-Friendly FM-index of a text T [1, n] over an alpha-
bet of size σ can be built using nHh(T )+ o(n log σ) bits, simultaneously for all
h ≤ (α logσ n)−1 and any constant 0 < α < 1, in time O(n logn(1+ log σ

log log n
)).

We note that this is the same asymptotic space required for the final, static,
FM-index [8]. This FM-index is not only relevant by itself, but also as an
intermediate step to compute other important structures such as the suffix
array [23] and the Burrows-Wheeler Transform (BWT) [4] of T . Both are
easily derived from our dynamic FM-index. Although the final product takes
in this case more space than our intermediate representation, we can output
the result in order, so that we do not need to maintain the large representation
in memory. Our next discussion assumes this model: we must output the suffix
array or the BWT sequentially (as otherwise there is no point in building them
in little space).

The BWT is the simpler problem for us. We can easily derive it sequentially
from the FM-index, by obtaining one by one the symbols in O(1 + log σ

log log n
)

time each, and sending them to the output. The best previous result we know
of, in terms of space complexity [18], achieves O(n log2 n) time (O(n log n) on
average) using O(n) bits in addition to the n log σ bits of the text. This is
asymptotically worse than our space and time for any σ. We note that, using
previous work [21], one achieves O(n log n log σ) time, which may be as bad
as O(n log2 n) for large σ.
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Using our result to build the suffix array is a bit more complicated. Let us focus
on the case σ = O(polylog(n)), where our FM-index worst-case construction
time becomes O(n log n). To obtain the suffix array sequentially we must carry
out one locate operation for each cell, which can be made as fast as O(log n)
time per cell if we spend O(n) additional bits of space. Thus we can build
the suffix array sequentially within n log σ + o(n log σ) + O(n) bits (even on
uncompressible texts) and in O(n logn) time. This was indeed the best known
time complexity to build the suffix array until a few years ago [28]. Nowadays
linear-time algorithms exist, yet all of them require O(n log n) bits of space. On
the other hand, the best current result on compressed suffix array construction
[16] takes O(n log σ) bits of space and O(n log n) time for arbitrary alphabets
(note that the space is not compressed and its constant term is not 1).

Finally, let us discuss how much our results could be improved. Chan et al. [5]
recently showed that the Dynamic Sequence with Indels problem on bits (σ =
2) can be solved in O( log n

log log n
) time for all operations, using O(n) bits of space

(this is striking because the rank/select problem was conjectured by several
to have the same Ω(log n) lower bound of partial sums [27]). Combining with
multiary wavelet trees one immediately achieves O(n log σ) bits of space and
O( log n log σ

(log log n)2
) time for general alphabets. This time matches the lower bound of

Fredman and Saks for rank/select [11] as long as σ = O(polylog(n)), whereas
it is not known whether the result would be time-optimal for larger σ. In
any case, this raises the challenge of achieving that complexity within nH0 +
o(n log σ) bits of space.

Alternatively, one would like to improve the space to high-order entropy (not
only for the Dynamic Text Collection problem, but for the Dynamic Sequence
with Indels problem). This has not been achieved even if we disregard opera-
tions rank and select and is satisfied only with access, insert, and delete. The
dynamic support for the existing nHh-space solutions to access is currently
null or very rudimentary [31,13,9].

Finally, one can wish to handle a stronger set of operations. In particular, our
wavelet trees are markedly static in shape, and thus supporting changes in
the alphabet Σ looks challenging. This would have applications in a dynamic
scenario where the set of symbols is not known in advance.
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