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1 IntrodutionBinary searh trees form one of the topis most ommonly studied in om-puter siene, probably due to their wide range of appliations. Their im-portane an be assessed by reading the lassial books by Knuth [4, 5℄. Thestudy of optimal weighted binary searh trees dates bak to the �fties. Atutorial on this subjet has been written by Nagaraj [10℄, more reently.Eah node of a binary searh tree an be assigned an aess ost or aweight, where the latter an represent the aess probability of the node.With aess osts one may be interested in optimizing the worst ase or theaverage ase ost, where uniform aess probability is assumed. In the seondase one assumes that the aess ost is uniform, and it is possible to assignprobabilities only to internal tree nodes (suessful searhes), only to externaltree nodes (unsuessful searhes) or to both. Finally, we an onsider a moregeneral model, where both aess osts and weights are inluded.An algorithm for onstruting an optimal binary searh tree has been�rst desribed by Gilbert and Moore [1℄, for the ase in whih to eah key isassigned a weight. The omplexity of this algorithm is O(n3). Knuth [3℄ on-sidered the model of aess probabilities inluding suessful and unsuessfulsearhes. He proved an elegant monotoniity priniple, whih dereased theomplexity by a fator of O(n). When only unsuessful searhes are relevanta di�erent algorithm an be applied, as desribed by Hu and Tuker [2℄. Theomplexity of the latter algorithm was O(n2), but it has been shown to admitan implementation running in O(n logn) time [5℄. Finally, we also mentionthat the problem of approximating optimal weighted binary searh trees hasbeen onsidered by several authors. See [8, 9℄, for instane.In this paper, we onsider the problems of �nding optimal binary searhtrees in whih the aess ost to a key xq depends on the k preeding keyswhih were reahed in the path to xq. We permit arbitrary aess probabili-ties (independent on the preeding keys) as well. The lassial optimal binarysearh tree onstrution by Gilbert and Moore [1℄ and Knuth [3℄ orrespondsthus to the fundamental ase k = 0. In this work we are onerned with thevalues k � 1. Two kinds of optimal trees are onsidered, namely optimalworst ase trees and weighted average ase trees. The inputs of these prob-2



lems are a number n of keys, the value k, 1 � k < n, and a ost assoiatedto eah possible sequene formed by at most k+1 keys, all of them distint.For the weighted average ase minimization problem, eah key is addition-ally given a weight. Usually, suh a weight would reet the frequeny ofaessing the key. Observe that the input size grows exponentially with k,as it is O(nk+1).We desribe algorithms for solving the the problems of �nding the op-timal worst ase trees and weighted average ase trees. The omplexity isO(nk+2) for both ases. The extra spae needed is O(nk+1). Time and spaeomplexities are polynomial in the size of the input.The optimal binary searh tree for k = 0 and with uniform key aessosts, as onsidered in [1, 3℄, is a model for situations in whih the keys arein the main memory. Greater values of k and arbitrary aess osts ouldmodel the ases in whih other kind of memories are involved. For example,when all keys are stored in a disk, the aess ost to a given key depends onthe position on the disk of the key previously aessed. Therefore, �ndingan optimal tree when all keys are stored in a disk would orrespond to thease k = 1. In this situation, the input size is O(n2) and the omplexity ofthe proposed algorithm is O(n3). For example, this is the ase for optimalsearhing strategies on some text indies stored in seondary memory [11℄.Similarly, in some motion planning problems, the ost of the next movedepends on the previous position. The generi ase an also be used wherethe ost of moving the robot depends on resoures used in the last k loations.Besides pratial motivations, we believe that some of the onepts presentedin this paper might be of interest in the general study of searh trees.The following are some basi de�nitions.A binary tree is a rooted tree T in whih every node z, other than theroot, is labeled left hild or right hild, in suh a way that any two siblingshave di�erent labels. When z has no siblings it is alled an only hild. Apath of T is a sequene of nodes z1; : : : ; zt, suh that zq is the parent of zq+1.In this ase, z1 is an anestor of zt, while zt is a desendant of z1. Whenz1 6= zt they are alled proper anestor and proper desendant, respetively.A t-path is a path formed by t nodes. The notation N(T ) represents the setof nodes of T . For z 2 N(T ), the binary tree de�ned in T by all desendants3



