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The r-index (Gagie et al., JACM 2020) represented a breakthrough in compressed indexing of repetitive

text collections, outperforming its alternatives by orders of magnitude in query time. Its space usage, O(𝑟 )
where 𝑟 is the number of runs in the Burrows–Wheeler Transform of the text, is however higher than

Lempel–Ziv and grammar-based indexes, and makes it uninteresting in various real-life scenarios of milder

repetitiveness. In this paper we introduce the sr-index, a variant that limits a large fraction of the space to

O(min(𝑟, 𝑛/𝑠)) for a text of length 𝑛 and a given parameter 𝑠 , at the expense of multiplying by 𝑠 the time

per occurrence reported. The sr-index is obtained by carefully subsampling the text positions indexed by

the r-index, in a way that we prove is still able to support pattern matching with guaranteed performance.

Our experiments demonstrate that the theoretical analysis falls short in describing the practical advantages

of the sr-index, because it performs much better on real texts than on synthetic ones: the sr-index retains

the performance of the r-index while using 1.5–4.0 times less space, sharply outperforming virtually every
other compressed index on repetitive texts in both time and space. Only a particular Lempel–Ziv-based

index uses less space—about half—than the sr-index, but it is an order of magnitude slower.

Our second contribution are the r-csa and sr-csa indexes. Just like the r-index adapts the well-known

FM-Index to repetitive texts, the r-csa adapts Sadakane’s Compressed Suffix Array (CSA) to this case. We

show that the principles used on the r-index turn out to fit naturally and efficiently in the CSA framework.

The sr-csa is the corresponding subsampled version of the r-csa. While the CSA performs better than the

FM-Index on classic texts with alphabets larger than DNA, our experiments show that the sr-csa outperforms

the sr-index on repetitive texts not only over those larger alphabets, but on some DNA texts as well.

Overall, our new subsampled indexes sweep the table of the existing indexes for highly repetitive text

collection, by combining the exceptional speed of the r-index with drastically reduced storage use.
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1 INTRODUCTION

The rapid surge of massive repetitive text collections, like genome and sequence read sets and

versioned document and software repositories, has raised the interest in text indexing techniques

that exploit repetitiveness to obtain orders-of-magnitude space reductions, while supporting

pattern matching directly on the compressed text representations [15, 35].

Traditional compressed indexes rely on statistical compression [36], but this is ineffective to

capture repetitiveness [26]. A new wave of repetitiveness-aware indexes [35] build on other

compression mechanisms like Lempel–Ziv [27] or grammar compression [25]. A particularly

useful index of this kind is the rlfm-index [31, 33], because it emulates the classical suffix array [34]

and this simplifies translating suffix-array based algorithms to run on it [30].

The rlfm-index represents the Burrows–Wheeler Transform (BWT) [4] of the text in run-length

compressed form, because the number 𝑟 of maximal equal-letter runs in the BWT is known to

be small on repetitive texts [24]. A problem with the rlfm-index is that, although it can count

the number of occurrences of a pattern using O(r) space, it needs to sample the text at every

𝑠th position, for a parameter 𝑠 , in order to locate each of those occurrences in time proportional

to 𝑠 . The O(n/𝑠) additional space incurred on a text of length n ruins the compression on very

repetitive collections, where r ≪ n. The recent r-index [16] closed the long-standing problem of

efficiently locating the occurrences within O(r) space, offering pattern matching time orders of

magnitude faster than previous repetitiveness-aware indexes.

In terms of space, however, the r-index is considerably larger than Lempel–Ziv based indexes of

size O(𝑧), where 𝑧 is the number of phrases in the Lempel–Ziv parse. Gagie et al. [16] show that,

on extremely repetitive text collections where 𝑛/𝑟 = 500–10,000, 𝑟 is around 3𝑧 and the r-index

size is 0.06–0.2 bits per symbol (bps), about twice that of the lz-index [26], a baseline Lempel–Ziv

index. However, 𝑟 degrades faster than 𝑧 as repetitiveness drops: in an experiment on bacterial

genomes in the same article, where 𝑛/𝑟 ≈ 100, the r-index space approaches 0.9 bps, 4 times

that of the lz-index; 𝑟 also approaches 4𝑧. Experiments on other datasets show that the r-index

tends to be considerably larger [3, 7, 10, 38]. Indeed, while in some realistic cases 𝑛/𝑟 can be over

1,500, in most cases it is well below: 40–160 on versioned software and document collections and

fully assembled human chromosomes, 7.5–50 on virus and bacterial genomes (with 𝑟 in the range

4𝑧–7𝑧), and just 4–9 on sequencing reads; see Section 5. An r-index on such a small 𝑛/𝑟 ratio easily
becomes larger than the plain sequence data.

In this paper we tackle the problem of the (relatively) large space usage of the r-index. This

index manages to locate the pattern occurrences by sampling r text positions (corresponding to the
ends of BWT-runs). We show that one can remove some carefully chosen samples so that, given a

parameter 𝑠 , the index stores only O(min(𝑟, 𝑛/𝑠)) samples while its locating machinery can still be
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used to guarantee that every pattern occurrence is located within O(𝑠) steps. We call the resulting

index the subsampled r-index, or sr-index. The worst-case time to locate the occ occurrences of
a pattern of length m on an alphabet of size 𝜎 then rises from O((m + occ) log(𝜎 + 𝑛/𝑟 )) in the

implemented r-index to O((m + 𝑠 · occ) log(𝜎 + 𝑛/𝑟 )) in the sr-index, which matches the search

cost of the rlfm-index.

The sr-index can then be seen as a hybrid between the r-index (matching it when 𝑠 = 1) and

the rlfm-index (obtaining its time with less space; the spaces become similar when repetitiveness

drops). In practice, however, the sr-index performs much better than both on repetitive texts,

retaining the time performance of the r-index while using 1.5–4.0 times less space, and sharply

dominating the rlfm-index, the best grammar-based index [7], and the lz-index, both in space and

time. Its only remaining competitor is a hybrid between a Lempel–Ziv based and a statistical

index [11]. This index can use up to half the space of the sr-index, but it is an order of magnitude

slower. Overall, the sr-index stays orders of magnitude faster than all the alternatives while using
small space—generally less—in a wide range of repetitiveness scenarios.

For historical reasons, the r-index was developed on top of the rlfm-index, which performs best

on small alphabets like DNA. Another well-known alternative to the rlfm-index, the rlcsa [31, 33],

performs better on larger alphabets but suffers from the same space-time tradeoff: one needs

to spend O(𝑛/𝑠) space in order to report each occurrence in time proportional to 𝑠 . Our second

contribution is to adapt the r-index mechanisms to run on the rlcsa, to obtain what we dub r-csa.

It turns out that the techniques used on the r-index apply naturally and efficiently to the rlcsa

data structures, leading to a space- and time-efficient index. We further apply the subsampling

mechanism of the sr-index to the r-csa to obtain the subsampled r-csa, or sr-csa. Our experiments

show that the sr-csa outperforms the sr-index on texts over large alphabets, as well as on some

repetitive DNA collections.

Overall, the development of the sr-index and the sr-csa represents a major improvement in the

state of the art of compressed indexes for highly repetitive text collections. By combining the

speed of the r-index, which was by far the fastest index but used significantly more space than

others, with a drastic reduction in space that does not sacrifice time, our new subsampled indexes

sharply dominate most of the existing actors in compressed text indexing.

A conference version of this paper appeared in Proc. CPM 2021 [8]. This article contains more

detailed explanations, more extensive experiments, improved implementations, and the full devel-

opment of the r-csa and sr-csa indexes.
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2 BACKGROUND

2.1 Suffix arrays

The suffix array [34] SA[1..n] of a string T [1..n] over alphabet [1..𝜎] is a permutation of the

starting positions of all the suffixes of T in lexicographic order, T [SA[𝑖] ..n] < T [SA[𝑖 + 1] ..n]
for all 1 ≤ 𝑖 < n. For technical convenience we assume that T [n] = $, a special terminator symbol

that is smaller than every other symbol in T . The suffix array can be binary searched in time

O(m log n) to obtain the range SA[sp..ep] of all the suffixes prefixed by a search pattern P [1..m].
Once this range is determined, the occurrences of P can be counted (i.e., return their number

occ = ep − sp + 1 of occurrences in T ), and also located (i.e., returning their positions in T ) in time

O(occ) by simply listing their starting positions, SA[sp], . . . , SA[ep]. The suffix array can then be

stored in n⌈log n⌉ bits1 (plus the 𝑛⌈log𝜎⌉ bits to store T ) and we say it searches (i.e., counts and
locates) for P in T in total time O(𝑚 log𝑛 + occ). Its main drawback is that its space usage is too

high to maintain it in main memory for current text collections.

2.2 Compressed suffix arrays

Compressed suffix arrays (CSAs) [36] are space-efficient representations of both the suffix array

(SA) and the text (T ). They can find the interval SA[sp..ep] corresponding to P [1..m] in time

tsearch(m) and access any cell SA[𝑖] in time tlookup(n), so they can be used to search for P in time

O(tsearch(m) +occ tlookup(n)).

2.2.1 Ψ–based CSAs. Grossi and Vitter [21] and Sadakane [45] introduced CSAs based on another

permutation, Ψ[1..𝑛], related to the suffix array:

Ψ(𝑖) = SA−1 [(SA[𝑖] mod n) + 1],

that is, Ψ(𝑖) = 𝑗 such that SA[Ψ(𝑖)] = SA[ 𝑗] = SA[𝑖] + 1. Ψ is then a permutation of [1..n] where
Ψ(𝑖) holds the position of SA[𝑖] + 1 in SA, which allows us virtually move forward in T from SA:
if SA[𝑖] points to T [ 𝑗], then SA[Ψ(𝑖)] points to T [ 𝑗 + 1]. Sadakane’s CSA [45], which we call

simply csa, adds a bitvector 𝐷 [1..𝑛] that marks with 𝐷 [𝑖] = 1 the 𝜎 positions SA[𝑖] where the first
symbol of the suffixes changes, and an 𝑜 (𝑛)-space data structure [6] that computes in constant

time rank(𝐷, 𝑖), the number of 1s in 𝐷 [1..𝑖]. This allows us reading any string pointed from SA[ 𝑗]:
the consecutive symbols are rank(𝐷, 𝑖), rank(𝐷,Ψ(𝑖)), rank(𝐷,Ψ(Ψ(𝑖))), . . . so we can compare

P with the suffix pointed from any suffix array position along the binary search in O(m) time, and

thus find the suffix array range SA[sp..ep] in time tsearch(m) = O(m log n).
For locating, we must be able to compute any SA[𝑖]. The csa stores the SA values that point to

text positions that are a multiple of 𝑠 , for a space-time tradeoff parameter 𝑠 . A bitvector 𝐵 [1..𝑛]
1
We use log to denote the binary logarithm.
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with rank support is used to mark with 𝐵 [𝑖] = 1 the sampled positions SA[𝑖], so a sampled entry

SA[𝑖] is stored at position rank(𝐵, 𝑖) of a sampled array. If SA[𝑖] is not sampled, the csa tries

SA[Ψ(𝑖)], SA[Ψ2(𝑖)], and so on, until it finds a sampled SA[Ψ𝑘 (𝑖)] (i.e., 𝐵 [Ψ𝑘 (𝑖)] = 1), for some

𝑘 < 𝑠 . It then holds that SA[𝑖] = SA[Ψ𝑘 (𝑖)] − 𝑘 , so the csa supports tlookup(n) = O(𝑠). The csa
then searches in time O(m log n + 𝑠 · occ).
Compression is obtained thanks to the regularities of permutation Ψ. For example, because Ψ is

increasing in the area of the suffixes starting with the same symbol, it can be represented within

the zero-order statistical entropy of T , while supporting constant-time access [45] (more complex

Ψ-based CSAs obtain higher-order entropy space [21]). To this space, we must add the O(n) bits
for bitvectors 𝐷 and 𝐵, and the ⌊n/𝑠⌋ log n bits for the samples of SA. The text T is not stored.
Mäkinen and Navarro [31] observed another regularity of Ψ: it features runs of consecutive

values, that is, Ψ(𝑖 + 1) = Ψ(𝑖) + 1. They designed the so-called Run-Length CSA, or rlcsa, which
aimed to use O(𝑟Ψ) space, where 𝑟Ψ is the number of maximal runs in Ψ. It was soon noted that 𝑟Ψ

is particularly small on repetitive text collections, which enabled space reductions that are much

more significant than those obtained via statistical entropy [33].

