
Dynamic Compact Data Structure for
Temporal Reachability with Unsorted

Contact Insertions
Luiz Fernando Afra Brito1, Marcelo Keese Albertini1, Bruno

Augusto Nassif Travençolo1 and Gonzalo Navarro2

1Faculty of Computer Science (FACOM), Federal University of Uberlândia, Uberlândia, Brazil
2IMFD & Department of Computer Science (DCC), University of Chile, Santiago, Chile

Email: luiz.brito@ufu.br

Temporal graphs represent interactions between entities over time. Deciding
whether entities can reach each other through temporal paths is useful for various
applications such as in communication networks and epidemiology. Previous works
have studied the scenario in which addition of new interactions can happen at any
point in time. A known strategy maintains, incrementally, a Timed Transitive
Closure by using a dynamic data structure composed of O(n2) binary search trees
containing non-nested time intervals. However, space usage for storing these
trees grows rapidly as more interactions are inserted. In this paper, we present a
compact data structure that represents each tree as two dynamic bit-vectors. In
our experiments, we observed that our data structure improves space usage while
having similar time performance for incremental updates when comparing with

the previous strategy in temporally dense temporal graphs.

Keywords: Temporal Graph; Temporal Transitive Closure; Compact; Dynamic; Incremental

1. INTRODUCTION

Temporal graphs represent interactions between entities
over time. These interactions often appear in the
form of contacts at specific timestamps. Moreover,
entities can also interact indirectly with each other by
chaining several contacts over time. For example, in
a communication network, devices that are physically
connected can send new messages or propagate received
ones; thus, by first sending a new message and, then,
repeatedly propagating messages over time, remote
entities can communicate indirectly. Time-respecting
paths in temporal graphs are known as temporal paths,
or simply journeys, and when a journey exists from one
entity to another, we say that the first can reach the
second.
In a computational environment, it is often useful

to check whether entities can reach each other while
using low space. Investigations on temporal reachability
have been used, for instance, for characterizing mobile
and social networks [1, 2], and for validating protocols
and better understanding communication networks [3,
4]. Some other applications require the ability to
reconstruct a concrete journey if one exists. Journey
reconstruction has been used in applications such
as finding and visualizing detailed trajectories in
transportation networks [5, 6, 7], and matching temporal
patterns in temporal graph databases [8, 9]. In all these

applications, low space usage is important because it
allows the maintenance of larger temporal graphs in
primary memory.

In [10, 4], the authors considered updating reachability
information given a chronologically sorted sequence
of contacts. In this problem, a standard Transitive
Closure (TC) is maintained as new contacts arrive.
Differently, in [11, 12], the authors studied the problem
in which sequences of contacts may be chronologically
unsorted and queries may be intermixed with update
operations. For instance, during scenarios of epidemics,
outdated information containing interaction details
among infected and non-infected individuals are reported
in arbitrary order, and the dissemination process is
continually queried in order to take appropriate measures
against contamination [13, 14, 15, 16].

Particularly to our interest, the data structure
proposed by [11] maintains a Timed Transitive Closure
(TTC), a generalization of a TC that takes time into
consideration. It maintains well-chosen sets of time
intervals describing departure and arrival timestamps
of journeys in order to provide time related queries and
enable incremental updates on the data structure. The
key idea is that, each set associated with a pair of vertices
only contains non-nested time intervals and it is sufficient
to implement all the TTC operations. In a temporal
graph with n entities interacting over τ time units,

The Computer Journal, Vol. ??, No. ??, ????

2 L.F.A. Brito, M.K. Albertini, B.A.N. Travençolo and G. Navarro

this data structure maintains only O(n2τ) intervals
(as opposed to O(n2τ2)) using O(n2) dynamic Binary
Search Trees (BSTs). Although the reduction of intervals
is interesting, the space to maintain O(n2) BSTs
containing O(τ) intervals each can still be prohibitive
for large temporal graphs.
In this paper, we propose a compact data structure

to represent TTCs incrementally while answering
reachability queries. Our new data structure maintains
each set of non-nested time intervals as two dynamic
bit-vectors, one for departure and the other for arrival
timestamps. Each dynamic bit-vector uses the same data
layout introduced in [17], which resembles a B+-tree [18]
with static bit-vectors as leaf nodes. Furthermore, we
studied the usage of two variants of this dynamic bit-
vector. One variant represents leaves of dynamic bit-
vectors as raw bit sequences, and the other as the
encoded distances between consecutive 1’s present in
raw bit sequences.

We proved that our novel data structure handles the
insertion of new contacts in O(n2d log τ) time, where d
is the total number of intervals removed from any of the
O(n2) BSTs; and answers basic reachability queries in
time O(log τ). As a comparison, the time complexities
introduced in [11] offer O(n2 log τ) amortized time for
insertion, and O(log τ) time for basic queries. Also,
we introduced a specialized insertion algorithm for
the second variant, the one which represents leaves of
dynamic bit-vector as encoded distances of consecutive
1’s, that has the same time complexity of the data
structure described in [11].
Even though the time complexity for inserting new

contacts in a TTC using our general algorithm has an
additional factor in the number of removed intervals,
i.e., O(n2d log(τ)), we show empirically that the average
wall-clock times do not differ much from the previous
approach [11]. Besides that, when using the first variant
on temporally-denser temporal graphs, the space to
construct random TTCs is much smaller. We also
show that, for the second variant, the space needed
to represent TTCs is generally smaller than the data
struture introduced in [11], specially for temporally-
sparser temporal graphs; however, the wall-clock time
overhead on all operations is higher due to additional
encoding/decoding steps.

1.1. Organization of the document

This paper is organized as follows. In Section 2, we
briefly review the Timed Transitive Closure, the data
structure introduced in [11], and the dynamic bit-
vector proposed by [17]. In Section 3, we describe
our data structure along with the algorithms for each
operation. In Section 4, we conduct some experiments
comparing our data structure with the previous work [11].
Finally, Section 5 concludes with some remarks and open
questions such as the usage of an encoding or packing
techniques for temporal very sparse temporal graphs.

a

b

c

d

1

2

3

4 5

a

b

c

d

[1, 2]

[2, 3]

[2, 4]

[3, 4]

[4, 5] [5, 6]

FIGURE 1. On the left, a temporal graph G on four
vertices V = {a, b, c, d}, where the presence times of edges
are depicted by labels. For δ = 1, this temporal graph
has only two non-trivial journeys, i.e. journeys with more
than one contact, namely J1 = ⟨(a, b, 1), (b, d, 4)⟩ and
J2 = ⟨(a, b, 2), (b, d, 4)⟩. On the right, the corresponding
Timed Transitive Closure (TTC). Note that only the interval
I2 = [2, 4], regarding J2, is depicted on the edge from a
to d because the other possibility, I1 = [1, 4], regarding J1,
encloses I2. A query to check whether a reaches d within
the time interval I1 can also be satisfied by using I2.

