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Abstract

The Block Tree is a data structure for representing repetitive sequences in compressed
space, which reaches space comparable to that of Lempel-Ziv compression while retaining
fast direct access to any position in the sequence. In this paper we generalize Block Trees
to two dimensions, in order to exploit repetitive patterns in the representation of images,
matrices, and other kinds of bidimensional data. We demonstrate the practicality of the
two-dimensional Block Trees (2D-BTs) in representing the adjacency matrices of Web
graphs, and raster images in GIS applications. For this purpose, we integrate our 2D-BT
with the k2-tree –an efficient structure that exploits clustering and sparseness to compress
adjacency matrices– so that it also exploits repetitive patterns. Our experiments show
that this structure uses 60%–80% of the space of the original k2-tree, while being from
30% faster to 3 times slower when accessing cells.
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1. Introduction

Various kinds of applications require handling large amounts of bidimensional data
containing a significant amount of repeated areas. In this article we do not focus on
continuous image data where near-repetitiveness arises, like video frames or periodi-
cal sky surveys, for which other kinds of representations are used, typically lossy ones.
Instead, we focus on scenarios featuring discrete bidimensional data, which we must rep-
resent exactly but where we can still exploit repetitiveness. Further, we aim not at mere
compression, but at representations that can be accessed and queried directly without
decompression. These so-called compressed data structures [21] enable applications work
directly on the compressed data without ever having to decompress it.

In terms of compression, a technique that exploits bidimensional repetitions on dis-
crete matrices is the two-dimensional Lempel-Ziv compression format [19] (2D-LZ), which
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adrian.gbrandon@udc.es (Adrián Gómez-Brandón), gnavarro@dcc.uchile.cl (Gonzalo Navarro)

Preprint submitted to Elsevier December 31, 2021



stores only the first occurrence of each sub-matrix in a dictionary and represents the oth-
ers as pointers to that reference. Although 2D-LZ can obtain good compression, it cannot
support efficient access to any submatrix from a compressed collection of matrices with-
out decompressing all the preceding data. Some proposals [1, 22] trade compression
effectiveness for direct access performance by partitioning the matrices into squares of
fixed size and compressing them independently.

In this paper we study a more principled approach that builds on a representa-
tion for one-dimensional sequences called Block Trees (BTs) [4]. BTs exploit repeti-
tiveness and obtain compression ratios close to those of (one-dimensional) Lempel-Ziv
[18], though they retain fast random access to any part of the sequence. Our proposal,
Two-Dimensional Block Trees (2D-BTs), generalizes the BT concept to two dimensions,
thereby providing a compressed representation for discrete repetitive bidimensional data
that retains direct access to any compressed submatrix.

A prominent case where this kind of data arises are the adjacency matrices of Web
graphs, that is, directed graphs of pages pointing to other pages on the Web. The
corresponding matrices contain 1s at the positions (p, q) such that the page p has a link
to page q. Such matrices are considerably sparse and clustered, and furthermore contain
large identical submatrices (consider mirror sites, for example). Various techniques have
been developed to exploit those properties [2, 8, 13, 14, 23]. Their way to exploit repeated
areas, however, is usually limited to row-wise (i.e., adjacency list) similarity, not to whole
equal submatrices. Further, the main access operation they provide is to extract the
direct neighbors of a page (i.e., extract an adjacency list, or a matrix row), and do not
implement efficient ways to handle other useful operations like determining whether a
given page points to another (i.e., accessing a single cell of the matrix) or extracting all
the links between two sites (i.e., retrieving a rectangular area of the matrix).

An elegant representation of Web graphs that supports those operations efficiently
are the k2-trees [9]. These exploit the sparseness and clustering of adjacency matrices,
but do not exploit similarity of adjacency lists or submatrices. Bille et al. [5] replace
identical subtrees in the k2-tree, converting it into a DAG, which goes in the line of
exploiting similarity. It is unlikely, however, that identical submatrices are aligned with
subtrees. Our combination of 2D-BTs with k2-trees, instead, can capture any repetition
of a submatrix, even if it is not aligned to another subtree. We present a construction
algorithm that makes it possible to build the combined structure on large Web graphs. In
our experimental evaluation, combining k2-trees with 2D-BTs reduces the space to 60%–
80% of the original k2-trees, while being from 30% faster to 3 times slower at accessing
cells. When accessing larger regions, the 2D-BT takes from similar time to an order of
magnitude more than k2-trees.

The ability of k2-trees to retrieve the values of arbitrary submatrices makes them
useful for the compressed representation of binary matrices arising in other areas, like
GIS applications. For example, a k2-tree variant called k2-acc [10] is used to represent
raster numeric data. Usually, this kind of data is stored as a matrix of integers where
each cell represents an area of the space and stores the value of a measurement (e.g.,
temperature, altitude) in that location. The k2-acc represents this data with a binary
matrix marking all the cells smaller than each possible threshold value. Those binary
matrices are compressed with k2-trees that not only exploit submatrices full of 0s, but
also full of 1s. A combination of 2D-BTs with the k2-acc uses in our experiment 2.0–2.7
times less space, at the expense of being 1.2–1.8 times slower to access the data.
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2. Background

A basic data structure lying at the core of the compact data structures we review in
this section is the bitmap, also called bitvector. A bitmap B[1..n] is an array of n bits,
where each entry has two possible values: 1 or 0, and thus can be represented with only
one bit. Bitmaps typically support two operations: rank and select. Given an integer i
and a bit b ∈ {1, 0}, rankb(B, i) returns the number of times value b occurs in B up to
position i. Instead, selectb(B, i) computes the position of the i-th occurrence of b in B.
Both operations can be supported in O(1) time by using an extra space of o(n) bits [20]
on top of the n bits used to represent B itself.

In the rest of the section we use bitmaps as building blocks of various structures that
represent Web graphs, numeric matrices, and repetitive sequences.

2.1. Web graphs

Various characteristics of Web graphs have been exploited in order to compress them.
Most of the methods that offer direct access focus on extracting the whole adjacency lists
of nodes, and thus focus on compression of those lists.

The WebGraph Framework [8] is the most famous technique for the compression of
Web graphs. It exploits three properties of adjacency lists: power-law distribution (of
the number of incoming and outcoming edges of nodes), locality of reference (most lists
reference nearby nodes) and the copy property (some lists are very similar to other lists).

Several other methods improved upon WebGraph with different techniques. Apos-
tolico and Drovandi [2] (AD) sort the nodes in BFS order, which promotes further lo-
cality than the lexicographic URL order used by standard WebGraph, leading to some-
times better compression with comparable extraction performance. The same WebGraph
group obtained better results with other node orderings, like Layered Level Propagation
(LLP) [7]. Another technique called List Merging (LM ) [13], merges several adjacency
lists into a block. The most recent method, Zuckerli [23], applies new compression tech-
niques and heuristics on top of WebGraph, improving its compression.

