Optimal Binary Search Trees with Costs
Depending on the Access Paths™

Jayme L. Szwarcfiter! Gonzalo Navarro?
Ricardo Baeza-Yatest Joisa de S. Oliveira®

Walter Cunto’ Nivio Zivianill

Abstract

We describe algorithms for constructing optimal binary search trees, in
which the access cost of a key depends on the k preceding keys which were
reached in the path to it. This problem has applications to searching on
secondary memory and robotics. Two kinds of optimal trees are consid-
ered, namely optimal worst case trees and weighted average case trees. The
time and space complexities of both algorithms are O(n**2) and O(n**1),
respectively. The algorithms are based on a convenient decomposition and
characterizations of sequences of keys which are paths of special kinds in
binary search trees. Finally, using generating functions, we present an exact
analysis of the number of steps performed by the algorithms.

Key Words: algorithms, optimal binary search trees, gener-
ating functions.

*This paper has been partially supported by project CYTED VII.19 RIBIDI.

tUniversidade Federal do Rio de Janeiro, Instituto de Matemética, NCE and COPPE,
Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil. E-mail: jayme@nce.ufrj.br.
Partially supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico,
CNPq, and Fundagao de Amparo & Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brasil.

IDepartamento de Ciencias de la Computacién, Universidad de Chile. Blanco Encalada
2120, Santiago, Chile. E-mail: {gnavarro,rbaeza}@dcc.uchile.cl. Partially supported by
Fondecyt Grant 99-0627.

§Universidade Federal do Rio de Janeiro, COPPE, Caixa Postal 68511, 21945-970 Rio
de Janeiro, RJ, Brasil. E-mail: joisa@cos.ufrj.br.

TDepto. de Computacién, Universidad Simén Bolivar, Apartado 89000, Caracas,
Venezuela. E-mail: Walter_Cunto@meckinsey.com.

I'Universidade Federal de Minas Gerais, Departamento de Ciéncia da Computacio,
31270-010 Belo Horizonte, MG, Brasil. E-mail: nivio@dcc.ufmg.br. Partially supported
by SIAM project grant MCT/FINEP/CNPq/PRONEX 76.97.1016.00 and CNPq grant
520.916/94-8.

1 Introduction

Binary search trees form one of the topics most commonly studied in com-
puter science, probably due to their wide range of applications. Their im-
portance can be assessed by reading the classical books by Knuth [4, 5]. The
study of optimal weighted binary search trees dates back to the fifties. A
tutorial on this subject has been written by Nagaraj [10], more recently.

Each node of a binary search tree can be assigned an access cost or a
weight, where the latter can represent the access probability of the node.
With access costs one may be interested in optimizing the worst case or the
average case cost, where uniform access probability is assumed. In the second
case one assumes that the access cost is uniform, and it is possible to assign
probabilities only to internal tree nodes (successful searches), only to external
tree nodes (unsuccessful searches) or to both. Finally, we can consider a more
general model, where both access costs and weights are included.

An algorithm for constructing an optimal binary search tree has been
first described by Gilbert and Moore [1], for the case in which to each key is
assigned a weight. The complexity of this algorithm is O(n?*). Knuth [3] con-
sidered the model of access probabilities including successful and unsuccessful
searches. He proved an elegant monotonicity principle, which decreased the
complexity by a factor of O(n). When only unsuccessful searches are relevant
a different algorithm can be applied, as described by Hu and Tucker [2]. The
complexity of the latter algorithm was O(n?), but it has been shown to admit
an implementation running in O(nlogn) time [5]. Finally, we also mention
that the problem of approximating optimal weighted binary search trees has
been considered by several authors. See [8, 9], for instance.

In this paper, we consider the problems of finding optimal binary search
trees in which the access cost to a key z, depends on the k preceding keys
which were reached in the path to z,. We permit arbitrary access probabili-
ties (independent on the preceding keys) as well. The classical optimal binary
search tree construction by Gilbert and Moore [1] and Knuth [3] corresponds
thus to the fundamental case £ = 0. In this work we are concerned with the
values £ > 1. Two kinds of optimal trees are considered, namely optimal
worst case trees and weighted average case trees. The inputs of these prob-

lems are a number n of keys, the value k, 1 < k£ < n, and a cost associated
to each possible sequence formed by at most k£ + 1 keys, all of them distinct.
For the weighted average case minimization problem, each key is addition-
ally given a weight. Usually, such a weight would reflect the frequency of
accessing the key. Observe that the input size grows exponentially with &,
as it is O(n**).

We describe algorithms for solving the the problems of finding the op-
timal worst case trees and weighted average case trees. The complexity is
O(n**2) for both cases. The extra space needed is O(n**'). Time and space
complexities are polynomial in the size of the input.