of z is alled the subtree of T rooted at z, and denoted by T (z). The leftsubtree of z is the binary tree formed in T by the left hild of z and all ofits desendants. Similarly, de�ne the right subtree of z. The left and rightsubtrees of z are represented by TL(z) and TR(z), respetively. A binary treede�ned in T by a subset of N(T ) is alled a partial subtree of T . A root pathis a path starting at the root of T , while a root-leaf path starts at the rootand ends at some leaf of T .Let fx1; : : : ; xng be a set of elements alled keys, xq < xq+1. A binarysearh tree for fx1; : : : ; xng is a binary tree T in whih either N(T ) is empty,or the left and right subtrees of the root are binary searh trees, where allkeys in the left subtree are smaller than that of the root, while the keys inthe right subtree are greater. A legal path is a sequene of keys whih is apath in some binary searh tree.The desribed minimization problems are solved by dynami program-ming equations. The orresponding deompositions employ the onepts oflegal path and (i; j)-legal paths. The latter means those legal paths leadingto a subtree formed by onseutive keys. We then desribe haraterizationsfor both legal and (i; j)-legal paths. The algorithms are obtained by ombin-ing the deompositions and the haraterizations. The deompositions arepresented in Setion 2 and the haraterizations are deferred to Setion 3.Setion 4 presents an analysis of some parameters of the tree, inluding thetime and spae omplexity of the algorithms. The analysis is based on gener-ating funtions and enumerates (i; j)-legal paths. Finally, Setion 5 presentsthe onlusions and some additional remarks.2 The DeompositionsLet k � 1 be a given integer value and fx1; : : : ; xng a set of keys, xq < xq+1.For eah xq and legal path y1; : : : ; yt, where 1 � t � k + 1 and xq = yt, itis given a real non-negative key ost (y1; : : : ; yt) of yt relative to y1; : : : yt.It orresponds to the ost of reahing yt through the path y1; : : : ; yt. Inaddition, eah key xq is given a non-negative real weight w(xq). For a legalpath y1; : : : ; ym, de�ne its path ost as4



C(y1; : : : ; ym) = X1�q�m (ymaxf1;q�kg; : : : ; yq) (1)Let T be a binary searh tree for fx1; : : : ; xng. Denote by x�q the rootpath to key xq. The values max1�q�nfC(x�q)g and P1�q�nw(xq) � C(x�q) arealled worst ase tree ost and weighted average ase tree ost, respetively.When N(T ) = ;, the osts of T are de�ned as zero. The question onsists of�nding the tree T whih minimizes one of these two above osts, as desired.A minimizing tree is alled optimal.Observe that subtrees of an optimal tree are not neessarily optimal, forany k > 0. Consider the example having k = 1, n = 3, with key osts asgiven by Figure 1(a) and having all weights equal to 1.legal paths x1 x2 x3 x1x2 x1x3 x2x1 x2x3 x3x1 x3x2key osts 0 0 0 0 2 3 2 3 1 (a)i x1���� ix2 (b)���� i x3Figure 1: Example of an optimal tree with non-optimal subtrees.The tree of Figure 1(b) is both worst and average ase optimal, but T (x2)is not optimal in any ase. Consequently, the deomposition employed in thedynami programming solution of the optimal binary searh tree problem fork = 0 does not apply to the present ase. However, speial kinds of partialsubtrees are optimal, making it possible to solve our minimization prob-lems by onveniently deomposing them into smaller subproblems, leadingto tehniques similar as [1, 3℄. At this point we need additional notation.First, introdue k additional keys fxn+1; : : : ; xn+kg, alled dummy keys,also satisfying xq < xq+1, n � q < n + k. Eah of these keys has weight 0.5



The key osts relative to paths ontaining dummy keys are de�ned as follows.Let y1; : : : ; yt be a legal path having at least one dummy key, 1 � t � k + 1.Then
(y1; : : : ; yt) = 8>>>>>>>><>>>>>>>>:

0; when y1; : : : ; yt are all dummy keys (2)(yq; : : : yt); when 9 q > 1 suh that y1; : : : ; yq�1 aredummy keys, but yq; : : : yt are not (3)1; otherwise (4)Denote X = fx1; : : : ; xn+kg, X�i = fx1; : : : ; xig, X+i = fxi+1; : : : ; xn+kg,Xij = fxi+1; : : : ; xjg and Wij = Pi<q�j w(xq).Let i; j be a pair of integers, 0 � i � j � n. A path y1; : : : ; yk is (i; j)-legal when there exists a binary searh tree T having node set X ontainingthe path y1; : : : yk and suh that either i = j and yk is a leaf of T, or yk hasa hild x` 2 Xij satisfying N(T (x`)) = Xij. In other words, an (i; j)-legalpath is one leading to a subtree ontaining exatly the keys of Xij, in a treeformed by all keys of X.Let y1; : : : ; yk be an (i; j)-legal path. Denote by Tij(y1; : : : ; yk) an optimalsubtree formed by the nodes of Xij, where y1; : : : ; yk is the path leading to itsroot. Represent by Cij(y1; : : : ; yk) the (optimal) ost of Tij(y1; : : : ; yk). Thatis, Cij(y1; : : : ; yk) an be interpreted as the optimal ost to searh the subtreeXij, given that y1; : : : ; yk is the path leading to it. Note that Tij(y1; : : : ; yk)does not ontain the nodes of y1; : : : ; yk, however the ost of it depends onthis path. In terms of this notation, a solution to the stated minimizationproblems is the subtree of T0n(xn+k; xn+k�1; : : : ; xn+1), having as root thehild of xn+1. Observe that the path leading to the latter tree is formedsolely by dummy keys.For determining the value of the optimal ost Cij(y1; : : : ; yk), we deom-pose the orresponding problem into the subproblems of �nding the optimalosts Ci;`�1(y2; : : : ; yk; x`) and C`j(y2; : : : ; yk; x`), for eah x` 2 Xij. The keyx` is the hild of yk in the trees. See Figure 2.The following dynami programming equations apply the desribed de-6



ompositions and ompute the optimal osts values.Worst-ase minimization:
Cij(y1; : : : ; yk) = 8>>><>>>: 0;when i = j. Otherwise, (5)mini<`�jfmaxfCi;`�1(y2; : : : ; yk; x`);C`j(y2; : : : ; yk; x`)g+ (y1; : : : ; yk; x`)g; (6)for all 0 � i � j � n and (i; j)-legal paths y1; : : : ; yk, k � 1.Weighted average-ase minimization:
Cij(y1; : : : ; yk) = 8>>><>>>: 0;when i = j. Otherwise, (7)mini<`�jfCi;`�1(y2; : : : ; yk; x`) + C`j(y2; : : : ; yk; x`)++Wij � (y1; : : : ; yk; x`)g; (8)for all 0 � i � j � n and (i; j)-legal paths y1; : : : ; yk, k � 1.In order to verify the orretness of the above equations, note that ify1; : : : ; yk is an (i; j)-legal path and i < ` � j then y2; : : : ; yk; x` is both(i; ` � 1)-legal and (`; j)-legal. Using this fat, the dynami programmingequations an be obtained by standard indution.The algorithms for �nding optimal worst ase and weighted average asebinary searh trees an now be desribed.The input onsists of an integer k > 0, a set fx1; : : : ; xng of keys, xq <xq+1, and a key ost (y1; : : : ; yt) for eah legal t-path, 1 � t � k + 1.Alternatively, the input an onsist of a funtion whih enables to omputethe key osts (y1; : : : ; yt), whenever needed. In the latter ase we assume that7
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lT  (  ) ,l, j ,...  , ,...Figure 2: The deomposition of Tij(y1; : : : ; yk)this omputation an be done in onstant time. In addition, in the weightedaverage ase problem eah key xq is also given a non-negative weight w(xq).The algorithms start by de�ning the dummy keys fxn+1; : : : ; xn+kg. Using(2) � (4), ompute the key osts (y1; : : : ; yt), for eah legal t-path y1; : : : ytwith at least one dummy key, 1 � t � k + 1. De�ne w(xq) = 0 for eahn + 1 � q � n + k. For eah (i; j)-legal t-path y1; : : : ; yt and 0 � i � j � n,ompute Cij(y1; : : : ; yt) by (5)� (6) and (7)� (8), respetively for the worstase and weighted average ase problems. All required legal and (i; j)-legalpaths are generated using Theorems 1 and 2, respetively. The �nal solutionis C0n(xn+k; : : : ; xn+1). In the next setion we haraterize (i; j)-legal paths,using partiular ordering shemes.It is simple to modify the algorithms to avoid omputations with dummykeys. An idea is to impose that whenever xp and xq are dummy keys and xpis a proper anestor of xq then p > q.8



