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A raster time series is a sequence of independent rasters arranged chronologically
covering the same geographical area. These are commonly used to depict the
temporal evolution of represented variables. The T-k%-raster is a compact data
structure that performs very well in practice for compact representations for raster
time series. This structure classifies each raster as a snapshot or a log and encodes
logs concerning their reference snapshots, which are the immediately preceding
selected snapshots. An enhanced version of the T-k?-raster, called Heuristic T-k2-
raster, incorporates a heuristic for automating the selection of snapshots. In this
study, we investigate the optimality of the heuristic employed in Heuristic T-k2-
raster by comparing it with a dynamic programming approach. Our experimental
evaluation demonstrates that Heuristic T-k*-raster is a near-optimal solution,
achieving compression performance almost identical to the dynamic programming
method. These results indicate that variations of the structure that maintain the
temporal order of the rasters are unlikely to significantly improve compression.
Consequently, we explore an alternative approach based on clustering, where
rasters are grouped according to their similarity, regardless of their temporal
order. Our experimental evaluation reveals that this clustering-based strategy
can enhance compression in scenarios characterized by cyclic behavior.

Keywords: Raster dataset; Temporal Raster; Data compression; Compact Data Structure;
Clustering; Dynamic Programming

INTRODUCTION

The raster data model is a structured representation
of data consisting of a regular grid of square cells,
where each cell contains a value defined by the
modeled data. The raster model is often used in
Geographic Information Systems (GIS) [1, 2] because it
is well-suited to represent natural phenomena, such as
terrain elevation, humidity, atmospheric pressure, and
temperature, distributed over geographic space [3]. A
related model is the raster time series, a.k.a. temporal
raster, a time-ordered sequence of discrete, independent
rasters covering the same geographic space. The
principal utility of this model is in representing the
temporal evolution of the variables defined in each
raster. This model is used in various fields where
tracking changes in spatially-distributed variables over
time is critical [3]. In addition to GIS applications,
the raster data and raster time series models have
applications in image analysis, including images from

medical [4, 5, 6], astronomical [7] and hyperspectral [8,
9, 10] domains. By providing a flexible and robust
framework for representing and analyzing data, these
models have become valuable tools for researchers
across various disciplines, facilitating the investigation
of complex phenomena and developing new insights and
understanding.

Large volumes of raster data and raster time series are
currently available. For instance, advances in remote
sensing and instrumentation in geospatial sensors and
satellites have enabled the acquisition of vast amounts
of information at high frequency and resolution [11],
rapidly increasing the volume and size of tracking
data [12]. The modern remote imaging sensors collect
and manage among terabyte-scale and zettabyte-scales
amounts of Earth observation images [13, 14]. The
enormous amount of data generated by geospatial
sensors and satellites presents significant challenges in
data processing, management, and analysis.

One of the key features of raster data is the data
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locality. Nearby cells, spatially and/or temporally,
tend to exhibit similar or slightly different values.
This property has been leveraged to develop various
data compression techniques, such as compact data
structures (CDS) [15]. CDS are specialized data
structures designed to represent different data types,
including raster data, compactly or succinctly, with
query support without decompression. By exploiting
the spatial and temporal coherence in the data,
CDS can achieve significant compression ratios while
maintaining efficient query support [15].

There are several proposed compact representations
for raster and temporal rasters [16, 17, 18, 19, 12, 3, 20].
These representations are built on top of the k?-tree [21,
22, 23], designed specifically for sparse binary matrices,
and performing a similar partition than the well-known
Quadtree data structure [24]. This structure recursively
subdivides the matrix in submatrices, stopping when
it finds submatrices with the same value or individual
cells. The k*-raster [19, 12] is a compact representation
of raster data, which is a prominent structure that
operates similarly to the k2-tree. In the kZ-raster,
the minimum and maximum values of each submatrix
are stored to enable efficient value lookup at each
location. The T-k?-raster is a compact data structure
that builds upon the k2-raster to represent raster time
series [3, 20]. In this structure, each individual raster is
classified as either a snapshot or a log and represented
using a variant of the k2-raster. A snapshot stores
the original values, while a log stores the differences
between the current raster and the previously generated
snapshot. The T-k2-raster selects snapshots at fixed
time intervals to capture the temporal evolution of the
raster data. A variant of T-k2-raster is the Heuristic T-
k2-raster, which includes a heuristic for automatically
selecting snapshots and logs [3]. This structure
leverages the heuristic to improve the snapshot
selection efficiency and reduce storage requirements.
The Heuristic T-k%-raster has been used in various
applications, including remote sensing and cartography,
where efficient management and analysis of large-
scale temporal rasters data are critical requirements.
Based on experimental results, the compression space
and query time of the T-k2-raster and the Heuristic
T-k?-raster are competitive [3]. However, both
compact representations have a constraint regarding
the snapshot selection. For a raster log, only
the latest previous selected snapshot in chronological
order can be its respective snapshot reference. This
limitation impede selecting the best snapshot candidate
to improve the data representation. This is important in
domains where the variable under study exhibits cyclic
behavior, meaning that the values represented at one
point in time can repeat or be very similar at other
points in time (e.g. the temperature at a specific hour
of the day may be similar on other days during the
same season). In other words, applying clustering to
the T-k2-raster allows us to exploit not only spatial and

temporal locality but also the cyclic property.

This work presents a comprehensive study of the
heuristic used for selecting snapshots in the Heuristic T-
k2-raster. To evaluate the effectiveness of the proposed
heuristic, we compare it with other snapshot selection
strategies aimed at improving the compression ratio.
Specifically, we use dynamic programming to determine
the optimal selection of snapshots and compare its
compression performance with the proposed heuristic.
It is relevant to indicate that dynamic programming
presents the same snapshot selection constraint that
T-k2-raster. Our experimental evaluation shows that
the Heuristic T-k%-raster is near optimal since it
achieves almost the same compression performance as
the dynamic programming solution. Therefore, to
further reduce the space usage of the data structure, we
explore alternative representations that eliminate the
snapshot selection constraint. Specifically, we explore
the application of clustering algorithms using a distance
measure based on Hamming distance. Using clustering
enables us to choose as snapshots those rasters that
are the centroids of the clusters, and therefore the
representation is not restricted to following the time-
ordered rasters. However, to enable the same query
support of the T-k?-raster, an additional integer vector
is needed to identify, for each raster, its respective
snapshot or cluster centroid. Our results show that
clustering can improve the compression performance
of the Heuristic T-k2-raster when the raster time
series shows cyclic behavior, keeping the query support
performance.

The article is structured as follows. Section 2
provides essential background information, introducing
key concepts necessary for understanding the study. In
Section 3, relevant related work is discussed. Section
4 explains the application of dynamic programming to
the T-k?-raster. Section 5 elaborates on the application
of clustering to the T-k?-raster. The experimental
process, results, and corresponding discussion are
presented in Section 6. Finally, Section 7 presents
the conclusions drawn from this study and outlines
potential future directions.

2. BACKGROUND

This section provides an overview of the background
that helps to understand our study. The principal
subjects are the compact data structures and the
Clustering techniques, revised in Sections 2.1 and 2.2,
respectively.

2.1. Compact data structures (CDS)

A compact data structure (CDS) is a data structure
that represents different types of data (trees, tables,
sets, graphs, text, among others) using a small amount
of space, close to the minimum indicated by information
theory. Furthermore, these structures can efficiently
support required operations on their data [15].
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One of the essential CDS is the bitmap or bit array,
which offers two crucial queries: rank and select [15].
The rank query returns the number of symbols, either
zeros or ones, within a bitmap up to a specified position
4. In contrast, the select operation returns the position
of the i-th symbol within a bitmap [15]. The bitmap
data structure is a fundamental building block for many
other CDS.

