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1 Introdu
tionBinary sear
h trees form one of the topi
s most 
ommonly studied in 
om-puter s
ien
e, probably due to their wide range of appli
ations. Their im-portan
e 
an be assessed by reading the 
lassi
al books by Knuth [4, 5℄. Thestudy of optimal weighted binary sear
h trees dates ba
k to the �fties. Atutorial on this subje
t has been written by Nagaraj [10℄, more re
ently.Ea
h node of a binary sear
h tree 
an be assigned an a

ess 
ost or aweight, where the latter 
an represent the a

ess probability of the node.With a

ess 
osts one may be interested in optimizing the worst 
ase or theaverage 
ase 
ost, where uniform a

ess probability is assumed. In the se
ond
ase one assumes that the a

ess 
ost is uniform, and it is possible to assignprobabilities only to internal tree nodes (su

essful sear
hes), only to externaltree nodes (unsu

essful sear
hes) or to both. Finally, we 
an 
onsider a moregeneral model, where both a

ess 
osts and weights are in
luded.An algorithm for 
onstru
ting an optimal binary sear
h tree has been�rst des
ribed by Gilbert and Moore [1℄, for the 
ase in whi
h to ea
h key isassigned a weight. The 
omplexity of this algorithm is O(n3). Knuth [3℄ 
on-sidered the model of a

ess probabilities in
luding su

essful and unsu

essfulsear
hes. He proved an elegant monotoni
ity prin
iple, whi
h de
reased the
omplexity by a fa
tor of O(n). When only unsu

essful sear
hes are relevanta di�erent algorithm 
an be applied, as des
ribed by Hu and Tu
ker [2℄. The
omplexity of the latter algorithm was O(n2), but it has been shown to admitan implementation running in O(n logn) time [5℄. Finally, we also mentionthat the problem of approximating optimal weighted binary sear
h trees hasbeen 
onsidered by several authors. See [8, 9℄, for instan
e.In this paper, we 
onsider the problems of �nding optimal binary sear
htrees in whi
h the a

ess 
ost to a key xq depends on the k pre
eding keyswhi
h were rea
hed in the path to xq. We permit arbitrary a

ess probabili-ties (independent on the pre
eding keys) as well. The 
lassi
al optimal binarysear
h tree 
onstru
tion by Gilbert and Moore [1℄ and Knuth [3℄ 
orrespondsthus to the fundamental 
ase k = 0. In this work we are 
on
erned with thevalues k � 1. Two kinds of optimal trees are 
onsidered, namely optimalworst 
ase trees and weighted average 
ase trees. The inputs of these prob-2



lems are a number n of keys, the value k, 1 � k < n, and a 
ost asso
iatedto ea
h possible sequen
e formed by at most k+1 keys, all of them distin
t.For the weighted average 
ase minimization problem, ea
h key is addition-ally given a weight. Usually, su
h a weight would re
e
t the frequen
y ofa

essing the key. Observe that the input size grows exponentially with k,as it is O(nk+1).We des
ribe algorithms for solving the the problems of �nding the op-timal worst 
ase trees and weighted average 
ase trees. The 
omplexity isO(nk+2) for both 
ases. The extra spa
e needed is O(nk+1). Time and spa
e
omplexities are polynomial in the size of the input.The optimal binary sear
h tree for k = 0 and with uniform key a

ess
osts, as 
onsidered in [1, 3℄, is a model for situations in whi
h the keys arein the main memory. Greater values of k and arbitrary a

ess 
osts 
ouldmodel the 
ases in whi
h other kind of memories are involved. For example,when all keys are stored in a disk, the a

ess 
ost to a given key depends onthe position on the disk of the key previously a

essed. Therefore, �ndingan optimal tree when all keys are stored in a disk would 
orrespond to the
ase k = 1. In this situation, the input size is O(n2) and the 
omplexity ofthe proposed algorithm is O(n3). For example, this is the 
ase for optimalsear
hing strategies on some text indi
es stored in se
ondary memory [11℄.Similarly, in some motion planning problems, the 
ost of the next movedepends on the previous position. The generi
 
ase 
an also be used wherethe 
ost of moving the robot depends on resour
es used in the last k lo
ations.Besides pra
ti
al motivations, we believe that some of the 
on
epts presentedin this paper might be of interest in the general study of sear
h trees.The following are some basi
 de�nitions.A binary tree is a rooted tree T in whi
h every node z, other than theroot, is labeled left 
hild or right 
hild, in su
h a way that any two siblingshave di�erent labels. When z has no siblings it is 
alled an only 
hild. Apath of T is a sequen
e of nodes z1; : : : ; zt, su
h that zq is the parent of zq+1.In this 
ase, z1 is an an
estor of zt, while zt is a des
endant of z1. Whenz1 6= zt they are 
alled proper an
estor and proper des
endant, respe
tively.A t-path is a path formed by t nodes. The notation N(T ) represents the setof nodes of T . For z 2 N(T ), the binary tree de�ned in T by all des
endants3