2. BACKGROUND

2.1. Timed Transitive Closure

Following the formalism in [19], a temporal graph is
represented by a tuple G = (V,E, T , ρ, ζ) where: V is a
set of vertices; E ⊆ V ×V is a set of edges; T is the time
interval over which the temporal graph exists (lifetime);
ρ : E × T → {0, 1} is a function that expresses whether
a given edge is present at a given time instant; and
ζ : E × T 7→ T is function that expresses the duration
of an interaction for a given edge at a given time, where
T is the time domain. In this paper, we consider a
setting where E is a set of directed edges, T is discrete
such that T = [1, τ] ⊆ T is the lifetime containing τ
timestamps, and ζ = δ, where δ is any fixed positive
integer. Additionally, we call (u, v, t) a contact in G if
ρ((u, v), t) = 1.
Reachability in temporal graphs can be defined in

terms of journeys. A journey from u to v in G is
a sequence of contacts J = ⟨c1, c2, . . . , ck⟩, whose
sequence of underlying edges form a valid (u, v)-path
in the underlying graph G and, for each contact ci =
(ui, vi, ti), it holds that ti+1 ≥ ti + δ for i ∈ [1, k − 1].
Throughout this article we use departure(J) = t1, and
arrival(J) = tk + δ. Thus, a vertex u can reach a
vertex v within time interval [t−, t+] iff there exists a
journey J from u to v such that t− ≤ departure(J) ≤
arrival(J) ≤ t+.

In [11], the authors introduced the Timed Transitive
Closure (TTC), a transitive closure that captures the
reachability information of a temporal graph within
all possible time intervals. Informally, the TTC of a
temporal graph G is a multigraph with time interval
labels on edges. Each time interval expresses the
departure(J) and arrival(J) timestamps of a journey
J in G as its left and right boundaries, respectively. This
additional information allows answering reachability
queries parametrized by time intervals and also deciding

The Computer Journal, Vol. ??, No. ??, ????

Dynamic Compact Data Structure for Temporal Reachability 3

if a new contact occurring anywhere in history can be
composed with existing journeys. Furthermore, a TTC
needs at most τ edges (in the same direction) between
two vertices instead of τ2 to perform basic operations.
The key idea is that each set of intervals from these edge
labels can be reduced to a set containing only non-nested
time intervals. For instance, in the contrived example
shown in Figure 1, we can see that, even though the
information of an existing journey in the temporal graph
was discarded in the corresponding TTC, a reachability
query that could be satisfied by a “larger” interval can
also be satisfied by a “smaller” nested interval.

Their data structure encodes TTCs as n × n ma-
trices, in which every entry (u, v) points to a self-
balanced Binary Search Tree (BST) denoted by T (u, v).
Each tree T (u, v) contain up to τ intervals correspond-
ing to the reduced edge labels from vertex u to ver-
tex v in the TTC. As all these intervals are non-
nested, one can use any of their boundaries (departure
or arrival) as sorting key. This data structure sup-
ports the following operations: add contact(u, v, t),
which updates information based on a new con-
tact (u, v, t); can reach(u, v, t−, t+), which returns
true if u can reach v within the interval [t−, t+];
is connected(t−, t+), which returns true if G, re-
stricted to the interval [t−, t+], is temporally connected,
i.e., all vertices can reach each other within [t−, t+]; and
reconstruct journey(u, v, t−, t+), which returns a
journey (if one exists) from u to v occurring within
the interval [t−, t+]. All these operations can be imple-
mented using the following BST primitives, where T(u,v)

is a BST containing reachability information regarding
journeys from u to v:

• find next(T(u,v), t), which retrieves from T(u,v)

the earliest interval [t−, t+] such that t− ≥ t, if any,
and nil otherwise;

• find prev(T(u,v), t), which retrieves from T(u,v)

the latest interval [t−, t+] such that t+ ≤ t, if any,
and nil otherwise; and

• insert(T(u,v), t
−, t+), which inserts into T(u,v) a

new interval I = [t−, t+] if no other interval I ′ such
that I ′ ⊆ I exists while removing all intervals I ′′
such that I ⊆ I ′′.

The algorithm for add contact(u, v, t)manages the
insertion of a new contact (u, v, t) as follows. As shown
in Algorithm 1, first, at line 1, the interval [t, t + δ],
corresponding to the trivial journey J from u to v
with departure(J) = t and arrival(J) = t + δ, is
inserted in T(u,v) using the insert primitive, which
runs in time O(log τ). Then, the core of the algorithm
consists of computing the indirect consequences of this
insertion for the other vertices. Their algorithm consists
of enumerating these compositions with the help of the
find prev and find next primitives, which runs in
time O(log τ), and inserting them into the TTC using
insert. From line 2 to 7, for every vertex w− ∈ N ∗

in(u),
where N ∗

in(u) retrieves all incoming neighbors of u in

the TTC, it finds the latest interval [t−,] in T(w−,u)

that arrives before time t (inclusive) and inserts the
composition [t−, t + δ] into T(w−,v). Similarly, from
line 8 to 11, for every vertex w+ ∈ N ∗

out(v), where
N ∗

out(v) retrieves all outgoing neighbors of v in the
TTC, the algorithm finds the earliest interval [, t+]
in T(v,w+) that leaves v after time t+ δ (inclusive), and
inserts the composition [t, t+] into T(u,w+). Finally, from
line 12 to 14, for all w− ∈ N ∗

in(u) and w+ ∈ N ∗
out(v),

it inserts the composition [t−, t+] into T(w−,w+) when
appropriate. As there can only be one new interval for
each pair of vertices, the algorithm takes O(n2 log τ)
time.

Algorithm 1 add contact(u, v, t)

1: insert(T(u,v), t, t+ δ)
2: D ← {}
3: for all w− ∈ N ∗

in(u) do
4: [t−,]← find prev(T(w−,u), t)
5: if t− ̸= nil then
6: insert(T(w−,v), t

−, t+ δ)
7: D ← D ∪ (w−, t−)

8: for all w+ ∈ N ∗
out(v) do

9: [, t+]← find next(T(v,w+), t+ δ)
10: if t+ ̸= nil then
11: insert(T(u,w+), t, t

+)
12: for all (w−, t−) ∈ D do
13: if w− ̸= w+ then
14: insert(T(w−,w+), t

−, t+)

The algorithm for can reach(u, v, t−, t+) con-
sists of testing whether T(u,v) contains at least
one interval included in [t−, t+]. The cost
of this algorithm reduces essentially to calling
find next(T(u,v), t

−) once, which takes O(log τ) time.
The algorithm for is connected(t−, t+) simply calls
can reach(u, v, t−, t+) for every pair of vertices;
therefore, it takes O(n2 log τ) time.
For reconstruct journey(u, v, t−, t+), the

add contact(u, v, t) algorithm must include an ad-
ditional field along every time interval added to BSTs
indicating which vertex comes next in (at least one
of) the possible journeys. This modification can be
trivially implemented and do not change the time
complexity of add contact(u, v, t). The algorithm
consists of unfolding intervals and successors, one pair
at a time using the find next primitive, which must
also consider the new successor field added to intervals,
until the completion of the resulting journey of length
k; therefore, it takes O(k log τ) time in total.
In this paper, we develop a new compact

data structure that supports add contact(u, v, t)
and can reach(u, v, t−, t+), and, consequently,
is connected(t−, t+). Our new data structure
do not account for the modification needed to an-
swer reconstruct journey(u, v, t−, t+), although it
should be possible using a different compact data struc-

The Computer Journal, Vol. ??, No. ??, ????

4 L.F.A. Brito, M.K. Albertini, B.A.N. Travençolo and G. Navarro

ture to store successors.