2.1.1. The k2-tree

The previous methods can efficiently compute only the direct neighbors of a node.
The k2-tree [9] is a compact data structure designed to compress adjacency matrices
of size n2, by exploiting the sparseness and clustering of 1s. The k2-tree, instead, can
effciently check the presence of a link between two nodes, and in general can extract all
the links in a two-dimensional range.

The data structure is a k2-ary tree where each node represents a submatrix of the
adjacency matrix. For simplicity, the size n is virtually extended to the next power of k.
The root then represents the whole matrix and each of its children represent a submatrix
of size n2/k2. If there is some 1 inside a submatrix, its node is represented with a bit 1;
otherwise, it is represented with a 0. These nodes are sorted in row-major order, left to
right and top to bottom. Once the first level is built, the procedure continues recursively
splitting the submatrices with 1s into smaller k2 submatrices. Note that a submatrix is
not split further when it is full of 0s.

The k2-tree is stored without pointers, using two bitmaps: T [1..] and L[1..]. The
values of all the levels except the last one are represented in T . Those bits are appended
to T following a level-wise traversal of the tree. The last level is stored in bitmap L and
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Figure 1: Example of a k2-tree and its pointerless representation.

each bit is the value of its corresponding cell. Figure 1 shows an example. The values
of a cell or region of the matrix can be efficiently obtained by traversing the nonempty
subtrees that intersect the query area. Each traversal step can be simulated in constant
time using rank operations on the bitvector T . An individual cell is accessed in O(logk n)
time (i.e., proportional to the k2-tree height), whereas the occ points in an area of size
p× q are retrieved in time O(p+ q + (occ+ 1)k logk n).

2.2. Raster data

The ability to compute the value of any matrix cell makes the k2-tree suitable for
other applications. In particular, it can be extended to represent non-binary matrices.
These arise for example when storing raster data, where each cell of the matrix represents
a location in space and stores the value of a feature (e.g, mean temperature or altitude).
Two extensions of the k2-tree for raster data are the k2-acc [10] and the k2-raster [17].

Consider a matrix M over an alphabet [1..σ]. The k2-acc represents M by building a
binary matrix for each alphabet value, M1, . . . ,Mσ. If M [x, y] = α, then the cell (x, y) of
all the matrices Mi, for 1 ≤ i ≤ α, are set to 1. Each binary matrix is then represented
with a k2-tree, with a particular modification: submatrices full of 1s are represented with
only one node, instead of being split into smaller full submatrices.

The new kind of nodes are represented in T with a 0. Now in T the 0s can represent
areas full of 0s (empty) or full of 1s (full). Those are distinguished by adding another
bitmap T ′ aligned with the 0s of T . Given T [i] = 0, the node is full if T ′[rank0(T, i)] = 1
and empty otherwise.

This representation permits computing the value of a cell, M [x, y], with a binary
search on the matrices, in time O(logk n log σ). Further, it allows finding the cells of M
within a region R where the values are in a range [l, u]. This so-called window query
is essential for many applications managing raster data. It is solved in the k2-acc by
obtaining the 1s in Mu within R, and then subtracting the 1s within R in Ml−1.

The k2-raster representation splits the matrix exactly as the k2-tree of the points, but
each node also stores the minimum and maximum value in its submatrix. If at some node
the minimum and maximum values are equal, then all the values within the submatrix are
identical, so the structure switches to a classical k2-tree. The minimum and maximum
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values of the nodes are differentially encoded with respect to their parent. The k2-raster
obtains better compression than the k2-acc and outperforms it at computing the value of
a cell, which is done in O(logk n) time. However, the k2-raster is slower than the k2-acc
on window queries for large regions.

2.3. Block Tree

The Block Tree (BT) [4] is a structure that, given a text T [1..n] over an alphabet
[1..σ], uses O(z lg(n/z) lg n) bits, where z is the number of phrases produced by the
Lempel-Ziv [18] parse. This structure builds a tree whose arity is defined by a parameter
r. The construction algorithm virtually extends n to the next power of r. It then starts by
splitting T into r substrings (blocks) of size n/r. Each block is represented by a node of
the first level of the BT. Nodes can be of two kinds: internal or leaves. A node is internal
when it contains or overlaps the first occurrence of its substring content; otherwise it is
a leaf. Every leaf stores a pointer to the first node that matches or overlaps the first
occurrence of its substring, and an offset that indicates where the substring starts in the
pointed node. For the next level, each internal node is split into r sub-blocks of size
n/r2. These steps are recursively repeated until storing the pointers and offsets is more
expensive than storing the substring. Figure 2 shows an example.

For each BT level d, the types of nodes are represented in a bitmap Dd whose 0s
correspond to the leaves and the 1s to the internal nodes. The pointers and offsets of
the leaves at that level are stored in arrays Pd and Od. If the i-th block of level d is
a leaf (Dd[i] = 0), then its pointer and offset are at Pd[j] and Oj [j], respectively, with
j = rank0(Dd, i). The only nodes that store values are those of the last level.

Any symbol T [i] is accessed in time O(logr n), by traversing the BT from the root to
the leaves. Let S be the string represented by the current node, at level d (at the root,
S = T and d = 0). If the node is internal, we move to the child number di/(|S|/r)e and
update i← i mod (|S|/r). If the node is a leaf, instead, we obtain its pointer and offset,
ptr and off. Then, i is updated to i + off and the traversal continues from node ptr if
i ≤ |S|. Otherwise, the traversal continues by the next node, ptr + 1, with i updated to
i − |S|. The BT guarantees that the nodes ptr and ptr + 1 are internal, so we can now
descend. Finally, when we reach the last level we directly access the position i of the
explicit string stored at the node.

For example, in Figure 2, to obtain the value at position 12, we descend up to d = 2,
where we fall into a leaf. The desired value is located at position 4 within that leaf.
Since the pointer has off = 1, the value is located within the pointed node at position
5. However, the maximum number of elements contained at that level is 4. Hence, the
value is located at position 1 in the sibling of that node. Then, the algorithm continues
from the second node at d = 2 until the last level, where the symbol corresponds to the
first symbol of the third leaf. Since it has a pointer, the symbol is not stored at that leaf.
By following the pointer and applying the offset, we know that the symbol is stored in
the second position of the first node from the last level.

3. Two-Dimensional Block Trees (2D-BT)

In order to compress binary matrices by exploiting their repetitiveness, we extend the
Block Trees to two dimensions. In this section we present this extension, called Two-
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Figure 2: Example of a BT with r = 2.

Dimensional Block Tree (2D-BT), and combine it with k2-trees so as to simultaneously
exploit sparseness, clustering, and repetitiveness.