Function Ψ was represented in O(𝑟Ψ log n) bits by encoding the runs Ψ(𝑖 ..𝑖 + 𝑙) = Ψ(𝑖),Ψ(𝑖) +
1, . . . ,Ψ(𝑖) + 𝑙 as the pair ⟨Ψ(𝑖), 𝑙⟩. The time to access Ψ increases, using modern predecessor data

structures [2], to O(log log𝑤 (n/𝑟Ψ)), where𝑤 is the size in bits of the computer word (we give the

details in Section 3.1). By also representing bitvectors 𝐷 and 𝐵 with predecessor data structures,

the rlcsa searches in time O((𝑚 log n + 𝑠 · occ) log log𝑤 (𝜎 + 𝑠 + n/𝑟Ψ)). The total space of the rlcsa
is then O((𝑟Ψ + n/𝑠) log𝑛) bits. In highly repetitive text collections, the term n/𝑠 overshadows 𝑟Ψ
and ruins the high compression achieved by collapsing the runs in Ψ.

2.2.2 BWT–based CSAs. The Burrows–Wheeler Transform [4] of T is a permutation BWT[1..n]
of the symbols of T [1..n] defined as

BWT[𝑖] = T [SA[𝑖] − 1]

(and T [n] = $ if SA[𝑖] = 1), which boosts the compressibility of T . The fm-index [12, 13] is a

CSA that represents SA and T within the high-order statistical entropy of T , by exploiting the

connection between the BWT and SA. For counting, the fm-index resorts to backward search,
which successively finds the suffix array ranges SA[sp𝑖 ..ep𝑖] of P [𝑖 ..m], for 𝑖 = m to 1, starting

from SA[spm+1..epm+1] = [1..n] and then

sp𝑖 = 𝐶 [𝑐] + rank𝑐 (BWT, sp𝑖+1 − 1) + 1,

ep𝑖 = 𝐶 [𝑐] + rank𝑐 (BWT, ep𝑖+1),
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where 𝑐 = P [𝑖],𝐶 [𝑐] is the number of occurrences of symbols smaller than 𝑐 inT , and rank𝑐 (BWT, 𝑗)
is the number of times 𝑐 occurs in BWT[1.. 𝑗]. Thus, [sp, ep] = [sp

1
, ep

1
] if sp𝑖 ≤ ep𝑖 holds for all

1 ≤ 𝑖 ≤ m, otherwise P does not occur in T .
For locating the occurrences SA[sp], . . . , SA[ep], the fm-index samples SA just like the csa. The

function used to traverse the text towards a sampled position is the so-called LF-step, which
simulates a backward traversal of T : if SA[𝑖] = 𝑗 , the value 𝑖′ such that SA[𝑖′] = 𝑗 − 1 is LF(𝑖),
where

LF(𝑖) = 𝐶 [𝑐] + rank𝑐 (BWT, 𝑖),
where 𝑐 = BWT[𝑖]. Note that LF(𝑖) is the inverse function of Ψ(𝑖). Starting from SA[𝑖], we compute

LF successively until, for some 0 ≤ 𝑘 < 𝑠 , we find a sampled entry SA[LF𝑘 (𝑖)], which is stored

explicitly. It then holds SA[𝑖] = SA[LF𝑘 (𝑖)] + 𝑘 .
By implementing BWT with a wavelet tree [20], for example, access and rank𝑐 on BWT can be

supported in time O(log𝜎), and the fm-index searches in time O((𝑚 + 𝑠 · 𝑜𝑐𝑐) log𝜎) [13]. With

more sophisticated wavelet tree representations [23, 32], the space of the fm-index is the high-order

entropy of T plus the O((𝑛/𝑠) log𝑛) bits for the sampling of SA.
The Run-Length FM-index, rlfm-index [31, 33] is an adaptation of the fm-index aimed at repetitive

texts, just like the rlcsa is to the csa. Say that the BWT[1..n] is formed by r maximal runs of equal
symbols, then it holds that r is small in repetitive collections (in particular, it holds 𝑟Ψ ≤ 𝑟 ≤ 𝑟Ψ + 𝜎
[31]). For example, it is now known that r = O(𝑧 log2 n), where 𝑧 is the number of phrases of the

Lempel–Ziv parse of T [24].

The rlfm-index supports counting within O(r log𝑛) bits, by implementing the backward search

over data structures that use space proportional to the number of BWT- runs. It marks in a bitvector

Start[1..n] with 1s the positions 𝑖 startingBWT-runs, that is, where 𝑖 = 1 orBWT[𝑖] ≠ BWT[𝑖−1].
The first letter of each run is collected in an array Letter[1..r]. Since Start has only 𝑟 1s, it

can be represented within r log(n/r) + O(r) bits, so that any bit Start[𝑖] and rank(Start, 𝑖)
are computed in time O(log(n/r)) [40]. We then simulate BWT[ 𝑗] = Letter[rank(Start, 𝑗)] in
O(r log𝑛) bits. The backward search formula can be efficiently simulated as well, by adding another

bitvector that records the run lengths in lexicographic order. Overall, the search time becomes

O((𝑚 + 𝑠 · 𝑜𝑐𝑐) log(𝜎 + 𝑛/𝑟 )) (by replacing the sparse bitvectors with predecessor data structures

and using an alternative to wavelet trees [18], one can reach O((𝑚 + 𝑠 · 𝑜𝑐𝑐) log log(𝜎 + 𝑛/𝑟 ))).
The rlfm-index still uses SA samples to locate, however, and when r ≪ n (i.e., on repetitive texts),

the O((n/𝑠) log n) added bits ruin the O(r log n)-bit space (unless one accepts high locating times

by setting 𝑠 ≈ 𝑟 ).
The r-index [16] closed the long-standing problem of efficiently locating the pattern occurrences

using O(r log𝑛)-bit space. The experiments showed that the r-index outperforms all the other
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implemented indexes by orders of magnitude in space or in search time on highly repetitive

datasets. However, other experiments on more typical repetitiveness scenarios [3, 7, 10, 38] showed

that the space of the r-index degrades very quickly as repetitiveness decreases. For example, a

grammar-based index (which can be of size 𝑔 = O(𝑧 log(n/𝑧))) is usually slower but significantly

smaller [7], and an even slower Lempel–Ziv based index of size O(𝑧) [26] is even smaller. Some

later proposals [39] further speed up the r-index by increasing the constant accompanying the

O(r log n)-bit space. The unmatched time performance of the r-index comes then with a very high

price in space on all but the most highly repetitive text collections, which makes it of little use in

many relevant application scenarios. This is the problem we address in this paper.

3 R-CSA: A Ψ-BASED INDEX FOR REPETITIVE TEXTS

In this section we introduce the r-csa, an equivalent to the r-index based on the rlcsa. We first

describe the counting algorithm and data structures, which is just a modern version of those

given in the original rlcsa [33]. We then show how to locate within O(𝑟 ) space, by translating the

techniques of the r-index [16] to this scenario.

3.1 Counting in O(𝑟 ) space

Let Ψ𝑐 = Ψ[𝑖 .. 𝑗] be the range in Ψ corresponding to each symbol 𝑐 ∈ [1..𝜎], such that all the

suffixes of T starting with 𝑐 are in the range SA[𝑖 .. 𝑗]. As said, Ψ𝑐 is strictly increasing over [1..n];
let us say that it contains 𝑟𝑐 maximal runs of consecutive values. By definitions of Ψ and BWT, if
Ψ𝑐 (𝑖) = 𝑘 then BWT[𝑘] = T [SA[𝑖]] = 𝑐 . Consequently, a one-to-one relation exists between the

𝑝th Ψ𝑐 run and the 𝑝th BWT-run of symbol 𝑐 , for 1 ≤ 𝑝 ≤ r𝑐 . It then follows that r =
∑𝜎

𝑐=1 r𝑐 .
2
We

call Ψ-runs those 𝑟 maximal runs in Ψ that are inside some range Ψ𝑐 .

A backward search process was also devised for the csa [44] and used in the rlcsa [33]. Once

the range SA[𝑠𝑝𝑖+1..𝑒𝑝𝑖+1] for 𝑃 [𝑖 + 1..𝑚] is known, we obtain SA[𝑠𝑝𝑖 ..𝑒𝑝𝑖] by binary searching

within Ψ𝑐 , for 𝑐 = 𝑃 [𝑖], the maximal range of positions 𝑗 such that SA[ 𝑗] ∈ [𝑠𝑝𝑖+1..𝑒𝑝𝑖+1]. Indeed,
those are the suffixes that start with 𝑐 = 𝑃 [𝑖] and follow with 𝑃 [𝑖 + 1..𝑚]. This technique yields
the same O(𝑚 log𝑛) counting time, but has better locality of reference.

As in the the rlcsa, we represent each Ψ-run Ψ(𝑖 ..𝑖 + 𝑙) as a pair ⟨Ψ(𝑖), 𝑙⟩. Unlike the original
rlcsa, we construct a predecessor data structure PΨ on the r Ψ-run heads within the universe 𝜎n
by concatenating all the 𝜎 ranges Ψ𝑐 . Specifically, the predecessor PΨ stores 𝑥 + (𝑐 − 1)n if 𝑥 = Ψ(𝑖)
is a Ψ-run head in Ψ𝑐 , allowing us to compute the Ψ-run that contains or precedes a given value

𝑦 ∈ [1..n]. Thus, the predecessor operation pred𝑐 on Ψ𝑐 is defined in terms of a classic predecessor

2
Some sequences of consecutive values in Ψ can extend beyond the limit of the corresponding range Ψ𝑐 . This is why it

holds 𝑟Ψ ≤ 𝑟 , which becomes an equality if we split those runs of Ψ by allowing only runs inside each Ψ𝑐 .
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# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T a l a b a r a l a a l a b a r d a $

SA 18 17 9 3 12 7 1 10 5 14 4 13 16 8 2 11 6 15

Ψ 7 1 8 11 12 14 15 16 17 18 9 10 2 3 4 5 6 13

Ψ$ Ψa Ψb Ψd Ψl Ψr

𝐼Ψ 1 2 3 4 6 11 13 14 17 18

BWT a d l l l r $ a b b a a r a a a a a

Fig. 1. Data structures for the counting mechanism of the r-csa on an example text. The blocks in SA cover

the suffixes starting with the same symbol, which align with the areas of each Ψ𝑐 . The blocks in Ψ and

BWT represent runs. The gray cells in Ψ are the r run heads. The stripes show the relation between each

run of Ψa and its corresponding BWT-run.

function pred on the Ψ-run heads, as

pred𝑐 (𝑦) = pred(PΨ, 𝑦 + (𝑐 − 1)n) = ⟨𝑥, 𝑘⟩

where 𝑥 is the actual predecessor value in PΨ, and 𝑘 is its Ψ-run rank (i.e., the number of Ψ-runs up

to the one that starts with value 𝑥 ). Using recent predecessor structures [2, Thm. A.1] to represent

PΨ, we use O(r log(n/r)) bits of space and answer queries in O(log log𝑤 (𝜎n/r)) time.