The optimal binary search tree for £ = 0 and with uniform key access
costs, as considered in [1, 3], is a model for situations in which the keys are
in the main memory. Greater values of £ and arbitrary access costs could
model the cases in which other kind of memories are involved. For example,
when all keys are stored in a disk, the access cost to a given key depends on
the position on the disk of the key previously accessed. Therefore, finding
an optimal tree when all keys are stored in a disk would correspond to the
case k = 1. In this situation, the input size is O(n?) and the complexity of
the proposed algorithm is O(n?®). For example, this is the case for optimal
searching strategies on some text indices stored in secondary memory [11].
Similarly, in some motion planning problems, the cost of the next move
depends on the previous position. The generic case can also be used where
the cost of moving the robot depends on resources used in the last & locations.
Besides practical motivations, we believe that some of the concepts presented
in this paper might be of interest in the general study of search trees.

The following are some basic definitions.

A binary tree is a rooted tree T in which every node z, other than the
root, is labeled left child or right child, in such a way that any two siblings
have different labels. When z has no siblings it is called an only child. A
path of T is a sequence of nodes zi, ..., 2, such that z, is the parent of z,.;.
In this case, z; is an ancestor of z;, while z; is a descendant of z;. When
21 # 2 they are called proper ancestor and proper descendant, respectively.
A t-path is a path formed by ¢ nodes. The notation N(T') represents the set
of nodes of T'. For z € N(T), the binary tree defined in 7" by all descendants

of z is called the subtree of T rooted at z, and denoted by T'(z). The left
subtree of z is the binary tree formed in T" by the left child of z and all of
its descendants. Similarly, define the right subtree of z. The left and right
subtrees of z are represented by T7,(z) and Tg(2), respectively. A binary tree
defined in T by a subset of N(T) is called a partial subtree of T. A root path
is a path starting at the root of 7', while a root-leaf path starts at the root
and ends at some leaf of T'.

Let {z1,...,x,} be a set of elements called keys, z, < z441. A binary
search tree for {x1,...,x,} is a binary tree T' in which either N(T) is empty,
or the left and right subtrees of the root are binary search trees, where all
keys in the left subtree are smaller than that of the root, while the keys in
the right subtree are greater. A legal path is a sequence of keys which is a
path in some binary search tree.

The described minimization problems are solved by dynamic program-
ming equations. The corresponding decompositions employ the concepts of
legal path and (i, j)-legal paths. The latter means those legal paths leading
to a subtree formed by consecutive keys. We then describe characterizations
for both legal and (4, j)-legal paths. The algorithms are obtained by combin-
ing the decompositions and the characterizations. The decompositions are
presented in Section 2 and the characterizations are deferred to Section 3.
Section 4 presents an analysis of some parameters of the tree, including the
time and space complexity of the algorithms. The analysis is based on gener-
ating functions and enumerates (i, j)-legal paths. Finally, Section 5 presents
the conclusions and some additional remarks.

2 The Decompositions

Let £ > 1 be a given integer value and {z1,...,z,} a set of keys, z, < z,41.
For each z, and legal path y;,... vy, where 1 <t < k+1 and z, = y,, it
is given a real non-negative key cost c(y1,...,y;) of y;, relative to yi,...y,.

It corresponds to the cost of reaching g, through the path y;,...,y;. In
addition, each key z, is given a non-negative real weight w(x,). For a legal
path yi, ..., ym, define its path cost as

O(yla SR Um) = Z C(ymax{],qfk}a R qu) (1)

1<g<m

Let T' be a binary search tree for {z,,...,2z,}. Denote by z} the root
path to key x,. The values max;<,<,{C(z})} and 1< <, w(x,) - C(x}) are
called worst case tree cost and weighted average case tree cost, respectively.
When N(T) = (), the costs of T are defined as zero. The question consists of
finding the tree T" which minimizes one of these two above costs, as desired.

A minimizing tree is called optimal.

Observe that subtrees of an optimal tree are not necessarily optimal, for
any k > 0. Consider the example having £ = 1, n = 3, with key costs as
given by Figure 1(a) and having all weights equal to 1.

legal paths | x1 | @9 | @3 | w129 | T1X3 | Toxy | Xox3 | T3T1 | T3Xo (a)
key costs 01010 0 2 3 2 3 1
Q
\Q 2 (b)
\O)

Figure 1: Example of an optimal tree with non-optimal subtrees.

The tree of Figure 1(b) is both worst and average case optimal, but T'(x5)
is not optimal in any case. Consequently, the decomposition employed in the
dynamic programming solution of the optimal binary search tree problem for
k = 0 does not apply to the present case. However, special kinds of partial
subtrees are optimal, making it possible to solve our minimization prob-
lems by conveniently decomposing them into smaller subproblems, leading
to techniques similar as [1, 3]. At this point we need additional notation.

First, introduce k additional keys {z,11,...,Znir}, called dummy keys,
also satisfying x, < 2441, n < ¢ < n + k. Each of these keys has weight 0.