2.2. Dynamic bit-vectors

A bit-vector B is a data structure that holds a sequence
of bits and provides the following operations: access(B,
i), which accesses the bit at position i; rankb(B, i),
which counts the number of b’s until (and including)
position i; and selectb(B, j), which finds the position
of the j-th bit with value b. In this paper, we
consider that selectb(B, j) = len(B) + 1 when j >
rankb(B, len(B)), where len(B) is the length of the
bit-vector B. It is a fundamental data structure to
design more complex data structures such as compact
sequence of integers, text, trees, and graphs [20, 21].
Usually, bit-vectors are static, meaning that we first
construct the data structure from an already known
sequence of bits in order to take advantage of these
query operations.
Additionally, a dynamic bit-vector allows changes

on the underlying bits. Although many operations to
update a dynamic bit-vector has been proposed, the
following are the most commonly used: insertb(B,
i), which inserts a bit b at position i; updateb(B,
i), which writes the new bit b to position i; and
remove(B, i), which removes the bit at position i.
Apart from these operations, there are others such as
insert wordw(B, i), which inserts a word w at position
i, and remove wordn(B, i), which removes a word of
n bits from position i.

In [17], the authors proposed a dynamic data structure
for bit-vectors with a layout similar to B+-trees [18].
Leaves wrap static bit-vectors of maximum length l and
internal nodes contain at most m pointers to children
along with the number of 1’s and the total number of
bits in each subtree. With exception to the root node,
static bit-vectors have a minimum length of ⌈l/2⌉ and
internal nodes have at least ⌈m/2⌉ pointers to children.
These parameters serve as rules to balance out tree nodes
during insertion and removal of bits. Figure 2 illustrates
the overall layout of this data structure.
Any static bit-vector representation can be used

as leaves, the simplest one being arrays of words
representing bits explicitly. In this case, the maximum
length could be set to l = Θ(w2), where w is the integer
word size, and, therefore, processing leaves would cost
O(w) = O(log n) time, i.e. the time to process at most
w words, where n is the size of the dynamic bit-vector.
Another possibility is to represent bit-vectors sparsely
by computing the distances between consecutive 1’s and
then encoding them using an integer compressor such
as Elias-Delta [22], or simply packing them using binary
packing [23] to reduce the amount of unused bits. In
this case, we can instead use as parameter the maximum
number of 1’s encoded by static bit-vectors to balance
out leaves. By setting the maximum numbers of 1’s in
leaves to w, the time to process leaves would also cost
O(w) since encoding/decoding a single distance using

such compressors takes O(1) time.
The data structure introduced in [17] supports all

main dynamic bit-vector operations in time O(log n)
(using the mentioned parameters) since the costs are
dominated by the processing of leaves. An access(B,
i) operation is done by traversing the tree starting at
the root node. In each node the algorithm searches from
left to right for the branch that has the i-th bit and
subtracts from i the number of bits in previous subtrees.
After traversing to the corresponding child node, the
new i is local to that subtree and the search continues
until reaching the leaf containing the i-th bit. At a leaf
node, the algorithm simply accesses and returns the i-th
local bit in the corresponding static bit-vector. If bits
in static bit-vectors are encoded sparsely, for instance,
an additional decoding step is necessary.
The rankb(B, i) and selectb(B, j) operations are

similar to access(B, i). For rankb(B, i), the algorithm
also sums the number of 1’s in previous subtrees when
traversing the tree. At a leaf, it finally sums the number
of 1’s in the corresponding static bit-vector up to the
i-th local bit using popcount operations, which counts
the number of 1’s in a word, and return the resulting
value. For selectb(B, j), the algorithm instead uses
the number of 1’s in each subtree to guide the search.
Thus, when traversing down, it subtracts the number
of 1’s in previous subtrees from j, and sums the total
number of bits. At a leaf, it searches for the position of
the j-th local set bit using clz or ctz operations, which
counts, respectively, the number of leading and trailing
zeros in a word; sums it, and returns the resulting value.

The algorithm for insertb(B, i) first locates the leaf
that contains the static bit-vector with the i-th bit.
During this top-down traversal, it increments the total
number of bits and the number of 1’s, whether b = 1,
in each internal node key associated with the child it
descends. Then, it reconstructs the leaf while including
the new bit b. If the leaf becomes full, the algorithm
splits its content into two bit-vectors and updates its
parent accordingly while adding a new key and a pointer
to the new leaf. After this step, the parent node can also
become full and, in this case, it must also be split into
two nodes. Therefore, the algorithm must traverse back,
up to the root node, balancing any node that becomes
full. If the root node becomes full, then it creates a new
root containing pointers to the split nodes along with
the keys associated with both subtrees.

The algorithm for remove(B, i) also has a top-down
traversal to locate and reconstruct the appropriate leaf,
and a bottom-up phase to rebalance tree nodes. However,
internal node keys associated with the child it descends
must be updated during the bottom-up phase since the
i-bit is only known after reaching the corresponding
leaf. Moreover, a node can become empty when it has
less than half the maximum number of entries. In this
case, first, the algorithm tries to share the content of
siblings with the current node while updating parent
keys. If sharing is not possible, it merges a sibling into

The Computer Journal, Vol. ??, No. ??, ????

Dynamic Compact Data Structure for Temporal Reachability 5

16 12 12
3 2 5

4 4 4
3 1 1

000110001011

4 4 4
0 2 0

000010100000

4 4 4 4
1 1 0 1

0100000000101000

num =

ones =

num =

ones =

num =

ones =

num =

ones =

FIGURE 2. A dynamic bit-vector using the data structure introduced in [17]. Leaves wrap static bit-vectors and internal
nodes contain pointers to children along with the number of 1’s and the total number of bits in each of them. The maximum
number of pointers in each internal node m and the length of each static bit-vector n in this example is 4.

the current node and updates its parent while removing
the key and pointer previously related to the merged
node. If the root node becomes empty, the algorithm
removes the old root and makes its single child the new
root.

The updateb(B, i) operation can be implemented by
calling remove(B, i) then insertb(B, i), or by using
a similar strategy with a single traversal.

3. DYNAMIC COMPACT DATA STRUC-
TURE FOR TEMPORAL REACHABILITY

Our new data structure uses roughly the same strategy
as in the previous work [11]. The main difference is the
usage of a compact dynamic data structure to maintain a
set of non-nested intervals instead of Binary Search Trees
(BSTs). This compact representation provides all BST
primitives in order to incrementally maintain Temporal
Transitive Closures (TTCs) and answer reachability
queries. In [11], the authors defined them as follows,
where T(u,v) represents a BST holding a set of non-nested
intervals associated with the pair of vertices (u, v). (1)
find next(T(u,v), t) returns the earliest interval [t

−, t+]
in T(u,v) such that t− ≥ t, if any, and nil otherwise; (2)
find prev(T(u,v), t) returns the latest interval [t−, t+]
in T(u,v) such that t+ ≤ t, if any, and nil otherwise; and
(3) insert(T(u,v), t

−, t+) inserts the interval [t−, t+] in
T(u,v) and performs some operations for maintaining the
property that all intervals in T(u,v) are minimal.
For our new compact data structure, we take

advantage that every set of intervals only contains non-
nested intervals, thus we do not need to consider other
possible intervals. For instance, if there is an interval
I = [4, 6] in a set, no other interval starting at timestamp
4 or ending at 6 is possible, otherwise, there would be
some interval I ′ such that I ′ ⊆ I or I ⊆ I ′. Therefore,
we can represent each set of intervals as a pair of dynamic
bit-vectors D and A, one for departure and the other for
arrival timestamps. Both bit-vectors must provide the
following low-level operations: access(B, i), rankb(B,
i), selectb(B, j), insertb(B, i), and updateb(B, i).
By using these simple bit-vectors operations,

we first introduce algorithms for the primitives
find next((D,A)(u,v), t), find prev((D,A)(u,v), t)
and insert((D,A)(u,v), t