In addition, we associate each Ψ-run head 𝑥 = Ψ(𝑖) with its global position 𝑖 in Ψ in an array

𝐼Ψ [1..r], where 𝐼Ψ [ 𝑗] = 𝑖 iff Ψ(𝑖) is the first item of the 𝑗th Ψ-run. 𝐼Ψ is used to support the

backward search, computing the length of Ψ-runs and of each new range in SA. Structure 𝐼Ψ [1..r]
replaces the array 𝐶 [1..𝜎] of the original rlcsa [33]. Figure 1 illustrates definitions and relations.

Algorithm 1 computes the suffix array range 𝐴[𝑠𝑝..𝑒𝑝] of the occurrences of a pattern P in the

text T , using the predecessor structure PΨ and the array 𝐼Ψ. Note that it must consider the cases

where the answer is within a Ψ-run or not. This yields the following result.

Theorem 3.1 (Counting with r-csa). The r-csa of a text T [1..n] over alphabet [1..𝜎], with r
Ψ-runs, can be represented using O(r log n) bits of space and count the occurrences of any pattern
P [1..m] in O(m log log𝑤 (𝜎n/r)) time, where𝑤 is the computer word size.

3.2 Locating in O(𝑟 ) space

Following the r-index [16], we reduce the problem of locating the occurrences of pattern P with

the r-csa to two subproblems: (1) maintaining the text position of SA[𝑠𝑝𝑖] along the backward
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Algorithm 1: Counting pattern occurrences with r-csa.

Input :Query pattern P [1..m].
Output : Range ⟨sp, ep⟩ on SA for P .

1 function count(P [1..m])
2 ⟨sp, ep⟩ ← ⟨1, n⟩
3 for 𝑖 ← m downto 1 do
4 𝑐 ← P [𝑖]
5 sp← findNextStartPos(sp, 𝑐)
6 ep← findNextEndPos(ep, 𝑐)
7 if sp > ep then
8 return “P is not in T ”

9 return ⟨sp, ep⟩

10 function findNextStartPos(sp, 𝑐)
11 sp′ ← sp + (𝑐 − 1) · n
12 ⟨𝑥, 𝑘⟩ ← pred(PΨ, sp′)
13 if sp′ < 𝑥 + (𝐼Ψ [𝑘 + 1] − 𝐼Ψ [𝑘]) then
14 return 𝐼Ψ [𝑘] + (sp′ − 𝑥)
15 return 𝐼Ψ [𝑘 + 1]

16 function findNextEndPos(ep, 𝑐)
17 ep′ ← ep + (𝑐 − 1) · n
18 ⟨𝑥, 𝑘⟩ ← pred(PΨ, ep′)
19 if ep′ < 𝑥 + (𝐼Ψ [𝑘 + 1] − 𝐼Ψ [𝑘]) then
20 return 𝐼Ψ [𝑘] + (ep′ − 𝑥)
21 return 𝐼Ψ [𝑘 + 1] − 1

search, (2) finding SA[ 𝑗 + 1] given SA[ 𝑗]. After the backward search, then, we know SA[𝑠𝑝] by (1)

and then find SA[𝑠𝑝 + 1], SA[𝑠𝑝 + 2], . . . , SA[𝑒𝑝] with (2).

3.2.1 Counting with toehold. In the same vein as the r-index [16, Lem. 3.2], we show how to

enhance the backward search so that we always know SA[𝑠𝑝𝑖] (called the “toehold”). We give a

proof that this can be done that is better suited for practical Ψ-based indexes.

Lemma 3.2. The rlcsa backward search process on Ψ can be enhanced to retrieve, along with the
range ⟨sp, ep⟩ on SA for the pattern P [1..m], the toehold value SA[sp] in O(1) additional time per
backward step and with O(r log n) additional bits of space.

Proof. We store in a new array 𝐹SA [1..r] the text positions of the Ψ-run heads, that is, 𝐹SA [ 𝑗] =
SA[𝑖] iff the 𝑗th Ψ-run begins at position 𝑖 . The backward search initiates with the entire interval

⟨spm+1, epm+1⟩ = ⟨1, n⟩ of SA. The initial toehold is then SA[spm+1] = SA[1] = 𝐹SA [1] = n.
Let ⟨sp𝑖+1, ep𝑖+1⟩ be the range on SA for the occurrences of P [𝑖 + 1..m], with SA[sp𝑖+1] being a

known value. As described in Algorithm 1, the function findNextStartPos relies on the operation

pred(PΨ, sp𝑖+1, P [𝑖]) = ⟨𝑥, 𝑘⟩ to compute the starting position sp𝑖 of the interval for P [𝑖 ..m].
Extending findNextStartPos to additionally obtain the value SA[sp𝑖] when the pattern occurs

in T results in two possible cases. If the 𝑘th Ψ-run contains the value sp𝑖+1, then sp𝑖+1 = Ψ(sp𝑖)
because the first value of the range SA[𝑠𝑝𝑖+1..𝑒𝑝𝑖+1] is preceded by 𝑃 [𝑖]. Thus the next toehold is
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Algorithm 2: Counting pattern occurrences and finding value SA[sp] with r-csa.

Input :Query pattern P [1..m].
Output : Range ⟨sp, ep⟩ on SA for P ; Value SA[sp].

1 function count(P [1..m])
2 ⟨sp, ep, 𝑣⟩ ← ⟨1, n, 𝑛⟩
3 for 𝑖 ← m downto 1 do
4 𝑐 ← P [𝑖]
5 ⟨𝑣, sp⟩ ← findStartToehold(𝑣, sp, 𝑐)
6 ep← findNextEndPos(ep, 𝑐)
7 if sp > ep then
8 return “P is not in T ”

9 return ⟨sp, ep, 𝑣⟩

10 function findStartToehold(𝑣 , sp, 𝑐)
11 sp′ ← sp + (𝑐 − 1) · n
12 ⟨𝑥, 𝑘⟩ ← pred(PΨ, sp′)
13 if sp′ < 𝑥 + (𝐼Ψ [𝑘 + 1] − 𝐼Ψ [𝑘]) then
14 return ⟨𝑣 − 1, 𝐼Ψ [𝑘] + (sp′ − 𝑥)⟩
15 return ⟨𝐹SA [𝑘 + 1], 𝐼Ψ [𝑘 + 1]⟩

straightforwardly calculated as SA[sp𝑖] = SA[sp𝑖+1] − 1. If, instead, sp𝑖+1 does not belong to the
𝑘th Ψ-run, then sp𝑖 is the head of the (𝑘 + 1)th Ψ-run. Using the 𝐹SA array, the next toehold is

computed as SA[sp𝑖] = 𝐹SA [𝑘 + 1], also in constant time. □

Algorithm 2 gives the corresponding pseudocode.

3.2.2 Locating from toehold. While it is possible to employ a sampling scheme nearly identical to

that utilized by the r-index, we opt for an alternative one that virtually moves forwards in the text,

rather than backwards. This choice is influenced by the nature of the Ψ function, which enables

more efficient forward than backward traversal.

Lemma 3.3. Given a text position SA[𝑖], let Ψ[𝑙] be the tail of the Ψ-run with the smallest text
position SA[𝑙] ≥ SA[𝑖]. Then,

SA[𝑖 + 1] = SA[𝑙 + 1] + (SA[𝑙] − SA[𝑖]) . (1)

Proof. There are two possible cases. The first case, where Ψ[𝑖] is the last symbol of a Ψ-run,

is trivial because 𝑖 = 𝑙 . For the second case, where SA[𝑖] is not the last symbol of a Ψ-run, let

Δ = SA[𝑙] − SA[𝑖], that is, 𝑙 = ΨΔ (𝑖). By the definition of 𝑙 , it holds for all 0 ≤ 𝑝 < Δ that Ψ𝑝 (𝑖) is
not the last element of a Ψ-run. Consequently, for all 0 ≤ 𝑝 ≤ Δ, it holds that

Ψ𝑝 (𝑖) + 1 = Ψ𝑝 (𝑖 + 1) .

This shows that each pair Ψ𝑝 (𝑖) and Ψ𝑝 (𝑖 + 1) are adjacent positions within a Ψ-run until the

position 𝑙 = ΨΔ (𝑖) is reached. That is, text positions SA[Ψ𝑝 (𝑖)] and SA[Ψ𝑝 (𝑖 + 1)] traverse forward



Fast and Small Subsampled R-indexes 11

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T a l a

SA[𝑖 ]
b a r

SA[𝑙 ]
a l a a l a

SA[𝑖 + 1]
b a r

SA[𝑙 + 1]
d a $

Δ Δ

Ψ 7 1 8 11

𝑖

12

𝑖 + 1
14 15 16 17 18 9 10 2 3 4 5 6

𝑙

13

𝑙 + 1

Ψ1 (𝑖)

Ψ2 (𝑖)

ΨΔ (𝑖)

SA 18 17 9 3 12 7 1 10 5 14 4 13 16 8 2 11 6 15

Fig. 2. Example of the sampling mechanism of the r-csa. The arrows in T show the Δ distance from the

given SA[𝑖] to its Ψ-run last element successor Ψ[𝑙]. In Ψ, each run is represented by a block; solid arrows

are Ψ steps for 𝑖 ; and dashed arrows are Ψ steps for 𝑖 + 1.

together in the suffix array for Δ steps, so

SA[𝑖 + 1] = SA[ΨΔ (𝑖 + 1)] − Δ = SA[ΨΔ (𝑖) + 1] − Δ = SA[𝑙 + 1] + (SA[𝑙] − SA[𝑖]),

where the first equality holds just by definition of Ψ. Figure 2 illustrates the proof. □

Kärkkäinen et al. [22] defined the function Φ that returns SA[𝑖 − 1] for the given text position

SA[𝑖]. Gagie et al. [16] later added the function Φ-1
returning SA[𝑖 + 1]. This last function is

formally defined below.