of z is 
alled the subtree of T rooted at z, and denoted by T (z). The leftsubtree of z is the binary tree formed in T by the left 
hild of z and all ofits des
endants. Similarly, de�ne the right subtree of z. The left and rightsubtrees of z are represented by TL(z) and TR(z), respe
tively. A binary treede�ned in T by a subset of N(T ) is 
alled a partial subtree of T . A root pathis a path starting at the root of T , while a root-leaf path starts at the rootand ends at some leaf of T .Let fx1; : : : ; xng be a set of elements 
alled keys, xq < xq+1. A binarysear
h tree for fx1; : : : ; xng is a binary tree T in whi
h either N(T ) is empty,or the left and right subtrees of the root are binary sear
h trees, where allkeys in the left subtree are smaller than that of the root, while the keys inthe right subtree are greater. A legal path is a sequen
e of keys whi
h is apath in some binary sear
h tree.The des
ribed minimization problems are solved by dynami
 program-ming equations. The 
orresponding de
ompositions employ the 
on
epts oflegal path and (i; j)-legal paths. The latter means those legal paths leadingto a subtree formed by 
onse
utive keys. We then des
ribe 
hara
terizationsfor both legal and (i; j)-legal paths. The algorithms are obtained by 
ombin-ing the de
ompositions and the 
hara
terizations. The de
ompositions arepresented in Se
tion 2 and the 
hara
terizations are deferred to Se
tion 3.Se
tion 4 presents an analysis of some parameters of the tree, in
luding thetime and spa
e 
omplexity of the algorithms. The analysis is based on gener-ating fun
tions and enumerates (i; j)-legal paths. Finally, Se
tion 5 presentsthe 
on
lusions and some additional remarks.2 The De
ompositionsLet k � 1 be a given integer value and fx1; : : : ; xng a set of keys, xq < xq+1.For ea
h xq and legal path y1; : : : ; yt, where 1 � t � k + 1 and xq = yt, itis given a real non-negative key 
ost 
(y1; : : : ; yt) of yt relative to y1; : : : yt.It 
orresponds to the 
ost of rea
hing yt through the path y1; : : : ; yt. Inaddition, ea
h key xq is given a non-negative real weight w(xq). For a legalpath y1; : : : ; ym, de�ne its path 
ost as4



C(y1; : : : ; ym) = X1�q�m 
(ymaxf1;q�kg; : : : ; yq) (1)Let T be a binary sear
h tree for fx1; : : : ; xng. Denote by x�q the rootpath to key xq. The values max1�q�nfC(x�q)g and P1�q�nw(xq) � C(x�q) are
alled worst 
ase tree 
ost and weighted average 
ase tree 
ost, respe
tively.When N(T ) = ;, the 
osts of T are de�ned as zero. The question 
onsists of�nding the tree T whi
h minimizes one of these two above 
osts, as desired.A minimizing tree is 
alled optimal.Observe that subtrees of an optimal tree are not ne
essarily optimal, forany k > 0. Consider the example having k = 1, n = 3, with key 
osts asgiven by Figure 1(a) and having all weights equal to 1.legal paths x1 x2 x3 x1x2 x1x3 x2x1 x2x3 x3x1 x3x2key 
osts 0 0 0 0 2 3 2 3 1 (a)i x1���� ix2 (b)���� i x3Figure 1: Example of an optimal tree with non-optimal subtrees.The tree of Figure 1(b) is both worst and average 
ase optimal, but T (x2)is not optimal in any 
ase. Consequently, the de
omposition employed in thedynami
 programming solution of the optimal binary sear
h tree problem fork = 0 does not apply to the present 
ase. However, spe
ial kinds of partialsubtrees are optimal, making it possible to solve our minimization prob-lems by 
onveniently de
omposing them into smaller subproblems, leadingto te
hniques similar as [1, 3℄. At this point we need additional notation.First, introdu
e k additional keys fxn+1; : : : ; xn+kg, 
alled dummy keys,also satisfying xq < xq+1, n � q < n + k. Ea
h of these keys has weight 0.5



The key 
osts relative to paths 
ontaining dummy keys are de�ned as follows.Let y1; : : : ; yt be a legal path having at least one dummy key, 1 � t � k + 1.Then

(y1; : : : ; yt) = 8>>>>>>>><>>>>>>>>:

0; when y1; : : : ; yt are all dummy keys (2)
(yq; : : : yt); when 9 q > 1 su
h that y1; : : : ; yq�1 aredummy keys, but yq; : : : yt are not (3)1; otherwise (4)Denote X = fx1; : : : ; xn+kg, X�i = fx1; : : : ; xig, X+i = fxi+1; : : : ; xn+kg,Xij = fxi+1; : : : ; xjg and Wij = Pi<q�j w(xq).Let i; j be a pair of integers, 0 � i � j � n. A path y1; : : : ; yk is (i; j)-legal when there exists a binary sear
h tree T having node set X 
ontainingthe path y1; : : : yk and su
h that either i = j and yk is a leaf of T, or yk hasa 
hild x` 2 Xij satisfying N(T (x`)) = Xij. In other words, an (i; j)-legalpath is one leading to a subtree 
ontaining exa
tly the keys of Xij, in a treeformed by all keys of X.Let y1; : : : ; yk be an (i; j)-legal path. Denote by Tij(y1; : : : ; yk) an optimalsubtree formed by the nodes of Xij, where y1; : : : ; yk is the path leading to itsroot. Represent by Cij(y1; : : : ; yk) the (optimal) 
ost of Tij(y1; : : : ; yk). Thatis, Cij(y1; : : : ; yk) 
an be interpreted as the optimal 
ost to sear
h the subtreeXij, given that y1; : : : ; yk is the path leading to it. Note that Tij(y1; : : : ; yk)does not 
ontain the nodes of y1; : : : ; yk, however the 
ost of it depends onthis path. In terms of this notation, a solution to the stated minimizationproblems is the subtree of T0n(xn+k; xn+k�1; : : : ; xn+1), having as root the
hild of xn+1. Observe that the path leading to the latter tree is formedsolely by dummy keys.For determining the value of the optimal 
ost Cij(y1; : : : ; yk), we de
om-pose the 
orresponding problem into the subproblems of �nding the optimal
osts Ci;`�1(y2; : : : ; yk; x`) and C`j(y2; : : : ; yk; x`), for ea
h x` 2 Xij. The keyx` is the 
hild of yk in the trees. See Figure 2.The following dynami
 programming equations apply the des
ribed de-6




ompositions and 
ompute the optimal 
osts values.Worst-
ase minimization:
Cij(y1; : : : ; yk) = 8>>><>>>: 0;when i = j. Otherwise, (5)mini<`�jfmaxfCi;`�1(y2; : : : ; yk; x`);C`j(y2; : : : ; yk; x`)g+ 
(y1; : : : ; yk; x`)g; (6)for all 0 � i � j � n and (i; j)-legal paths y1; : : : ; yk, k � 1.Weighted average-
ase minimization:
Cij(y1; : : : ; yk) = 8>>><>>>: 0;when i = j. Otherwise, (7)mini<`�jfCi;`�1(y2; : : : ; yk; x`) + C`j(y2; : : : ; yk; x`)++Wij � 
(y1; : : : ; yk; x`)g; (8)for all 0 � i � j � n and (i; j)-legal paths y1; : : : ; yk, k � 1.In order to verify the 
orre
tness of the above equations, note that ify1; : : : ; yk is an (i; j)-legal path and i < ` � j then y2; : : : ; yk; x` is both(i; ` � 1)-legal and (`; j)-legal. Using this fa
t, the dynami
 programmingequations 
an be obtained by standard indu
tion.The algorithms for �nding optimal worst 
ase and weighted average 
asebinary sear
h trees 
an now be des
ribed.The input 
onsists of an integer k > 0, a set fx1; : : : ; xng of keys, xq <xq+1, and a key 
ost 
(y1; : : : ; yt) for ea
h legal t-path, 1 � t � k + 1.Alternatively, the input 
an 
onsist of a fun
tion whi
h enables to 
omputethe key 
osts 
(y1; : : : ; yt), whenever needed. In the latter 
ase we assume that7
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omposition of Tij(y1; : : : ; yk)this 
omputation 
an be done in 
onstant time. In addition, in the weightedaverage 
ase problem ea
h key xq is also given a non-negative weight w(xq).The algorithms start by de�ning the dummy keys fxn+1; : : : ; xn+kg. Using(2) � (4), 
ompute the key 
osts 
(y1; : : : ; yt), for ea
h legal t-path y1; : : : ytwith at least one dummy key, 1 � t � k + 1. De�ne w(xq) = 0 for ea
hn + 1 � q � n + k. For ea
h (i; j)-legal t-path y1; : : : ; yt and 0 � i � j � n,
ompute Cij(y1; : : : ; yt) by (5)� (6) and (7)� (8), respe
tively for the worst
ase and weighted average 
ase problems. All required legal and (i; j)-legalpaths are generated using Theorems 1 and 2, respe
tively. The �nal solutionis C0n(xn+k; : : : ; xn+1). In the next se
tion we 
hara
terize (i; j)-legal paths,using parti
ular ordering s
hemes.It is simple to modify the algorithms to avoid 
omputations with dummykeys. An idea is to impose that whenever xp and xq are dummy keys and xpis a proper an
estor of xq then p > q.8