3.1. Description

Given a matrix M of size n × n over alphabet [1 . . . σ] and a fixed parameter k,
the corresponding Two-Dimensional Block Tree (2D-BT ) is computed by splitting M
into k2 submatrices of size n2/k2 (again, assume n is a power of k for simplicity). Those
submatrices are called blocks, and each block represents a node of the 2D-BT. The nodes
are classified into internal nodes and leaves. By considering some submatrix order (we
stick to row-major order in this paper), those nodes matching or overlapping the first
occurrence of a submatrix with their same content are internal; the others are leaves. The
internal nodes are then recursively divided into submatrices. Instead, the submatrix of a
leaf node is a copy (called a target), whose source is the first occurrence of its submatrix.
The leaf will then be replaced by a pointer to its source.

Notice that a source can overlap up to four adjacent (internal) nodes. To reference
its source, each leaf stores a pointer (ptr) and two offsets 〈Ox, Oy〉 marking the top-left
cell of the source inside the block ptr. A target can point to a source that precedes it, in
the matrix order we have chosen.

We continue this subdivision process recursively until storing the pointers and offsets
in the current level is more expensive than representing its submatrices in plain form.
At that point, the remaining submatrices are stored in plain form. The 2D-BT has then
a tree-shaped structure of height h ≤ logk n, with some additional inter-level pointers.

Figure 3 shows an example of the 2D-BT. The fourth node of the first level, which
corresponds to the bottom-right submatrix, is a leaf node because it appears earlier,
between the submatrices of the first and second node. Thus, it is represented by a
pointer to the first node with offset 〈2, 0〉. The other three nodes of the first level are
internal and thus split into submatrices. Other three nodes in the second level become
leaves. The remaining 9 nodes are split again, reaching the individual cells in this case.
Note that the node representing the submatrix

(
1 2
2 1

)
, starting at (x, y) = (4, 2),2 is not

2Coordinates start at zero.
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Figure 3: Example of a Two-Dimensional Block Tree with k = 2 and σ = 4. The left part represents the
different blocks for each level and the right part shows the corresponding tree nodes.

the first occurrence of its content, which also occurs starting in (x′, y′) = (3, 1). However,
it overlaps that first occurrence, and thus it is not replaced. This is correct, as otherwise
the leaf would partly reference itself.

3.2. Combination with k2-trees

A particular case of the 2D-BT arises when σ = 2, that is, the matrix stores bits.
In many applications of binary matrices where the 2D-BT exploits repetitiveness, the
1s also tend to be sparse and clustered. In this section we show how to incorporate the
k2-tree concepts to a 2D-BT specialized for binary matrices, so as to simultaneously
exploit repetitiveness, sparseness, and clustering.

We further exploit sparseness and clustering by adding two new kinds of leaf nodes in
the 2D-BT : empty nodes, which represent blocks full of zeroes; and explicit nodes, which
represent a blocks with a single 1. Both kinds of leaves store their content explicitly, so
they can be pointed from other nodes. The resulting 2D-BT leaves may then be empty
nodes, explicit nodes, pointers to sources, or the last level of the tree. For simplicity, the
last level of the tree will be that of individual cells, until Section 3.5.

Figure 4 exemplifies a specialized 2D-BT. The first level is composed of two internal
nodes, the top ones. The submatrix starting at (2, 0) is the source of the third block, so
the third node points to the first, inside which the source starts, with the appropriate
offset. The fourth block of this level is an empty leaf because its submatrix is full of 0s.

The first two nodes of the first level are subdivided, so we have four nodes in the
second level. There are several empty leaves (full of 0s) and explicit leaves (with a single
1) in this level. There is also a leaf holding a pointer to the first occurrence of

(
1 0
0 1

)
, and

only one internal node. This is split again to form the only four nodes of the third level,
which are explicit because it is the last level.
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Figure 4: Specialization of a Two-Dimensional Block Tree to Web graphs.

3.3. Concrete representation

In order to represent the specialized 2D-BT (just 2D-BT from now on), we use several
bitmaps and arrays, which enable efficient navigation of the tree. Figure 5 shows the
representation of the 2D-BT illustrated in Figure 4.

Describing the topology. The first two bitmaps are T [1..] and L[1..]. Bitmap T stores a
bit for each node in the tree in levelwise order, except for those of the last level. The
bit of each node is a 1 if the node is internal and a 0 otherwise. Bitmap L represents
the content of the leaves of the last level, left to right. In Figure 5, T [1], T [2] and T [12]
contain 1s because they are internal nodes; the other positions contain 0s because they
are leaves of various sorts. In L we see the four bits of the submatrix

(
0 1
0 1

)
, the only one

reaching the last level.
As in the k2-tree, every internal node has k2 children and we can simulate the navi-

gation of the tree in both directions (top-down and bottom-up) by supporting rank and
select operations over T . That is, from an internal node ni whose bit is located at T [i], we
can compute the position of its c-th child (0 ≤ c < k2) as i′+c, with i′ = rank1(T, i)·k2+1
(the children are located consecutively in the range children(i) = [i′ . . . i′+k2−1]). Notice
that when i′ > |T |, the k2 children are in L, after position i′−|T |. For example, in Figure 5
the children of the internal node at T [12] would start at i′ = rank1(T, 12)× 4 + 1 = 13,
so they are stored from position 13− 12 = 1 of L.

Similarly, we can compute the parent position of T :L[i] as parent(i) = select1(T, b(i−
1)/k2c), where T :L is the concatenation of bitmaps T and L. Recall that we can support
rank and select operations in O(1) time with an extra space of o(|T |) bits.

Identifying kinds of leaves. In order to identify the kind of leaf nodes, we use two ad-
ditional bitmaps: one for non-empty nodes (N) and another for explicit nodes (X).
Following the same order of T , for each leaf node T [i] = 0, we add a 0 to N if the node is
empty; otherwise we add a 1. Therefore, if T [i] = 0 and N [rank0(T, i)] = 0, the node is
empty. In case N [rank0(T, i)] = 1, the node has a pointer or is explicit. In Figure 5, the
first node of the second level corresponds to T [5] = 0. Since N [rank0(T, 5)] = N [3] = 0,
we know it is empty. Instead, the second node of the second level is non-empty because
N [rank0(T, 6)] = N [4] = 1.
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Figure 5: Compact representation of the specialized 2D-BT.

Bitmap X distinguishes between explicit and pointer nodes. For each position j
where N [j] = 1, we append a 0 or a 1 to X when the node is a pointer or is explicit,
respectively. We then know that N [j] = 1 has a pointer if X[rank1(N, j)] = 0; otherwise
it is explicit. Coming back to the second node of the second level (T [6] = 0 and N [4] = 1)
in Figure 5, we know that it is explicit because X[rank1(N, 4)] = X[2] = 1. To solve
that rank operation in O(1) time, we need o(|N |) additional bits.