Definition 3.4 (Gagie et al. [16]). Function Φ-1
is a permutation of [1..n] such that, for any text

position 𝑗 and its related position 𝑖 in the suffix array (i.e., 𝑗 = SA[𝑖]), is defined as

Φ-1( 𝑗) =

SA[SA-1 [ 𝑗] + 1] = SA[𝑖 + 1], if 𝑖 < n

SA[1] = n, if 𝑖 = n
(2)

Gagie et al. [16] show how to store the permutations Φ and Φ-1
in O(r log𝑛) bits of space using

a predecessor data structure. We achieve a similar result based on Lemma 3.3, yet using a successor

function over the text positions of Ψ-run tails.

Lemma 3.5. The function Φ-1 can be evaluated in O(log log𝑤 (n/r)) time using an O(r log n)-bits
successor data structure.

Proof. Let 𝐿 be the set of r text positions such as 𝑥 = SA[𝑙] ∈ 𝐿 iff Ψ[𝑙] is the last element

in its Ψ-run, and S𝐿 be a successor function over the values of 𝐿. Also, each value SA[𝑙] ∈ S𝐿
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is paired with the text position 𝑦 = SA[𝑙 + 1] of its next Ψ-run head. Given a value 𝑗 = SA[𝑖], if
⟨𝑥,𝑦⟩ = S𝐿 ( 𝑗), then SA[𝑖 + 1] = 𝑦 + (𝑥 − 𝑗) by Lemma 3.3.

A recent predecessor data structure [2, Thm. A.1] represents S𝐿 within O(r log n) bits and
answers successor queries in time O(log log𝑤 (n/r)). □

Algorithm 3: Locating pattern occurrences with r-csa.

Input :Query pattern P [1..m].
Output :Occurrences of P : 𝑉 [1..occ] = SA[sp..ep].

1 function locate(P [1..m])
2 ⟨sp, ep, 𝑣⟩ ← count(P)
3 𝑉 [1] ← 𝑣

4 for 𝑖 ← 2 to ep − sp + 1 do
5 𝑉 [𝑖] ← Φ-1(𝑉 [𝑖 − 1])
6 return 𝑉

Algorithm 3 shows how Φ-1
is used to compute all the occurrences of 𝑃 given the first one. We

have now arrived at the primary outcome of this section, which is stated in the following form for

compatibility with the r-index, using that O(log(𝜎 + 𝑛/𝑟 )) = O(log(𝜎𝑛/𝑟 )).

Theorem 3.6 (Locating with r-csa). The r-csa of a text T [1..n] over alphabet [1..𝜎], with r
Ψ-runs, can be represented within O(r log n) bits and locate the occ occurrences of a pattern P [1..m]
in O(m log log𝑤 (𝜎 + n/r) + occ log log𝑤 (n/r)) time, where𝑤 is the computer word size.

3.3 Practical design

While the theoretical result yields O(𝑟 log𝑛) space without full details on the constants, a finer

design is needed in order to obtain a space-competitive data structure, even if it does not yield the

same time complexities.

Following Mäkinen et al. [33] (and Sadakane [45]), we decompose Ψ into 𝜎 partial functions Ψ𝑐 ,

one per symbol 𝑐 . Because each Ψ𝑐 is strictly increasing, we differentially encode the first and last

values of the Ψ-runs, using 𝛿-codes to represent the differences. To accelerate access to the function

Ψ, we sample every 𝐵-th absolute value, creating a reduced sequence Ψ̂𝑐 . Parameter 𝐵 yields a

tradeoff between space and time to access Ψ: one spends ⌊𝑟/𝐵⌋ log𝑛 bits on the samples and

accesses any cell of Ψ in time O(𝐵), by accessing the preceding cell of Ψ̂𝑐 and then decoding up to

𝐵 𝛿-codes. Further, function pred(PΨ, 𝑖) can be computed in time O(log(𝑟/𝐵) + 𝐵) = O(log 𝑟 + 𝐵),
by binary searching the samples Ψ̂𝑐 and then decoding up to 𝐵 values.
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# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T a l a b a r a l a a l a b a r d a $

SA 18 17 9 3 12 7 1 10 5 14 4 13 16 8 2 11 6 15

Fig. 3. Practical data structures used for locating mechanism of the r-csa. The gray cells in T are the r
elements marked in the bitvector LT . The gray cells in SA are the r samples stored in the array FSA. The
arrows show the mapping MapLF (different arrow styles are used to improve visualization).

This compressed representation of Ψ requires

r · (log(𝜎n/r) + log(n/r) + O(log log(𝜎n/r))) + O((r/𝐵) log n) + O(𝜎 log n)

bits of space. The initial term is the worst-case size of the run-length encoding of Ψ, using 𝛿-codes

to store the length of each Ψ-run and the gap between them (i.e., the distance between the first

value of a Ψ-run and the last value of the preceding one). The second term covers the first value

Ψ(𝑖) of every 𝐵th run, and their absolute ranks. The last term represents the array 𝐶 [1..𝜎] (used
instead of array 𝐼Ψ [1..r] in our practical proposal), and additional samples of Ψ for the first element

in each partial Ψ𝑐 .

The second aspect to consider is the practical implementation of function Φ-1
. This relies on

several components; Figure 3 illustrates their relation.

LT [1..n]: a bitvector marking with LT [ 𝑗] = 1 the text positions 𝑗 = SA[𝑖] where Ψ(𝑖) is the
last symbol of a Ψ-run. Since LT has only r 1s, it is represented in compressed form using

r log(n/r) + O(r) bits, while supporting rank(LT, 𝑖) in time O(log(n/r)) and, in O(1) time,

the operation select(LT, 𝑝) (the position of the 𝑝th 1 in LT ) [40]. This allows one to find

the leftmost 1 from position 𝑖 as

succ(LT, 𝑖) = select1(LT, rank1(LT, 𝑖 − 1) + 1) .

MapLF [1..r]: an array of integers (using r ⌈log r⌉ bits) mapping each text position marked in

LT to the related sample in FSA. Note that, if LT [ 𝑗] = 1 with 𝑗 = SA[𝑙], then there exists 𝑝

such that FSA [𝑝] = SA[𝑙 + 1], because Ψ(𝑙) is the last symbol in a Ψ-run.3 We find it with

𝑝 = map(LT, 𝑗) = MapLF [rank1(LT, 𝑗 − 1) + 1] .

3
In the particular case where 𝑙 = n (that is, 𝑗 = SA[𝑙] is the last symbol of the final Ψ-run), the associated sample in FSA
is 𝑝 = map(LT , 𝑗) = MapLF [r] = 1, which corresponds to the Ψ-run of the special symbol $.
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If we apply this formula on a text position 𝑗 that does not correspond to the end of a run, it will

return the run number 𝑝 of the next text position that corresponds to the end of a run. Using also

the FSA array in addition to the components mentioned above, we can then compute the function

Φ-1
as follows:

Φ-1( 𝑗) = FSA [map(LT, 𝑗)] − (succ(LT, 𝑗) − 𝑗). (3)

A straightforward examination of the preceding data structures reveals that they collectively

yield the following result.

Theorem 3.7 (Practical r-csa). The practical r-csa of a text T [1..n] over alphabet [1..𝜎], with
r Ψ-runs, is represented using

r ·
(
2 log n + 2 log(n/r) + log𝜎 + O(log log(𝜎n/r))

)
+ O((r/𝐵) log n) + O(𝜎 log n)

bits and can locate the occ occurrences of a pattern P [1..m] in O(m(log r + 𝐵) + occ log(n/r)) time,
where 𝐵 is the block size for the representation of Ψ.

4 SUBSAMPLED BWT/Ψ-BASED INDEXES

While the r-index and r-csa sampling mechanisms perform very well on highly repetitive texts,

they can be less efficient in areas where the run heads or tails split the text into many short blocks.

The text is sampled too frequently in such areas, creating unnecessary redundancy in the indexes.

Figure 4 illustrates an analysis of commonly used datasets confirming that these oversampled

areas indeed arise in various types of text.

The existence of those short blocks in the texts is to be expected. Consider, in the particular case

of DNA sequences, the site of a single-nucleotide polymorphism, where some genomes have A and

the others have G, in all cases followed by the same string 𝛼 and preceded by the same symbols

𝛽𝑚 · · · 𝛽1. Those As and Gs are likely to be intermingled in the BWT area of the suffixes that start

with 𝛼 , but the characters 𝛽1 will be separated into two BWT areas: those of the suffixes A𝛼 and

G𝛼 . The same will happen to the characters 𝛽2 (separated in the areas of the suffixes 𝛽1A𝛼 and

𝛽1G𝛼), 𝛽3, and so on. But for large enough𝑚, 𝛽𝑚 · · · 𝛽1 will be unique in the collection, and the

suffix array areas of 𝛽𝑚 · · · 𝛽1A𝛼 and 𝛽𝑚 · · · 𝛽1G𝛼 will be merged again.

The character 𝛽1 preceding (in the genomes) the first/last (in the BWT) of those As and of those

Gs is quite likely to be the start/end of a run in the BWT, and so are the corresponding characters

𝛽2, 𝛽3, and so on, until the two areas merge. It follows that, if a character in the genomes is at a

boundary between runs in the BWT, then the character immediately to its left is quite likely to

be as well. In other words, the characters at boundaries between runs in the BWT, will tend to

cluster in the genomes.
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Fig. 4. Distribution of BWT-run heads within the Pizza&Chili repetitive texts [14]. The 𝑥-axis represents the
positions of these run heads along the text. The 𝑦-axis shows the density, which indicates how frequently

BWT-run heads appear at different locations. The smooth curve is obtained using the statistical method

Kernel Density Estimation (KDE).

This section introduces two new indexing schemes for repetitive texts: the subsampled r-index
(sr-index) and the subsampled r-csa (sr-csa). Both are built by combining aspects of existing

methods. The sr-index is a hybrid between the r-index and the rlfm-index. The sr-csa, on the other

hand, combines the r-csa with the rlcsa.

For the sake of clarity, we will employ the designation sr-indexes to refer to our two subsampled

solutions (sr-index and sr-csa), r-indexes to mean both BWT/Ψ-runs based indexes (r-index and

r-csa), and rl-indexes to represent the run-length based indexes rlfm-index and rlcsa.

Similarly to their corresponding r-indexes, sr-indexes take text position samples at the beginning

or end of each run. Yet, they remove samples from text areas where there are too many of them,

ensuring that no three samples in a row are closer together than a certain distance (defined by

a parameter 𝑠). This approach is a relaxation of the regular text sampling used in the rl-indexes,
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where consecutive samples are separated exactly by 𝑠 text positions. Unlike rl-indexes, some

consecutive samples can be very far apart in some areas of the text, but unlike r-indexes, sr-
indexes ensure that they are never too close to each other. To achieve this goal, the sr-indexes
face various challenges related to maintaining correctness and efficiency upon removal of samples,

in particular ensuring, like rl-indexes, that they never require more than 𝑠 steps to simulate a

backward step or computation of an entry of SA.
Our sr-index and sr-csa are based on a similar design, with the primary distinction being the

use of the Φ or Φ-1
function, respectively. The Φ function employs a predecessor data structure to

locate the remaining values in SA[sp..ep − 1], whereas the Φ-1
function relies on the successor to

compute SA[sp + 1..ep] (recall that the LF function of the r-index is the inverse of the Ψ function

of the r-csa). To avoid redundant explanations, we will focus our attention on the sr-index, making

pertinent remarks when differences with the sr-csa are significant and require further explanation.