A relevant CDS that inspired the k?-raster and the
T-k?-raster is the k?-tree. The k?-tree is a CDS
that was initially designed to represent Web graphs
as a compact representation of their adjacency matrix;
however, it has also been applied to compress sparse
binary matrices in different domains [21, 22, 23]. The
k2-tree is based on the idea of Quadtrees [24] and
reduces space consumption by compacting submatrices
that are full of zeros.

Given an n X n matrix, where n is a power of
k,' the matrix is subdivided into k? submatrices of
% X %, which are counted from left to right and top
to bottom. Each submatrix is represented by a bit
whose value is one if the submatrix contains at least
one cell with a value of one, and zero if all cells are
zero. The submatrices represented with a value of one
are recursively subdivided into k? submatrices, and the
subdivision continues until the submatrix contains only
zeros or is an individual cell. The recursive subdivision
of the matrix generates a conceptual tree that is
stored following a level order traversal, storing the bits
produced by the k?-tree. Common implementations of
the k2-tree use two bitmaps to store the traversal: T,
which stores the tree node values except the last level,
and L, which stores the last level tree node values.
Tree navigation can be efficiently implemented using
the operations described earlier for bitmaps.

Other CDS more directly related to our work, such as
the k2-raster and its generalization to temporal rasters,
are described in Section 3.

2.2. Clustering

Clustering is a technique that aims to group elements,
referred to as “points”, into clusters based on a distance
metric. The goal is to create groups where each group
contains close points, and the distance between points
in different groups is high. Clustering is fundamental in
many fields, such as machine learning, data mining, and
pattern recognition enabling the discovery of hidden
patterns, performing exploratory data analysis, and
reducing the dimensionality of large datasets [25].
Some well-known distance metrics include Euclidean,
Hamming, Edit, and Jaccard distances, where choosing
an appropriate distance metric is crucial to obtain
meaningful and effective clustering results [26].

Two popular clustering strategies are hierarchical and

1If the matrix is non-square or n is not a power of k, the k2-
tree structure extends to the smallest power of 2 greater than
n.

partition-based clustering. Hierarchical clustering, or
agglomerative clustering [26], starts by defining each
data point as a separate cluster. Next, it proceeds
to iteratively merge the two closest clusters into a
single larger cluster until the desired number of clusters
is reached. The hierarchical clustering methods can
be classified based on how they compute the distance
metric. Some commonly used methods include Single-
link clustering, Complete-link clustering, and Average-
link clustering [26]. In this study, we apply the
Complete-link scheme, which measures the similarity
between two clusters by considering the maximum
distance between any two points, one from each cluster.

On the other hand, the partition-based clustering
scheme employed in this study is the k-means
algorithm [27, 28]. The algorithm starts by selecting
k representative points as the initial centroids of the
k clusters. Subsequently, the algorithm assigns each
non-representative point to the closest cluster based
on the distance between the point and the cluster
centroid. Since including new points affects the cluster
centroid, the algorithm performs multiple iterations
over the entire set of points until they remain in the
assigned cluster. The number of iterations can be set
to a fixed number or performed until the algorithm
converges. The selection of the initial k centroids
is a crucial aspect of the k-means algorithm, as it
can significantly impact its effectiveness. Typically,
the initial k& points are selected randomly, but this
approach can be problematic if two points too close
to each other are selected. The k-means++ is a
variant of the k-means algorithm to reduce the effect
of randomness in selecting the k points that represent
the clusters [29]. The method biases the selection by
randomly choosing the first representative point from
the data points and then selecting the following points
with probability proportional to the square of their
distance from the nearest already chosen center. This
approach helps to improve the selection of the first k
points by choosing points farther apart. Despite the
additional initialization cost, the k-means++ algorithm
converges faster and produces better results than the
standard k-means algorithm, reason why we use it in
our study.

In addition, the effectiveness of many clustering
techniques also depends on selecting the number of
clusters. Several indices have been proposed to estimate
the number of clusters, including the Silhouette
index, which compares the intracluster and intercluster
distances of the partitioning and it is defined as
follows [30]: Given a point p;, compute the intracluster
distance a(7) ﬁEjecb#jd(i,j) and the
intercluster distance b(i) = minhg{ﬁZjecjd(i,j)},
where C7 is the cluster that contains p;, C; is another
cluster and d(i,7) is the distance applied to points p;
and p;. Finally, the Silhouette value of point p;, named
s(#), can be computed by applying Equation 1:
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b(i) — a(i)
max{a(i),b()}

The Silhouette value assesses the classification quality
of an individual data point within its cluster, while
the Silhouette index S represents the average of these
values across all points in a clustering solution and
estimates the clustering quality. The Silhouette index
ranges between -1 and 1, where a higher value indicates
that the points are well-clustered. Hence, the ideal
number of clusters & is such that maximizes the average
Silhouette index.

s(i) = (1)

3. RELATED WORK

This section provides an overview of the related work
on representing raster data and raster time series.
Specifically, we present the functionalities of two
principal compact data structures (CDS): the k2-raster
and the T-k2?-raster. Additionally, we describe related
applications of clustering techniques to raster data.

3.1. k2-raster

The k2-raster is a CDS that represents raster data
succinctly based on the k2-tree representation [19, 12].
Its construction involves the recursive subdivision of
an n X n matrix, where n is a power of k2 into
a conceptual tree such that each node represents
a submatrix using a subarray storing its respective
submatrix’s minimum and maximum values. The
subdivision process continues until all values within a
subarray are identical or individual cells are reached.

However, to improve the compression of the k2-
raster structure, it does not store absolute minimum
and maximum values. Instead, it stores the difference
between each value and its equivalent in the parent
node. These differences are efficiently represented with
bit encoders, particularly with Directly Addressable
Codes (DACs) [31]. As a result, only the root
node stores the absolute minimum and maximum
values. This approach reduces the size of the values
ultimately stored in the structure, leading to improved
compression. The k2-raster structure allows for easy
retrieval of original values, as the query process involves
traversing the tree from root to leaf, accumulating the
stored differences along the path.

Figure 1 presents a complete example of a k-
raster representation. The structure recursively
subdivides the matrix into four submatrices, and each
generated submatrix’s minimum and maximum values
are represented in the tree. If a submatrix contains
only equal values, the subdivision process terminates
for that submatrix, as seen in the lower right submatrix
of the example, where all the cells contains the value 2.

2If the matrix is non-square or n is not a power of k, the k2-
raster structure extends to the smallest power of 2 greater than
n, similarly to the k2-tree.

However, for the remaining submatrices, the recursive
subdivision continues.

The next step is to compute the differences between
the values of the nodes and their parent’s nodes values.
As aresult, it returns the conceptual tree representation
presented on the bottom left part of the figure. The root
node stores the global maximum and minimum values of
5 and 1, respectively. The first submatrix in the top left
corner contains 5 and 3, corresponding to the range of
values inside the submatrix. The difference between the
maximum value of the submatrix and that of its parent
node is 0, whereas the difference between the respective
minimum values is 2. Therefore, the submatrix stores
the values of 0 and 2 as its maximum and minimum
values, respectively, using this approach.

The main components used for the implementation
of the k%-raster are the following:

e 7rMin and rMaz: These variables correspond to
the minimum and maximum values of the entire
matrix, respectively.

e Lmin and Lmax: These structures represent the
minimum and maximum values, respectively, that
are obtained along the level-order traversal of the
conceptual tree. Note that the values of the
last level are only represented in Lmax. Both
structures are stored using Directly Addressable
Codes (DACs) [31].

e Tree: This bitmap structure represents the
topology of the k2-raster tree and works similarly
to the k2-tree.