Storing additional information on leaves. Explicit leaves must store the offset of their
only 1, whereas pointer leaves must store the pointed node and the offset of the source
inside it. Note that all the offsets are relative coordinates within a submatrix and all the
submatrices at the same depth d have the same size, n/kd. Hence, the offsets from both
explicit and pointer nodes at the same depth can be stored together, in an array Od[1..]
with cells of dlogk(n/kd)e = logk n − d bits. Along a levelwise traversal of the tree, the
x- and y- coordinates of explicit and pointer leaves are appended.

In principle, the offset entries in arrays Od correspond to positions in X. Notice,
however, that we have several arrays Od, separated by depth. We then store a small
array ∆O, which at position d contains the number of nodes with depth less than d
having offsets. Then, the coordinates of the node of depth d represented by X[p] are
stored at Od[e− 1, e], with e = 2 · (p−∆O[d]).

In Figure 5, to obtain the offset from the second node of the second level (T [6] = 0,
N [4] = 1, X[2] = 1), we observe that there is one node with offsets preceding the
current level (∆O[2] = 1). We then compute e = 2 · (2 − 1) = 2 and find the offsets in
O2[1, 2] = 〈0, 1〉. As the submatrix starts at position (2, 0), the 1-bit is at position (2, 1).
In the case of the third node at depth d = 2 (T [7] = 0, N [5] = 1, X[3] = 0), the offsets
are stored at O2[3, 4] = 〈0, 1〉.

Finally, we must represent the pointers. For each depth d we have an array Pd
of signed integers storing the distance is − it between the source and target nodes, at
positions is and it in T , respectively. Unlike the one-dimensional Block Tree, we admit
backward and forward pointers, thus is − it can be negative or positive. The reason is
that, at construction time, the order in which we detect possible sources is, for efficiency,
different from the order in which the 2D-BT arranges the children of the nodes.

We then obtain the pointer of the node at position X[p] = 0, with depth d, as
Pd[rank0(X, p)−∆P [d]]. In Figure 5, to complete the information on the third node at
the second depth (T [7] = 0, N [5] = 1, X[3] = 0), we obtain its pointer. This is stored
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at position rank0(X, 3)−∆p[2] = 2− 1 = 1 of P2. Since P2[1] = 2 and it = 7, we know
that the bit of the source in T is is = 7 + 2 = 9. That is, the pointer from the 7th node
refers to the 9th node of the tree and has offset 〈0, 1〉.

3.4. Access to a region

Our representation allows us navigate the tree, determine the kind of each node, and
retrieve the information of pointers and offsets, all in constant time. Those primitives
support operations like access(R, 0, 0, 0, 0, 0) in Algorithm 1, which given a region R =
[(xmin, ymin), (xmax, ymax)] outputs the values of the region in an initially zeroed matrix
result. The algorithm traverses the 2D-BT towards the nodes whose submatrix intersects
R, until finding all the 1-bits at the tree leaves. Algorithm 1 uses the following notation:

• children(i) retrieves the range of children of the node at position i in T .

• parent(i) computes the parent position in T from the node at position i in T .

• offsets(i) retrieves the offsets 〈Ox, Oy〉 for an explicit node at position i in T .

• pointer(i) obtains, for the pointer node at position i in T , the triple 〈is, Ox, Oy〉
with the corresponding pointer is and offset 〈Ox, Oy〉.

• region(i) computes the region Q covered by the node at position i in T .

The first four functions were explained in Section 3.3. For region(i), we note that
every time we compute the region of a node, we have previously traversed its ancestors.
This enables constant-time computation. Assume node i has depth d (and thus submatrix
size s × s, with s = n/kd) and its top-left corner is at position (x, y). The c-th child of
i, for 0 ≤ c < k2, starts at x-offset x+ (c mod k) · (s/k) and y-offset y + bc/kc · (s/k).

The only case where we cannot obtain region(i) from the parent node is for region(is)
in the first line of Algorithm 2, when a pointer is taken. To avoid this problem, instead of
computing region(i), we always use R relative to the current region(i). Thus, when we
move from region R relative to i to region R′ relative to is in the first line of Algorithm
2, all we have to do is R′ ← R+(Ox, Oy). From there, we might have to compute region
for the parent of node i, knowing region(i). We know that i is the c-th child of its parent,
with c = i− i′ and children(parent(i)) = [i′..i′+k2−1]. If i starts at (x, y) and is of size
s×s, its parent is of size sk×sk and its top-left corner has x-coordinate x− (c mod k) ·s
and y-coordinate y − dc/ke · s.

Algorithm 1 shows the procedure to obtain the values within a region R. It receives
the region R to extract, the starting node i, its depth d, a previous depth dptr (to be
explained later), and the current offset (x, y) of node i within R. The algorithm performs
a top-down tree traversal. In lines 1–2, it checks if the depth corresponds to the last level
of the tree, in which case it copies the value of the specific node, stored at L[i− |T |], to
result at position (x, y).

Lines 3–7 handle internal nodes. We traverse the children i′ of i, computing their
region and recursively entering those that intersect R. Lines 8–10 handle explicit nodes.
We obtain the offset of the only 1 in the region and write it in results. Note that, since
results is zero-initialized, we do nothing for empty leaves.

The most complex situation occurs when the current node contains a pointer (lines
11–14), whose information we obtain in line 11. In principle, the procedure should be

10



Algorithm 1: access(R, i, d, dptr, x, y)

1 if d = height then
2 result[x, y]← L[i− |T |]
3 else if i is internal then
4 for i′ in children(i) do
5 Q← region(i′)
6 if Q ∩R 6= ∅ then
7 access(Q ∩R, i′, d+ 1, dptr, Q.xmin, Q.ymin)

8 else if d ≥ dptr and i is explicit then
9 〈Ox, Oy〉 ←offsets(i)

10 result[x+Ox, y +Oy]← 1

11 else if d ≥ dptr and i is a pointer then
12 〈is, Ox, Oy〉 ←pointer(i)
13 〈R′, i′, d′〉 ← back(is, Ox, Oy, d)
14 access(R′, i′, d′, d, x, y)

Algorithm 2: back(is,Ox,Oy,d)

1 R′ ← region(is) + (Ox, Oy)
2 while R′ * region(is) do
3 is ← parent(is)
4 d← d− 1

5 return 〈R′, is, d〉

resumed from the node is, considering the offsets 〈Ox, Oy〉. Indeed, node is contains the
top-left of the region to extract, but unless Ox = Oy = 0, the region contents are spread
across up to 4 nodes. For example, in Figure 4, when following the pointer of the second
level (with Oy > 0), the target contents are distributed across the pointed node (first
child of its parent) and the third child of that parent. In order to find those nodes, we
move recursively to the ancestor i′ at depth d′ that completely contains the source. In
our example this is the parent node, but it could be a farther ancestor. That search is
done with back (line 13), shown in Algorithm 2.