One ould wonder whether is it possible to improve this algorithm. Themonotoniity priniple by Knuth [3℄ made it possible to derease the numberof iterations from O(n3) to O(n2), for onstruting an optimal binary searhtree. Unfortunately, the priniple does not hold for k > 0, as shown bythe following example. Let fx1; : : : ; xk+2g be the given set of keys, all withuniform weights. The osts are de�ned as follows:(xk+1; : : : ; x1) = (xk+1; : : : ; x2) = : : : = (xk+1) = 0,(x1; : : : ; xk; xk+2) = (x1; : : : ; xk) = : : : = (x1) = 0,(x2; : : : ; xk; xk+2; xk+1) = 0,while any other key ost is equal to 1. The solution of both minimizationproblems for the keys fx1; : : : ; xk+1g is the tree formed by the single pathxk+1; : : : ; x1. When adding the key xk+2, the optimal tree for fx1; : : : ; xk+2gis the path x1; : : : ; xm; xm+2; xm+1, meaning that the priniple does not applyfor k > 0. In fat, it does not hold also for k = 0 under non uniform keyosts.Finally, it would be worth mentioning that the proposed model an alsohandle unsuessful searhes. Basially, to the existing n + k keys of thetree, we add n + k + 1 new nodes. These are alled gaps and orrespondto the external nodes, i.e., unsuessful searhes. To eah gap it is given anarbitrary weight, as for keys. The key osts of a key or gap yt are rede�ned, soas to satisfy the following onditions. If y1; : : : ; yt are all keys then the value(y1; : : : ; yt) is exatly as explained in this setion. That is, either takenfrom the input or omputed by (2 � 4). Otherwise (i) (y1; : : : ; yt) = 1,whenever any among y1; : : : ; yt�1 is a gap, or (ii) (y1; : : : ; yt) = 0, in asethat yt is a gap and all y1; : : : ; yt�1 are keys. Then we apply the algorithmsjust desribed.3 Charaterizing Legal PathsIn this setion we desribe haraterizations for legal and (i; j)-legal paths.That is, for sequenes of keys whih are paths in some binary tree, and whihlead to subtrees formed by onseutive keys, respetively. The following9



de�nition is useful.Let Y � X. An ordering y1; : : : ; ym of the keys of Y is alled min-maxwhen eah yq is either minimal or maximal in fyq; : : : ; ymg. In this ase, labeleah yq, 1 � q � m, as min or max, respetively.The following haraterizes legal paths.Theorem 1: A path is legal if and only if it is a min-max ordering.Proof: Let y1; : : : ; ym be a legal path. Then there exists a binary searhtree T , suh that y1; : : : ; ym is a path of T . If it is not a min-max order-ing there exists a key yi whih is neither the minimal nor the maximal offyi; yi+1; : : : ; ymg, i � m�2. If yi+1 is a left hild in T then yi > yi+1; : : : ; ym,implying that yi is a max key. Similarly, yi+1 an not be a right hild, beauseit would imply that yi is a min key. The ontradition implies that y1; : : : ; ymis a min-max ordering.Conversely, let y1; : : : ; ym be a min-max ordering. We onstrut a binarytree T suh that y1; : : : ; ym is a path of it. For eah i, 1 < i � m, let yi beeither the left or right hild of yi�1 in T , aording to whether yi is a min ormax key, respetively. It follows that T is a binary searh tree. Consequently,y1; : : : ; ym is a legal path. 2The following ordering is also of interest.For Y � X and 0 � i < j � n + k, an ordering Y 0 of Y is alled(i; j)-in-de when:� Y � X�i [X+j ;� the keys of Y \ X�i are in inreasing ordering in Y 0, while those ofY \X+j are in dereasing ordering;� Y \X�i 6= ; =) xi 2 Y ; andY \X+j 6= ; =) xj+1 2 Y .Lemma 1: A (i; j)-in-de ordering is neessarily a min-max ordering.Proof: Label the keys of Y \X�i as min, and as max those of Y \X+j . 210