The authors present two variants of the k2-raster
structure in their work. The first variant, referred to
as k2-rastery, uses two values of k, denoted as k; and
ko [19]. Along the initial ny levels, the structure uses
a value of & = ky, while on the subsequent levels,
the structure uses a value of k = kg. The second
variant of the k2-raster proposed by the authors is
the k%-raster [12]. This variant employs an entropy-
based heuristic approach to represent the last levels
of Lmax, where the most frequent values are encoded
using shorter codewords. Recursive subdivision stops
at the last [ levels, resulting in submatrices of size
kist X kis¢. Each submatrix generated is assigned a
code based on its frequency of appearance, creating
a vocabulary that associates each submatrix with a
unique code. The structure then selects whether to
represent each submatrix of the dictionary using the
assigned code or its original values, depending on the
size required to represent the submatrices.

3.2. T-k?-raster

The T-k?-raster is a CDS designed to represent a raster
time series efficiently [3, 20]. The structure employs the
k2-raster to represent each raster in the temporal raster.
The CDS defines two types of rasters: snapshots and
logs. Snapshots are taken at fixed intervals and serve
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FIGURE 1: An example of a k%-raster. On the top, the figure shows an 8 x 8 raster example and its respective
conceptual tree representation using k = 2. On the bottom, it is shown the conceptual tree of differences and the

final components of the data structure.

as a reference for representing subsequent raster logs.
The raster logs store the differences between the values
the log represents and the reference snapshot used. The
logs are created by considering the most recent snapshot
as a reference.

T-k2-raster uses a modified version of the k2-raster,
namely kz—rasterlog, to represent logs. In contrast to the
regular k2-raster, which is used to represent snapshots,
the k‘2-rasterlog requires an additional bitmap called
eqB to differentiate cases when a submatrix is not
subdivided. In the case of a log raster, this occurs
when all the values in the submatrix are equal (as
in the standard case of the k2-raster) or when the
values between the submatrix and its equivalent in the
snapshot vary by a constant.

Figure 2 presents a T-k2-raster example representing
a raster time series with two rasters. The first raster is
a snapshot, while the second is a log referenced to its
predecessor. The first raster employs a k?-raster, while
the second raster employs a k*-raster;,y. The second
conceptual tree reflects in its nodes the two cases that
differentiate eqB: the standard case of the k2-raster
and when the values between the submatrix and its
equivalent in the snapshot vary by a constant.

The Heuristic T-k?-raster is a variant of the T-k2-
raster that incorporates a heuristic approach to improve
the space usage of the data structure by selecting more
suitable snapshots [3]. Unlike the regular T-k?-raster,
the distance between snapshots is not necessarily a
fixed value. Therefore, the structure includes a bitmap
that allows to identify which rasters are snapshots and

which are logs. The Heuristic T-k%-raster features a
heuristic algorithm that iterates through each raster
and evaluates three possible scenarios. The algorithm
determines the structure’s size (in bytes) up to the
current iteration and selects the case that results in the
smallest size. The three considered cases are: (1) the
selected raster is a snapshot, (2) the previous raster is
converted to a snapshot, and the selected raster is a log
of this new snapshot and (3) the selected raster is a log
of the last defined snapshot.

The proposed heuristic has certain limitations. The
first is that the heuristic restricts the inclusion in
the snapshot set of rasters that happened before the
previous raster in revision, and the heuristic does not
allow for removing rasters from the snapshot set. The
second limitation is the selection of logs that a snapshot
can reference. Specifically, exclusively the most recently
generated snapshot in the temporal order can reference
a log. This constraint may limit the ability of the
heuristic to identify the optimal selection of snapshots
to improve the compression.

3.3. Applications of clustering to raster data

There are several works related to the application of
clustering on raster data. Alkathiri et al. [32, 33]
investigated the utilization of k-means clustering for
processing multi-spectral geo-spatial raster data in a
Hadoop environment. Alzaghoul et al. [34] applied
clustering to rasters representing Digital Elevation
Models, aiming to identify hidden patterns, uncover
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FIGURE 2: A T-k?-raster example with two rasters of size 8 x 8. Both rasters are accompanied by their respective
conceptual tree. The gray and black submatrices/nodes in the second raster represent the two cases that differentiate
eqgB. Black submatrices/nodes reflect the standard case of the k?-raster when all the values in the submatrix are
equal. Gray submatrices/nodes represent when the values between the submatrix and its equivalent in the snapshot

vary by a constant.

relationships, and discover clusters of elevation values.
Image compression of RGB photos was addressed
by authors in [35], where clustering algorithms were
employed. Kiran [36] applied clustering to discover
knowledge from raster data. Mariani et al. [37]
presented a distributed clustering algorithm to handle
big data rasters in a decentralized manner. Aghaee
et al. [38] applied clustering to predict geological
lineaments using topographic, magnetic, and gravity
raster data. Wu et al. [39] proposed a pixel clustering-
based method to enhance the efficiency of mining spatial
sequential patterns from raster serial remote sensing
images (SRSI). These studies demonstrate the wide
range of applications and the potential benefits of
employing clustering techniques in the analysis and
processing of raster data.

Sisodiya et al. [40] applied clustering on raster
data compacted in a kZ?-raster. The authors aimed
to overcome memory limitations associated with
traditional clustering methods when dealing with large
datasets containing raster values. The findings of this
study highlight the potential of employing the k2?-raster
and clustering methods to analyze raster data in a
more efficient and scalable manner. Their research
demonstrated that the proposed approach, based on
a CDS, effectively addressed the challenges of data
representation and scalability in clustering.

4. AN OPTIMAL T-k*-RASTER VIA DY-
NAMIC PROGRAMMING

Section 3.2 presents an overview of the functioning and
representation of a temporal raster using the Heuristic
T-k2-raster. The approach classifies rasters as either
snapshots or logs. As the heuristic reviews each raster
in temporal order, it can only select the current or
the previous raster as a new snapshot. This section
describes a dynamic programming (DP) algorithm to
select the optimal subset of rasters as snapshots that
minimizes the space usage of the T-k2-raster for the
temporal raster. For each raster in the input sequence,
this approach decides if a raster is a log or a snapshot
exploring all previously defined snapshots and not only
the previous or last snapshots, as used by the T-k2-
raster.

Let M be a raster time series of 7 raster time instants,
in which each raster is of size n x n. The aim is to
determine a snapshot subset M, of M that represents
the entire raster time series using a T-k2-raster with
minimal storage space required. Here, S represents the
sorted index set of the selected subset (Vi € S,i € [1,7]).
The selection of this subset M is crucial for capturing
the essential information of the raster time series while
optimizing storage efficiency. For this, it is necessary to
define the following operations:

e ref(i): This operation calculates the space
required to represent the raster M; using a k2-
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raster.

e ¢(i,7): This operation calculates the space required
to represent the raster M; as a k2—rasterlog using
M; as a reference.

The proposed approach identifies the subset Mg by
solving an optimization problem using DP. Specifically,
the goal is to find the index subset S that minimizes
the following function:

i<|s| i<S[j+1]
Z ref(S[j]) + Z c(i, S[4]) (2)
j=1 i=S[j]4+1

where S[|S| + 1] — 1 = 7 for convenience.

Figure 3a illustrates an example of the application
of DP over a particular raster time series. In the
implementation, the structure indicates the raster
snapshots with a bitmap s.bv, ie. s.bu[i] is 1 if
raster 7 is a snapshot. c¢s_v vector stores for each
raster the position of its respective snapshot. For
rasters snapshots stores the same raster position. This
structure is relevant for clustering application (see
Section 5), and now is introduced only for illustrative
purpose. Note that cs_v is not actually stored as
it can be computed from s_bv[i] (ie. esw[i] =
select(rank(s-bv[i]))). In the example, the first raster
time instant, My, is selected as a snapshot by default.
Rasters Ms; and Mj are encoded using M; as a
reference, enabling the representation of the first three
raster time instants using minimal space. As the
difference between M, and M; is considerable, DP
selects M, as a new snapshot. Besides, the difference
between rasters M, and Mg is considerable, enabling
Mg to be selected as a new snapshot. Hence, the
selected subset of rasters is My = (My, My, Mg, My),
with the corresponding sorted index set S = {1,4,8,9},
and |S| = 4.