The top-down traversal then resumes from the ancestor (line 16). In our example, to
obtain the information of the target, the algorithm will resume from the parent of node
is and return to its first and third children. Note that, although we go up in the 2D-BT
until level d′, such recursive call will eventually go back to level d only for the (up to) 4
desired nodes, entering into (up to) 4 children at level d′ and then into only one child in
levels d′ + 1 to d− 1.

This is the only case that updates dptr, the depth where the pointer was taken. Recall
that, if in a previous level a specific node corresponds with a leaf, the following levels of
the tree do not consider the submatrix of that node, that is, we can assume it is empty.
Therefore, when we come back to the sources of the pointer from the ancestor, if in that
path there is any leaf whose depth d is less than dptr, the corresponding submatrices are
empty at dptr. For this reason lines 8 and 11 of Algorithm 1 ignore those leaves.
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3.5. Compression of leaves

In general, we can stop splitting internal nodes at some size where storing the contents
directly is more convenient than using a pointer. The base k2-tree [9] has a similar mech-
anism, coupled with statistical compression of those contents. We adopt that mechanism
in our specialized 2D-BT as well.

Let us define nL × nL as the size of the last-level submatrices. To each node of size
nL × nL that remains in the 2D-BT, we assign a binary codeword cw[1..n2L] with the
submatrix contents. The different codewords are then sorted from most to least frequent.
Instead of storing the explicit codewords cw in the 2D-BT leaves, we store the index of
cw in the sorted list. This arrangement makes smaller indexes more frequent, so we store
the indexes with an encoding like Directly Addressable Codes (DACs) [11], which obtains
good compression of small numbers and supports efficient random access to them. Notice
that the compression of leaves also reduces the number of levels to traverse, improving
the performance in some queries.

4. Construction

The key task in the construction of a 2D-BT is to detect the occurrences of a block,
so as to determine which nodes are internal and which are leaves. Although the concept
is simple, efficiently looking for those repetitions is not an easy task. We use an algorithm
based on the technique of Karp and Rabin [16] to compute the fingerprint of a string.
Given a string S, the Karp-Rabin algorithm computes the fingerprint of any substring,
HKR(S[i . . . j]), in time O(j − i + 1). However, given HKR(S[i . . . j]), the fingerprint of
the next substring of the same length, HKR(S[i+ 1 . . . j + 1]), can be computed in O(1)
time. We extend this scheme to two dimensions, in the style of Bird [6] and Baker [3].

4.1. The basic idea

In order to construct a level whose block size is s× s, a naive approach would store
the whole matrix M in main memory and detect the kinds of nodes in two stages:

1. Fingerprints of blocks. The algorithm computes the fingerprints of the blocks of size
s×s with top-left corners at (i·s, j ·s), for every 0 ≤ i, j < n/s. Those fingerprints,
with their corresponding top-left corner positions, are stored in a hash table HT .
If, during the insertion of a block b, there is a collision with an already inserted
block bHT , we compare the corresponding submatrices. If they are identical, the
node of b becomes a leaf pointing to the node of bHT . At the end of this stage, the
blocks bHT receiving pointers are removed from HT , to avoid them becoming in
turn pointer leaves in during the next stage.

2. Fingerprints of submatrices. The first stage detects only those leaves whose source
covers exactly one block, so we still have to find the leaves whose source overlaps
several blocks. We then compute the fingerprint of all the submatrices S of size
s×s with top-left corner (i, j), for every 0 ≤ i, j < n−s, such that the (up to) four
blocks covered by S exist in this level and are not already pointers. Every time a
fingerprint of a submatrix S is computed, the algorithm checks if there is a block
bHT with the same fingerprint in HT . If so, and the corresponding submatrices
match, the node of bHT becomes a leaf that points to the top-left node that covers
S. The (up to) four blocks covered by S are removed from HT (to avoid replacing
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them by pointers later) and the block bHT is also removed (since we have already
replaced it by a pointer).

Note that storing the whole binary matrix in main memory requires n2 bits of space
and just computing all the fingerprints takes time Θ(n2s), which becomes Θ(n3) when
added over all the tree levels. Both space and time are unaffordable when compressing
large and very sparse matrices, like Web graphs.

Our actual construction algorithm exploits the sparseness of the matrices, so as to
simulate the naive algorithm in space and time proportional to the number m of 1s they
have. In particular, it will run over a sparse matrix representation: an increasing list Lr
of integers for each row r stores the columns c where there are 1s in row r.

A sparse Karp-Rabin function. To compute the fingerprint of a block S[0..s− 1, 0..s− 1]
in time proportional to the number of 1s in it, we use the following Karp-Rabin-like
function:

HKR(S) =

 ∑
0≤r,c<s

S[r, c] · bcs+r
 mod p,

where 2 ≤ b < p and p is a large prime. When the matrix is binary, we can compute HKR

by just adding bcs+r for the positions 〈r, c〉 of the 1s in S. We implement the following
functions, which are needed for the construction:

• add(HKR, 〈r, c〉) adds a 1 at 〈r, c〉: HKR ← (HKR + bcs+r) mod p.

• remove(HKR, 〈r, c〉) removes the 1 at 〈r, c〉: HKR ← (HKR − bcs+r) mod p.

• shift(HKR) shifts all the points in the block one cell to the left, assuming the
first column is empty: HKR ← (b−s ·HKR) mod p, where b−s is the multiplicative
inverse of bs modulo p.

4.2. Computing fingerprints of blocks

The first stage starts by building a min-heap IKR with the values from the lists
L0, . . . , Ls−1. IKR stores the pairs 〈r, c〉 such that c ∈ Lr, sorted by c. Thus, the pairs
with the minimum value of c are on top of IKR. To compute the fingerprint of the first
block, [(0, 0), (s− 1, s− 1)], we extract successive pairs from IKR until we obtain a pair
〈r′, c′〉 that is out of the block (i.e., c′ ≥ s). The block fingerprint is then computed from
all the extracted 1s.

The least extracted value c′ out of the block indicates which is the next nonempty
block to the right (i.e., bc′/sc). We then restart the process from the bc′/sc-th block, and
continue until processing the first row. All the rows of blocks are processed similarly.

Note that we do not need to insert the whole rows Lr in IKR: we can maintain only
the next value c from each Lr, and insert the next one as it is consumed. The heap then
requires O(s) space, and each of the m 1s is processed in O(log s) time.