The key costs relative to paths containing dummy keys are defined as follows.
Let y1,...,y; be a legal path having at least one dummy key, 1 <t < k + 1.
Then

(0, when yy,...,y; are all dummy keys

c(Yg,---yt), when 3 ¢ > 1 such that y,...,y,1 are

W) = dummy keys, but y,, ...y, are not

| 00, otherwise

Denote X = {xy,..., 2o}, X; = {21, . 2}, X;" ={xis1, - Tnyr},
XU = {:EH—I; . ,.’EJ} and VI/,] = Z7<qgjw(l'q)

Let 4,7 be a pair of integers, 0 < i < j < n. A path y,...,yx is (4,7)-
legal when there exists a binary search tree 7" having node set X containing
the path yq, ...y, and such that either ¢ = j and y, is a leaf of T, or y; has
a child x, € X;; satisfying N(T'(x;)) = X;;. In other words, an (i, j)-legal
path is one leading to a subtree containing exactly the keys of Xj;, in a tree
formed by all keys of X.

Let y1,...,yx be an (4, j)-legal path. Denote by T;;(v1, . .., yx) an optimal
subtree formed by the nodes of X;;, where y1, ...,y is the path leading to its
root. Represent by Cj;(y1, ..., yx) the (optimal) cost of T;;(y1, ..., yx). That
is, Cij(y1, ..., yx) can be interpreted as the optimal cost to search the subtree
Xj, given that yi, ...,y is the path leading to it. Note that T};(yi, ..., yx)
does not contain the nodes of yq,...,yx, however the cost of it depends on
this path. In terms of this notation, a solution to the stated minimization
problems is the subtree of Ty, (T, ik, Tnik_1,---,Tnsr1), having as root the
child of z,,.;. Observe that the path leading to the latter tree is formed
solely by dummy keys.

For determining the value of the optimal cost Cy;(y1, ..., yx), we decom-
pose the corresponding problem into the subproblems of finding the optimal
costs Cio—1(ya, - - -, Yk, x¢) and Cyi(ya, . . ., Yk, z¢), for each z, € X;;. The key
2y is the child of y; in the trees. See Figure 2.

The following dynamic programming equations apply the described de-

compositions and compute the optimal costs values.

Worst-case minimization:

0, when 7 = j. Otherwise,
CU (yb Y Uk) - mini<g§j{maX{Ci,g,] (y27 e Yk ml)a
ij(yQ’ <o Yk Tf)} + C(y]a <y Yk, ml)}a

for all 0 < i < j <n and (i, j)-legal paths y1,...,yx, k > 1.

Weighted average-case minimization:

0, when 7 = 5. Otherwise,

C/," goee ey == .

3 (1 k) min;c;<;i{Civ1(Y2, -, Yn, o) + Cr (Yo, - - Yk, T)+
+Wz] : C(:U]a e Yk, ml)}a

for all 0 < i < j <n and (i,j)-legal paths y1,...,yx, k > 1.

In order to verify the correctness of the above equations, note that if
Y1, -, Yk is an (i,7)-legal path and i < ¢ < j then vy, ..., yg, x; is both
(1, — 1)-legal and (¢, j)-legal. Using this fact, the dynamic programming
equations can be obtained by standard induction.

The algorithms for finding optimal worst case and weighted average case
binary search trees can now be described.

The input consists of an integer £ > 0, a set {z;,...,z,} of keys, z, <
zg11, and a key cost ¢(yi,...,y;) for each legal t-path, 1 < ¢ < k + 1.
Alternatively, the input can consist of a function which enables to compute
the key costs ¢(y1, . . ., y;), whenever needed. In the latter case we assume that

(5)

(6)

this computation can be done in constant time. In addition, in the weighted
average case problem each key z, is also given a non-negative weight w(z,).

The algorithms start by defining the dummy keys {z,11,...,Z,4x}. Using
(2) — (4), compute the key costs ¢(yi,...,y;), for each legal t-path ...y,
with at least one dummy key, 1 < ¢t < k + 1. Define w(z,) = 0 for each
n+1<gq<n+k. Foreach (i,j)-legal t-path y;,...,y; and 0 < i < j < mn,
compute C;;(y1,...,y:) by (5) — (6) and (7) — (8), respectively for the worst
case and weighted average case problems. All required legal and (i, j)-legal
paths are generated using Theorems 1 and 2, respectively. The final solution
is Con(Tnsky -+ Tni1). In the next section we characterize (i, j)-legal paths,
using particular ordering schemes.

It is simple to modify the algorithms to avoid computations with dummy
keys. An idea is to impose that whenever z, and z, are dummy keys and z,
is a proper ancestor of x4 then p > q.