Let M]Ji,...,j] denote a subproblem considering
the raster intervals from AM; to M;. We have two
alternatives for selecting a snapshot. Firstly, we can
consider M; as the only snapshot where the space
representation of the subproblem is minimal, which
serves as the base case. The second option is to identify
a position r € [i + 1,j] such that M, represents the
subproblem using the minimum space. In the case
that DP chooses the second option and selects the
snapshot M,., the problem can be subdivided into two
subproblems: Mi, ... ,r—1] and M(r,...,j], which can
be solved recursively.

Equation 3 defines the optimization problem that
needs to be solved for the subproblem.

min ((ref(i) + Z c(k,z’)),iglrigj [ref(i)—i—
. <

=i+1

Z_: c(k,i) +ref(r)+ > c(k,r) ) (3)
k=i+1 k=r+1

Consider a matrix M with dimensions of 7 X T,
where M, j] represents the minimum space required
to represent the subproblem ML, ..., ] using M; as
the last snapshot, with j < 4. The matrix M can
be computed using the recursive equation 4, with the
calculation of each cell performed in row-major order
from row 1 to 7, and from cell [i, 1] to [¢,4] inside each
Tow 4.

1§1}£1§11}71M[z — 1Lkl +ref(i) ifi=yj,
k<i
M Z" S — . s . .
1= | jmin Mj — 1, K] + ref ()+ kz;l(/’(k,J)
=j
if j <4

(4)

In the first part of Equation 4, the last raster is
assumed to be a snapshot. To achieve this, the
minimum space required to represent the raster time
instants M(1,...,7 — 1], along with the space required
to represent M; as a snapshot, is calculated. The
second part of the equation assumes that M is the last
snapshot. To compute the minimum space required for
this case, the space needed to represent the raster time
instants M[1,...,j — 1] is added to the space required
to represent M; as a snapshot, plus the space required
to represent the raster time instants M[j + 1,...,1]
encoded using M; as a reference.

To compute the set of indexes S corresponding to
the selected snapshots, we need to iterate through each
row of the matrix M in reverse order, starting from
the last row 7. For each row ¢, we compute the
set of indexes {s;| miny<,,<; M[i, s;]}, which correspond
to the snapshots that minimize the space required to
represent the subproblem M[1,... i]. We collect all
the different indexes s; for each row ¢ and store them
in the set S. Finally, the selected snapshots are the set
of rasters {M;|s € S}. The minimum space required to
represent the entire M using the selected snapshots is
given by min; <<, M, j].

The example in Figure 4 illustrates the process of
selecting the last snapshot over the raster time series
M to minimize its space representation. The black cells
are not used because 7 is not less than j. The gray cells
indicate the last snapshot selected for each row i that
minimizes the space representation of M([L1,...,d]. For
instance, for i € [1,3], the last snapshot selected is 1.
However, for i = 4, the last snapshot selected is 4 as it
minimizes the space required to represent M(1,...,4].

5. USING CLUSTERING TO IMPROVE
THE T-k*>-RASTER

In Sections 2 and 4, we discussed different approaches
for selecting snapshots to succinctly represent a
raster time series using a T-k? raster. A common
characteristic of such techniques is that a raster
log uses as a reference a preceding raster snapshot
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Rasters list M1|M2| M3| M4| M5| |V|5| M7| Mg| M9| M|0|
oo [+ [o[o [ [o[o o[+ |+ o]
sv|1]1]1]alalalale]o]e]

(a) A raster time series example with their respective
snapshots and logs rasters. The gray cells in the list of
rasters represent snapshots, while the white cells represent
logs. cs_v is only represented for illustrative reasons. cs_v
can be calculated as cs_v[i] = select(rank(s_bv[i])).

Rasters list

L v [ v e 2

First raster snapshot

sov1]1]1]ofofo]ofo]o]o]
sv|1|2|3]2]1|3]1]3]|2]3]
Best raster snapshot
sololt1]ofofof1]1]o]0]o0]
sv|7|2|6]2]|7|6]7]6]|2]6]

(b) Clustering application example. The gray cells in the
list of rasters represent the rasters belonging to a first
cluster, the white cells represent the rasters belonging to
a second cluster, and the black cells represent the rasters
belonging to a third raster. s_bv is only represented for
illustrative reasons. s_bv can be calculated as s_bu[i] =
csvfi] ==1.

FIGURE 3: An example of the application of dynamic programming and Clustering on a raster time series with
ten raster instants (7 = 10). Each raster is represented as a cell in the Rasters list. Bitmap s_bv marks the rasters
selected as snapshots. Vector cs_v shows the raster snapshot referenced by each raster.

in time-order. However, this limitation restricts
exploring alternative combinations, such as referencing
a subsequent snapshot that may be more similar
than any of the previous ones. By considering these
alternative strategies, it becomes possible to discover
new combinations of snapshots and logs that can
effectively minimize the size of the data structure.

Depending on the temporal locality, the distance
between neighboring or nearby rasters is expected to
be less than between distant rasters. However, in
certain cases, this pattern may not hold or additional
patterns may also exist. For instance, if the raster
time series reflects a cyclical variable, the values may
repeat every certain number of rasters. Therefore, it
is crucial to identify such patterns and group similar
rasters together, regardless of the number of rasters that
separate them.

To address this, we introduce the application of the
clustering technique to enable the selection of snapshots
that correspond to each log. This process aims to reduce
the size of the T-k? raster used to represent the data.

For the application of clustering analysis to our raster
time series problem, individual rasters are considered as
“points”. The order of the rasters within the time series
is disregarded, allowing them to be rearranged and
grouped according to their similarity. This approach
enables us to focus on the similarities among the rasters
and disregard their temporal dependence.

While storing the referenced snapshot for each log is
necessary to achieve a complete representation of a T-
k? raster, the additional space required for this purpose
is insignificant. Each raster in the temporal raster
requires a constant value to indicate its corresponding

snapshot. In Figure 3b, cs_v stores these values. In
the case of a snapshot raster, the value will point
to itself, indicating that it is a snapshot. For this
reason, s_bv is not necessary to indicate snapshot
selected rasters. s_bv can be computed from cs_v (i.e.
s_bui] = cs_v[i] == i). Therefore, the storage overhead
associated with storing snapshot references is minimal
and does not significantly impact the overall size of the
representation.

In the rest of this section, we describe the relevant
configuration steps required for the application of
clustering. First, Section 5.1 presents the distance
measures applied in this study. Then, Section 5.2
describes the selection of the number of clusters.
Finally, Section 5.3 details the selection of a raster
centroid for each cluster, which is then represented as a
snapshot whereas all the other rasters in the cluster are
represented as logs with respect to such a snapshot.

5.1. Distance measures

The choice of a suitable distance measure is crucial
to compare a set of rasters, as it must be sensitive
to the differences between any pair of rasters. If the
two rasters are identical, meaning that the values of
all their cells are the same, the distance should be
zero. As the differences between the rasters increases,
the distance metric should also increase accordingly.
To define a distance measure that effectively captures
the differences between two rasters, we consider two
criteria: (1) the number of cells that differ between the
rasters and (2) the magnitude of the differences between
those cells. By incorporating both criteria into the
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FIGURE 4: Matrix M example from Figure 3a. To
compute the entries of row MJ[6] of the matrix, we
evaluate for each column ¢ € [1,6], the minimum
space required to represent M(1,...,6] using M; as
the last snapshot. For example, to compute MI6, 3],
we first determine the minimum space required to
represent M(1,2] using any snapshot k& such that 1 <
k < 2 (minj<p<oM[2,k]). We then add the space
required to represent Ms3 as a snapshot (ref(3)) and
the space required to represent M[4,..., 6] encoded by
M; (455 ek, 3)).

distance measure, we aim to establish a comprehensive
measure that appropriately accounts for the variations
between rasters.