We will directly present the practical data structures that implement the subsampled indexes.

4.1 Subsampling

The r-index locating structures are formed by the following components, analogous to those of

the r-csa we described in Section 3.3. Our subsampling solutions will later modify them.

LSA [1..r]: an array of r sampled text positions, where LSA [𝑝] = SA[𝑖] − 1 iff BWT[𝑖] is the
last letter in the 𝑝th BWT-run.

FT [1..n]: a bitvector marking with 1s the text positions of the letters that are the first in a

BWT-run. That is, if 𝑖 = 1 or BWT[𝑖] ≠ BWT[𝑖 − 1], then FT [SA[𝑖] − 1] = 1. This allows

one to find the rightmost 1 up to position 𝑗 ,

pred(FT, 𝑗) = select(FT, rank(FT, 𝑗)),

with select(FT, 0) = 0.

MapFL [1..r]: an array mapping each letter marked in FT to the BWT-run preceding the one

in which it is located. If FT [ 𝑗] = 1 with 𝑗 = SA[𝑖] − 1, then there exists 𝑝 such that

LSA [𝑝] = SA[𝑖 − 1] − 1, because BWT[𝑖] is the first letter in a BWT-run,4 and

𝑝 = map(FT, 𝑗) = MapFL [rank(FT, 𝑗)],

where MapFL [0] yields the BWT-run preceding to the run of the special symbol $.

The r-index computes the Φ function as

Φ( 𝑗) = LSA [map(FT, 𝑗 − 1)] + ( 𝑗 − pred(FT, 𝑗 − 1)) . (4)

4
Note that 𝑖 cannot belong to the first run (i.e., 𝑖 = 1), as then we would be on the suffix T [SA[1]] = $.
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The sr-index subsampling process removes r-index samples in oversampled areas. Concretely,

let t′
1
< · · · < t′r be the text positions of the last letters in BWT-runs, that is, the sorted values in

array LSA. For any 1 < 𝑖 < r , the sample t′𝑖 is removed if t′𝑖+1 − t′𝑖−1 ≤ 𝑠 , where 𝑠 is a parameter.

This condition is tested and applied sequentially for 𝑖 = 2, . . . , r − 1. If, for example, we removed t′
2

because t′
3
− t′

1
≤ 𝑠 , then we next remove t′

3
if t′

4
− t′

1
≤ 𝑠 ; if we had not removed t′

2
, then we remove

t′
3
if t′

4
− t′

2
≤ 𝑠 . Let us designate t1, t2, . . . as the sequence of the remaining samples.

The structures FT , MapFL, and LSA are constructed exclusively on the remaining subsamples

t𝑖 . Consequently, the removal of the sample LSA [𝑝] = t′ also entails the removal of the 1 in FT
corresponding to the first letter of the (𝑝 + 1)th BWT-run, which is the very instance that Eq. (4)

would have addressed with LSA [𝑝]. In other words, if 𝑖 is the first position of the (𝑝 + 1)th run and

𝑖−1 the last of the 𝑝th run, then if we remove LSA [𝑝] = SA[𝑖−1] −1, we remove the corresponding

1 at position SA[𝑖] − 1 in FT . In addition, the corresponding entry of MapFL is also removed. Finally,

note that MapFL must be adapted to point to the corresponding entry of LSA, once some entries of

the latter are removed.

Subsampling proves to be an effective method for avoiding the excessive space required to

store the locating structures. This is particularly beneficial when the number of BWT-runs r is a
relatively large value. In such cases, subsampling can reduce the entries in those data structures

from O(r) to O(min(r, n/𝑠)) in the worst case (the reduction is much higher in practice because

the samples are not uniformly distributed, as seen in Figure 4).

Lemma 4.1. The subsampled structures LSA, FT and MapFL usemin(r, 2⌈n/(𝑠+1)⌉) · (2 log𝑛+O(1))
bits of space.

Proof. If 𝑥 is the number of remaining samples, then for each remaining sample array LSA uses

⌈log𝑛⌉ bits, bitvector FT uses log(𝑛/𝑥) + O(1) bits [40], and MapFL uses ⌈log𝑥⌉ bits. The combined

size of the three arrays is then 𝑥 · (2 log𝑛+O(1)) bits. This is the same space as in the implemented

r-index [16], with the number of samples reduced from r to 𝑥 .
Our subsampling process begins with r samples and subsequently removes a subset of them,

thus ensuring that the number of samples never exceeds r . By construction, any remaining sample

t𝑖 is guaranteed to satisfy t𝑖+1 − t𝑖−1 > 𝑠 , so if we cut the text into blocks of length 𝑠 + 1, no block

can contain more than 2 samples. Therefore, 𝑥 ≤ min(r, 2⌈n/(𝑠 + 1)⌉). □

Our indexes add the following small structure on top of the above ones, so as to mark the

removed samples:

Del[1..𝑟 ]: a bitvector telling which of the original samples have been removed. Specifically,

Del[𝑝] = 1 iff the sample at the end of the 𝑝th BWT-run was removed. We can compute
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# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T a l a b a r a l a a l a b a r d a $

SA 18 17 9 3 12 7 1 10 5 14 4 13 16 8 2 11 6 15

Fig. 5. Subsampled data structures used for the locating mechanism of the sr-csa using a sampling factor

𝑠 = 4 (compare with the full sampling in Figure 3). The gray cells in T are the subsampled elements marked

in the bitvector LT . The gray cells in SA are the remaining samples stored in the array FSA. The crossed
cells in SA are the removed samples marked in the bitvector Del. The arrows show the mapping MapLF.

any rank(Del, 𝑝) in constant time using r + 𝑜 (r) bits [6], as well as rank0(Del, 𝑝) = 𝑝 −
rank(Del, 𝑝) (which counts the 0s in Del[1..𝑝]).

Figure 5 illustrates the sampling scheme on our running example.

Construction. Once the basic structures of the r-index able to perform LF-steps are built, we

can create the additional structures FT , LSA, MapFL, and Del in two additional virtual backward

passes over the text, in O(n log(𝜎 + n/r)) time and without extra space. A first pass performs

the subsampling, in text order, thereby defining the bitvector Del. Once we know the number of

remaining samples, a second traversal fills the 1s in FT and the entries in MapFL and LSA for the

runs whose sample was not removed.

Running on the sr-csa. A nearly identical sampling process is used on the sr-csa, using the samples

in the FSA array. Recall that, unlike the r-index, these samples are the text positions of the first

element in each Ψ-run. Given this condition along with the nature of the sr-csa, which relies on

the Ψ and succ(LT, 𝑖) functions, we have opted to implement a slight variation. Specifically, the

subsampling mechanism employs a backward iteration over the samples 𝑖 = r − 1, . . . , 2 in FSA. It

is straightforward to verify that this change retains the results given above.

The construction process is also similar, using two forward text traversals simulated using the

Ψ function. The construction time is O(𝑛 log𝐵).

4.2 Counting with Toehold

The counting algorithm of the practical r-index is based on the data structures of a rlfm-index

variant called sparse RLBWT [41, Thm. 28]. By applying a sparsification strategy primarily to

the Start bitvector, this structure requires only r · ((1 + 𝜖) log(n/r) + log𝜎 + O(1)) bits (largely
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dominated by the described arrays Start and Letter) for any small constant 𝜖 > 0. The time

complexity for backward search steps and LF-steps is O((1/𝜖) log(𝜎 + n/r)).
To obtain the necessary text position or toehold along the backward search, the practical r-index

maintains the value SA[ep𝑖] along each interval [sp𝑖 ..ep𝑖], for 1 ≤ 𝑖 ≤ m. In the non-trivial

cases where P [𝑖] ≠ BWT[ep𝑖+1], the end of interval is ep𝑖 = LF( 𝑗), where 𝑗 ∈ [sp𝑖+1..ep𝑖+1] is
the largest position with BWT[ 𝑗] = P [𝑖]. It is easy to see that 𝑗 must be the end of a BWT-run,
in particular of the 𝑝th run, with 𝑝 = rank1(Start, 𝑗). As we do not know 𝑗 , this run can be

computed as 𝑝 = select𝑐 (Letter, rank𝑐 (Letter, rank1(Start, ep𝑖+1))). Finding SA[ep𝑖] then
requires a straightforward lookup process in the r-index, since it is precomputed and stored in

array LSA, where it holds SA[ep𝑖] = SA[ 𝑗] − 1 = LSA [𝑝].
However, the sr-indexmight have removed the sample LSA [𝑝] = SA[ep𝑖] during its subsampling

process, which is indicated by the flag Del[𝑝] = 1. When this happens, we use an iterative search,

computing 𝑗𝑘 = LF𝑘 ( 𝑗) for 𝑘 = 1, 2, . . . and 𝑗 = LF−1(ep𝑖), until a remaining sampled SA[ 𝑗𝑘 ] is
found. This is identified because 𝑗𝑘 is the last position in aBWT-run (i.e., 𝑗𝑘 = n or Start[ 𝑗𝑘+1] = 1)

and Del[𝑞] = 0 for 𝑞 = rank1(Start, 𝑗𝑘 ). When we find such 𝑗𝑘 , we can compute the final SA[ep𝑖]
by adjusting the sample found, 𝑞′ = rank0(Del, 𝑞), based on the 𝑘 steps in the search, obtaining

SA[ep𝑖] = LSA [𝑞′] + 𝑘 .
The number of LF-steps in each backward search iteration of the sr-index is bounded by the

sampling factor 𝑠: the next lemma shows that for some 𝑘 < 𝑠 we will find a non-removed sample.

Lemma 4.2. If there is a removed sample t′𝑗 such that t𝑖 and t𝑖+1 are remaining samples satisfying
t𝑖 < t′𝑗 < t𝑖+1, then t𝑖+1 − t𝑖 ≤ 𝑠 .

Proof. Since our subsampling process removes samples from left to right, by the time we

removed t′𝑗 , the current sample t𝑖 was already the nearest remaining sample to the left of t′𝑗 . If the
sample following t′𝑗 was the current t𝑖+1, then t′𝑗 was removed because t𝑖+1 − t𝑖 ≤ 𝑠 . Therefore, the

lemma holds in this case.

Otherwise, there were other samples to the right of t′𝑗 , say t′𝑗+1, t
′
𝑗+2, . . . , t

′
𝑗+𝑘 , which were consec-

utively removed until the current sample t𝑖+1 was reached. First, we removed t′𝑗 because t
′
𝑗+1− t𝑖 ≤ 𝑠 .

Then, for 1 ≤ 𝑙 < 𝑘 , we removed t′
𝑗+𝑙 (after having removed t′𝑗 , t

′
𝑗+1, . . . , t

′
𝑗+𝑙−1) as t

′
𝑗+𝑙+1 − t𝑖 ≤ 𝑠 .

Finally, we removed t′
𝑗+𝑘 since t𝑖+1 − t𝑖 ≤ 𝑠 , thus that the lemma holds in this case as well. □

This implies a fixed bound on the search, beginning from the position 𝑗 of the removed sample

t′ = SA[ 𝑗] − 1 and extending to the surrounding remaining samples t𝑖 < t′ < t𝑖+1. It is sufficient

to perform 𝑘 = t′ − t𝑖 < 𝑠 LF-steps until position 𝑗𝑘 = LF𝑘 ( 𝑗) satisfies SA[ 𝑗𝑘 ] − 1 = t𝑖 , which is

stored in LSA [𝑞′] and not removed.