The next theorem haraterizes (i; j)-legal paths.Theorem 2: For i = j a path is (i; j)-legal if and only if it is a min-maxordering. For i < j, a path is (i; j)-legal if and only if it is a (i; j)-in-deordering.Proof: When i = j the results follows from Theorem 1. Consequently, weassume throughout the proof that i < j.(=)): The idea of the proof of neessity is simple. Considering an arbi-trary (i; j)-legal path, we show that it satis�es the de�nition of an (i; j)-in-de ordering.By hypothesis, y1; : : : ; ym is a (i; j)-legal path. Then there is a binarysearh tree T , having X as its node set, where y1; : : : ; ym is a path of it, ymthe father of some x` 2 Xij and the subtree T (x`) ontains exatly the keysof Xij. Let Y = fy1; : : : ; ymg. We prove that y1; : : : ; ym satis�es the threeabove onditions for an (i; j)-in-de ordering. First, learly Y � X�i [X+j .Seond, suppose there exists a key yq 2 X�i \Y suh that yq > yq+1 for some1 � q < m. Sine T is a binary searh tree, it follows that yq+1 is a key ofthe left subtree of yq. Sine yq is an anestor of ym, we know that x` alsobelongs to this subtree, ontraditing x` > yq, implied by yq 2 X�i . Heneno suh q an exist. Consequently, the keys of X�i \ Y are in inreasingordering in y1; : : : ; ym. Similarly, we prove that those of X+j \ Y form adereasing ordering. Third, suppose that X�i \ Y 6= ; and xi 62 Y . Denoteby yt the maximal key of X�i \ Y . Clearly, yt < xi. We try to loate keyxi in T . Suppose that xi is a desendant of yt. Then xi belongs to theright subtree R of yt. Consequently, T (x`) is also in R. If t = m thenxi 2 T (x`), a ontradition. When t < m we know that yt; : : : ; ym is a pathof R. Beause T is a binary searh tree and the maximality of yt in X�i itfollows that yt+1; : : : ; ym 2 X+j . Consequently, beause the keys of X+j \ Yare in dereasing ordering in y1; : : : ; ym, we onlude that yt+1 is a righthild, but yt+2; : : : ; ym; x` are all left hildren. Beause xi < yt+1; : : : ; ym; x`it follows that xi must belong to T (x`). The latter ontradits again the fatthat T (x`) ontains exatly Xij. Hene xi is not a desendant of yt. Neitheran xi be an anestor of yt. Beause in this ase, yt belongs to the left subtreeL of xi, implying that x` > xi belongs to L, a ontradition. The remainingpossibility is that xi is neither a desendant nor an anestor of yt. In this11



ase, let z be the nearest ommon anestor of xi and yt. Denote by L andR the left and right subtrees of z, respetively. If xi is in L then yt must bein R, ontraditing yt < xi. The other ase is xi in R and yt in L, makingit impossible the assumption xi < xi+1. Therefore the alternative that xi isneither a desendant nor an anestor of yt an also not our. Consequently,X�i \ Y 6= ; implies xi 2 Y . The proof that X+j \ Y 6= ; implies xj+1 2 Yis similar. Consequently, y1; : : : ; ym is an (i; j)-in-de ordering, settling theproof of neessity.((=): The idea of the proof of the onverse is as follows. Consider a set ofkeys X and a subset of it forming an (i; j)-in-de ordering fy1; : : : ; ymg. Weonstrut a binary searh tree T for X suh that fy1; : : : ; ymg is an (i; j)-legalpath of T .Suppose that y1; : : : ; ym is an (i; j)-in-de ordering, 0 � i < j � n + k.Construt a binary tree T 0 as follows. The sequene y1; : : : ; ym is a path of T 0,suh that yp is a left or right hild of yp�1, aording to whether yp < yp+1 oryp > yp+1, respetively. T 0 also ontains a subtree T 0(x`), having an arbitraryroot x` 2 Xij, and satisfying the following property: T 0(x`) is a binary searhtree ontaining exatly the keys of Xij. Finally, make x` the left or righthild of ym, aording to whether ym 2 X+j or ym 2 X�i , respetively. Theonstrution of T 0 is ompleted. Let Y = fy1; : : : ; ymg. Sine y1; : : : ; ym is an(i; j)-in-de ordering, it follows that Y \Xij = ;. Hene the path y1; : : : ; ymand T (x`) are disjoint. The latter ompletes the argument to show that T 0is a binary tree. Moreover, we will onlude that it is in fat a binary searhtree. With this purpose, let z1; z2 be keys of T 0, z1 belonging to the leftsubtree L of z2. Consider the possibilities:Case 1: z1; z2 2 Y .Sine y1; : : : ; ym is an (i; j)-in-de ordering, by Lemma 1 it is a min-maxordering. By Theorem 1 it must be a legal path. Hene z1 being in L impliesz1 < z2.Case 2: z1 2 Xij and z2 2 Y .Suppose ym = z2. Then x` must be the left hild of ym. By the onstrutionof T 0, we onlude that z2 2 X+j . Hene z1 < z2. Suppose now z2 6= ym.By Case 1, we onlude that ym < z2. Suppose ym 2 X+j . Then z1 < ym,implying z1 < z2. Alternatively, onsider ym 2 X�i . In this ase, if z2 2 X�i12