We applied two distance measures based on the
Hamming distance [41]. Let M and N be two matrices
with |M| and |N| cells, respectively (where |M| = |N|),
and let m; and n; denote the value of a cell in M and
N, respectively.

The Normalized Hamming distance (NHD) [42, 43],
a variant of the Hamming distance, is commonly
used in decision making process, but its most basic
application is to compare strings of equal length by
counting the differing symbols. In the context of raster
data, this distance measure can be adapted to quantify
the dissimilarity between two rasters by counting the
number of differing cells. Equation 5 presents the
formula, where the count of differing cells is divided by
the total number of cells in the raster. The resulting
value ranges between 0 and 1, with values closer to
0 indicating more significant similarity between the
compared rasters.

. ZO§i<|M|(mi # ni)
= M) ©)

Where H is the Normalized Hamming distance
(NHD).
The Weighted Hamming Distance (WHD) [42, 43] is

Distance [2,2] and [4,4] [2,2] and [6,2]
Hy 2 2
H. 2 1

TABLE 1: Example of computation of H, H,, and H,.
distances measures over 1 x 2 matrices

a second variant of the Hamming distance. It calculates
the average of the absolute differences between all cells
of two compared rasters (see Equation 6). The resulting
value measures the dissimilarity between the rasters,
with a larger H,, indicating more significant differences
between them.

i mi — Ny
H, — ZO§Z<|M| ‘ | (6)
M|

Where H, is the Weighted Hamming Distance
(WHD).

The Combined Hamming Distance (CHD) is a
distance measure that weighs the NHD and WHD. The
formula for CHD can be expressed as shown in Equation
7.

H.=H x H, (7)

Where H. is the Combined Hamming Distance
(CHD).

Table 1 shows an example of the calculus of the
different distance measures presented. In this example,
the distances computed using H, yield the same
result for both computations, as the weight values are
identical. However, H. produces different results. This
discrepancy arises because the two matrices in the first
computation differ in two cells, while in the second
computation, they differ in only one cell.

By combining H and H,, H. can capture the
difference between rasters based on the number of cells
that differ and the average variation of cell values.

In Section 6, we evaluate two distance measures,
the Weighted Hamming Distance (WHD) and the
Combined Hamming distance (CHD) to analyze the
impact of the original Hamming distance on the
weighted changes.

5.2. Selection of the number of clusters

Selecting the number of clusters is a crucial aspect
of successful clustering. This study employed two
strategies to determine a suitable number of clusters
for the different clustering techniques.

The first strategy applies the Silhouette index
described in Section 2.2. The Silhouette index helps to
identify a suitable number of clusters, ensuring better
grouping of the temporal clusters. The experimental
results in [44] demonstrate that the Silhouette index
presents a very good performance. The clustering
technique is applied for each possible value of k between
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2 and the total number of rasters. Next, the Silhouette
index is computed based on the clustering performed.
The value of k that produces the highest Silhouette
index indicates that k is an appropriate value for the
number of clusters.

For comparison purposes, a second straightforward
strategy is proposed, which involves selecting the
number of snapshots generated by constructing the
Heuristic T-k?-raster. In the example shown in Figure
3a, the number of clusters is 4, representing the number
of clusters defined by the T-k?-raster, as each snapshot
represents a separate cluster. This strategy aims to
analyze the performance of clustering techniques after
using different clusters corresponding to the number of
snapshots in their respective T-k2-raster.

5.3. Selection of snapshots to represent a
cluster

The final step involves the selection of the raster
snapshot within each cluster. This selection enables
the structure to consider the remaining rasters in the
cluster as raster logs associated with the snapshot of
their respective cluster.

Selecting the ideal snapshot within each cluster is
crucial to minimize the final size of the resulting
structure. In this study we considered two strategies
for selecting a good snapshot within each cluster: First
Raster Selection and Best Raster Selection.

In the first strategy, the first raster (in time-order)
in each group is selected as the cluster snapshot. The
strategy maintains similarities concerning the Heuristic
T-k?-raster heuristic. In both cases, the first raster
that the cluster represents is defined as a snapshot and
the other rasters, temporarily located in the future, are
referenced to a snapshot raster temporarily located in
the past.

The second strategy selects the raster within the
cluster that reduces the sum of the distances to all
the other rasters in the cluster, where the distance
value corresponds to the distance definition used in the
clustering step.

Figure 3b illustrates the application of clustering on
a raster time series using a T-k2-raster structure. In
this scenario, cs_v is a relevant structure for identifying
the snapshot rasters and establishing the corresponding
mappings between logs and their respective snapshot
references. It should be noted that, according to the
snapshot raster selection, values s_bv and cs-v would
differ, as is the case of the example given. For example,
in the case of first raster snapshot selection, the rasters
snapshot selected are M, My and M3, while for best
raster snapshot selection, rasters snapshot are Ms, Mg
and M.

6. EXPERIMENTAL RESULTS AND DIS-
CUSSION

This section presents the experimental results that
evaluate the different strategies described in the
previous sections.  Firstly, we assess how far the
space obtained by the Heuristic T-k2-raster is from
an optimal strategy of snapshot selection for that
structure obtained through the DP technique described
in Section 4. Next, we evaluate the approximation
that disregards temporal order and uses clustering to
potentially achieve better groupings of similar rasters.

6.1. Experimental framework

Server configuration: All the experiments were run on
a dedicated Intel® Xeon®) Gold 5320T CPU clocked
at 2.30 GHz (40 physical cores) with cache sizes 1.9
MB (L1d), 1.3 MB (Ll1i), 50 MB (L2), and 60 MB
(L3), and 252 GB of RAM. The operating system was
Debian 11 with kernel 5.10.0-13-amd64. The C++
code was compiled with gcc version 10.2.1 and the -
O3 optimizations. The Python code was executed with
version 3.9.2.

Implementation code: The distance measures pre-
sented in Section 5.1 were implemented using the
C++ programming language. The clustering algo-
rithms were implemented in Python using the popular
scikit-learn library [45]. For K-means (or K-medoids
as used in the library), the initialization method of
k-medoids++ was used to select each cluster’s repre-
sentatives or centroids. The scikit-learn library also
provides a function for computing the Silhouette index
for each applied clustering method [30].

All the code was made available at a public
repository®, including the implementation of the
clustering techniques discussed in Section 2.2, and the
two snapshot selection strategies discussed in Section
5.3.

Datasets: 1In this study, we use real world, synthetic,
and semi-synthetic datasets*. Regarding the real
datasets, we used the NLDAS-2 collection. This
collection was obtained from [46] and it was also used
in the experimental process of [3]. This collection
is a product of the North American Land Data
Assimilation System (NLDAS). It includes information
of precipitation and flows across North America from
1979 up to the present, such as surface temperature,
humidity, and radiation, among other variables. These
raster time series have an hourly time resolution and a
spatial resolution of 1/8 degrees. The specific dataset
used in our experiments correspond to the time period
from January to December 2018. Table 2 presents
detailed information regarding the datasets.

Shttps://gitlab.com/mmunocan/clustering/
4The data underlying this article will be shared on reasonable
request to the corresponding author.
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Minimum Maximum Unique Average Standard

Dataset . .
value value values value deviation
APCP -1 10258 3268 5.43 38.08
CONVfrac -1 100 102 1.12 9.87
DLWRF 9919 47911 24167  22147.16 8254.10
PEVAP -79 185 263 -10.05 40.21
SPFH -1 4 -0.19 0.48

TABLE 2: Main statistics of real world datasets. All datasets presents 224 rows, 464 columns and 2664 rasters. APCP
represents accumulated precipitation [mm], CONVfrac represents fraction of total precipitation that is convective,
DLWRF represents downward longwave radiation flux [W/m?], PEVAP represents potential evaporation [kg/m?], and

SPFH represents specific humidity [kg/kg].