Algorithm 3 gives the pseudocode. It returns the fingerprints of all the nonempty
blocks, ignoring the others. It also returns the number of points in the blocks and one
of those points, so that we can later identify and process the explicit leaves. Its overall
time, for a given block size s, is O(m log s) because every 1 in the matrix is inserted and
removed exactly once.
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Algorithm 3: KRBlocks([L0, . . . , Ln−1], n, s)

1 b← 0;
2 while b < n do
3 e← min(b+ s− 1, n− 1);
4 IKR ← ∅; HKR ← 0;
5 cc← 0;
6 for r ∈ b, . . . , e do
7 IKR.insert(〈r, Lr.first()〉); // first() gives n on empty lists
8 while cc < n do
9 〈r, c〉 ← IKR.min();

10 p← 0; 〈ro, co〉 ← 〈r, c〉
11 while c < min(cc+ s, n) do
12 add(HKR, 〈r − b, c− cc〉);
13 p← p+ 1;
14 IKR.deleteMin();
15 IKR.insert(〈r, Lr.next()〉); // next() gives n after its last element
16 〈r, c〉 ← IKR.min();

17 if p > 0 then output 〈HKR, ro, co, p〉;
18 cc← s · bc/sc;
19 b← b+ s;

4.3. Computing fingerprints of submatrices

The second stage is more complex because we need to maintain the fingerprint of a
sliding window that we move across the matrix. To update the fingerprint, we need to
know not only which 1s enter the window as we slide it, but also which 1s disappear from
it. We then use an additional min-heap, OKR, that contains the 1s that are currently
inside the window, using the same order of IKR. Since there are at most s2 elements in
OKR, its operations also take time O(log s2) = O(log s).

Algorithm 4 gives the pseudocode. It explores every matrix position, not only the
block-aligned ones as in the previous section. In general, there are points in the current
window, so we must slide it by one position to the right. This is done by (1) removing
the points in the current leftmost column (lines 9–13), (2) shifting the window fingerprint
(lines 14–16), and (3) adding the points in the new rightmost column (lines 17–22). A
special case occurs when the window becomes empty of points, so we must slide it until
the next point from IKR appears on the right column. This is also handled in lines 14–16.

The algorithm acts as an iterator that outputs all the fingerprints of the nonempty
submatrices, together with their position. Its complexity is dominated by the operations
on the heaps. For every band of the matrix, every point in the band enters and exits
both heaps exactly once. However, every point belongs to s bands, which yields a total
time complexity of O(ms log s).

4.4. Determining the kinds of nodes

In order to build a level of the 2D-BT, we first initialize all the nodes as empty, so
that we can ignore the empty blocks that Algorithm 3 skips. We initialize the hash table

14



Algorithm 4: KRSubmatrices([L0, . . . , Ln−1], n, s)

1 b← 0;
2 while b ≤ n− s do
3 e← min(b+ s− 1, n− 1);
4 IKR ← ∅; OKR ← ∅; HKR ← 0;
5 cc← −s;
6 for r ∈ b, . . . , e do
7 IKR.insert(〈r, Lr.first()〉); // first() gives n on empty lists
8 while cc < n do
9 〈ro, co〉 ← OKR.min(); // min() gives n on empty heaps

10 while co = cc do
11 OKR.deleteMin();
12 remove(HKR, 〈ro− b, 0〉);
13 〈ro, co〉 ← OKR.min();

14 〈r, c〉 ← IKR.min();
15 if OKR 6= ∅ then shift(HKR) ;
16 else cc← c− s ;
17 while c = cc+ s do
18 IKR.deleteMin();
19 IKR.insert(〈r, Lr.next()〉) // next() gives n after its last element;
20 OKR.insert(〈r, c〉);
21 add(HKR, 〈r − b, s− 1〉);
22 〈r, c〉 ← IKR.min();

23 cc← cc+ 1;
24 output 〈HKR, b, cc〉;
25 b← b+ 1;

HT , whose keys are the fingerprints of the blocks. Then, for every tuple 〈HKR, r, c, p〉
reported by Algorithm 3, we first check if p = 1, in which case we mark the block as
explicit and record its only point, (c, r). Otherwise, we insert the block fingerprint HKR

in HT , with block row br/sc and column bc/sc, and mark it as internal for now. To find
the tree node corresponding to a block row and column, we descend by the partial 2D-BT
we have already built for the previous levels (these searches add, at worst, a negligible
O(m logk n) time per level).

If there is a collision between the fingerprint HKR we are inserting and that of a block
bHT already in HT , we check if both blocks are identical. If they are not, this is treated
as a classic hash collision. If the blocks match, however, as explained in Section 4.1, then
the new block becomes a pointer leaf, pointing to bHT with offset zero.

After completing the first step, we remove from HT all the blocks bHT that receive
pointers, as explained in Section 4.1. We now process the tuples 〈HKR, r, c〉 delivered
by Algorithm 4, searching HT for each window fingerprint HKR. Let S be a submatrix
whose fingerprint HKR matches that of a block bHT in HT . If their content also match,
we convert bHT into a pointer leaf to the block that covers the point (c, r) (the block
is also found using the previous 2D-BT levels). Finally, as explained in Section 4.1, we
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remove from HT the (up to) four blocks covered by S, as well as bHT .

Accessing submatrix contents. We do not have direct access to the matrix values to easily
check whether a submatrix S matches a block bHT . Right after Algorithms 3 and 4 output
a tuple, the cursors in the corresponding lists Lb, . . . , Le are next to the rightmost values
in each row. We can then traverse backwards from those pointers in order to obtain the
points in S. For bHT , however, we only know the range of lists it spans. We then binary
search the lists (which are in practice arrays) to find the corresponding cursor positions.
Each fingerprint collision then takes at most O(s logm+ min(m, s2)) time.

4.5. Preparing for the next level

A delicate issue is that, when scanning the windows of a level, we must avoid the
areas that have become 2D-BT leaves in previous levels. We enforce that by removing
the 1s of the matrix covered by every block that becomes a leaf. Since our scanning in
the next level skips over the empty areas, it will automatically ignore higher-level leaves.

Whenever we convert a block to a pointer leaf, we binary search its lists Lr as done
for matching submatrices, and mark the 1s that are covered by the block. After the level
is processed, we pass over all the lists and remove all the marked 1s, in O(m) additional
time per level. Note that in some cases we have just done the binary searches to compare
the block contents.

Note that the submatrices S we find after removing those 1s may still overlap the
areas of higher-level leaves. However, at least one of the blocks covered by S must exist
in the current level, otherwise S would be empty. We expand our pointer mechanism
so that a pointer leaf can point to any of the four corners of S (i.e., if an offset is ≥ s,
then it refers to the final, not the initial, submatrix position). We can then always point
to a node in the same level. The mechanism we described in Section 3.4 for finding the
tree ancestor that covers the submatrix works without modifications. This mechanism
actually gives more opportunities for matching submatrices than the basic mechanism.

4.6. Time and space complexity

As seen, the time per level with submatrices of s × s is O(ms log s + pm(s logm +
min(m, s2))), where p is the probability of two fingerprints matching (either because of
equality of submatrices of because of a collision). Adding over all the logk n levels, this
yields O(mn log n+ pm(n logm+m logk(n2/m))) = O(mn log n+ pm2 logk2(n2/m)). In
practice p is sufficiently low to let the first term dominate. The naive algorithm, under
the same assumptions, would require time O(n3 + pn4). The construction cost is then
significantly smaller than that of the naive algorithm already on mildly sparse matrices,
m = o(n2/ log n).