One could wonder whether is it possible to improve this algorithm. The
monotonicity principle by Knuth [3] made it possible to decrease the number
of iterations from O(n?) to O(n?), for constructing an optimal binary search
tree. Unfortunately, the principle does not hold for £ > 0, as shown by
the following example. Let {z1,...,zx o} be the given set of keys, all with
uniform weights. The costs are defined as follows:

A(Tpgry ooy 1) = c(Tpy1, .o m0) = oo = c(xp41) = 0,
(a1, oo Ty Tpgo) = (1, ... xp) = ... =c(xy) =0,
c(xo, .., Ty Tpro, Tpr1) = 0,

while any other key cost is equal to 1. The solution of both minimization
problems for the keys {zi,...,z541} is the tree formed by the single path
Tgi1,---,T1. When adding the key xj o, the optimal tree for {zq,..., 7540}
is the path =, ..., 2, a9, Tma1, meaning that the principle does not apply
for £ > 0. In fact, it does not hold also for £ = 0 under non uniform key
costs.

Finally, it would be worth mentioning that the proposed model can also
handle unsuccessful searches. Basically, to the existing n 4+ k keys of the
tree, we add n + k + 1 new nodes. These are called gaps and correspond
to the external nodes, i.e., unsuccessful searches. To each gap it is given an
arbitrary weight, as for keys. The key costs of a key or gap y, are redefined, so
as to satisfy the following conditions. If yy,...,y; are all keys then the value
c(yr,...,y) is exactly as explained in this section. That is, either taken
from the input or computed by (2 — 4). Otherwise (i) ¢(y1,...,y) = oc,
whenever any among yi,...,y; 1 is a gap, or (ii) ¢(y1,...,y) = 0, in case
that y; is a gap and all y,,...,y, | are keys. Then we apply the algorithms
just described.

3 Characterizing Legal Paths

In this section we describe characterizations for legal and (i, j)-legal paths.
That is, for sequences of keys which are paths in some binary tree, and which
lead to subtrees formed by consecutive keys, respectively. The following

definition is useful.

Let Y C X. An ordering y,, ..., y, of the keys of YV is called min-maz
when each y, is either minimal or maximal in {y,, ..., y,}. In this case, label
each y,, 1 < ¢ <'m, as min or maz, respectively.

The following characterizes legal paths.
Theorem 1: A path is legal if and only if it is a min-max ordering.

Proof. Let y1,...,ym be a legal path. Then there exists a binary search
tree T', such that y,,..., 9, is a path of T. If it is not a min-max order-
ing there exists a key y; which is neither the minimal nor the maximal of
{Yis Yis1, s Um}, @ <m—2. If ;1 is a left child in T then y; > yiy1, .-, Ym,
implying that y; is a max key. Similarly, y;,; can not be a right child, because
it would imply that y; is a min key. The contradiction implies that y,, ..., ym
is a min-max ordering.

Conversely, let ¥, ...,y be a min-max ordering. We construct a binary
tree T such that y;,..., vy, is a path of it. For each 7, 1 <1 < m, let y; be
either the left or right child of y; | in T', according to whether y; is a min or
max key, respectively. It follows that 7" is a binary search tree. Consequently,
Y1, ..., Ym is a legal path. o

The following ordering is also of interest.
For Y ¢ X and 0 < i < j < n+ k, an ordering Y’ of YV is called
(1, 7)-inc-dec when:

e the keys of Y N X, are in increasing ordering in Y’, while those of
Y N X} are in decreasing ordering;

e YNX, #0 = x; € Y; and
YﬂXf?é@:>l'j+1€Y.

Lemma 1: A (i, j)-inc-dec ordering is necessarily a min-max ordering,.

Proof: Label the keys of Y N X;” as min, and as max those of Y N X} 5

10

The next theorem characterizes (i, j)-legal paths.

Theorem 2: For i = j a path is (7, j)-legal if and only if it is a min-max
ordering. For ¢ < j, a path is (7, j)-legal if and only if it is a (4, j)-inc-dec
ordering.

Proof. When i = j the results follows from Theorem 1. Consequently, we
assume throughout the proof that i < j.

(=>): The idea of the proof of necessity is simple. Considering an arbi-
trary (i, j)-legal path, we show that it satisfies the definition of an (i, j)-inc-
dec ordering.