One 
ould wonder whether is it possible to improve this algorithm. Themonotoni
ity prin
iple by Knuth [3℄ made it possible to de
rease the numberof iterations from O(n3) to O(n2), for 
onstru
ting an optimal binary sear
htree. Unfortunately, the prin
iple does not hold for k > 0, as shown bythe following example. Let fx1; : : : ; xk+2g be the given set of keys, all withuniform weights. The 
osts are de�ned as follows:
(xk+1; : : : ; x1) = 
(xk+1; : : : ; x2) = : : : = 
(xk+1) = 0,
(x1; : : : ; xk; xk+2) = 
(x1; : : : ; xk) = : : : = 
(x1) = 0,
(x2; : : : ; xk; xk+2; xk+1) = 0,while any other key 
ost is equal to 1. The solution of both minimizationproblems for the keys fx1; : : : ; xk+1g is the tree formed by the single pathxk+1; : : : ; x1. When adding the key xk+2, the optimal tree for fx1; : : : ; xk+2gis the path x1; : : : ; xm; xm+2; xm+1, meaning that the prin
iple does not applyfor k > 0. In fa
t, it does not hold also for k = 0 under non uniform key
osts.Finally, it would be worth mentioning that the proposed model 
an alsohandle unsu

essful sear
hes. Basi
ally, to the existing n + k keys of thetree, we add n + k + 1 new nodes. These are 
alled gaps and 
orrespondto the external nodes, i.e., unsu

essful sear
hes. To ea
h gap it is given anarbitrary weight, as for keys. The key 
osts of a key or gap yt are rede�ned, soas to satisfy the following 
onditions. If y1; : : : ; yt are all keys then the value
(y1; : : : ; yt) is exa
tly as explained in this se
tion. That is, either takenfrom the input or 
omputed by (2 � 4). Otherwise (i) 
(y1; : : : ; yt) = 1,whenever any among y1; : : : ; yt�1 is a gap, or (ii) 
(y1; : : : ; yt) = 0, in 
asethat yt is a gap and all y1; : : : ; yt�1 are keys. Then we apply the algorithmsjust des
ribed.3 Chara
terizing Legal PathsIn this se
tion we des
ribe 
hara
terizations for legal and (i; j)-legal paths.That is, for sequen
es of keys whi
h are paths in some binary tree, and whi
hlead to subtrees formed by 
onse
utive keys, respe
tively. The following9



de�nition is useful.Let Y � X. An ordering y1; : : : ; ym of the keys of Y is 
alled min-maxwhen ea
h yq is either minimal or maximal in fyq; : : : ; ymg. In this 
ase, labelea
h yq, 1 � q � m, as min or max, respe
tively.The following 
hara
terizes legal paths.Theorem 1: A path is legal if and only if it is a min-max ordering.Proof: Let y1; : : : ; ym be a legal path. Then there exists a binary sear
htree T , su
h that y1; : : : ; ym is a path of T . If it is not a min-max order-ing there exists a key yi whi
h is neither the minimal nor the maximal offyi; yi+1; : : : ; ymg, i � m�2. If yi+1 is a left 
hild in T then yi > yi+1; : : : ; ym,implying that yi is a max key. Similarly, yi+1 
an not be a right 
hild, be
auseit would imply that yi is a min key. The 
ontradi
tion implies that y1; : : : ; ymis a min-max ordering.Conversely, let y1; : : : ; ym be a min-max ordering. We 
onstru
t a binarytree T su
h that y1; : : : ; ym is a path of it. For ea
h i, 1 < i � m, let yi beeither the left or right 
hild of yi�1 in T , a

ording to whether yi is a min ormax key, respe
tively. It follows that T is a binary sear
h tree. Consequently,y1; : : : ; ym is a legal path. 2The following ordering is also of interest.For Y � X and 0 � i < j � n + k, an ordering Y 0 of Y is 
alled(i; j)-in
-de
 when:� Y � X�i [X+j ;� the keys of Y \ X�i are in in
reasing ordering in Y 0, while those ofY \X+j are in de
reasing ordering;� Y \X�i 6= ; =) xi 2 Y ; andY \X+j 6= ; =) xj+1 2 Y .Lemma 1: A (i; j)-in
-de
 ordering is ne
essarily a min-max ordering.Proof: Label the keys of Y \X�i as min, and as max those of Y \X+j . 210