5. Experimental Evaluation

The Two-Dimensional Block Trees (2D-BT ) were coded in C++, using several struc-
tures from the SDSL library [12]. The bitmaps of the 2D-BT were implemented as plain
bitmaps with the bit vector class. To support select, we use select support mcl,
which takes constant time by using 20% of extra space. The rank structures were im-
plemented with rank support v5, which requires 6.25% of additional space and takes
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name nodes edges
arabic-2005 27,744,080 639,999,458
eu-2005 862,664 19,235,140
indochina-2004 7,414,866 194,109,311
uk-2002 18,520,486 298,113,762

Table 1: Datasets from the WebGraph framework.

constant time. Arrays Pd and Od are int vectors where each entry uses the number of
bits required by the largest integer.

The 2D-BT can use two settings, with or without compression of leaves. The config-
uration with compression of leaves is called 2D-BT-CL, whereas the original one is named
2D-BT-O. In 2D-BT-CL, we use the DAC implementation where the bits of the entries of
each level are chosen optimally via dynamic programming [11].

The construction time we obtained, essentially O(mn log n), is still too large for mas-
sive matrices. To speed up the construction, we defined a maximum block size β from
where the construction starts. Higher levels are implemented as basic k2-trees, that is,
allowing only internal and empty nodes. The construction time is then O(mβ log β).

We measure and compare the space and the time for accessing the matrix of the
2D-BT in two scenarios:

1. Web graphs. The 2D-BT is used to compress Web graphs, and compared with
state-of-the-art techniques.

2. Raster data. We analyze the effect of using 2D-BT s instead of k2-trees in the k2-acc
representation [10] for raster data, comparing it also with the k2-raster [17].

The experiments were conducted on an Intel® CoreTM i7-3820 CPU @ 3.60GHz (4
cores) with 10MB of cache and 256 GB of RAM, running Debian GNU/Linux 9 with
kernel 4.9.0-8 (64 bits), gcc version 6.3.0 with -O9 optimization.

5.1. Web graphs

We used different real datasets from WebGraph framework [8], available from http:

//webgraph.dsi.unimi.it. Their specifications are given in Table 1. The nodes of the
datasets are sorted according to the lexicographical order of their URL.

For each dataset we build structures 2D-BT-O and 2D-BT-CL with k = 2. In 2D-BT-CL,
we set nL = 4. We use β = 1,024 for all datasets except in enwiki-2018, hollywood-2009,
ljournal-2008 and twitter-2010, where we used β = 256 for the latter and β = 512 for
the others in order to build the 2D-BTs in reasonable time. We compare the 2D-BT
with all the techniques presented in Section 2.1. We use the implementation of the
WebGraph algorithm [8] available at the WebGraph framework site, configured with six
different values of 〈w,m〉: 〈3, 3〉, 〈3, 50〉, 〈30, 50〉, 〈30, 300〉, 〈70, 300〉, and 〈70, 1000〉. We
use the implementation of algorithm AD available at https://github.com/drovandi/

GraphCompressionByBFS, configured with different values of `: 16, 64, 100, 200, 500,
and 1000. For the algorithm LM [13] we use the implementation of the original authors
and the chunk size set to 8, 16, 64, 128, 256, and 512. For Zuckerli [23] we use the
implementation of https://github.com/google/zuckerli with its default settings. We
use the code available at https://lbd.udc.es/research/k2tree/ for the k2-tree. To
obtain a fair comparison between the 2D-BT and the k2-tree, we set k = 2 and nL = 4.
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Although the Web graphs can be used for different proposes, we focus here on the
operations the 2D-BT is designed for: access to individual cells (i.e., determining if there
is a link between two given pages) and extraction of submatrices (e.g., extracting all the
links between two domains) of sizes 100× 100 and 10,000× 10,000. To measure time, we
average user times over 100,000 queries at random positions.

Figure 6 compares the space and query time on the different Web graphs. In most
cases, 2D-BT-CL is slightly smaller and slower than 2D-BT-O, though in some cases it
is both smaller and faster. On Web graphs, this variant uses 60%–80% of the space of
k2-tree, and it is from 30% faster to 3 times slower than it for accessing individual cells.
When extracting larger regions, 2D-BT-CL takes from about the same time to an order of
magnitude more time than k2-tree. This is expected, since the 2D-BT must jump from
targets to sources when extracting cells, and this is more frequent when extracting larger
areas. In general, the 2D-BT offers an interesting space reduction from the k2-tree, at a
generally moderate price in time.

When comparing with other techniques, 2D-BT-CL is outperformed in space only by
LM, and only slightly and occasionally by AD. In its smallest configuration, LM uses 70%–
90% of the space of 2D-BT-CL, but it is 2–4 times slower for accessing individual cells.
LM is then an interesting space/time tradeoff as well. Since LM is paremeterizable, it
can become faster by using more space. When it reaches the same space of 2D-BT-CL,
however, it is still 30% to 4 times slower than it for accessing individual cells. LM ceases
to be a relevant alternative when accessing regions, however: the difference in time with
2D-BT-CL raises to 3–7 orders of magnitude. AD is worse than LM for accessing individual
cells. For regions, AD can use as little as 80% of the space of 2D-BT-CL, but it is 2–3
orders of magnitude slower.

In conclusion, the 2D-BT offers a relevant space/time tradeoff with respect to k2-trees
when representing Web graphs. Some of the classic compressed graph representations
offer another interesting space/time tradeoff for accessing individual cells, but they fail
when extracting a larger submatrix.

5.1.1. Construction

The left part of Figure 7 shows the memory consumption of the 2D-BT during its
construction over the dataset eu-2005 with β = 1,024. The vertical dashed lines delimit
the different stages of the construction. The first stage is the construction of the levels
with block size over β. This point reaches the peak of memory because we need to keep
an array with the z-order values of the adjacency lists to obtain a faster construction.
The space of this array is equal to that of the adjacency lists (77 MB), and our peak of
memory is 437 MB. After building those levels, that space is freed.

The following stages need to compute the fingerprint of each block and submatrix.
The label on the vertical lines specifies the block size of the processed level. We can
observe that building the level, of block size 1,024, takes around 4,000 seconds and its
memory usage is 287 MB. That space stays constant during the construction until the
block size is 128. From that point on, every time we descend one level, the number of
nodes (blocks) to check increases considerably and affects the memory usage.

The right part of Figure 7 shows that the 2D-BT is the third structure with the
smallest peak of memory, which makes it competitive with previous work in this aspect.