By hypothesis, y1,...,9, is a (4, j)-legal path. Then there is a binary
search tree T, having X as its node set, where y;,...,y,, is a path of it, y,,
the father of some z;, € X;; and the subtree T'(x,) contains exactly the keys
of X;;. Let Y = {y1,...,ym}. We prove that yi,...,yn satisfies the three
above conditions for an (i, j)-inc-dec ordering. First, clearly Y C X;” U X"
Second, suppose there exists a key y, € X; NY such that y, > y,4, for some
1 < g < m. Since T is a binary search tree, it follows that y,4, is a key of
the left subtree of y,. Since y, is an ancestor of y,,, we know that z; also
belongs to this subtree, contradicting z, > y,, implied by y, € X, . Hence
no such ¢ can exist. Consequently, the keys of X;” MY are in increasing
ordering in y,...,y,. Similarly, we prove that those of X;' NY form a
decreasing ordering. Third, suppose that X; NY # () and z; € Y. Denote
by y; the maximal key of X, NY. Clearly, y; < x;. We try to locate key
x; in T. Suppose that z; is a descendant of ;. Then z; belongs to the
right subtree R of y;. Consequently, T'(z,) is also in R. If ¢ = m then
x; € T(x;), a contradiction. When ¢ < m we know that v, ...,y is a path
of R. Because T is a binary search tree and the maximality of y; in X, it
follows that vy, 1,...,ym € X7+ Consequently, because the keys of X7+ ny
are in decreasing ordering in yq,...,Yym, we conclude that y,,, is a right
child, but y;19,. .., Ym,x, are all left children. Because x; < y;11, ..., Ym, T¢
it follows that x; must belong to T'(x;). The latter contradicts again the fact
that T'(zy) contains exactly X;;. Hence z; is not a descendant of y;,. Neither
can x; be an ancestor of ;. Because in this case, y; belongs to the left subtree
L of z;, implying that z, > x; belongs to L, a contradiction. The remaining
possibility is that z; is neither a descendant nor an ancestor of ;. In this

11

case, let z be the nearest common ancestor of x; and g;. Denote by L and
R the left and right subtrees of z, respectively. If z; is in L then gy, must be
in R, contradicting y; < x;. The other case is z; in R and y,; in L, making
it impossible the assumption z; < x;,1. Therefore the alternative that x; is
neither a descendant nor an ancestor of y, can also not occur. Consequently,
X; NY # 0 implies ; € Y. The proof that X;" NY # () implies 2, € ¥
is similar. Consequently, 1, ...,y is an (i, j)-inc-dec ordering, settling the
proof of necessity.

(«<=): The idea of the proof of the converse is as follows. Consider a set of
keys X and a subset of it forming an (4, j)-inc-dec ordering {yi, ..., ym}. We
construct a binary search tree T' for X such that {y:,..., 9.} is an (4, j)-legal
path of T

Suppose that yq,...,ym is an (7, j)-inc-dec ordering, 0 < i < j < n+ k.
Construct a binary tree 1" as follows. The sequence yq, ..., y,, is a path of T",
such that y, is a left or right child of y,_1, according to whether y, <y, or
Yp > Ypt1, respectively. T" also contains a subtree T"(x;), having an arbitrary
root z; € X,;, and satisfying the following property: 7"(x) is a binary search
tree containing exactly the keys of X;;. Finally, make z, the left or right
child of y,,, according to whether y,, € X;' or ¥y, € X, , respectively. The
construction of 7" is completed. Let Y = {y, ..., yn}. Since y1,...,y,, is an
(4, j)-inc-dec ordering, it follows that Y N X;; = (. Hence the path yi, ..., yn
and T'(x,) are disjoint. The latter completes the argument to show that 7"
is a binary tree. Moreover, we will conclude that it is in fact a binary search
tree. With this purpose, let z1, z5 be keys of T”, z; belonging to the left
subtree L of z,. Consider the possibilities:

Case 1: 21,20 € Y.
Since y1,...,Ym is an (i, j)-inc-dec ordering, by Lemma 1 it is a min-max
ordering. By Theorem 1 it must be a legal path. Hence z; being in L implies
21 < 29.

Case 2: zy € Xjjand 2o €Y.
Suppose y,, = zo. Then x;, must be the left child of y,,. By the construction
of T', we conclude that z, € Xf Hence 27 < z3. Suppose now zo # Y.
By Case 1, we conclude that ¥, < 2o. Suppose y,, € Xj*. Then z1 < Y,
implying z; < zy. Alternatively, consider y,, € X, . In this case, if zp € X,

12

then zs, y,,, must appear in increasing ordering, because yi, ..., Yy, is an (i, j)-
inc-dec ordering. Hence 25 < y,,,, a contradiction. Consequently, 2z, € X;L.
That is, 21 < 2s.

Case 3: z1 € Y and 2 € Xj;.
This case can not occur, because it implies that 2z is a descendant of z;. This
contradicts z; belonging to the left subtree of z,.

Case 4: 21,29 € Xjj.
Since T'(x;) is a binary search tree, z; being in L implies z; < zs.