If we followed verbatim the modified backward search of the r-index, finding every SA[ep𝑖], we
would perform O(m · 𝑠) steps on the sr-index. We now reduce this to O(m+ 𝑠) steps by noting that
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Algorithm 4: Counting pattern occurrences and finding value SA[ep] with the sr-index.

Input :Query pattern P [1..m].
Output : Range ⟨sp, ep⟩ on SA for P ; Value SA[ep].

1 function count(P [1..m])
2 ⟨sp, ep⟩ ← ⟨1, n⟩
3 ⟨𝑖𝑣, 𝑝𝑣⟩ ← ⟨−1,−1⟩
4 for 𝑖 ← m downto 1 do
5 𝑐 ← P [𝑖]
6 𝑝 ← rank1(Start, ep)
7 if 𝑐 ≠ Letter[𝑝] then
8 ⟨𝑖𝑣, 𝑝𝑣⟩ ← ⟨𝑖, 𝑝⟩
9 sp← 𝐶 [𝑐] + rank𝑐 (BWT, sp−1)+1

10 ep← 𝐶 [𝑐] + rank𝑐 (BWT, ep)
11 if sp > ep then
12 return “P is not in T ”

13 𝑣 ← findToehold(𝑖𝑣, 𝑝𝑣)
14 return ⟨sp, ep, 𝑣⟩

15 function findToehold(𝑖𝑣 , 𝑝𝑣)
16 if 𝑖𝑣 = −1 then

// SA[n] is stored

17 return SA[n] −m
18 𝑐 ← P [𝑖𝑣]
19 𝑞 ← select𝑐 (Letter, rank𝑐 (Letter, 𝑝𝑣))
20 𝑗 ← select1(Start, 𝑞 + 1) − 1
21 𝑘 ← 0

22 while ( 𝑗 < n and Start[ 𝑗 + 1] = 0) or
Del[𝑞] = 1 do

23 𝑗 ← LF( 𝑗)
24 𝑞 ← rank1(Start, 𝑗)
25 𝑘 ← 𝑘 + 1
26 return LSA [rank0(Del, 𝑞)]+𝑘−(𝑖𝑣−1)

the only value we require is SA[ep] = SA[ep
1
]. Further, we need to know SA[ep𝑖+1] to compute

SA[ep𝑖] only in the easy case where BWT[ep𝑖+1] = P [𝑖] and so SA[ep𝑖] = SA[ep𝑖+1] −1. Otherwise,
the value SA[ep𝑖] is computed afresh.

We then proceed as follows. We do not compute any value SA[ep𝑖] during the backward search;

we only remember the last (i.e., smallest) value 𝑖′ of 𝑖 where the computation was not easy, that is,

where BWT[ep𝑖′+1] ≠ P [𝑖′]. Then, SA[ep
1
] = SA[ep𝑖′]−(𝑖′−1) and we need to apply the procedure

described above only once: we compute SA[ 𝑗], where 𝑗 is the largest position in [sp𝑖′+1..ep𝑖′+1]
where BWT[ 𝑗] = 𝑃 [𝑖′], and then SA[ep𝑖′] = SA[ 𝑗] − 1.
Algorithm 4 gives the complete pseudocode that counts while finding a toehold. Note that, if P

does not occur in T (i.e., occ = 0) we realize this after the O(𝑚) backward steps because some

sp𝑖 > ep𝑖 , and thus we do not spend the O(𝑠) extra steps.

Running on the sr-csa. Although it is possible to simulate the LF-steps via the Ψ function, a more

intuitive and efficient approach is to search the text forwards for a sampled position, using Ψ

directly. Consequently, starting from the eliminated sample t′, the sr-csa searches for the next
remaining sample, t𝑖+1, rather than for the preceding one, t𝑖 . Lemma 4.2 also shows that the

subsampling factor 𝑠 bounds the number of steps in this case. Therefore, for some 𝑘 < 𝑠 , sample
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t𝑖+1 = SA[Ψ𝑘 ( 𝑗)] is a Ψ-run head stored in FSA, with t′ = SA[ 𝑗] (note that we use FSA instead of

LSA because on the sr-csa we obtain SA[𝑠𝑝], not SA[𝑒𝑝]).

4.3 Locating from Toehold

We now focus on the problem of finding SA[ 𝑗 − 1] from 𝑖 = SA[ 𝑗] − 1. If we just apply the r-index

procedure based on Φ, we will end up at an incorrect predecessor if the correct one has been

removed during subsampling. To circumvent this problem, the sr-index will start with a procedure

similar to the one used to identify the toehold, that is, iteratively searching for a remaining sample.

We will show that, when this procedure fails, we can safely use the Φ function like the r-index.

In this context, we first calculate 𝑗 ′
𝑘
= LF𝑘 ( 𝑗 − 1) for 𝑘 = 0, . . . , 𝑠 − 1. For each of those 𝑗 ′

𝑘
we

verify whether it is the last symbol of its run (i.e., 𝑗 ′
𝑘
= n or Start[ 𝑗 ′

𝑘
+ 1] = 1), and the sample

corresponding to this run has not been removed (i.e., Del[𝑞] = 0, with 𝑞 = rank1(Start, 𝑗 ′𝑘 )). If
these conditions are met, then it can be immediately derived that SA[ 𝑗 ′

𝑘
] = LSA [𝑞′] + 1, where

𝑞′ = rank0(Del, 𝑞). Consequently, we can also obtain SA[ 𝑗 − 1] = SA[ 𝑗 ′
𝑘
] + 𝑘 .

Unlike in Section 4.2, the symbol BWT[ 𝑗 − 1] is not necessarily an end of run. Therefore, there

is no guarantee that a solution will be found for some 0 ≤ 𝑘 < 𝑠 . However, the following property

shows that, if there were some ends of runs 𝑗 ′
𝑘
, it is not possible that all were removed from LSA.

Lemma 4.3. If there are no remaining samples in SA[ 𝑗 − 1] − 𝑠, . . . , SA[ 𝑗 − 1] − 1, then no sample
was removed between SA[ 𝑗 − 1] − 1 and its preceding remaining sample.

Proof. Let t𝑖 < SA[ 𝑗 − 1] − 1 < t𝑖+1 be the samples surrounding SA[ 𝑗 − 1] − 1, so the remaining

sample preceding SA[ 𝑗 − 1] − 1 is t𝑖 . Since t𝑖 < SA[ 𝑗 − 1] − 𝑠 , it follows that t𝑖+1 − t𝑖 > 𝑠 and thus,

by Lemma 4.2, no samples were removed between t𝑖 and t𝑖+1. □

This means that, if the above process fails to yield an answer, it is possible to employ Eq. (4)

directly, as proved next.

Lemma 4.4. If there are no remaining samples in SA[ 𝑗 − 1] −𝑠, . . . , SA[ 𝑗 − 1] −1, then subsampling
removed no 1s in FT between positions 𝑖 = SA[ 𝑗] − 1 and pred(FT, 𝑖).

Proof. Let t𝑖 < SA[ 𝑗−1]−1 < t𝑖+1 be the samples surrounding SA[ 𝑗−1]−1, and 𝑘 = SA[ 𝑗−1]−
1− t𝑖 . Lemma 4.3 implies that no sample existed between SA[ 𝑗 −1] −1 and SA[ 𝑗 −1] −𝑘 = 𝑡𝑖 +1, and
there exists one at 𝑡𝑖 . Consequently, no 1 existed in FT between positions SA[ 𝑗] − 1 and SA[ 𝑗] − 𝑘
(both included), and there exists one in SA[ 𝑗] − 1 − 𝑘 . Indeed, pred(FT, 𝑖) = SA[ 𝑗] − 1 − 𝑘 . □

An additional optimization, which does not alter the worst-case complexity but enhances

performance in practice, is to reuse work across successive occurrences. Let BWT[sm..em] be
a maximal run inside BWT[sp..ep]. For every sm ≤ 𝑗 ≤ em, the first LF-step will result in
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Algorithm 5: Locating pattern occurrences with the sr-index.

Input :Query pattern P [1..m].
Output :Occurrences of P : 𝑉 [1..occ] = SA[sp..ep].

1 function locate(P [1..m])
2 ⟨sp, ep, 𝑣⟩ ← count(P)
3 𝑉 [ep − sp + 1] ← 𝑣

4 if sp < ep then
5 locateRec (sp, ep − 1, 0)
6 return 𝑉

7 function checkSample(em, 𝑘)
8 𝑝 ← rank1(Start, em)
9 if Del[𝑝] = 1 then
10 return em

11 𝑉 [em − sp + 1] ←
12 LSA [rank0(Del, 𝑝)] + 1 + 𝑘
13 return em − 1

14 function locateRec(sm, em, 𝑘)
15 if 𝑘 = 𝑠 then
16 for 𝑗 ← em downto sm do
17 𝑉 [ 𝑗 − sp + 1] ← Φ(𝑉 [ 𝑗 − sp + 2])
18 return
19 𝑝 ← rank1(Start, em)
20 𝑞 ← rank1(Start, sm)
21 for 𝑖 ← 𝑝 downto 𝑞 do
22 if 𝑖 < 𝑝 or Start[em + 1] = 1 then
23 𝑒𝑚 ←checkSample (em, 𝑘)

24 𝑖𝑚 ← max(select1(Start, 𝑖), sm)
25 if 𝑖𝑚 > em then
26 continue
27 locateRec (LF(𝑖𝑚), LF(em), 𝑘 + 1)
28 em← 𝑖𝑚 − 1

LF( 𝑗) = LF(sm) + ( 𝑗 − sm). Therefore, the entire sequence of values LF( 𝑗) can be computed

through a single iteration of the LF function.

Consequently, rather than locating SA[sp], . . . , SA[ep] one by one, we first report SA[ep] (which
has been previously identified), and then partition BWT[sp..ep − 1] into maximal runs using

bitvector Start. We will traverse those maximal runs BWT[𝑠𝑚..em], from largest to smallest

𝑠𝑚, with the invariant that SA[𝑒𝑚 + 1] is known. We first check that the run end BWT[em] is
sampled, in which case we report its position and decrement 𝑒𝑚 (note that the offset 𝑘 must be

added to all the results reported at level 𝑘 of the recursion). We then continue recursively with

SA[LF(sm)..LF(sm) + (em − sm)]. By Lemma 4.2, every non-removed sample found during the

traversal has been duly reported prior to level 𝑘 = 𝑠 . Upon reaching the final recursion level (𝑘 = 𝑠),

we use Eq. (4) to obtain SA[em], . . . , SA[sm] consecutively from SA[em + 1]. Algorithm 5 gives

the complete procedure to locate the occurrences.