−, t+) that runs, respectively,

1

0 0 0 1

0 1

0 1

0 0 0

1 2 3 4 5 6

I1

I2

D

A

FIGURE 3. Representation of a set of non-nested interval
using two bit-vectors, one for departures and the other for
arrival timestamps. In this example, a set containing the
intervals [1, 4] and [3, 6] is represented by the first bit-vector
containing 1’s at position 1 and 3, and the second bit-vector
containing 1’s at positions 4 and 6. Note that both bit-
vectors must have the same number of 1’s, otherwise, there
would be an interval with missing values for departure or
arrival.

in time O(log τ), O(log τ) and O(d log τ), where d is
the number of intervals removed during an interval
insertion. Note that, now, these operations receive as
first argument a pair containing two bit-vectors D and
A associated with the pair of vertices (u, v) instead of a
BST T(u,v). If the context is clear, we will simply use
the notation (D,A) instead of (D,A)(u,v).
Then, in order to improve the time complex-

ity of insert((D,A)(u,v), t
−, t+) to O(log τ + d),

we propose a new bit-vector operation: un-
set one range(B, j1, j2), which clears all bits in
the range [select1(B, j1), select1(B, j2)].

3.1. Compact representation of non-nested
intervals

Each set of non-nested intervals is represented as a
pair of dynamic bit-vectors D and A, one storing
departure timestamps and the other arrival timestamps.
Given a set of non-nested intervals I1, I2, . . . , Ik, where
Ii = [di, ai], D contains 1’s at every position di, and A
contains 1’s at every position ai. Figure 3 depicts this
representation.

3.2. Query algorithms

Algorithms 2 and 3 answer the primitives
find prev((D,A), t) and find next((D,A), t),
respectively. In order to find a previous interval, at
line 1, Algorithm 2 first counts in j how many 1’s exist

The Computer Journal, Vol. ??, No. ??, ????

6 L.F.A. Brito, M.K. Albertini, B.A.N. Travençolo and G. Navarro

up to position t in A. If j = 0, then there is no interval
I = [t−, t+] such that t+ ≤ t, therefore, it returns nil.
Otherwise, at lines 4 and 5, the algorithm computes
the positions of the j-th 1’s in D and A to compose
the resulting intervals. In order to find a next interval,
at line 1, Algorithm 3 first counts in j′ how many 1’s
exist up to time t− 1 in D. If j′ = rank1(D, len(D)),
then there is no interval I ′ = [t′−, t′+] such that t′ ≤ t−,
therefore, it returns nil. Otherwise, at lines 4 and 5, the
algorithm computes the positions of the (j′ + 1)-th 1’s
in D and A to compose the resulting interval.

Algorithm 2 find prev((D,A), t)

1: j ← rank1(A, t)
2: if j = 0 then
3: return nil
4: t− ← select1(D, j)
5: t+ ← select1(A, j)
6: return [t−, t+]

Algorithm 3 find next((D,A), t)

1: j ← rank1(D, t− 1)
2: if j = rank1(D, len(D)) then
3: return nil
4: t− ← select1(D, j + 1)
5: t+ ← select1(A, j + 1)
6: return [t−, t+]

As rank1(B, i) and select1(B, j) on dynamic
bit-vectors have time complexity O(log τ) using the
data structure proposed by [17], find prev((D,A), t)
and find next((D,A), t) have both time complexity
O(log τ).

3.2.1. Interval insertion
Due to the property of non-containment of intervals,
given a new interval I = [t−, t+], we must first assure
that there is no other interval I ′ in the data structure
such that I ′ ⊆ I, otherwise, I cannot be present in the
set. Then, we must find and remove all intervals I ′′ in
the data structure such that I ⊆ I ′′. Finally, we insert
I by setting the t−-th bit of bit-vector D and the t+-th
bit of A. Figure 4 illustrates the process of inserting
new intervals.
Algorithm 4 describes a simple process for the

primitive insert((A,D), t−, t+) in order to insert a new
interval I = [t−, t+] into a set of non-nested intervals
encoded as two bit-vectors D and A. At line 1, it
computes how many 1’s exist in D prior to position
t− by calling rd = rank1(D, t− − 1) and access the
t−-th bit in D by calling bitd = access(D, t−). At
line 2, it computes the same information with respect
to the bit-vector A and timestamp t+ by calling ra =
rank1(A, t+ − 1) and bita = access(A, t+). We note
that the operations rank1(B, i) and access(B, i) can
be processed in a single tree traversal using the dynamic

0 1

0 0 0 0 0 1

0 0 0 0

1 2 3 4 5 6

I1

D

A

0 1

0 0 0 0 0 1

0 0 0 0

1 2 3 4 5 6

I1

(a) inserting I1 = [2, 6] (b) inserting I2 = [1, 6]

1

0 0 0 0 1

1

1

0 0 0 0

1 2 3 4 5 6

I3

I1

D

A

0 0 1

0 0 0 1

0 0 0

0 0

1 2 3 4 5 6

I4

(c) inserting I3 = [1, 5] (d) inserting I4 = [3, 4]

FIGURE 4. Sequence of insertions using our data structure
based on bit-vectors D and A. In (a), our data structure is
empty, thus, the insertion of interval I1 = [2, 6] results in
setting the position 2 in D and 6 in A. Then, in (b), the
new interval I2 = [1, 6] encloses I1, therefore, the insertion
is skipped. Next, in (c), no interval encloses or is enclosed
by the new interval I3 = [1, 5], thus, it suffices to set the
position 1 in D and 5 in A. Finally, in (d), the new interval
I4 = [3, 4] is enclosed by I1 and I3, thus both of them are
removed by clearing the corresponding bits and then I4 is
inserted by setting the position 3 in D and 4 in A.

bit-vector described in [17]. If rd is less than ra + bita,
then there are more intervals closing up to timestamp t+

than intervals opening before t−, therefore, there is some
interval I ′ = [d′, a′] such that t− ≤ d′ ≤ a′ ≤ t+, i.e.,
I ′ ⊆ I. In this case, the algorithm stops, otherwise, it
proceeds with the insertion. When proceeding, if rd+bitd
is greater than ra, then there are more intervals opening
up to t− than intervals closing before t+, therefore,
there are d = (rd + bitd) − ra intervals I ′′i = [d′′i , a

′′
i],

such that d′′i ≤ t− ≤ t+ ≤ a′′i , i.e., I ⊆ I ′′i , that
must be removed. From lines 5 to 9, the algorithm
removes the d intervals that contain I by iteratively
unsetting their corresponding bits in D and A. In order
to unset the j-th 1 in a bit-vector B, we first search
for its position by calling i = select1(B, j), then
update B[i] = 0 by calling update0(B, i). Thus, the
algorithm calls update0(D, select1(D, ra + 1)) and
update0(A, select1(A, ra + 1)) d times to remove the
d intervals that close after (and including) t+. Finally,
at lines 10 and 11, the algorithm inserts I by calling
update1(D, t−) and update1(A, t+). Note that both
bit-vectors can grow with new insertions, thus we need
to assure that both bit-vectors are large enough to
accommodate the new 1’s. That is why the algorithm
calls ensureCapacity before setting the corresponding
bits. The ensureCapacity implementation may call
insert0(B, len(B)) or insert word0(B, len(B)) until
B has enough space. Moreover, rank1(B, i) and
access(B, i) operations can also receive positions that
are larger than the actual length of B. In such cases,
these operations must instead return rank1(B, len(B))
and 0, respectively.