The next theorem 
hara
terizes (i; j)-legal paths.Theorem 2: For i = j a path is (i; j)-legal if and only if it is a min-maxordering. For i < j, a path is (i; j)-legal if and only if it is a (i; j)-in
-de
ordering.Proof: When i = j the results follows from Theorem 1. Consequently, weassume throughout the proof that i < j.(=)): The idea of the proof of ne
essity is simple. Considering an arbi-trary (i; j)-legal path, we show that it satis�es the de�nition of an (i; j)-in
-de
 ordering.By hypothesis, y1; : : : ; ym is a (i; j)-legal path. Then there is a binarysear
h tree T , having X as its node set, where y1; : : : ; ym is a path of it, ymthe father of some x` 2 Xij and the subtree T (x`) 
ontains exa
tly the keysof Xij. Let Y = fy1; : : : ; ymg. We prove that y1; : : : ; ym satis�es the threeabove 
onditions for an (i; j)-in
-de
 ordering. First, 
learly Y � X�i [X+j .Se
ond, suppose there exists a key yq 2 X�i \Y su
h that yq > yq+1 for some1 � q < m. Sin
e T is a binary sear
h tree, it follows that yq+1 is a key ofthe left subtree of yq. Sin
e yq is an an
estor of ym, we know that x` alsobelongs to this subtree, 
ontradi
ting x` > yq, implied by yq 2 X�i . Hen
eno su
h q 
an exist. Consequently, the keys of X�i \ Y are in in
reasingordering in y1; : : : ; ym. Similarly, we prove that those of X+j \ Y form ade
reasing ordering. Third, suppose that X�i \ Y 6= ; and xi 62 Y . Denoteby yt the maximal key of X�i \ Y . Clearly, yt < xi. We try to lo
ate keyxi in T . Suppose that xi is a des
endant of yt. Then xi belongs to theright subtree R of yt. Consequently, T (x`) is also in R. If t = m thenxi 2 T (x`), a 
ontradi
tion. When t < m we know that yt; : : : ; ym is a pathof R. Be
ause T is a binary sear
h tree and the maximality of yt in X�i itfollows that yt+1; : : : ; ym 2 X+j . Consequently, be
ause the keys of X+j \ Yare in de
reasing ordering in y1; : : : ; ym, we 
on
lude that yt+1 is a right
hild, but yt+2; : : : ; ym; x` are all left 
hildren. Be
ause xi < yt+1; : : : ; ym; x`it follows that xi must belong to T (x`). The latter 
ontradi
ts again the fa
tthat T (x`) 
ontains exa
tly Xij. Hen
e xi is not a des
endant of yt. Neither
an xi be an an
estor of yt. Be
ause in this 
ase, yt belongs to the left subtreeL of xi, implying that x` > xi belongs to L, a 
ontradi
tion. The remainingpossibility is that xi is neither a des
endant nor an an
estor of yt. In this11




ase, let z be the nearest 
ommon an
estor of xi and yt. Denote by L andR the left and right subtrees of z, respe
tively. If xi is in L then yt must bein R, 
ontradi
ting yt < xi. The other 
ase is xi in R and yt in L, makingit impossible the assumption xi < xi+1. Therefore the alternative that xi isneither a des
endant nor an an
estor of yt 
an also not o

ur. Consequently,X�i \ Y 6= ; implies xi 2 Y . The proof that X+j \ Y 6= ; implies xj+1 2 Yis similar. Consequently, y1; : : : ; ym is an (i; j)-in
-de
 ordering, settling theproof of ne
essity.((=): The idea of the proof of the 
onverse is as follows. Consider a set ofkeys X and a subset of it forming an (i; j)-in
-de
 ordering fy1; : : : ; ymg. We
onstru
t a binary sear
h tree T for X su
h that fy1; : : : ; ymg is an (i; j)-legalpath of T .Suppose that y1; : : : ; ym is an (i; j)-in
-de
 ordering, 0 � i < j � n + k.Constru
t a binary tree T 0 as follows. The sequen
e y1; : : : ; ym is a path of T 0,su
h that yp is a left or right 
hild of yp�1, a

ording to whether yp < yp+1 oryp > yp+1, respe
tively. T 0 also 
ontains a subtree T 0(x`), having an arbitraryroot x` 2 Xij, and satisfying the following property: T 0(x`) is a binary sear
htree 
ontaining exa
tly the keys of Xij. Finally, make x` the left or right
hild of ym, a

ording to whether ym 2 X+j or ym 2 X�i , respe
tively. The
onstru
tion of T 0 is 
ompleted. Let Y = fy1; : : : ; ymg. Sin
e y1; : : : ; ym is an(i; j)-in
-de
 ordering, it follows that Y \Xij = ;. Hen
e the path y1; : : : ; ymand T (x`) are disjoint. The latter 
ompletes the argument to show that T 0is a binary tree. Moreover, we will 
on
lude that it is in fa
t a binary sear
htree. With this purpose, let z1; z2 be keys of T 0, z1 belonging to the leftsubtree L of z2. Consider the possibilities:Case 1: z1; z2 2 Y .Sin
e y1; : : : ; ym is an (i; j)-in
-de
 ordering, by Lemma 1 it is a min-maxordering. By Theorem 1 it must be a legal path. Hen
e z1 being in L impliesz1 < z2.Case 2: z1 2 Xij and z2 2 Y .Suppose ym = z2. Then x` must be the left 
hild of ym. By the 
onstru
tionof T 0, we 
on
lude that z2 2 X+j . Hen
e z1 < z2. Suppose now z2 6= ym.By Case 1, we 
on
lude that ym < z2. Suppose ym 2 X+j . Then z1 < ym,implying z1 < z2. Alternatively, 
onsider ym 2 X�i . In this 
ase, if z2 2 X�i12



then z2; ym must appear in in
reasing ordering, be
ause y1; : : : ; ym is an (i; j)-in
-de
 ordering. Hen
e z2 < ym, a 
ontradi
tion. Consequently, z2 2 X+j .That is, z1 < z2.Case 3: z1 2 Y and z2 2 Xij.This 
ase 
an not o