We also use synthetic and semi-synthetic datasets to
provide more insight on the evaluation of the clustering
approach. Specifically, these datasets are used to test
the hypothesis commented in Section 5 that indicates
that the proposed clustering strategy helps to reduce
the space usage in raster time series that exhibit a
cyclic structure, i.e. that the same rasters repeat, either
fully or partially, over time. For this, we generated
cyclic temporal rasters where a small set of rasters are
repeated until the total number of expected rasters is
achieved. All the datasets generated have 224 rows, 464
cols, and 2664 rasters for analogy with the real world
datasets described above. Both the synthetic and the
semi-synthetic datasets are generated analogously using
the two strategies described below. Hence, the only
difference between them lies in that the rasters forming
the seed set S in synthetic datasets are artificially
generated, whereas in semi-synthetic datasets, they
are real rasters. The two strategies that we apply
to generate synthetic and semi-synthetic datasets with
different characteristics are as follows:

e  Regular cyclic datasets: Given a seed set S of
rasters, a new dataset is generated by selecting the
first « rasters of the set, where x € {12,24, 36, 48}
and repeating them (keeping their original order)
until the final size of the dataset is achieved.
Note that all the cycles inside the temporal raster
have the same size. For example, if S =
{A,B,C,D,E,F,G,...}, x = 3 and the expected
dataset size is 3, the generated dataset would be
{A,B,C,A,B,C, A B,C}.

o [Irreqular cyclic datasets: Given a seed set S of
rasters, a new dataset is generated by iteratively
selecting the first up to x rasters of the set,
where x € {12,24,36,48}. On each iteration,
the number of selected rasters is chosen randomly
from the range [1..z]. The selected rasters are
concatenated until the final size of the dataset
is achieved. In this case, the cycles inside each
temporal raster might not all have the same
size. Using the same parameters of the previous
example, a possible generated dataset could be
{A,B,A,B,C,A,A,B,C}.

Synthetic datasets are created by initially generating
the seed set of rasters S with randomly assigned
cell values. The values, ranging from 0 to 100,
are randomly distributed across the cells following a
uniform distribution. These datasets replicate scenarios
devoid of spatial or temporal localities.

Semi-synthetic datasets are formed using the first
rasters extracted from specific real-world datasets. In
particular, we selected APCP and CONVfrac datasets.
These datasets emulate scenarios characterized by
spatial and temporal locality within a cyclic context.

Table 3 presents the characterization of the synthetic
(Irregular Cycle) and semi-synthetic (Irregular CON-
Virac and Irregular APCP) datasets generated. The
table presents the number of cycles, the average cy-
cle size, and the standard deviation of cycle size. We
only present the information about irregular cycles be-
cause each generated dataset contains cycles of different
random sizes, converting basic information such as the
number of cycles and the average cycle size into unpre-
dictable values before the data generation. In the case
of the regular cycles datasets, due to all cycles inside
these datasets being the same size, it is easy to deter-
mine, for example, the total number of cycles generated.
For example, in a dataset with regular cycles of length
12, cyclel2, there are 2664/12 = 222 cycles since the
total number of raster is fixed to 2664.

Table 4 presents different measures that help to
characterize the employed datasets. The Moran Index
column [47] shows the average result of the Moran Index
computed for each raster in the dataset. A value near 1
shows a high spatial autocorrelation or spatial locality,
a value near 0 indicates a random distribution, and
a value near -1 displays a perfect dispersion. This
last value was absent in our results because we do
not evaluate datasets with perfect dispersion. The %
of variation column presents the average result of the
percentage of variation comparing each raster with its
predecessor. More precisely, the percentage of variation
is the number of cells that differs comparing two rasters
divided by the total number of cells inside a raster. A
percentage close to 0 presents a high similitude between
contiguous rasters or temporal locality.

The last three columns measure the cyclicity of the
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Maximal Number Average Standard
Dataset . . e

cycle size of cycles cycle size deviation
Irregular Cycle 12 408 6.52 3.40
Irregular Cycle 24 216 12.32 6.90
Irregular Cycle 36 145 18.21 10.37
Irregular Cycle 48 108 24.48 13.87
Irregular CONVfrac 12 415 6.40 3.46
Irregular CONVfrac 24 214 12.39 6.81
Irregular CONVfrac 36 146 18.24 10.27
Irregular CONVfrac 48 109 24.59 13.64
Irregular APCP 12 422 6.30 3.46
Irregular APCP 24 218 12.15 6.88
Irregular APCP 36 138 19.24 10.46
Irregular APCP 48 110 23.98 13.82

TABLE 3: Main statistics of synthetic datasets with irregular cycles.

datasets. The cyclic distance column shows the average
distance between each raster and its most similar raster,
namely the raster with the smallest percentage of
variation. The most similar raster can be forward or
backward in the time serie. The cyclic % of variation
column shows the average variation between each raster
and its most similar raster. This value differs from
the percentage of variation because the latter compares
each raster with its preceding raster, which is not
necessarily the most similar. Finally, the % of negative
distances column shows the proportion of rasters whose
most similar raster is located before it.

Baseline: For our baseline, we used the original
implementation of the T-k2-raster library.> This library
includes the implementation of all variants of T-k2-
raster and kZ-raster. The implementation of the
Heuristic T-k?-raster, used as the principal baseline,
represents each raster using the variant k%-raster
described in Section 3.1.

We compared the clustering-based method with
other existing methods for representing a raster time
series. Specifically, we compared our approach with
the original Heuristic T-k2-raster, as well as with
an independent collection of k2-raster (or k2-raster
Collection) and an independent collection of k%-raster
(or k%-raster Collection). This analysis aimed to
evaluate the performance and efficiency of our proposed
method against these established techniques.

k2-raster configuration: In order to construct the
underlying k2-raster, it is relevant to select the value
of the four parameters, namely ki, ks, ni, and I,
described in Section 3.1. In this study, we select
four combinations to determine the best parameter
values. We decided to extend the configurations to
improve the compression of each dataset and to make an
effective comparison between the original structures and

Shttps://gitlab.1lbd.org.es/fsilva/k2-raster

the clustering application. These four configurations
were applied to construct the Heuristic T-k2-raster,
the independent collections, and the T-k2-raster with
clustering.  Regarding the application of dynamic
programming, we applied the same configuration used
for the Heuristic T-k2-raster.

In order to compare each structure to obtain the
best result, it is crucial to prepare the structure
using the configuration that generates the smallest
representation size of the raster time series. In this
study, we chose the configuration that achieves the
smallest representation size of the raster time series
for each dataset and structure evaluated. We can
obtain the most efficient representations by carefully
selecting the parameters and configurations for each
structure. This selection ensures the comparison of the
structures under optimal conditions, enabling accurate
and meaningful comparisons.

In the case of the k?-raster Collection, k%-raster
Collection, and Heuristic T-k2-raster, we chose the best
values of ki, ko, nq and [. For all combinations, the
values of ki and ko were kept constant at 4 and 2,
respectively. For n; and [, we select the best value
between 3 and 4 for n; and between 1 and 2 for
. Table 5 shows the selected configurations for each
representation and dataset. In some instances, two
configurations were chosen because both yield an equal-
size representation.

6.2. Evaluating the optimality of the heuristic
used by the T-k’-raster

This section presents the results obtained from a
comparative analysis between the heuristic for selecting
snapshots in the context of the T-k?-raster and applying
dynamic programming (DP) for the same purpose.
This comparison aims to evaluate the effectiveness of
the heuristic approach in achieving a more compact
representation of the data structure.