The Computer Journal, Vol. ??, No. ??, ????

Dynamic Compact Data Structure for Temporal Reachability 7

Algorithm 4 insert((D,A), t−, t+)

1: rd ← rank1(D, t− − 1); bitd ← access(D, t−)
2: ra ← rank1(A, t+ − 1); bita ← access(A, t+)
3: if rd ≥ ra + bita then
4: if rd + bitd > ra then
5: r+d ← rd + bitd
6: while r+d > ra do
7: update0(D, select1(D, ra + 1))
8: update0(A, select1(A, ra + 1))
9: r+d ← r+d − 1

10: ensureCapacity(D, t−); update1(D, t−)
11: ensureCapacity(A, t+); update1(A, t+)

Theorem 3.1. The update operation has worst-case
time complexity O(d log τ), where d is the number of
intervals removed.

Proof. All operations on dynamic bit-vectors have time
complexity O(log τ) using the data structure proposed
by [17]. As the maximum length of each bit-vector is τ ,
the cost of ensureCapacity is amortized to O(1) during
a sequence of insertions. Therefore, the time complexity
of insert((D,A), t−, t+) is O(d log τ) since in the worst
case Algorithm 4 removes d intervals from line 6 to 9
before inserting the new one at lines 10 and 11.

This simple strategy has a multiplicative factor on
the number of removed intervals. In general, as
more intervals in [1, τ] are inserted, the number of
intervals d to be removed decreases, thus, in the long
run, the runtime of this näıve solution is acceptable.
However, when static bit-vectors are encoded sparsely
as distances between consecutive 1’s, the algorithm needs
to decode/encode leaves d times and thus runtime may
degrade severely. In the next section, we propose a new
operation for dynamic bit-vectors using sparse static
bit-vectors as leaves, unset one range(B, j1, j2), to
replace this iterative approach and improve the time
complexity of insert((D,A), t−, t+) to O(log τ).

Corollary 3.1. The add contact(u, v, t) opera-
tion has worst-case time complexity O(n2d log τ), where
d is the number of intervals removed.

Using Theorem 3.1, it trivially follows that an
algorithm for add contact(u, v, t), i.e., an algorithm
that inserts a new contact into a TTC, has time
complexity O(n2d log τ) since it calls Algorithm 4 at
most n2 times in order to update, in the worst case, all
BSTs.

3.3. New dynamic bit-vector operation to
improve interval insertion

In this section, we propose a new operation
unset one range(B, j1, j2) for dynamic bit-
vectors using sparse static bit-vectors as leaves to
improve the time complexity of insert((D,A), t−, t+).

This new operation clears all bits starting from
the j1-th 1 up to the j2-th 1 in time O(log τ).
Our algorithm for unset one range(B, j1, j2),
based on the split/join strategy commonly used in
parallel programs [24], uses two internal functions
split at jth one(N , j) and join(N1, N2). The
split at jth one(N , j) function takes a root node
N representing a dynamic bit-vector B and splits its
bits into two nodes N1 and N2 representing bit-vectors
B1 and B2 containing, respectively, the bits in range
[1, select1(B, j) − 1] and [select1(B, j), len(B)].
Note that [1, select1(B, j) − 1] is invalid when
select1(B, j) = 1 and [select1(B, j), len(B)] is
invalid when select1(B, j) = len(B)+1. In such cases,
the respective output node represents an empty bit-
vector. The join(N1, N2) function takes two root nodes
N1 and N2, representing two bit-vectors B1 and B2 and
constructs a new tree with root node N representing
a bit-vector B containing all bits from B1 followed by
all bits from B2. The resulting trees for both functions
must preserve the balancing properties of dynamic bit-
vectors [17].

Thus, given a dynamic bit-vector B represented
as a tree with root N , our algorithm for un-
set one range(B, j1, j2) is described as follows.
First, the algorithm calls split at jth one(N , j1)
in order to split the bits in B into two nodes Nleft

and Ntmp representing two bit-vectors containing,
respectively, the bits in range [1, select1(B, j1) − 1]
and in range [select1(B, j1), len(B)]. Then, it
calls split at jth one(Ntmp, j2 − j1 + 2) to
split Ntmp further into two nodes Nones and
Nright containing, respectively the bits in range
[select1(B, j1), select1(B, j2 + 1) − 1], and
[select1(B, j2 + 1), len(B)]. The tree with root node
Nones contains all 1’s previously in the original dynamic
bit-vector B that should be cleared. In the next step,
the algorithm creates a new tree with root node Nzeros

containing len(Nones) 0’s to replace Nones. Finally,
it calls join(join(Nleft, Nzeros), Nright) to join the
trees with root nodes Nleft, Nzeros, and Nright into a
final tree representing the original bit-vector B with the
corresponding 1’s cleared.
Note that the tree with root Nones is still in

memory, thus it needs some sort of cleaning. The
cost of immediately cleaning this tree would increase
proportionally to the total number of nodes in Nones

tree. Instead, we keep Nones in memory and reuse its
children lazily in other operations that request node
allocations so that the cost of cleaning is amortized.
Moreover, even though we need to create a new bit-

vector filled with zeros, this operation is performed in
O(1) time with a sparse implementation. Using the
dynamic bit-vector introduced in [17], a new bit-vector
filled with k zeros is constructed as follows when leaves
are represented sparsely. Create a root node containing
a key composed of the total number of bits equals to k
and the total number of 1’s equals to 0, and associate

The Computer Journal, Vol. ??, No. ??, ????

8 L.F.A. Brito, M.K. Albertini, B.A.N. Travençolo and G. Navarro

it with a pointer to a static bit-vector. Then, initialize
the static bit-vector with the encodings of the distances
between consecutive 1’s. In this case, as there is no bit
set, the static bit-vector is initialized with no encoding.
However, we note that an implementation could encode
the bit sequence in leaves as if there was an additional
1 appended to the end of the bit sequence in order to
avoid edge cases in other operations [20]. Extraneous 1’s
will not change the results of other operations because
the correct lengths of leaves are stored in their parents
and, therefore, traversals would not descend to leaves
looking for extraneous 1’s. When doing so, the leaf
would consist of a single encoding of the number k.

Next we describe join(N1, N2) and
split at jth one(N , j). The idea of join(N1,
N2) is to merge the root of the smallest tree with the
correct node of the highest tree and rebalance the
resulting tree recursively.