ur, be
ause it implies that z2 is a des
endant of z1. This
ontradi
ts z1 belonging to the left subtree of z2.Case 4: z1; z2 2 Xij.Sin
e T (x`) is a binary sear
h tree, z1 being in L implies z1 < z2.From the above 
ases, we 
an 
on
lude that z1 belonging to TL(z2) impliesthat z1 < z2, for any z1; z2 2 Y [ Xij. Similarly, it 
an be proved that z1belonging to TR(z2) implies z1 > z2. Consequently, T 0 is a binary sear
htree 
ontaining the keys N(T 0) = Y [ Xij. Let X 0 = X n N(T 0). We nowin
lude in T 0 ea
h key of X 0, as follows. If Y \ X�i = ; and i > 0 thenin
lude xi 2 X 0 in T 0 so as y1 be
omes the right 
hild of xi. Similarly, ifY \ X+j = ; and j < n + k then xj+1 2 X 0 is in
luded in T 0 in su
h a waythat y1 is the left 
hild of xj+1. Note that the above two 
onditions 
an noto

ur simultaneously. Next, for ea
h key of X 0 not yet in
luded in the tree,in
lude it a

ording to the rules of binary sear
h tree insertion. Let T bethe �nal tree so obtained. Sin
e T 0 is a binary sear
h tree, T is so. Also,T 0 is a partial subtree of T . Clearly N(T ) = X and y1; : : : ; yk is a path ofT 0. Consequently, in order to show that y1; : : : ; ym is (i; j)-legal, it remainsonly to prove that T 0(x`) = Xij. Equivalently, that T (x`) = T 0(x`). Supposethe 
ontrary. Then T (x`) ne
essarily 
ontains some key z 2 X 0. Supposez 2 X�i . The following alternatives exist.Case 1: Y \X�i 6= ;.By the de�nition of (i; j)-in
-de
 ordering, it follows that xi 2 Y . That is,xi is a proper an
estor of x` in T . Hen
e, z 6= xi. Sin
e xi is the maximalkey of X�i , it follows z < xi. Then the binary sear
h tree insertion pro
edurewould not in
lude z in the right subtree of xi. On the other hand, x` belongsto the right subtree of xi, as xi < x`. Hen
e z 62 N(T (x`)).Case 2: Y \X�i = ;.If i = 0 then X�i = ;, 
ontradi
ting z 2 X�i . When i > 0, y1 is the right 
hildof xi, by the 
onstru
tion of T . Hen
e z < xi, implying that the binary sear
htree insertion again 
ould not in
lude z in TR(xi). However x` 2 N(TR(xi)).13



That is, z 62 N(T (x`)).Consequently, z 2 X�i implies that z is not in T (x`). Similarly, we provethat z 2 X+j also implies that z 
an not be in T (x`). Therefore T (x`) isformed exa
tly by the keys of Xij. Hen
e y1; : : : ; ym is an (i; j)-legal path,
ompleting the proof of Theorem 2. 24 Analyti
al ResultsIn this se
tion we 
ompute some measures related to the problem. We startby 
omputing a 
ouple of general measures and later use them to dedu
esome parameters important for the problem: number of steps performed bythe algorithm, spa
e 
omplexity, size of the input and number of (i; j)-legalpaths. We �rst 
ompute the above measures exa
tly and later give an easierto grasp approximation. The �nal result is that we pay O(nk+2) time andO(nk+1) spa
e.We make heavy use of generating fun
tions to obtain our results. Gen-erating fun
tions represent a sequen
e fangn�0 as a 
omplex-valued fun
tiona(z) = Pn�0 anzn (this operation is also 
alled the z-transform). Re
ur-ren
es, that is, equations that de�ne fang by relating the values of an fordi�erent n, are transformed on both sides so as to obtain an equation thatde�nes a(z). After solving for a(z), the transformation is reversed and thevalue of an is obtained. It is possible to transform multi-index sequen
esinto multivariate generating fun
tions. For more details refer to the book bySedgewi
k and Flajolet [12℄Rethink legal paths this way: instead of 
onsidering a sequen
e of yq min-max values, 
onsider that the interval to work on, initially [1; n℄, is redu
edk times, by either in
rementing its left limit (min value) or de
rementingits right limit (max value). Hen
e, we have a sequen
e of in
rements and asequen
e of de
rements, where the sum of the steps is k. We 
an identifythe legal path with the pair of sequen
es (a

ounting also for the form inwhi
h they are mixed). If we are interested in the amount of work to do, we
onsider that after the k steps are done, we work in time proportional to thesize of the interval left. See Figure 3.14
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wwwwwwwwwwwFigure 3: Interpreting legal paths. Variables z, x and w 
orrespond to thequantities to be 
ounted.The generating fun
tion to be used has three variables z, x, w. Let thevariable z 
ount the total size of the array (n), x 
ount the total number ofa