Table 6 compares the structure size resulting from
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Dataset Moran % of Cyeclic Cyclic % % negatives

Index variation distance of variation distances
APCP 0.87 10.60 1.03 7.23 49.23
CONVfrac 0.81 1.85 4.19 0.86 51.28
DLWRF 0.97 40.71 1.00 22.39 51.20
PEVAP 0.97 19.56 1.03 0.02 66.64
SPFH 0.96 0.26 3.06 0.23 49.25
cyclel2 0.00 99.00 12 0.00 99.55
cycle24 0.00 99.00 24 0.00 99.10
cycle36 0.00 99.00 36 0.00 98.65
cycle48 0.00 99.00 48 0.00 98.20
irre_cyclel2 0.00 97.79 8.77 0.00 54.02
irre_cycle24 0.00 98.72 17.55 0.00 51.42
irre_cycle36 0.00 98.89 26.07 0.00 52.78
irre_cycle48 0.00 98.91 34.88 0.00 50.29
CONVfraci2 0.69 0.17 12 0.00 99.55
CONVfrac24 0.66 0.20 24 0.00 99.10
CONVfrac36 0.66 0.15 36 0.00 98.65
CONVfrac48 0.64 0.14 48 0.00 98.20
irre_CONVfrac12 0.72 0.19 8.71 0.00 53.72
irre_CONVfrac24 0.69 0.21 17.65 0.00 51.43
irre_CONVfrac36 0.67 0.19 25.98 0.00 51.77
irre_CONVfrac48 0.66 0.17 34.19 0.00 50.68
APCP12 0.79 4.96 12 0.00 99.55
APCP24 0.76 4.48 24 0.00 99.10
APCP36 0.77 3.84 36 0.00 98.65
APCP48 0.76 4.08 48 0.00 98.20
irre_APCP12 0.80 5.70 8.76 0.00 54.02
irre_APCP24 0.78 5.02 17.32 0.00 51.19
irre_APCP36 0.77 4.44 26.37 0.00 50.55
irre_APCP48 0.77 4.27 35.20 0.00 50.16

TABLE 4: Detailed characterization of the datasets.

Moran Index measures the spatial locality, Percentage of

variation measures the temporal locality, and the last three columns characterize the cyclicity of the datasets.

Dataset k2-raster k%l-raster Heuristic Dataset Heuristic Dynamic Improvement
Collection Collection T-k2-raster T-k?-raster Programming percentage

APCP 4-2-3-1, 4-2-3-2  4-2-3-1 4-2-3-2 APCP 43.74 43.73 0.02
CONVfrac  4-2-3-1, 4-2-3-2  4-2-3-1 4-2-4-1 CONVfrac 12.87 12.82 0.39
DLWRF 4-2-4-1, 4-2-4-2  4-2-4-2 4-2-4-1 DLWRF 298.45 298.45 0.00
PEVAP 4-2-3-1, 4-2-3-2  4-2-3-1 4-2-3-1 PEVAP 27.66 27.66 0.00
SPFH 4-2-4-1 4-2-4-1 4-2-3-2, 4-2-4-2 SPFH 5.35 4.94 7.66
TABLE 5: Best configuration chosen for each TABLE 6: Comparison of the structure size in MB

structured compared. Each configuration is presented
as ki-ka-n1-l. For structures with two configurations,
we choose the first option for queries evaluation.

applying the heuristic® and DP strategy. In those
results, we applied the same configuration presented
in the last column in Table 5. The improvement
percentage shows that the structures size are very close
to each other for APCP and CONVfrac datasets, while for

6The sizes reported for the baseline structure differ from the
ones in [3] because the original study swapped rows and columns
producing larger sizes.

of the T-k?-raster applying the heuristic vs DP.
The configuration for DP is the same configuration
presented in the last column in Table 5. To determine
the percentage of improvement, the formula bsb_po x 100
was used, where bs denotes the heuristic T-k2-raster size
and dp represents the size result applying DP.

DLWRF and PEVAP datasets the results have not changes.
These results show that the snapshot selection is very
close between the heuristic and DP strategies or they
are equal for both datasets with the same structure size.
Only for the case of SPFH it is possible to observe a more
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relevant difference than the other datasets, but since
this dataset is the smallest, the difference is negligible.

The results indicate that the heuristic employed
in the Heuristic T-k2-raster is efficient, as it can
achieve a compact size close to the optimal result
obtained through dynamic programming. These
findings highlight the effectiveness of the heuristic
approach in achieving efficient compression sizes for
raster time series data.

6.3. Evaluating the application of clustering to
T-k?-raster

This section presents a comparative analysis of the
implementation of the clustering technique versus k-
raster Collection, k?-raster Collection, and Heuristic
T-k2-raster. The main objective is to compare the
effects of clustering against the baseline previously
described, particularly the heuristic strategy. The
clustering strategy should expand the range of available
rasters snapshots options for each raster log, providing
better alternatives that contribute to reducing the
size of the data structure. In this context, we
include the synthetic and semi-synthetic datasets that
present a cyclic temporal behavior in this analysis.
Those datasets may take advantage of the additional
alternatives of snapshot selection that clustering offers.

Parameters tuning: For clustering applications, the
first step is to precompute the distance matrix. It
corresponds to a square matrix that stores the distance
values of all the rasters with each other. With the
precomputed distance matrix, the second step is to
apply the corresponding clustering technique and, later,
the snapshot selection. The results correspond to the
cs_v vector that the T-k2-raster adapted required as an
input. Tables 5 and 8 show the configuration used for
each data structure.

Table 7 presents the number of clusters selected for
this experimental process. The first strategy selection
is based on the Silhouette Index result, while the second
is based on the number of snapshots defined by the
heuristic.

Space evaluation: Table 9 presents the size of the data
structures compared with the corresponding percentage
of improvement. When comparing the clustering results
with k%-raster Collection and k%-raster Collection, the
clustering improvement percentage is between 0.38%
and 68.60%. This suggest that clustering techniques for
snapshot selection provides better compression results
for rasters time series than both k?-raster and k%-raster
collection which do not use snapshots selection.
Conversely, the improvement decreases when compar-
ing the cluster results with the Heuristic T-k2-raster.
APCP and CONVfrac datasets present a negative im-
provement where the clustering technique increases the
structure size. Table 7 explains the results by a low

Silhouette Index. A low Silhouette Index indicates the
difficulty of the clustering technique in finding an opti-
mal cluster number.

SPFH and PEVAP present competitive results, where
clustering size reaches a similar value that Heuristic
T-k2-raster. After a detailed datasets revision, we
discovered that the reason is different for both datasets.
In the case of SPFH, the outcome can be attributed to
the dataset’s low number of distinct values, resulting
in minimal variation between values. For PEVAP,
the snapshot and cluster selections are the same for
clustering and the heuristic strategies. In addition, the
Silhouette Index for PEVAP indicates an high value (close
to 1) according to Table 7.

DLWRF is the only case in which the clustering
technique reduces the space usage compared with the
heuristic. The Silhouette Index also presents a value
close to 1 (see Table 7). After a manual inspection of the
generated data structures, we discovered that although
both strategies select the same clusters, inside each
cluster they select different snapshots. Specifically, both
techniques select groups of three contiguous rasters
as clusters, however, while the heuristic selects the
first raster in each cluster as a snapshot, clustering
always selects the second raster because it uses the Best
Raster Selection strategy explained in Section 5.3. The
heuristic approach, by design, systematically selects the
first raster within each cluster as the snapshot without
considering factors such as its distance to other rasters.
Conversely, employing clustering with the Best Raster
Selection strategy provides increased adaptability. This
method considers the distance between the chosen
snapshot and the remaining rasters within the cluster.
Consequently, it enables the identification of a more
suitable alternative snapshot that effectively minimizes
the structure size compared to the heuristic method.
This difference allows the clustering technique to obtain
an advantage with respect to the heuristic.

We can observe some correspondences if we compare
the results obtained in Table 9 with the measures
presented in Table 4. On the one hand, APCP, CONVfrac,
and SPFH present a low difference between the
percentage of variation and its cyclic version. Instead,
DLWRF and PEVAP present a significant difference in
both percentages of variation. These results indicate
that if the raster variation does not significantly differ
comparing a raster with its similar raster versus the
last raster, T-k2-raster structure would not obtain an
improvement after applying the clustering technique.