From the above cases, we can conclude that z; belonging to T, (22) implies
that 21 < 29, for any 21,2, € ¥ U Xj;. Similarly, it can be proved that z;
belonging to Tk(z9) implies z; > 2. Consequently, 7" is a binary search
tree containing the keys N(T") = Y U X;;. Let X' = X \ N(7"). We now
include in 7" each key of X', as follows. If Y N X; = () and 7 > 0 then
include z; € X' in 7" so as y; becomes the right child of x;. Similarly, if
YNX;=0and j <n+kthen z;,, € X' is included in 7" in such a way
that y; is the left child of x;,,. Note that the above two conditions can not
occur simultaneously. Next, for each key of X' not yet included in the tree,
include it according to the rules of binary search tree insertion. Let T' be
the final tree so obtained. Since T is a binary search tree, T is so. Also,
T' is a partial subtree of T.. Clearly N(T) = X and yi, ...,y is a path of
T'. Consequently, in order to show that yi,...,ym is (4, j)-legal, it remains
only to prove that T'(zy) = X;;. Equivalently, that T'(x,) = T"(z,). Suppose
the contrary. Then T'(z,) necessarily contains some key z € X'. Suppose
z € X; . The following alternatives exist.

Case 1: Y NX,; #10.
By the definition of (i, j)-inc-dec ordering, it follows that z; € Y. That is,
x; is a proper ancestor of x, in T'. Hence, z # x;. Since z; is the maximal
key of X, , it follows z < x;. Then the binary search tree insertion procedure
would not include z in the right subtree of x;. On the other hand, z, belongs
to the right subtree of x;, as x; < 4. Hence 2 ¢ N(T(x)).

Case 2: YN X =10.
If i = 0 then X;” = (), contradicting z € X;. When i > 0, y; is the right child
of z;, by the construction of T. Hence z < z;, implying that the binary search
tree insertion again could not include z in Tg(x;). However z, € N(Tg(x;)).

13

That is, z ¢ N(T(x)).

Consequently, z € X, implies that z is not in T'(z,). Similarly, we prove
that z € X also implies that z can not be in T'(z;). Therefore T(x) is
formed exactly by the keys of X;;. Hence yy,...,y, is an (4, j)-legal path,
completing the proof of Theorem 2. g

4 Analytical Results

In this section we compute some measures related to the problem. We start
by computing a couple of general measures and later use them to deduce
some parameters important for the problem: number of steps performed by
the algorithm, space complexity, size of the input and number of (i, j)-legal
paths. We first compute the above measures exactly and later give an easier
to grasp approximation. The final result is that we pay O(n**?) time and
O(n**1) space.

We make heavy use of generating functions to obtain our results. Gen-
erating functions represent a sequence {a, },>¢ as a complex-valued function
a(z) = Y,>0anz" (this operation is also called the z-transform). Recur-
rences, that is, equations that define {a,} by relating the values of a, for
different n, are transformed on both sides so as to obtain an equation that
defines a(z). After solving for a(z), the transformation is reversed and the
value of a, is obtained. It is possible to transform multi-index sequences
into multivariate generating functions. For more details refer to the book by
Sedgewick and Flajolet [12]

Rethink legal paths this way: instead of considering a sequence of y, min-
max values, consider that the interval to work on, initially [1,n], is reduced
k times, by either incrementing its left limit (min value) or decrementing
its right limit (max value). Hence, we have a sequence of increments and a
sequence of decrements, where the sum of the steps is k. We can identify
the legal path with the pair of sequences (accounting also for the form in
which they are mixed). If we are interested in the amount of work to do, we
consider that after the k steps are done, we work in time proportional to the
size of the interval left. See Figure 3.

14

Access path

—

—

I

|

|

Datainterval

I
I
I
I
I
I
!

N J

~_ T~ AVAV R

2777727772772 72727277272727272727722272227727272727272727272272227222272727272
X X X X X X X

Increasing accesses Work here Decreasing accesses

Figure 3: Interpreting legal paths. Variables z, x and w correspond to the
quantities to be counted.

The generating function to be used has three variables z, z, w. Let the
variable z count the total size of the array (n), = count the total number of
accesses (k) and w the total amount of work. Our generating function is thus

F(z,z,w) = Z Fopr2" zFw"

n,k,r>0

such that in an array of n elements there are Fj, ;. different legal paths of &
steps which lead to an interval of size r (which costs O(r)).

To keep count of the size of the array (in z) and the number of steps (in
x) at the same time, we consider the number of elements “skipped” in the
consecutive increments (see Figure 3). A single increasing step is represented
by the function

I(z,z) = = zztal+at+. ..

15

that is, one access is performed (x) after skipping over one or more elements
of the array (z’s). There is at least one element, which is the array element
compared. A sequence of zero or more increasing accesses is represented by
1
I'(z,2) = ——— = 1+I(z,2)+1(z,2)> +1(z,2)>+...
R () + 1(2,2)* + 1(2,2)
and the same formulas hold for D(z,z) = I(z,x) and D*(z,z) = I*(z,x). A
sequence of intermingled increasing and decreasing accesses corresponds to
1 1

DGz = T—ge e ~ 1-2=

1—2

and the final sequence of elements of the set where we have to work is repre-
sented by

= 14wz+w?22+w2?+ ...