Instead, the 2D-BT is considerably slow to build. Its construction on eu-2005 is
two orders of magnitude slower than the baselines, 7,200 versus 67 seconds. The most
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Figure 6: Time performance and space in four Web graphs.
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Figure 7: Memory usage of 2D-BT (left) and comparison with the other techniques (right).
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Figure 8: Space of 2D-BT over eu-2005 with different values of β.

consuming part during the construction of a 2D-BT is the computation of the fingerprints
of the submatrices. Those costs are greater when the block size is larger, so we can reduce
the value of β to speed up construction at the price of worse compression. Figure 8 shows
that the resulting space/time tradeoff is very good, however: we already obtain almost
the final space with a maximum block size of β = 128, where construction time is around
800 seconds, an order of magnitude faster than for β = 1,024.

5.1.2. A simple compression baseline

As a sanity check, we considered the basic alternative of using a standard lossless
image compressor on the binary matrices. In order to provide reasonable extraction
times, we divide the image into squares of β × β and compress each square separately.
When it comes to extract a region, we only decompress the squares that intersect it.

We used a PNG compression API called LodePNG3. For the empty squares we only
spend an integer indicating so; we do not use the compressor. We tried different powers

3https://lodev.org/lodepng, seeking to maximize compression with the flags
info png.color.colortype = LCT GREY, info png.color.bitdepth = 1, encoder.filter palette zero

= 0, encoder.add id = false, encoder.text compression = 1, encoder.zlibsettings.nicematch = 258,
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σ empty 2DBT-acc k2-raster k2-acc

eua00 322 45.56% 1.96 1.95 4.70
eua01 396 83.39% 1.77 1.17 5.31
eua02 255 77.90% 2.88 1.79 4.90
eua03 244 70.71% 1.59 1.61 3.30
eua04 159 59.75% 1.39 1.68 2.18
eua10 214 97.00% 0.26 0.24 1.78
eua11 245 82.69% 2.40 1.37 3.46
eua12 304 37.09% 6.50 4.13 8.45
eua13 399 9.68% 7.80 5.12 7.56
eua14 498 0.00% 14.09 6.04 12.96

Table 2: Datasets of raster data and space (MB) after applying each technique.

of 2 for β on eu-2005. The minimum space is reached with β = 1024, but this is still
very high: 11.63 bpe, nearly 6 times over the 2.08 bpe obtained with our 2D-BT. The
extraction times are also much higher: 800 times slower than 2D-BT for random regions
of size 100 × 100, and 130 times slower for size 10000 × 10000. Experiments with other
Web graphs yield even larger gaps (starting from 20 times larger encodings).

5.2. Raster data

Section 2 describes the structure k2-acc [10], which builds σ k2-trees to represent a
matrix with values in [1..σ]. Those k2-trees are modified to compress submatrices full
of 1-bits with only one node. This structure requires more space than the k2-raster
[17], but the k2-acc outperforms the k2-raster in large window queries. We now consider
replacing each k2-tree of k2-acc with a 2D-BT, in order to improve the compression while
maintaining the window query functionality.

For this purpose, we modify the 2D-BT so as to support the new k2-tree functionality
of compressing areas full of 1s. We change the meaning of explicit nodes so that, instead of
representing areas with a single 1, they represent submatrices full of 1s. As a consequence,
explicit nodes now store no coordinate information. We call 2DBT-acc the structure that
replaces k2-trees by these 2D-BT variants in the k2-acc.

We test the resulting structure on the WorldClim datasets [15], which provide a set of
layers with global climate information. We chose 10 datasets of 50 MB each, containing
mean temperature values measured in Celsius degrees with one decimal. Those values
are represented using integers by multiplying them by 10. On those data, we build the
2DBT-acc with β = 256 and compare it with the k2-raster and the k2-acc.

The first two columns of Table 2 show the highest value of the dataset and the per-
centage of cells without values. The last columns show the space required by 2DBT-acc,
k2-raster, and k2-acc over each dataset. We observe that 2DBT-acc is 0.8–2.3 times
smaller than k2-acc, the original structure it modifies. Still, k2-raster is almost always
the smallest structure, using 40%–120% of the space of 2DBT-acc.

encoder.zlibsettings.lazymatching = 1, encoder.zlibsettings.windowsize = 32768,
encoder.filter strategy = LFS ZERO, and encoder.zlibsettings.minmatch = 6.
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Figure 9: Response time in window queries whose range of values have lengths 8 (left) and 80 (right).

In exchange for the improvement in space, the time performance of 2DBT-acc for
window queries worsens with respect to k2-acc, but it is still faster than k2-raster.
Figure 9 shows the performance on all the datasets averaging 100,000 queries of size
500 × 500 and two different spans between l and u: 8 and 80. We can observe that
k2-acc is the fastest structure in almost all cases; 2DBT-acc is 1.4–1.5 times slower than
k2-acc for the small range of values and 1.2–1.8 for the large one. In almost all cases,
k2-raster is slower than 2DBT-acc, 1.2 times slower on average. Overall, 2DBT-acc

offers a relevant space/time tradeoff between k2-acc and k2-raster.

5.2.1. The compression baseline

We evaluated again the compression baseline, this time using 256 gray levels for the
PNG format. When the range of values exceeded 255, we mapped it to the allowed
interval and discretized to integers, which slightly helps the PNG compression compared
to the 2D-BT lossless compression. We considered blocks of side β = 32 to 1024. This
time, the PNG format obtains better compression than the 2D-BT, by a factor ranging
from 1.08 to 4.58 if we use the best β value for each collection. Yet, it is still considerably
slower than 2D-BT to extract 500× 500 submatrices, by a factor from 2.26 to 7.61 if we
use the best value of β per collection.

6. Conclusions

We have proposed a new structure called Two Dimensional Block-Tree (2D-BT),
which extends the Block Tree [4] to two dimensions. We first describe the structure in
general, which captures repetitiveness in two-dimensional matrices, and then combine
it with variants of the k2-tree [9] to fit different application scenarios like adjacency
matrices of Web graphs and two-dimensional raster data. This adaptation lets the 2D-BT
exploit not only repetitiveness, but also clustering and sparseness of binary matrices. Our
experiments on various real-life datasets show that the 2D-BT offers relevant space/time
tradeoffs compared to the same structures built on k2-trees, obtaining considerable space
reductions at the price of a reasonable increase in the time for accessing matrix cells or
extracting complete submatrices. This tradeoff is especially attractive when the reduced
space allows fitting the whole matrix in a higher level of the memory hierarchy (e.g., RAM
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vs disk). We believe that the 2D-BT can also be useful in other application scenarios
where the data features some spatial repetitiveness.

The most serious challenge posed by the 2D-BT is its construction. Although we
optimized it considerably for sparse matrices, from essentially O(n3) to O(mn log n)
average time complexity on an n × n matrix with m 1s, the construction is still in
practice an order of magnitude higher than the original k2-tree. An interesting line of
future work is to further reduce this construction time.
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