Another interesting result is the high percentage of
negative distances on PEVAP dataset compared with the
rest of the real-world datasets. Including the cyclic
distance near 1, we can infer that for each raster,
the most similar raster is usually located immediately
before it. This scenario could be optimal for the
heuristic strategy, such as the case of PEVAP.
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Dataset Hierarchical Hierarchical Kmedoids Kmedoids Configuration ki-kz-ni-l
WHD CHD WHD CHD 4-2-3-1 4-2-3-2 4-2-4-1 4-2-4-2
APCP 2 (0.092) 2 (0.428) 12 (-0.045) ( 0.577) 889 8883 889 858
CONVfrac 2 (0.407) 4 (0.340) 2 (0.254) 5 (0.294) 740 633 685 462
DLWRF 888 (0.999) 888 (0.999) 888 (0.999) 888 (0.999) 888 888 888 888
PEVAP 889 (0.999) 889 (0.999) 889 (0.999) 889 (0.999) 889 889 889 889
SPFH 2 (0.515) 2 (0.599) 2 (0.560) 2 (0.573) 24 14 14 26

TABLE 7: Selected number of clusters for clustering technique and for the Heuristic. The corresponding Silhouette

value is shown in parentheses.

Dataset Configuration

APCP Kmedoids WHD Best Centroid 4-2-3-2
CONVfrac Hierarchical WHD Best Centroid 4-2-3-2
CONVfrac Kmedoids CHD Best Centroid 4-2-4-1

DLWRF Hierarchical/Kmedoids WHD/CHD  Best Centroid 4-2-4-1

PEVAP Hierarchical/Kmedoids WHD/CHD  First/Best Centroid 4-2-3-1

SPFH Kmedoids WHD Best Centroid 4-2-3-2/4-2-4-2

TABLE 8: Best configuration chosen to represent the Heuristic T-k2-raster based on clustering. The k2-raster
configuration is presented as ki-ko-n1-l. For structures with two or more configurations, we choose the first option
for queries evaluation. All configurations use the number of clusters presented in Table 7

Query time evaluation: To compare query time, we
evaluated the three queries implemented in [3]: Get
Cell (retrieves the value of the cell), Get values window
(retrieves all the cell values in a rectangular cuboid
defined) and Get cells by values (retrieves all the cells
inside a rectangular cuboid whose values are within
a defined range). The results show that the cluster
T-k2-raster has a similar query time performance as
the Heuristic T-k2-raster. Applying the cluster in the
T-k2-raster does not significantly modify query time
efficiency. Tables 10a, 10b and 10c present the query
time results for the respective queries over real-world
datasets.

Cyclic datasets results: Now we focus on the analysis
regarding cyclic datasets. To check if the clustering
technique can detect the optimal number of clusters,
we calculate the Silhouette index for all the synthetic
datasets and each possible value of k between 2 and
the total number of temporal rasters. The objective
was to identify the cluster size that maximized the
Silhouette index, which indicates the optimal number
of clusters. For all datasets, the computed number
of clusters coincides with the cycle length of regular
cycle datasets and the maximal cycle length for
irregular cycle datasets. These results indicate the
effectiveness of the clustering technique in selecting
the appropriate number of clusters and the subsequent
snapshot selection process.

Table 11 presents the size of the structures and
their corresponding percentage of improvement for
cyclic datasets. We exclude CONVfrac datasets because
it has similar results compared with APCP datasets.

Comparing Heuristic T-k?-raster with the best cluster
result, we can observe a significant reduction in the
data structure size by applying the clustering technique,
especially in the synthetic datasets. Even for datasets
with regular cycles, Heuristic T-k?-raster presents a
similar size that k%-raster Collection, indicating that
the heuristic selects all rasters as a snapshot, similar
to a k?-raster Collection. In the case of semi-synthetic
datasets, the difference is less because these datasets
present a high spatial locality and a more significant
temporal locality than synthetic datasets.

7. CONCLUSIONS AND FUTURE WORK

In this work, we delve into the study of efficient space
representation for raster time series. Our first objective
was to perform a comprehensive study about the
optimality of the heuristic used for selecting snapshots
in the T-k2-raster variants, a compact data structure
for succinctly representing raster time series. This
structure classifies the rasters in snapshots and logs,
in which snapshots serve as references to logs. It
is important to recall that only the most recently
generated snapshot, following the time-order, can be
referenced by a log. The heuristic selects a suitable
subset of snapshots in order to reduce the space of the
representation. To assess the effectiveness of such an
heuristic, we compared it with an optimal selection
strategy obtained through the use of a dynamic
programming algorithm. Our findings indicate that the
Heuristic T-k2-raster achieves a compression rate close
to the optimal attainable by any time-ordered variant
of the T-k?-raster.

Subsequently, we studied the potential enhancements

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777




16 M. MUNOZ ET AL.

Size [MB] Percentage of improvement (%)

Dataset k?-raster  k%-raster Heuristic Best cluster  k%-raster k%-raster Heuristic

Collection Collection T-k%-raster result Collection Collection T-k%-raster
APCP 55.74 54.95 43.74 54.76 1.79 0.38 -25.15
CONVfrac 19.07 19.67 12.87 16.13 16.20 18.76 -24.16
DLWRF 450.54 365.50 298.45 283.19 37.14 22.52 5.11
PEVAP 88.14 82.12 27.66 27.68 68.60 66.29 -0.07
SPFH 7.14 7.66 5.35 5.38 24.51 29.63 -0.75

TABLE 9: Structures size for each dataset and structures compared. To determine the percentage of improvement,

the formula %

the T-k2-raster with clustering.

Heuristic Cluster

Dataset T-k*-raster result
APCP 0.37 0.30
CONVfrac 0.23 0.18
DLWRF 0.78 0.80
PEVAP 0.40 0.41
SPFH 0.13 0.15

(a) Query: Get cell (in ps/query,
100x100,000 queries)

Heuristic Cluster

Dataset T-k?-raster result
APCP 12.81 13.55
CONVfrac 8.12 7.63
DLWRF 26.18 26.87
PEVAP 18.52 19.23
SPFH 6.15 6.91

(b) Query: Get values window (in
us/cell; 100x100 queries)

Heuristic Cluster

Dataset T-k>-raster result
APCP 34,320.40 32,370.20
CONVfrac 377.55 356.48
DLWRF 101.42 106.98
PEVAP 78.86 81.49
SPFH 17.70 19.76

(¢) Query: Get cells by value (in
us/cell, 100x100 queries)

TABLE 10: Query time results for Heuristic 7-k?-raster
and Clustering

achievable through non-time-ordered variants, employ-
ing clustering techniques. In this approach, we group
the rasters in the time series based on similarity us-
ing various measures derived from the Hamming dis-
tance. Next, for each cluster, one raster is selected as
a snapshot, while all the others are encoded as logs
with respect to the chosen snapshot. We use an ar-
ray to identify, for each raster, its corresponding snap-
shot. Our experimental evaluation demonstrates that
clustering can achieve an equivalent or improve com-

x 100 was used, where bs denotes the baseline size of the structure and ¢l represents the size of

pression performance for most of the tested datasets of
the Heuristic T-k2-raster while maintaining query sup-
port performance. We identify that clustering performs
the best in datasets with rasters repeated in cycles.

As part of our future work, we plan to delve deeper
into the application of clustering techniques. Specif-
ically, we intend to investigate the implementation of
DBSCAN [48] and explore an alternative approach to
characterizing the rasters. This alternative approach
involves extracting features from each raster, such as
its width, height, the maximum/minimum/average val-
ues in the raster, and some indexes such as Moran [47],
Geary [49], and Getis [50], and use the cosine distance
to compute the similarity between the feature vectors
that characterize each raster.
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