Running on the sr-csa. The aforementioned results are directly applicable to the r-csa to obtain

the sr-csa. On this structure, the problem is to compute the value SA[ 𝑗 +1] based on the previously

determined value 𝑖 = SA[ 𝑗]. It is a straightforward exercise to prove the symmetric version of
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Lemmas 4.3 and 4.4 needed for the sr-csa. The sr-csa probes the range SA[ 𝑗 +1], . . . , SA[ 𝑗 +1] +𝑠−1
using Ψ𝑘 ( 𝑗 + 1) for 0 ≤ 𝑘 < 𝑠 , looking for a non-removed sample. If this fails, it makes use of the

Φ-1
function of the r-csa. Finally, a similar recursive process can be employed to avoid computing

SA[sp], . . . , SA[ep] individually. In this case, the procedure uses the maximal runs within Ψ[sp..ep].

4.4 The basic sr-indexes, sr-index0 and sr-csa0

We have just described our most space-efficient index, which we call sr-index0. Its space and time

complexity is established in the next theorem.

Theorem 4.5. The sr-index0 uses r · ((1+𝜖) log(n/r) + log𝜎 +O(1)) +min(r, 2⌈n/(𝑠 +1)⌉) ·2 log n
bits of space, for any constant 𝜖 > 0, and finds all the occ occurrences of P [1..m] in T in time
O((1/𝜖) (m + 𝑠 · occ) log(𝜎 + n/r)).

Proof. The space is the sum of the counting structures of the r-index and our modified locating

structures, according to Lemma 4.1. The space of bitvector Del is O(r) bits, which is accounted

for in the formula.

As for the time, we have seen that the modified backward search requires O(m) steps if occ = 0

and O(m + 𝑠) otherwise (Section 4.2). Each occurrence is then located in O(𝑠) steps (Section 4.3).

In total, we complete the search with O(m + 𝑠 · occ) steps.
Each step involves O((1/𝜖) log(𝜎 + n/r)) time in the basic r-index implementation, including

Eq. (4). Our index includes additional ranks on Start and other constant-time operations, which

are all in O(log(n/r)). Since FT now has O(min(r, n/𝑠)) 1s, however, operation rank1 on it takes

time O(log(n/min(r, n/𝑠))) = O(logmax(n/r, 𝑠)) = O(log(n/r + 𝑠)). Yet, this rank is computed

only once per occurrence reported, when using Eq. (4), so the total time per occurrence is still

O(log(n/r + 𝑠) + 𝑠 · log(𝜎 + n/r)) = O(𝑠 · log(𝜎 + n/r)). □

Note that, in asymptotic terms, the sr-index is never worse than the rlfm-index with the same

value of 𝑠 and, with 𝑠 = 1, it boils down to the r-index. Using predecessor data structures of the

same asymptotic space of our lighter sparse bitvectors, the logarithmic times can be reduced to

loglogarithmic [16], but our focus is on low practical space usage.

A similar analysis, combined with Theorem 3.7, yields the analogous result for the sr-csa.

Theorem 4.6. The sr-csa0 uses

r ·
(
(2 log(n/r) + log𝜎) (1 + 𝜖) + O((log n)/𝐵) + O(1)

)
+min(r, 2⌈n/(𝑠 + 1)⌉) · 2 log n

bits of space, for any constant 𝜖, 𝐵 > 0, and finds all the occ occurrences of P [1..m] in T in time
O(m(log r + 𝐵) + occ(𝑠 (log r + 𝐵) + log n)).
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Proof. We carry out O(𝑚 + 𝑠 · 𝑜𝑐𝑐) steps, each of which computes Ψ at cost O(log 𝑟 + 𝐵). This
yields total time O((m + 𝑠 · occ) (log r + 𝐵) + occ log(n/r + 𝑠)), which is simplified to the one given

once we put together all the terms that are multiplied by occ. □

It should be noted that Theorems 4.5 and 4.6 can be obtained by simply choosing the smallest

between the r-index and the rlfm-index, or r-csa and rlcsa, respectively. In practice, however, the

sr-indexes perform significantly better than both extremes, providing a smooth transition that

retains sparsely indexed areas of T while removing redundancy in oversampled areas. This will

be demonstrated in Section 5.

4.5 Faster and larger sr-indexes, sr-index1 and sr-csa1

The sr-index0 and the sr-csa0 guarantee locating time proportional to 𝑠 . To do this, however, they

perform up to 𝑠 LF-steps or Ψ-steps to locate every occurrence, even when this turns out to be

useless. The sr-index1 variant adds a new small component to speed up some cases:

ValidF: a bitvector storing one bit per (remaining) mark in text order, so that ValidF [𝑞] = 0

iff there were removed values between the 𝑞th and the (𝑞 + 1)th 1s of FT .

With this bitvector, if we have 𝑖 = SA[ 𝑗] − 1 and ValidF [rank1(FT, 𝑖)] = 1, we know that there

were no removed values between 𝑖 and pred(FT, 𝑖) (even if they are less than 𝑠 positions apart). In

this case we can skip the computation of LF𝑘 ( 𝑗 −1) of sr-index0, and directly use Eq. (4). Otherwise,
we must proceed exactly as in sr-index0 (where it is still possible that we compute all the LF-steps
unnecessarily). More precisely, this can be tested for every value between sm and em so as to

report some further cells before recursing on the remaining ones, in line 27 of Algorithm 5.

The sr-csa1 index employs the analogous bitvector ValidL to ascertain whether values between

𝑖 and succ(LT, 𝑖) have been removed. In this instance, ValidL [𝑞] = 0 indicates that one or more

elements were removed between the (𝑞 − 1)th and 𝑞th 1s of LT .

The space and worst-case complexities of Theorems 4.5 and 4.6 are preserved in sr-index1 and

sr-csa1.

4.6 Even faster and larger, sr-index2 and sr-csa2

Our second variants, sr-index2 and sr-csa2, add a second and significantly larger structure:

ValidAreaF: an array whose cells are associated with the 0s in ValidF. If ValidF [𝑞] = 0,

then 𝑑 = ValidAreaF [rank0(Valid, 𝑞)] is the distance from the 𝑞th 1 in FT to the next

removed value. Each entry in ValidAreaF requires log n bits.
5

5
The subsampling process guarantees that for each BWT-run tail that is removed, there is a preceding tail that remains

at a distance no greater than s in the text. It should be noted that this condition is not guaranteed for the heads of the

BWT-runs.
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If ValidF [rank1(FT, 𝑖)] = 0, then there was a removed sample at pred(FT, 𝑖) +𝑑 , but not before.
So, if 𝑖 < pred(FT, 𝑖)+𝑑 , we can still use Eq. (4); otherwise wemust compute the LF-steps LF𝑘 ( 𝑗−1)
and we are guaranteed to succeed in less than 𝑠 steps. This improves performance considerably in

practice, though the worst-case time complexity stays as in Theorem 4.5 (and 4.6) and the space

increases by at most r log n bits.

The sr-csa2 is based on the same fundamental concept but employs the array ValidAreaL.

Let ValidL [𝑞] = 0 and ValidAreaL [rank0(ValidL, 𝑞)] = 𝑑 , for any text position 𝑖 such that

𝑞 = rank1(LT, succ(LT, 𝑖)): If 𝑖 > succ(LT, 𝑖) − 𝑑 , the Φ-1
function (Eq. 3) can be employed;

otherwise, up to 𝑠 Ψ-steps must be executed from the corresponding SA position 𝑗 + 1 .

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed indexing schemes: r-csa, sr-csa,

and sr-index. These algorithms are implemented using C++17 and the SDSL library
6
. The code is

publicly available on GitHub (https://github.com/duscob/sr-index).

We compare our proposed solutions against existing implementations of the r-index, rlcsa, and

other popular indexing methods designed for repetitive text collections. We aim to assess the

effectiveness of the sr-csa and sr-index approaches, particularly in terms of space usage and search

speed, across various datasets.

The tests were conducted on a computer with two Intel Xeon processors (Silver 4110 at 2.10 GHz)

and 736 GB of RAM. The operating systemwas Debian Linux (version 5.10.0-0.deb10.16-amd64).

We compiled the code with the highest optimization settings and disabled multithreading for

consistency.

To ensure reliable results, we measured the average user time needed to perform several searches

for random patterns of lengths 10, 20, and 30 characters in different text collections. We report

space usage in bits per symbol (bps) and search times in microseconds per occurrence (𝜇s/occ).

We note that some indexing methods might not be suitable for all text collections or might require

excessive space or time to build. Those methods are excluded from the corresponding graphs in

the section of results.

5.1 Tested indexes

We include the following indexes in our benchmark; their space decrease as 𝑠 grows. We chose the

parameter range so as to cover the interesting space-time tradeoffs. In particular, larger values of 𝑠

for the sr-indexes only increase the time without significantly reducing the space any further.

r-csa: Our index implementation, using block size 𝐵 = 64 (also for sr-csa).

6
Available at https://github.com/simongog/sdsl-lite.

https://github.com/duscob/sr-index
https://github.com/simongog/sdsl-lite
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sr-csa: Our index, including the three variants, with sampling values 𝑠 = 4, 8, 16, 32, 64.

sr-index: Our index, including the three variants, with sampling values 𝑠 = 4, 8, 16, 32, 64.

r-index: The r-index implementation we build on.
7

rlcsa: An implementation of the run-length CSA [33], which outperforms the actual rlfm-index

implementation.
8
We use text sampling values 𝑠 = n/r · 𝑓 /8, with 𝑓 = 8, 10, 12, 14, 16.

csa: An implementation of the CSA [45], which outperforms in practice the fm-index [12, 13].

This index, obtained from SDSL, acts as a control baseline that is not designed for repetitive

collections. We use text sampling parameter 𝑠 = 16, 32, 64, 128.

g-index: The best grammar-based index implementation we are aware of [7].
9
We use Patricia

tree sampling values 𝑠 = 4, 16, 64.

lz-index and lze-index: Two variants of the Lempel–Ziv based index [26].
10

hyb-index: A hybrid between a Lempel–Ziv and a BWT-based index [11].11 We build it with

parameters𝑀 = 8, 16, which are the best for this case.

5.2 Collections

We benchmark various repetitive text collections; Table 1 gives some basic measures on them.

Pizza&Chili: A generic collection of real-life texts of various sorts and repetitiveness levels,

which we use to obtain a general idea of how the indexes compare. We use 4 collections of

microorganism genomes (influenza, cere, para, and escherichia) and 4 versioned document

collections (the English version of einstein, kernel, worldleaders, coreutils).
12

Synthetic DNA: A 100KB DNA text from Pizza&Chili, replicated 1,000 times and each copied

symbol mutated with a probability from 0.001 (DNA-001, analogous to human assembled

genomes) to 0.03 (DNA-030, analogous to sequence reads). We use this collection to study

how the indexes evolve as repetitiveness decreases.

Real DNA: Some real DNA collections to study the performance on more massive data:

Chr19: Human assembled genome collections of about 55 billion base pairs, concretely

the set of 1,000 chromosome 19 genomes taken from the 1000 Genomes Project [47].

Salmonella: Bacterial assembled genome collections of about 70 billion base pairs,

concretely the set of 14,609 genomes from the GenomeTrakr project [46].