1wz

(where we count one unit of work in w and one element of the array in z).
On the other hand, a sequence of elements where we do not have to work is
simply 1/(1—2)=1+z+2*+....

We are still missing some border conditions. If we are interested in the
total number of access paths that start with the complete array and end up
at a given (7, j) interval (i.e. inc-dec orderings), then we have all the elements
to express the final formula, which is

1 1

l—fﬁ 1—wz
—Z

Fo(z,z,w) =

which counts a number of increasing or decreasing steps plus a final central
segment. Since we sum z’s along all this process, we have in z the length of
the resulting array. We add an z per step so we have in x the number of
steps. Finally, we have in w the size of the final segment. At the end, we
select those processes which turn out to have n elements (2"), k steps (%),
and lead to an array of size |j —i| +1 (w7=/+1).

However, this is not the correct formula if we are interested in the time or
space complexity. The reason is that we have to compute the above measures
not only if we start with the original array, but also for any possible original
subinterval.

16

There are two important cases here. First, if an interval has increasing
and decreasing components, then we do not have to perform a different com-
putation for all the possible original subintervals. For instance, suppose that
n = 100 and k£ = 2. The legal path given by [25,75] for example, that yields
the subinterval [26,74] to work on does not depend on the original interval
[1,100]. The final subinterval [26,74] would not need to be recomputed if the
original interval was [10,90] instead. If, on the other hand, both accesses
at 25 and 75 are increasing then the final subinterval is [76,100], which cer-
tainly depends on the initial interval [1,100]. Hence, we must sum over all
legal paths with no regard to the initial subintervals, except for those which
have only increasing or only decreasing components.

We are now ready to state the general formula for the complexities. Since
we are disregarding the initial and final ends of the array, we represent the
sequence of accesses just by ID*(z,x). However, for the case of only in-
creasing or decreasing elements we have to subtract what we have added and
replace it by a formula that allows to consider all the possible initial right
extremes (for I) and all possible initial left extremes (for D). In the case
of increments (the decrements are similar), this is obtained by subtracting
I*(z,z) from ID*(z,z) and then adding I*(z,z)/(1 — z), since this allows to
add an arbitrary number of z’s to the right, accounting for all possible posi-
tions of the sequence inside the array. Finally, after a sequence of increasing
and decreasing steps, there is a final central segment on which we work. The
formula is

F(z,x,w) = (ID*(m, y) —I"(z,z) + I"(2,) — D*(z,2)+

1—z

1 1
D*
+ (z,x)12> 1—wz

which is equal to

1 22/(1-2)\ 1
F(z,z,w) = (1 — oz T Lz) 1—wz

1—2 1—2

17

4.1 Time Complexity

To count the total amount of work to do, we consider that each different
subinterval (i, j) of the array reached through a different legal path must be
processed. To process such interval, we must consider all its positions from
1 to 7, and compute the worst-case or expected-case cost at each position.
To compute such cost, we need the cost of some subintervals. Given that
those subintervals are already computed, we work O(|j —i| + 1) to solve the
subinterval (i,7) given a previous legal path of length k. Hence, what we
have to compute is the sum of |j —i| + 1 for all i < j for all legal paths of
length & which lead to the subinterval (i, 7).

Therefore the total amount of work is the coefficient of z”z* in the func-

tion
oF

T%Z,f) = Eﬂ;(

z,x,1) = Z an,kyrz”a?k
n,k,r>0
This is correct, since rF,, ; , is the total amount of work to do on an array of

size n and legal paths of length k.

We derive the above formula with respect to w and evaluate it at w = 1,

to obtain i)
z 1 22/(1 — 2z
T(z,x) =
R e e

1—2 1—2

To find the coefficient that corresponds to ¥ in T'(z, z), notice that the
coefficient for 1/(1 — ax) is a*. Hence

z 2k 2 22k +1
T =
9 = i (ot)
and to obtain the coefficient that corresponds to 2" in Tj(z), notice that the
coefficient of 1/(1 —)™ is (”+m>, and that the coefficient of 2" in zf(z) is

m

that of 2"*! in f(z). Consequently, the total amount of work is exactly

n n
Tin = 2F 2
" <k+1> <k+2>

which for instance shows that for £ = 1 the amount of work is T3 ,, = n3/3 —
n/3. To obtain a more easy to handle formula we point out that T'(k,n) =

18

O(n**?). More precisely,
anﬁ 2k+1nkl2

— < Ty <
k+2)! — " = (k+1)

holds for 0 < k£ < n — 1. This can be checked by induction on k. We recall
that nf =n(n —1)(n—-2)...(n —k+1).