Algorithm 5 join(N1, N2)

1: if height(N1) = height(N2) then
2: return mergeOrGrow(N1, N2)
3: else if height(N1) > height(N2) then
4: R← join(extractRightmostChild(N1), N2)
5: if height(R) = height(N1) then
6: return mergeOrGrow(N1, R)

7: insertRightmostChild(N1, R)
8: return N1

9: else
10: R′ ← join(N1, extractLeftmostChild(N2))
11: if height(R′) = height(N2) then
12: return mergeOrGrow(R′, N2)

13: insertLeftmostChild(N2, R
′)

14: return N2

Algorithm 5 details the join(N1, N2) recursive
function. If height(N1) = height(N2), at line 2, the
algorithm tries to merge keys and pointers present
in N1 and N2 if possible, or distributes their content
evenly and grow the resulting tree by one level. This
process is done by calling mergeOrGrow(N1, N2),
which returns the root node of the resulting tree.
Instead, if height(N1) > height(N2), at line 4, the
algorithm first extracts the rightmost child from N1, by
calling extractRightmostChild(N1), and then recurses
further passing the rightmost child instead. The next
recursive call might perform a merge operation or
grow the resulting subtree one level; therefore, the
output node R may have, respectively, height equal
to height(N1) − 1 or height(N1). If the resulting tree
grew, i.e., height(R) = height(N1), then, at line 6, the
algorithm returns the result of mergeOrGrow(N1, R).
Otherwise, if a merge operation was performed, i.e.,
height(R) = height(N1) − 1, then, at line 7, it inserts
R into N1 as its new rightmost child, and returns
N1. Finally, if height(N1) < height(N2), at line 10,
the algorithm extracts the leftmost child from N2 by

calling extractLeftmostChild(N2) and recurses further
passing the leftmost child instead. Similarly, the root
R′ resulted from the next recursive call might have
height equal to height(N2) − 1 or height(N2). If
height(R′) = height(N2), then, at line 12, the algorithm
returns the result of calling mergeOrGrow(R′, N2),
otherwise, if height(R′) = height(N2) − 1, then, at
line 13, it inserts R′ into N2 as its new leftmost child,
and returns N2. Note that all subroutines must properly
update keys describing the length and number of 1’s
of the bit-vector represented by the corresponding
child subtree. For instance, a call to rightmost =
extractRightmostChild(N) must decrement from the
key associated with N the length and number of 1’s in
the bit-vector represented by rightmost.

Lemma 3.1. The operation join(N1, N2) has time
complexity O(|height(N1)− height(N2)|).

Proof. Algorithm 5 descends at most |height(N1) −
height(N2)| levels starting from the root of the highest
tree. At each level, in the worst case, it updates a node
doing a constant amount of work equals to the branching
factor of the tree. Therefore, the cost of join(N1, N2)
is O(|height(N1)− height(N2)|).

The idea of split at jth one(N , j) is to traverse
N recursively while partitioning and joining its content
properly until it reaches the node containing the j-th 1 at
position select1(B, j). During the forward traversal,
it partitions the current subtree in two nodes N1 and N2,
excluding the entry associated with the child to descend.
Then, during the backward traversal, it joins N1 and
N2, respectively, with the left and right nodes resulting
from the recursive call.

Algorithm 6 split at jth one(N , j)

1: if N is leaf then
2: (N1, N2)← partitionLeaf(N, j)
3: return (N1, N2)

4: (N1, child,N2)← partitionNode(N, j)
5: (N ′

1, N
′
2)← split at jth one(child, j − ones(N1))

6: return (join(N1, N
′
1), join(N

′
2, N2))

The details of this function is shown in Algorithm 6.
From lines 1 to 3, the algorithm checks whether the root
is a leaf. If it is the case, it partitions the current bit-
vector B1 · b ·B2, where b is the j-th 1, and returns two
nodes containing, respectively, B1 and b ·B2. Otherwise,
from lines 4 to 6, the algorithm first finds the i-th
child that contains the j-th 1 using a linear search and
partitions the current node into three other nodes: N1,
containing the partition with all keys and children in
range [1, i− 1]; child, which is the child node associated
with position i; and N2, containing the partition with all
keys and children in range [i+ 1, . . .]. Then, at line 5, it
recursively calls split at jth one(child, j−ones(N1))
to retrieve the partial results N ′

1 containing bits from

The Computer Journal, Vol. ??, No. ??, ????

Dynamic Compact Data Structure for Temporal Reachability 9

child up to the j-th 1; and N ′
2 containing bits from child

starting at the j-th 1 and forward. Note that the next
recursive call expects an input j that is local to the root
node child. Finally, at line 6 it joins N1 with N ′

1 and
N ′

2 with N2, and returns the resulting trees.

Lemma 3.2. The operation split at jth one(N , j)
has time complexity O(log τ).

Proof. As join(N1, N2) has cost O(|height(N1) −
height(N2)|) and the sum of height differences for
every level cannot be higher than the resulting tree
height containing n < τ nodes, the time complexity of
split at jth one(N , j) is O(log τ).

Furthermore, since join(N1, N2) outputs a balanced
tree when concatenating two already balanced trees,
both trees resulting from the split at jth one(N , j)
calls are also balanced.

Lemma 3.3. The operation unset one range(B, j1,
j2) has time complexity O(log τ) when B encodes leaves
sparsely.

Proof. The unset one range(B, j1, j2) operation
calls split at jth one and join twice. It must also
create a new tree containing select1(B, j2 − 1) −
select1(B, j1) 0’s to replace the subtree containing
j2 − j1 1’s. If leaves of B are represented sparsely, then
the creation of a new tree filled with 0’s costs O(1) since
the resulting tree only has a root node, with its only
key having the current length (select1(B, j2 − 1) -
select1(B, j1)), and an empty leaf. Therefore, as the
cost of split at jth one(N , j), O(log τ), dominates
the cost of join(N1, N2), the time complexity of
unset one range(B, j1, j2) is O(log τ).

By using the operation unset one range(B, j1,
j2), we can implement a new algorithm for the
primitive insert((D,A), t−, t+) when the dynamic bit-
vectors D and A represent their leaves sparsely. Our
previous general algorithm, Algorithm 4, first computes
rd = rank1(D, t− − 1), bitd = access(D, t−), ra =
rank1(A, t+ − 1) and bita = access(A, t+). This
information is used in order to check whether [t−, t+]
must be inserted into the set of intervals, and, if so,
whether there is any interval already present in the set
that needs to be removed. When the interval [t−, t+]
must be inserted in the set, rd + bitd refers to how
many intervals open before (and including) t− and ra
to how many intervals close before t+. If rd + bitd < ra
then there are d = (rd + bitb)− ra intervals that close
after (and including) t+ to be removed, whose first
interval is associated with the (ra + 1)-th bit set in
both bit-vectors D and A. Therefore, a new algorithm
for the primitive insert((D,A), t−, t+), should replace
the loop in Algorithm 4, from lines 6 to 9, with
the calls unset one range(D, ra + 1, ra + d) and
unset one range(A, ra + 1, ra + d).

Theorem 3.2. The primitive insert((D,A), t−, t+)

has time complexity O(log τ) when D and A encode
leaves sparsely.

Proof. Following from Theorem 3.1 and Lemma 3.3,
the loop in Algorithm 4 that iteratively unset
d bit-vector bits can be substituted by the calls
unset one range(D, ra + 1, ra + d) and un-
set one range(A, ra + 1, ra + d), where d = (rd +
bitb) − ra. Note that ra, rd and bitb are already com-
puted at lines 1 and 2 in Algorithm 4. As the cost of
Algorithm 4 is dominated by this loop, its time complex-
ity reduces to O(log τ).

Corollary 3.2. The add contact(u, v, t) opera-
tion has worst-case time complexity O(n2 log τ) when all
BSTs, of the form (D,A), uses dynamic bit-vectors D
and A such that leaves are encoded sparsely.