esses (k) and w the total amount of work. Our generating fun
tion is thusF (z; x; w) = Xn;k;r�0Fn;k;rznxkwrsu
h that in an array of n elements there are Fn;k;r di�erent legal paths of ksteps whi
h lead to an interval of size r (whi
h 
osts O(r)).To keep 
ount of the size of the array (in z) and the number of steps (inx) at the same time, we 
onsider the number of elements \skipped" in the
onse
utive in
rements (see Figure 3). A single in
reasing step is representedby the fun
tionI(z; x) = xz1� z = xz + xz2 + xz3 + : : :15



that is, one a

ess is performed (x) after skipping over one or more elementsof the array (z's). There is at least one element, whi
h is the array element
ompared. A sequen
e of zero or more in
reasing a

esses is represented byI�(z; x) = 11� I(z; x) = 1 + I(z; x) + I(z; x)2 + I(z; x)3 + : : :and the same formulas hold for D(z; x) = I(z; x) and D�(z; x) = I�(z; x). Asequen
e of intermingled in
reasing and de
reasing a

esses 
orresponds toID�(z; x) = 11� (I(z; x) +D(z; x)) = 11� 2xz1�zand the �nal sequen
e of elements of the set where we have to work is repre-sented by 11� wz = 1 + wz + w2z2 + w3z3 + : : :(where we 
ount one unit of work in w and one element of the array in z).On the other hand, a sequen
e of elements where we do not have to work issimply 1=(1� z) = 1 + z + z2 + : : :.We are still missing some border 
onditions. If we are interested in thetotal number of a

ess paths that start with the 
omplete array and end upat a given (i; j) interval (i.e. in
-de
 orderings), then we have all the elementsto express the �nal formula, whi
h isF0(z; x; w) = 11� 2xz1�z 11� wzwhi
h 
ounts a number of in
reasing or de
reasing steps plus a �nal 
entralsegment. Sin
e we sum z's along all this pro
ess, we have in z the length ofthe resulting array. We add an x per step so we have in x the number ofsteps. Finally, we have in w the size of the �nal segment. At the end, wesele
t those pro
esses whi
h turn out to have n elements (zn), k steps (xk),and lead to an array of size jj � ij+ 1 (wjj�ij+1).However, this is not the 
orre
t formula if we are interested in the time orspa
e 
omplexity. The reason is that we have to 
ompute the above measuresnot only if we start with the original array, but also for any possible originalsubinterval. 16



There are two important 
ases here. First, if an interval has in
reasingand de
reasing 
omponents, then we do not have to perform a di�erent 
om-putation for all the possible original subintervals. For instan
e, suppose thatn = 100 and k = 2. The legal path given by [25,75℄ for example, that yieldsthe subinterval [26,74℄ to work on does not depend on the original interval[1,100℄. The �nal subinterval [26,74℄ would not need to be re
omputed if theoriginal interval was [10,90℄ instead. If, on the other hand, both a

essesat 25 and 75 are in
reasing then the �nal subinterval is [76,100℄, whi
h 
er-tainly depends on the initial interval [1,100℄. Hen
e, we must sum over alllegal paths with no regard to the initial subintervals, ex
ept for those whi
hhave only in
reasing or only de
reasing 
omponents.We are now ready to state the general formula for the 
omplexities. Sin
ewe are disregarding the initial and �nal ends of the array, we represent thesequen
e of a

esses just by ID�(z; x). However, for the 
ase of only in-
reasing or de
reasing elements we have to subtra
t what we have added andrepla
e it by a formula that allows to 
onsider all the possible initial rightextremes (for I) and all possible initial left extremes (for D). In the 
aseof in
rements (the de
rements are similar), this is obtained by subtra
tingI�(z; x) from ID�(z; x) and then adding I�(z; x)=(1� z), sin
e this allows toadd an arbitrary number of z's to the right, a

ounting for all possible posi-tions of the sequen
e inside the array. Finally, after a sequen
e of in
reasingand de
reasing steps, there is a �nal 
entral segment on whi
h we work. Theformula isF (z; x; w) = �ID�(x; y)� I�(z; x) + I�(z; x) 11� z �D�(z; x)++D�(z; x) 11� z� 11� wzwhi
h is equal toF (z; x; w) =  11� 2xz1�z + 2z=(1� z)1� xz1�z ! 11� wz
17