then z2; ym must appear in inreasing ordering, beause y1; : : : ; ym is an (i; j)-in-de ordering. Hene z2 < ym, a ontradition. Consequently, z2 2 X+j .That is, z1 < z2.Case 3: z1 2 Y and z2 2 Xij.This ase an not our, beause it implies that z2 is a desendant of z1. Thisontradits z1 belonging to the left subtree of z2.Case 4: z1; z2 2 Xij.Sine T (x`) is a binary searh tree, z1 being in L implies z1 < z2.From the above ases, we an onlude that z1 belonging to TL(z2) impliesthat z1 < z2, for any z1; z2 2 Y [ Xij. Similarly, it an be proved that z1belonging to TR(z2) implies z1 > z2. Consequently, T 0 is a binary searhtree ontaining the keys N(T 0) = Y [ Xij. Let X 0 = X n N(T 0). We nowinlude in T 0 eah key of X 0, as follows. If Y \ X�i = ; and i > 0 theninlude xi 2 X 0 in T 0 so as y1 beomes the right hild of xi. Similarly, ifY \ X+j = ; and j < n + k then xj+1 2 X 0 is inluded in T 0 in suh a waythat y1 is the left hild of xj+1. Note that the above two onditions an notour simultaneously. Next, for eah key of X 0 not yet inluded in the tree,inlude it aording to the rules of binary searh tree insertion. Let T bethe �nal tree so obtained. Sine T 0 is a binary searh tree, T is so. Also,T 0 is a partial subtree of T . Clearly N(T ) = X and y1; : : : ; yk is a path ofT 0. Consequently, in order to show that y1; : : : ; ym is (i; j)-legal, it remainsonly to prove that T 0(x`) = Xij. Equivalently, that T (x`) = T 0(x`). Supposethe ontrary. Then T (x`) neessarily ontains some key z 2 X 0. Supposez 2 X�i . The following alternatives exist.Case 1: Y \X�i 6= ;.By the de�nition of (i; j)-in-de ordering, it follows that xi 2 Y . That is,xi is a proper anestor of x` in T . Hene, z 6= xi. Sine xi is the maximalkey of X�i , it follows z < xi. Then the binary searh tree insertion proedurewould not inlude z in the right subtree of xi. On the other hand, x` belongsto the right subtree of xi, as xi < x`. Hene z 62 N(T (x`)).Case 2: Y \X�i = ;.If i = 0 then X�i = ;, ontraditing z 2 X�i . When i > 0, y1 is the right hildof xi, by the onstrution of T . Hene z < xi, implying that the binary searhtree insertion again ould not inlude z in TR(xi). However x` 2 N(TR(xi)).13



That is, z 62 N(T (x`)).Consequently, z 2 X�i implies that z is not in T (x`). Similarly, we provethat z 2 X+j also implies that z an not be in T (x`). Therefore T (x`) isformed exatly by the keys of Xij. Hene y1; : : : ; ym is an (i; j)-legal path,ompleting the proof of Theorem 2. 24 Analytial ResultsIn this setion we ompute some measures related to the problem. We startby omputing a ouple of general measures and later use them to deduesome parameters important for the problem: number of steps performed bythe algorithm, spae omplexity, size of the input and number of (i; j)-legalpaths. We �rst ompute the above measures exatly and later give an easierto grasp approximation. The �nal result is that we pay O(nk+2) time andO(nk+1) spae.We make heavy use of generating funtions to obtain our results. Gen-erating funtions represent a sequene fangn�0 as a omplex-valued funtiona(z) = Pn�0 anzn (this operation is also alled the z-transform). Reur-renes, that is, equations that de�ne fang by relating the values of an fordi�erent n, are transformed on both sides so as to obtain an equation thatde�nes a(z). After solving for a(z), the transformation is reversed and thevalue of an is obtained. It is possible to transform multi-index sequenesinto multivariate generating funtions. For more details refer to the book bySedgewik and Flajolet [12℄Rethink legal paths this way: instead of onsidering a sequene of yq min-max values, onsider that the interval to work on, initially [1; n℄, is reduedk times, by either inrementing its left limit (min value) or derementingits right limit (max value). Hene, we have a sequene of inrements and asequene of derements, where the sum of the steps is k. We an identifythe legal path with the pair of sequenes (aounting also for the form inwhih they are mixed). If we are interested in the amount of work to do, weonsider that after the k steps are done, we work in time proportional to thesize of the interval left. See Figure 3.14