Notice that we have left aside the case of zero-length sequences, where
both ends of the initial subinterval must be considered (not only the right-
most or leftmost). Hence, the previous analysis does not apply to &k = 0. In

this case we have
1 1 1

l—2z1-wz1-=z
which gives, Ty, = n*/6 + n*/2 + n/3.

Fo(z,w) =

4.2 Space Complexity and Size of the Input

We consider space now. We have to store one cell for each different ac-
cess path. Hence, instead of being interested in the size of the final central
segments, we just count their number. This is equivalent to

S(z,x) = F(x,2z,1) = Z Fnkrzx
n,k,r>0
which is A)
1 1 22/(1 — 2
S _
w0 = i (CErEE)

which gives

n n
Spn = 2F 2

which is ©(n**1). More precisely,
Inktl 2fphtl
m < Spn < i
holds for 1 < k <n — 1.

The size of the input problem has exactly the same complexity. For each
possible legal path of length £ or less, we have an access cost.

19

4.3 1Inc-dec Orderings

Finally, we compute the total number of (i, j)-inc-dec orderings in an array
of n elements. In this case, our original interval starts at the root, and hence
the Fy(x, z,1) defined before is appropriate, instead of F(z,z,1). Using the
same techniques as above, we find O, ;, which is the total number of inc-dec
orderings of k steps.

However, there is one final problem. When we considered the legal paths
leading to each (i,7) interval, each path was counted twice. The reason is
that the last comparison could be a min or a max component of the sequence.
This was correct in the previous section because both cases lead to different
final intervals to work on. Since we are interested in the number of paths
here, we divide the total by two (except when k& = 0). The result, valid for

k>0, is
) ok—1pk
On — Qkfl n —
ok <k k!

(and O,, o = 1), while if we are not interested in k, we have

On = Y Oup = (3"+1)/2
k=0

5 Concluding Remarks

We have described algorithms for finding optimal binary search trees for a
given set {zy,...,z,} of keys when the cost of each key x, depends on the
(k + 1)—path leading to x,. The parameter k is a given arbitrary integer in
the range 1 < k < n. The optimality refers to a tree having either minimal
worst case or weighted average case cost. The complexity of both algorithms
is O(n**2). It should be noted that although the complexity is an exponential
in k, it is polynomial in the input size, in fact O(n) times the input size.

As we pointed out with an example at the end of Section 2, the mono-
tonicity principle of Knuth [3] does not hold for the case k > 0. Therefore, it
seems difficult to improve this algorithm. On the other hand, as mentioned in

20

the same section, the algorithm can be extended without problems to handle
also unsuccessful searches.

An open problem is to devise good on-line approximation algorithms, as is

done for the case £ = 1 in [11], where a linear time algorithm with a constant
average approximation ratio is achieved. Motivated by [11], additional results
on this problem have been obtained recently [6, 7].

References

1]

2]

8]

E. N. Gilbert and E. F. Moore, Variable-length binary encoding, Bell
System Tech. J. 38 (1959), pp. 933-968.

T. C. Hu and A. C. Tucker, Optimal computer search trees and variable-
lenght alphabetical codes, SIAM Journal on Applied Mathematics 21
(1971), pp. 514-532.

D. E. Knuth, Optimum binary search trees, Acta Informatica 1 (1971),
pp- 14-25.

D. E. Knuth, The Art of Computer Programming 1: Fundamental Al-
gorithm, Addison-Wesley, Reading, MA, 1968, 2nd ed. 1973.

D. E. Knuth, The Art of Computer Programming 3: Sorting and Search-
ing, Addison-Wesley, Reading, MA, 1973.

E. S. Laber, R. L. Milidia and A. A. Pessoa, Strategies for Searching
with Different Access Costs, Proceedings of the ESA’99, Springer LNCS
1645 (1999), to appear in Theoretical Computer Science.

E. S. Laber, R. L. Milidia and A. A. Pessoa, On Binary Searching with
Non-Uniform Costs, Proceedings of the 12th ACM-SIAM Annual Sym-
posium on Discrete Algorithms (2001), pp. 855-864.

L. L. Larmore, A subquadratic algorithm for constructing approximately
optimal binary search trees, Journal of Algorithms 8 (1987), pp. 579-591.

21

[9]

[10]

[11]

C. Levcopoulos, A. Lingas and J. R. Sack, Heuristics for optimum binary
search trees and minimum weight triangulation problems, Theoretical
Computer Science 66 (1989) pp. 181-203.

S. V. Nagaraj, Optimal binary search trees, Theoretical Computer Sci-
ence 188 (1997), pp. 1-44.

G. Navarro, E. Barbosa, R. Baeza-Yates, W. Cunto and N. Ziviani,
Binary searching with non-uniform costs and its applications to text
retrieval, Algorithmica 27 (2000), pp. 145-169.

R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison-Wesley,
Reading, MA, 1996.

22