4.1 Time ComplexityTo 
ount the total amount of work to do, we 
onsider that ea
h di�erentsubinterval (i; j) of the array rea
hed through a di�erent legal path must bepro
essed. To pro
ess su
h interval, we must 
onsider all its positions fromi to j, and 
ompute the worst-
ase or expe
ted-
ase 
ost at ea
h position.To 
ompute su
h 
ost, we need the 
ost of some subintervals. Given thatthose subintervals are already 
omputed, we work O(jj � ij+ 1) to solve thesubinterval (i; j) given a previous legal path of length k. Hen
e, what wehave to 
ompute is the sum of jj � ij + 1 for all i � j for all legal paths oflength k whi
h lead to the subinterval (i; j).Therefore the total amount of work is the 
oeÆ
ient of znxk in the fun
-tion T (z; x) = �F�w (z; x; 1) = Xn;k;r�0 rFn;k;rznxkThis is 
orre
t, sin
e rFn;k;r is the total amount of work to do on an array ofsize n and legal paths of length k.We derive the above formula with respe
t to w and evaluate it at w = 1,to obtain T (z; x) = z(1� z)2  11� 2xz1�z + 2z=(1� z)1� xz1�z !To �nd the 
oeÆ
ient that 
orresponds to xk in T (z; x), noti
e that the
oeÆ
ient for 1=(1� ax) is ak. Hen
eTk(z) = z(1� z)2  2kzk(1� z)k + 2zk+1(1� z)k+1!and to obtain the 
oeÆ
ient that 
orresponds to zn in Tk(z), noti
e that the
oeÆ
ient of 1=(1� z)m+1 is �n+mm �, and that the 
oeÆ
ient of zn in zf(z) isthat of zn+1 in f(z). Consequently, the total amount of work is exa
tlyTk;n = 2k nk + 1! + 2 nk + 2!whi
h for instan
e shows that for k = 1 the amount of work is T1;n = n3=3�n=3. To obtain a more easy to handle formula we point out that T (k; n) =18



�(nk+2). More pre
isely,2nk+2(k + 2)! � Tk;n � 2k+1nk+2(k + 1)!holds for 0 � k < n� 1. This 
an be 
he
ked by indu
tion on k. We re
allthat nk = n(n� 1)(n� 2) : : : (n� k + 1).Noti
e that we have left aside the 
ase of zero-length sequen
es, whereboth ends of the initial subinterval must be 
onsidered (not only the right-most or leftmost). Hen
e, the previous analysis does not apply to k = 0. Inthis 
ase we have F0(z; w) = 11� z 11� wz 11� zwhi
h gives, T0;n = n3=6 + n2=2 + n=3.4.2 Spa
e Complexity and Size of the InputWe 
onsider spa
e now. We have to store one 
ell for ea
h di�erent a
-
ess path. Hen
e, instead of being interested in the size of the �nal 
entralsegments, we just 
ount their number. This is equivalent toS(z; x) = F (x; z; 1) = Xn;k;r�0Fn;k;rznxkwhi
h is S(z; x) = 11� z  11� 2xz1�z + 2z=(1� z)1� xz1�z !whi
h gives Sk;n = 2k nk! + 2 nk + 1!whi
h is �(nk+1). More pre
isely,2nk+1(k + 1)! � Sk;n � 2knk+1k!holds for 1 � k < n� 1.The size of the input problem has exa
tly the same 
omplexity. For ea
hpossible legal path of length k or less, we have an a

ess 
ost.19



4.3 In
-de
 OrderingsFinally, we 
ompute the total number of (i; j)-in
-de
 orderings in an arrayof n elements. In this 
ase, our original interval starts at the root, and hen
ethe F0(x; z; 1) de�ned before is appropriate, instead of F (x; z; 1). Using thesame te
hniques as above, we �nd On;k, whi
h is the total number of in
-de
orderings of k steps.However, there is one �nal problem. When we 
onsidered the legal pathsleading to ea
h (i; j) interval, ea
h path was 
ounted twi
e. The reason isthat the last 
omparison 
ould be amin or amax 
omponent of the sequen
e.This was 
orre
t in the previous se
tion be
ause both 
ases lead to di�erent�nal intervals to work on. Sin
e we are interested in the number of pathshere, we divide the total by two (ex
ept when k = 0). The result, valid fork > 0, is On;k = 2k�1 nk! = 2k�1nkk!(and On;0 = 1), while if we are not interested in k, we haveOn = nXk=0On;k = (3n + 1)=25 Con
luding RemarksWe have des
ribed algorithms for �nding optimal binary sear
h trees for agiven set fx1; : : : ; xng of keys when the 
ost of ea
h key xq depends on the(k + 1)�path leading to xq. The parameter k is a given arbitrary integer inthe range 1 � k < n. The optimality refers to a tree having either minimalworst 
ase or weighted average 
ase 
ost. The 
omplexity of both algorithmsis O(nk+2). It should be noted that although the 
omplexity is an exponentialin k, it is polynomial in the input size, in fa
t O(n) times the input size.As we pointed out with an example at the end of Se
tion 2, the mono-toni
ity prin
iple of Knuth [3℄ does not hold for the 
ase k > 0. Therefore, itseems diÆ
ult to improve this algorithm. On the other hand, as mentioned in20



the same se
tion, the algorithm 
an be extended without problems to handlealso unsu

essful sear
hes.An open problem is to devise good on-line approximation algorithms, as isdone for the 
ase k = 1 in [11℄, where a linear time algorithm with a 
onstantaverage approximation ratio is a
hieved. Motivated by [11℄, additional resultson this problem have been obtained re
ently [6, 7℄.Referen
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