��������
��������
��������
��������

Data interval

Access path

z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z
x x x x x xx

Increasing accesses Work here Decreasing accesses

wwwwwwwwwwwFigure 3: Interpreting legal paths. Variables z, x and w orrespond to thequantities to be ounted.The generating funtion to be used has three variables z, x, w. Let thevariable z ount the total size of the array (n), x ount the total number ofaesses (k) and w the total amount of work. Our generating funtion is thusF (z; x; w) = Xn;k;r�0Fn;k;rznxkwrsuh that in an array of n elements there are Fn;k;r di�erent legal paths of ksteps whih lead to an interval of size r (whih osts O(r)).To keep ount of the size of the array (in z) and the number of steps (inx) at the same time, we onsider the number of elements \skipped" in theonseutive inrements (see Figure 3). A single inreasing step is representedby the funtionI(z; x) = xz1� z = xz + xz2 + xz3 + : : :15



that is, one aess is performed (x) after skipping over one or more elementsof the array (z's). There is at least one element, whih is the array elementompared. A sequene of zero or more inreasing aesses is represented byI�(z; x) = 11� I(z; x) = 1 + I(z; x) + I(z; x)2 + I(z; x)3 + : : :and the same formulas hold for D(z; x) = I(z; x) and D�(z; x) = I�(z; x). Asequene of intermingled inreasing and dereasing aesses orresponds toID�(z; x) = 11� (I(z; x) +D(z; x)) = 11� 2xz1�zand the �nal sequene of elements of the set where we have to work is repre-sented by 11� wz = 1 + wz + w2z2 + w3z3 + : : :(where we ount one unit of work in w and one element of the array in z).On the other hand, a sequene of elements where we do not have to work issimply 1=(1� z) = 1 + z + z2 + : : :.We are still missing some border onditions. If we are interested in thetotal number of aess paths that start with the omplete array and end upat a given (i; j) interval (i.e. in-de orderings), then we have all the elementsto express the �nal formula, whih isF0(z; x; w) = 11� 2xz1�z 11� wzwhih ounts a number of inreasing or dereasing steps plus a �nal entralsegment. Sine we sum z's along all this proess, we have in z the length ofthe resulting array. We add an x per step so we have in x the number ofsteps. Finally, we have in w the size of the �nal segment. At the end, weselet those proesses whih turn out to have n elements (zn), k steps (xk),and lead to an array of size jj � ij+ 1 (wjj�ij+1).However, this is not the orret formula if we are interested in the time orspae omplexity. The reason is that we have to ompute the above measuresnot only if we start with the original array, but also for any possible originalsubinterval. 16



There are two important ases here. First, if an interval has inreasingand dereasing omponents, then we do not have to perform a di�erent om-putation for all the possible original subintervals. For instane, suppose thatn = 100 and k = 2. The legal path given by [25,75℄ for example, that yieldsthe subinterval [26,74℄ to work on does not depend on the original interval[1,100℄. The �nal subinterval [26,74℄ would not need to be reomputed if theoriginal interval was [10,90℄ instead. If, on the other hand, both aessesat 25 and 75 are inreasing then the �nal subinterval is [76,100℄, whih er-tainly depends on the initial interval [1,100℄. Hene, we must sum over alllegal paths with no regard to the initial subintervals, exept for those whihhave only inreasing or only dereasing omponents.We are now ready to state the general formula for the omplexities. Sinewe are disregarding the initial and �nal ends of the array, we represent thesequene of aesses just by ID�(z; x). However, for the ase of only in-reasing or dereasing elements we have to subtrat what we have added andreplae it by a formula that allows to onsider all the possible initial rightextremes (for I) and all possible initial left extremes (for D). In the aseof inrements (the derements are similar), this is obtained by subtratingI�(z; x) from ID�(z; x) and then adding I�(z; x)=(1� z), sine this allows toadd an arbitrary number of z's to the right, aounting for all possible posi-tions of the sequene inside the array. Finally, after a sequene of inreasingand dereasing steps, there is a �nal entral segment on whih we work. Theformula isF (z; x; w) = �ID�(x; y)� I�(z; x) + I�(z; x) 11� z �D�(z; x)++D�(z; x) 11� z� 11� wzwhih is equal toF (z; x; w) =  11� 2xz1�z + 2z=(1� z)1� xz1�z ! 11� wz
17