4. EXPERIMENTS

In this section, we conduct experiments to analyze the
time performance and space efficiency of data structures
when adding new information from synthetic datasets.
The main motivation is to better understand, empirically,
the trade-offs between the data structure described
in [11] and two variants of the compact data structures
described in this paper. All three data structure,
including the one described in [11], maintains a set o

.
In Section 4.1, we compare our compact data structure

that maintain a set of non-nested intervals directly
with an in-memory B+-tree implementation storing
intervals as keys. For our compact data structure, we
used dynamic bit-vectors [17] with leaves storing bits
explicitly as arrays of integer words with words being
64 bits long. Internal nodes have a maximum number
of pointers to children m = 32 and leaf nodes have
static bit-vectors with maximum length l = 4096. For
the B+-tree implementation we used m = 32 for all
nodes. In Section 4.2, we compare the overall Temporal
Transitive Closure (TTC) data structure using our
new compact data structure with the TTC using the
B+-tree implementation for each pair of vertices. All
code is available at https://bitbucket.org/luizufu/
zig-ttc/src/master/.
All experiments were execute in a AMD Ryzen 9

5950X 16-Core Processor with 64GB of RAM.

4.1. Comparison of data structures for sets of
non-nested intervals

For this experiment, we created datasets containing all
O(τ2) possible intervals in [1, τ] for τ ∈ [23, 214]. Then,
for each dataset, we executed 10 times a program that
shuffles all intervals at random, and inserts them into
the tested data structure while gathering the wall-clock
time and memory space usage after every insertion.
Figure 5(a) shows the average wall-clock time to

insert all intervals into the both data structures as

The Computer Journal, Vol. ??, No. ??, ????

10 L.F.A. Brito, M.K. Albertini, B.A.N. Travençolo and G. Navarro

density = 0.000025 density = 0.00025 density = 0.0025 density = 0.025 density = 0.25

0 500 000 0 500 000 0 500 000 0 500 000 0 500 000
0

2 000

4 000

0

200

400

0

20

40

0

2

4

0.0

0.2

0.4

τ

In
se

rt
io

n
T

im
e

(s
)

DENSE
SPARSE

B+−tree

density = 0.000025 density = 0.00025 density = 0.0025 density = 0.025 density = 0.25

0 500 000 0 500 000 0 500 000 0 500 000 0 500 000
0

2 000

4 000

0

500

1 000

1 500

0

200

400

0

50

100

150

0

50

100

τ

S
pa

ce
 (

K
B

)

DENSE
SPARSE

B+−tree

(a) Total wall-clock time (b) Space after insertion

FIGURE 5. Comparison of incremental data structures to represent a set of non-nested intervals. In (a), the total wall-clock
time to insert all intervals randomly shuffled into data structures. In (b), the total space used by the data structure after the
insertion of all intervals.

τ increases. Figure 5(b) shows the cumulative wall-
clock time to insert all intervals and the memory usage
throughout the lifetime of a single program execution
with τ = 214. As shown in Figure 5(a), our new data
structure slightly underperforms when compared with
the B+-tree implementation. However, as shown in
Figure 5(b), the wall-clock time has a higher overhead
at the beginning of the execution (first quartile) and,
after that, the difference between both data structures
remains almost constant. This overhead might be due
to insertions of 0’s at the end of the bit-vectors in order
to make enough space to accommodate the rightmost
interval inserted so far. We can also see in Figure 5(b)
that the space usage of our new data structure is much
smaller than the B+-tree implementation. It is worth
noting that, if the set of intervals is very sparse, maybe
the use of sparse bit-vector as leaves could decrease
the space since it does not need to preallocate most
of the tree nodes, however, the wall-clock time could
increase since at every operation leaves need to be
decoded/unpacked and encoded/packed.

4.2. Comparison of data structures for Time
Transitive Closures

For this experiment, we created datasets containing all
O(n2τ) possible contacts fixing the number of vertices
n = 32 and the latency to traverse an edge δ = 1
while varying τ = [23, 214]. Then, for each dataset, we
executed 10 times a program that shuffles all contacts
at random, and inserts them into the tested TTC
data structure while gathering the wall-clock time and
memory space usage after every insertion.

Figure 6(a) shows the average wall-clock time to insert
all contacts into the TTCs using both data structures
as τ increases. Figure 6(b) shows the cumulative wall-
clock time to insert all contacts and the memory usage
throughout the lifetime of a single program execution
with n = 32 and τ = 214. As shown in Figure 6(a), the
TTC version that uses our compact data structure in
fact outperforms when compared with the TTC that
uses the B+-tree implementation for large values of τ . In
Figure 6(b), we can see that the time to insert a contact
into the TTC using our new data structure is lower
during almost all lifetime, and the space usage followed
the previous experiment comparing data structures in

isolation.

5. CONCLUSION AND OPEN QUESTIONS

We presented in this paper an incremental compact data
structure to represent a set of non-nested time intervals.
This new data structure is composed by two dynamic
bit-vectors and works well using common operations
on dynamic bit-vectors. Among the operations of our
new data structures are: find prev((A,D), t), which
retrieves the previous interval [t−, t+] such that t+ ≤ t
in time O(log τ); find next((A,D), t), which retrieves
the next interval [t−, t+] such that t− ≥ t also in time
O(log τ); and insert((A,D), t−, t+), which inserts a
new interval I = [t−, t+] if no other interval I ′ such
that I ′ ⊆ I exists while removing all intervals I ′′ such
that I ⊆ I ′′ in time O(d log τ), where d is the number
of intervals removed. Moreover, we introduced a new
operation unset one range(B, j1, j2) for dynamic
bit-vectors that encode leaves sparsely, which we used
to improve the time complexity of our insert algorithm
to O(log τ).
Additionally, we used our new data structure to

incrementally maintain Temporal Transitive Closures
(TTCs) using much less space. We used the same
strategy as described in [11], however, instead of using
Binary Search Trees (BSTs), we used our new compact
data structure. The time complexities of our algorithms
for the new data structure are the same as those for
BSTs. However, as we showed in our experiments, using
our new data structure greatly reduced the space usage
for TTCs in several cases and, as they suggest, the wall-
clock time to insert new contacts also improves as τ
increases.
For future investigations, we conjecture that our

compact data structure can be simplified further so
that the content of both its bit-vectors are merged into
a single data structure. Our current insertion algorithm
duplicates most operations in order to update both bit-
vectors. Furthermore, each of these operations traverse
a tree-like data structure from top to bottom. With a
single tree-like data structure, our insertion algorithm
could halve the number of traversals and, maybe, benefit
from a better spatial locality. In another direction,
our algorithm for insert((A,D), t−, t+) only has time
complexity O(log τ) when both A and D encode leaves

The Computer Journal, Vol. ??, No. ??, ????

Dynamic Compact Data Structure for Temporal Reachability 11
In

se
rt

io
n

tim
e

(s
)

0 5000 10000 15000
0

200

400

600

τ

B+−tree
Compact

In
se

rt
io

n
tim

e
(s

)
S

pa
ce

 (
M

B
)

0 25 50 75 100

0 25 50 75 100
0

200

400

600

0

50

100

150

200

250

Percentage of contacts inserted

Btree
Compact

(a) Overall (b) Execution for n = 32 and τ = 214

FIGURE 6. Comparison of Temporal Transitive Closures (TTCs) using incremental data structures to represent sets of
non-nested intervals for each pair of vertices. In (a), the overall average wall-clock time to insert all possible O(n2τ) contacts
randomly shuffled into data structures. In (b), the cumulative wall-clock time and the memory space usage to insert all
possible O(n2τ) contacts randomly shuffled throughout a single execution. Note that the final wall-clock time of the execution
described in (b) was one of the 10 executions with τ = 214 used to construct (a).

sparsely. Perhaps, a dynamic bit-vector data structure
that holds a mix of leaves represented densely or sparsely
can be employed to retain the O(log τ) complexity
while improving the overall runtime for other operations.
Lastly, we expect soon to evaluate our new compact data
structure on larger datasets and under other scenarios;
for instance, in very sparse and real temporal graphs.

ACKNOWLEDGEMENTS

This study was financed in part by Fundação de Amparo
à Pesquisa do Estado de Minas Gerais (FAPEMIG)
and the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code
001* - under the “CAPES PrInt program” awarded
to the Computer Science Post-graduate Program of
the Federal University of Uberlândia, as well as
the Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico (grants 402543/2021-1, 306436/2022-1,
406418/2021-7, and 306795/2022-1). GN was supported
by ANID – Millennium Science Initiative Program –
Code ICN17 002 and Fondecyt grant 1-230755, Chile.

REFERENCES

[1] Tang, J., Musolesi, M., Mascolo, C., and Latora, V.
(2010) Characterising temporal distance and reachability
in mobile and online social networks. SIGCOMM
Computer Communication Review, 40, 118––124.

[2] Linhares, C. D. G., Ponciano, J. R., Paiva, J. G. S.,
Travençolo, B. A. N., and Rocha, L. E. C. (2019)
Visualisation of structure and processes on temporal
networks. In Holme, P. and Saramäki, J. (eds.),

Computational Social Sciences. Springer International
Publishing, Cham.

[3] Cacciari, L. and Rafiq, O. (1996) A temporal
reachability analysis. Protocol Specification, Testing and
Verification XV: Proceedings of the Fifteenth IFIP WG6.
1 International Symposium on Protocol Specification,
Testing and Verification, Warsaw, Poland, June 1995,
pp. 35–49. Springer US, Boston, MA.

[4] Whitbeck, J., de Amorim, M. D., Conan, V.,
and Guillaume, J.-L. (2012) Temporal reachability
graphs. Mobicom ‘12: Proceedings of the 18th Annual
International Conference on Mobile Computing and
Networking, Istanbul, Turkey, 22-26 August, pp. 377–
–388. Association for Computing Machinery, New York,
NY, USA.

[5] Wu, G., Ding, Y., Li, Y., Bao, J., Zheng, Y., and Luo,
J. (2017) Mining spatio-temporal reachable regions over
massive trajectory data. 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), San Diego,
CA, USA, 19-22 April, pp. 1283–1294. IEEE, New York,
NY, USA.

[6] George, B., Kim, S., and Shekhar, S. (2007) Spatio-
temporal network databases and routing algorithms: A
summary of results. Advances in Spatial and Temporal
Databases, Boston, MA, USA, 16-18 July, pp. 460–477.
Springer Berlin, Heidelberg.

[7] Zeng, W., Fu, C.-W., Arisona, S. M., Erath, A., and Qu,
H. (2014) Visualizing mobility of public transportation
system. IEEE Transactions on Visualization and
Computer Graphics, 20, 1833–1842.

[8] Moffitt, V. Z. and Stoyanovich, J. (2016). Querying
evolving graphs with portal. arXiv preprint.
http://arxiv.org/abs/1602.00773.

[9] Latapy, M., Viard, T., and Magnien, C. (2018) Stream
graphs and link streams for the modeling of interactions

The Computer Journal, Vol. ??, No. ??, ????

12 L.F.A. Brito, M.K. Albertini, B.A.N. Travençolo and G. Navarro

over time. Social Network Analysis and Mining, 8, 1–29.

[10] Barjon, M., Casteigts, A., Chaumette, S., Johnen,
C., and Neggaz, Y. M. (2014) Testing temporal
connectivity in sparse dynamic graphs. 2nd AETOS
Int. conference on Research challenges for future
RPAS/UAV systems, Bordeaux, France, 9-10 September.
http://arxiv.org/abs/1404.7634.

[11] Brito, L. F. A., Albertini, M. K., Casteigts, A., and
Travençolo, B. A. N. (2022) A dynamic data structure for
temporal reachability with unsorted contact insertions.
Social Network Analysis and Mining, 12, 22.

[12] Wu, H., Huang, Y., Cheng, J., Li, J., and Ke, Y. (2016)
Reachability and time-based path queries in temporal
graphs. 2016 IEEE 32nd International Conference on
Data Engineering (ICDE), Helsinki, Finland, 16-20 May,
pp. 145–156. IEEE, New York, NY, USA.

[13] Ponciano, J. R., Vezono, G. P., and Linhares, C.
D. G. (2021) Simulating and visualizing infection spread
dynamics with temporal networks. Proceedings of
the 36th Brazilian Symposium on Databases, Rio de
Janeiro, RJ, Brazil, 04-08 October. Sociedade Brasileira
de Computação, Porto Alegre, RS, Brazil.

[14] Xiao, H., Rozenshtein, P., Tatti, N., and Gionis, A.
(2018) Reconstructing a cascade from temporal obser-
vations. Proceedings of the 2018 SIAM International
Conference on Data Mining (SDM). Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA.

[15] Enright, J., Meeks, K., Mertzios, G. B., and Zamaraev,
V. (2021) Deleting edges to restrict the size of an
epidemic in temporal networks. Journal of Computer
and System Sciences, 119, 60–77.

[16] Rozenshtein, P., Gionis, A., Prakash, B. A., and
Vreeken, J. (2016) Reconstructing an epidemic over time.
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, 13-17 August, pp. 1835––1844.
Association for Computing Machinery, New York, NY,
USA.

[17] Prezza, N. (2017) A Framework of Dynamic Data
Structures for String Processing. 16th International
Symposium on Experimental Algorithms (SEA 2017),
London, UK, pp. 11:1–11:15. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany.

[18] Abel, D. J. (1984) A b+-tree structure for large
quadtrees. Computer Vision, Graphics, and Image
Processing, 27, 19–31.

[19] Casteigts, A., Flocchini, P., Quattrociocchi, W., and
Santoro, N. (2011) Time-varying graphs and dynamic
networks. AD-HOC, Mobile, and Wireless Networks,
Paderborn, Germany, 18-20 July, pp. 346–359. Springer
Berlin, Heidelberg.

[20] Navarro, G. (2016) Compact Data Structures: A
Practical Approach, 1st edition. Cambridge University
Press, USA.

[21] Caro, D., Rodriguez, M. A., Brisaboa, N. R., and
Farina, A. (2016) Compressed kd-tree for temporal
graphs. Knowledge and Information Systems, 49, 553–
595.

[22] Elias, P. (1975) Universal codeword sets and
representations of the integers. IEEE Transactions on
Information Theory, 21, 194–203.

[23] Lemire, D. and Boytsov, L. (2015) Decoding billions
of integers per second through vectorization. Software:
Practice and Experience, 45, 1––29.

[24] Blelloch, G. E., Ferizovic, D., and Sun, Y. (2016) Just
join for parallel ordered sets. Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and
Architectures, Pacific Grove, CA, USA, 11-13 July, pp.
253––264. Association for Computing Machinery, New
York, NY, USA.

The Computer Journal, Vol. ??, No. ??, ????