4.1 Time ComplexityTo ount the total amount of work to do, we onsider that eah di�erentsubinterval (i; j) of the array reahed through a di�erent legal path must beproessed. To proess suh interval, we must onsider all its positions fromi to j, and ompute the worst-ase or expeted-ase ost at eah position.To ompute suh ost, we need the ost of some subintervals. Given thatthose subintervals are already omputed, we work O(jj � ij+ 1) to solve thesubinterval (i; j) given a previous legal path of length k. Hene, what wehave to ompute is the sum of jj � ij + 1 for all i � j for all legal paths oflength k whih lead to the subinterval (i; j).Therefore the total amount of work is the oeÆient of znxk in the fun-tion T (z; x) = �F�w (z; x; 1) = Xn;k;r�0 rFn;k;rznxkThis is orret, sine rFn;k;r is the total amount of work to do on an array ofsize n and legal paths of length k.We derive the above formula with respet to w and evaluate it at w = 1,to obtain T (z; x) = z(1� z)2  11� 2xz1�z + 2z=(1� z)1� xz1�z !To �nd the oeÆient that orresponds to xk in T (z; x), notie that theoeÆient for 1=(1� ax) is ak. HeneTk(z) = z(1� z)2  2kzk(1� z)k + 2zk+1(1� z)k+1!and to obtain the oeÆient that orresponds to zn in Tk(z), notie that theoeÆient of 1=(1� z)m+1 is �n+mm �, and that the oeÆient of zn in zf(z) isthat of zn+1 in f(z). Consequently, the total amount of work is exatlyTk;n = 2k nk + 1! + 2 nk + 2!whih for instane shows that for k = 1 the amount of work is T1;n = n3=3�n=3. To obtain a more easy to handle formula we point out that T (k; n) =18



�(nk+2). More preisely,2nk+2(k + 2)! � Tk;n � 2k+1nk+2(k + 1)!holds for 0 � k < n� 1. This an be heked by indution on k. We reallthat nk = n(n� 1)(n� 2) : : : (n� k + 1).Notie that we have left aside the ase of zero-length sequenes, whereboth ends of the initial subinterval must be onsidered (not only the right-most or leftmost). Hene, the previous analysis does not apply to k = 0. Inthis ase we have F0(z; w) = 11� z 11� wz 11� zwhih gives, T0;n = n3=6 + n2=2 + n=3.4.2 Spae Complexity and Size of the InputWe onsider spae now. We have to store one ell for eah di�erent a-ess path. Hene, instead of being interested in the size of the �nal entralsegments, we just ount their number. This is equivalent toS(z; x) = F (x; z; 1) = Xn;k;r�0Fn;k;rznxkwhih is S(z; x) = 11� z  11� 2xz1�z + 2z=(1� z)1� xz1�z !whih gives Sk;n = 2k nk! + 2 nk + 1!whih is �(nk+1). More preisely,2nk+1(k + 1)! � Sk;n � 2knk+1k!holds for 1 � k < n� 1.The size of the input problem has exatly the same omplexity. For eahpossible legal path of length k or less, we have an aess ost.19



4.3 In-de OrderingsFinally, we ompute the total number of (i; j)-in-de orderings in an arrayof n elements. In this ase, our original interval starts at the root, and henethe F0(x; z; 1) de�ned before is appropriate, instead of F (x; z; 1). Using thesame tehniques as above, we �nd On;k, whih is the total number of in-deorderings of k steps.However, there is one �nal problem. When we onsidered the legal pathsleading to eah (i; j) interval, eah path was ounted twie. The reason isthat the last omparison ould be amin or amax omponent of the sequene.This was orret in the previous setion beause both ases lead to di�erent�nal intervals to work on. Sine we are interested in the number of pathshere, we divide the total by two (exept when k = 0). The result, valid fork > 0, is On;k = 2k�1 nk! = 2k�1nkk!(and On;0 = 1), while if we are not interested in k, we haveOn = nXk=0On;k = (3n + 1)=25 Conluding RemarksWe have desribed algorithms for �nding optimal binary searh trees for agiven set fx1; : : : ; xng of keys when the ost of eah key xq depends on the(k + 1)�path leading to xq. The parameter k is a given arbitrary integer inthe range 1 � k < n. The optimality refers to a tree having either minimalworst ase or weighted average ase ost. The omplexity of both algorithmsis O(nk+2). It should be noted that although the omplexity is an exponentialin k, it is polynomial in the input size, in fat O(n) times the input size.As we pointed out with an example at the end of Setion 2, the mono-toniity priniple of Knuth [3℄ does not hold for the ase k > 0. Therefore, itseems diÆult to improve this algorithm. On the other hand, as mentioned in20
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