For each dataset, we randomly selected 500 patterns of three different sizes (10, 20, and 30

characters), mixed in a single set. To ensure the stability and reliability of our results, we identified

7
From https://github.com/nicolaprezza/r-index.

8
From https://github.com/adamnovak/rlcsa.

9
From https://github.com/apachecom/grammar_improved_index.

10
From https://github.com/migumar2/uiHRDC.

11
From https://github.com/hferrada/HydridSelfIndex.

12
From http://pizzachili.dcc.uchile.cl/repcorpus/real.

https://github.com/nicolaprezza/r-index
https://github.com/adamnovak/rlcsa
https://github.com/apachecom/grammar_improved_index
https://github.com/migumar2/uiHRDC
https://github.com/hferrada/HydridSelfIndex
http://pizzachili.dcc.uchile.cl/repcorpus/real
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Collection Size 𝑛/𝑟 Collection Size 𝑛/𝑟
influenza 147.6 51.2 DNA-001 100.0 142.4

cere 439.9 39.9 DNA-003 100.0 58.3

para 409.4 27.4 DNA-010 100.0 26.0

escherichia 107.5 7.5 DNA-030 100.0 11.6

einstein 447.7 1,611.2 Chr19 56,386.1 1,287.4

kernel 238.0 92.4 Salmonella 70,242.6 47.0

worldleaders 44.7 81.9

coreutils 195.8 43.8

Table 1. Basic characteristics of the repetitive texts used in our benchmark. Size is given in MB.

and removed outliers from the collected patterns using the interquartile range (IQR) method. This

process resulted in a final set of 404 to 465 patterns per dataset.

5.3 Results

To simplify our analysis and later comparisons between the indexing methods, we first investigated

the effectiveness of different variants within our proposed sr-index and sr-csa methods.

Our initial experiments focus on synthetic DNA datasets; the results are shown in Figure 6. The

largest variant stands out as the best choice for both sr-index and sr-csa in terms of balancing

space efficiency and search speed. When the sampling factor 𝑠 is small, all three variants within

each method exhibit similar performance. However, as we increase the parameter 𝑠 , the number of

samples decreases at a regular rate, but a significant difference in locating speed emerges: sr-index2

and sr-csa2 demonstrate a substantial improvement in search time compared to the other two,

while the required space remains comparable across all variants.

These findings show that the extra data we associate with samples in the third variant has a

minor impact in space. Yet, this additional sample validity information plays a crucial role in how

fast the index can locate pattern occurrences. Given these results, we will simply refer to the third

variants as sr-index and sr-csa, and use them for the following comparisons.

We also note that, while the r-index and the r-csa are almost indistinguishable, there is some

difference in the subsampled variants: the sr-index performs better with higher repetitiveness and

the sr-csa stands out with lower repetitiveness, meeting at a mutation probability of 0.003.

Figure 7 includes the other state-of-the-art solutions in the comparison. It can be seen that the

r-index and our r-csa are significantly faster than the others on highly repetitive scenarios. They

are only matched by the fm-index and the rlcsa, which are not designed for repetitive texts, when

the mutation probability reaches 0.01 (and the average run length 𝑛/𝑟 approaches 25).
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Fig. 6. Space-time tradeoffs of sr-index and sr-csa variants on the synthetic DNA collections.

The dominant indexes, however, are our main contributions: the sr-index and the sr-csa. The

figures show that they can be almost as fast as the r-index and r-csa, while using less than half

their space. They sharply dominate the space-time tradeoff map, even with mutation probability

as high as 0.01, sweeping out all previous solutions based on the BWT, on Ψ, on grammars, and

on Lempel-Ziv. The only alternative that stays in the Pareto curve is the hyb-index, which in the

most repetitive texts can use up to half the space, yet at the price of being an order of magnitude

slower. Only when the mutation rate reaches 0.03 and the average run length approaches 10, our

sr-indexes finally yield to the csa.

Therefore, as promised, we are able to remove a significant degree of redundancy in the r-indexes
without sacrificing their outstanding time performance.

Figure 8 shows the performance on the real-life genome collections of Pizza&Chili. The situation

is now more varied, for example the sr-indexes now retain the performance of their corresponding

r-indexes while using 1.5–4.0 times their space. The sr-index outperforms the sr-csa in some
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Fig. 7. Space-time tradeoffs on the synthetic DNA collections.

texts and loses to it on others, independently of the average run length of the collections. Most

interestingly, our sr-indexes perform even better than their corresponding r-indexes and rl-indexes
in those real texts, arguably because they exploit better the non-uniform distributions of the

samples in the text. For example, none of our preceding indexes based on the BWT or Ψ matches

our sr-indexes even on Escherichia, where the average run length is around 7.5, while the csa

outperformed our subsampled indexes on the synthetic DNA collections with mutation probability

0.03 and average run length around 11. The hyb-index still belongs to the Pareto curve and also

seems to benefit from non-uniformity: it now clearly outperforms our sr-indexes on Escherichia,

the text with the least repetitiveness.

Figure 9 illustrates this phenomenon. It shows the distribution of run heads in text order on

some synthetic and real texts, and how many samples survive for increasing values of 𝑠 . Note how

the distribution of samples on the synthetic texts (even if coming from random mutations over an

actual DNA text) are uniform and very different from the distributions on real texts. Note also how,
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Fig. 8. Space-time tradeoffs on the genome Pizza&Chili collections.

as 𝑠 grows, the samples decrease much faster on the denser areas and make the distributions tend

to uniform (see the darkest areas on the real texts). For example, for 𝑠 = 4, the number of samples

roughly reduce to 1/4 on the synthetic texts, while they reduce to about a 1/7 in the densest areas

of the real texts. Our worst-case analysis better reflects the uniform case, but the subsampling is

much more effective on the non-uniform histograms.

Figure 10 shows the case of other repetitive collections in Pizza&Chili. In these collections with

larger alphabets, the sr-csa generally outperforms the sr-index, as the latter has an O(log𝜎) time

penalty its operations. Otherwise, the conclusions do not differ from those obtained on DNA.

Overall, we conclude that our sr-indexes are sharply dominant when the average run length

𝑛/𝑟 exceeds 10. At this point, depending on the type of text, they may be matched by other

indexes, particularly the csa and the hyb-index. Texts with those average run lengths are arguably

non-repetitive anymore: even the classic indexes exceed the 2 bits per symbol used by a plain

representation of the data! Finally, our sr-indexes perform better on real than on synthetic data.
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Fig. 9. Distribution of original and subsampled BWT-run heads within the synthetic DNA datasets and

Pizza&Chili repetitive texts. The 𝑥-axis represents the positions of these run heads along the text. The

𝑦-axis indicates how frequently BWT-run heads appear at different locations. The original distributions

are shown with the lightest color, and darker colors are used for subsampling with larger values of 𝑠 .
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Fig. 10. Space-time tradeoffs on the document Pizza&Chili collections.

In general, the bits per symbol used by the sr-indexes can be roughly predicted from n/r; for
example the sweet spot often uses around 40r total bits, although it takes 20r–30r bits in some

cases. The r-index and r-csa use 70r–90r bits.
Finally, Figure 11 shows the results on the largest collections, Chr19 (56 GB) and Salmonella (70

GB). We were only able to construct the BWT/Ψ-related indices (except rlcsa) for both, hyb-index

forChr19, and lz-index and lze-index for Salmonella. Our benchmarks show that the same observed

trends scale to gigabyte-sized collections with different repetitiveness levels. Specifically, for Chr19,

the sr-index shows the best performance. With a sampling factor of 𝑠 = 64, it reduces the space

required by the r-index from 0.076 to 0.032 bps, and even reduces the search time from 0.69 to

0.58 𝜇s. The hyb-index requires 57% of the r-index space, but it is 4.4 times slower. In the case of

Salmonella, the sr-csa excels in the time-space tradeoff. It reduces the r-csa space by 4.2 times

(from 1.89 to 0.45 bps), while the query time increases only by 4.7%, from 1.71 to 1.79 𝜇s.
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Fig. 11. Space-time tradeoffs on the real DNA collections.

6 CONCLUSIONS

We have introduced the sr-index, an r-index variant that solves the problem of its relatively bloated

space while retaining its search speed. We have also designed the r-csa, an equivalent to the r-index

that builds on the rlcsa instead of on the rlfm-index, and also its reduced-space version, the sr-csa.

The sr-index and sr-csa match the time performance of their large-space versions, r-index and

r-csa, while using 1.5–4.0 times less space. Further, they sweep the table of compressed indexes

for highly repetitive text collections: they are orders of magnitude faster than the others while

sharply outperforming most of them in space as well.

Unlike the r-index and the r-csa, the sr-index and the sr-csa use little space even in scenarios

of mild repetitiveness, which makes them usable in a wider range of bioinformatic applications.

For example, the sr-index uses 0.03 bits per symbol (bps) while reporting each occurrence within

half a microsecond on a very repetitive gigabyte-sized collection of human genomes, where the

original r-index and r-csa use around 0.08 bps and take the same time. On a similarly sized but

less repetitive collection of Salmonella genomes, the sr-csa takes 0.45 bps to answer queries in less

than 2 microseconds, matching the time of the r-index and r-csa, which take about 2 bps.

On synthetic texts with random mutations, the sr-index and the sr-csa outperform classic

compressed indexes on collections with mutation rates under as much as 1%. Classic indexes

only match them when the mutation rate reaches 3%. At this rate the text is arguably no longer

repetitive, since no index can reach the 2 bps required to store the data in plain form. Further, our

indexes perform much better on real texts than on synthetic ones, as they precisely exploit the

uneven coverage of text samples that arise with the r-index and r-csa.
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The conference version of this article had already an impact on Bioinformatic research. Goga et

al. [17] simplified and reduced the sr-index subsample by abandoning Φ and Φ-1
, and used that

subsample in a version of Rossi et al.’s [43] tool MONI. Goga et al.’s version finds maximal exact

matches (MEMs) between a pattern and an indexed text using longest common prefix (LCP) queries

between suffixes of the pattern and suffixes starting immediately after characters at boundaries of

runs in the BWT of the text. They observed that in their experiment with 1000 human chromosome

19s, “with s = 5 the index took less than three quarters as much space as without subsampling and

used only 6% more query time”.

The sr-index subsampling may be useful even when we have no interest in the suffix array, as

in Depuydt et al.’s [9] index for metagenomic classification. They use Li’s [28] forward-backward

algorithm (see a recent discussion [29]) to find the MEMs between a DNA long read and a large

collection of genomes from several different species. Forward-backward returns the BWT intervals

for the MEMs (without using the suffix array), and Depuydt et al. check the corresponding intervals

in a run-length compressed tag array [1] indicating the species of the genome containing each

character in the BWT. If there are enough sufficiently long MEMs in a read and they all occur only

in genomes of the same species, Depuydt et al. guess the read comes from an individual of that

species.

When only a few distinct species are represented in the dataset, the number of runs in the tag

array may be even smaller than the number of runs in the BWT. When there are many related

species, however, the BWT tends to be much more run-length compressible. In such cases, Depuydt

et al. store a bitvector marking the boundaries between runs in the tag array, so they can check that

all the occurrences of a MEM are in genomes of one species (without finding out which species

that is). They also store as a “toehold” the tag for the first character in each run in the BWT. When

all the occurrences of a MEM are in genomes of one species, the last toehold tag they found while

computing that MEM, is that species. Those toehold tags take the place of suffix-array entries, and

they can be sr-index subsampled as well.

Another relevant line of future work is to support direct access to arbitrary entries of the suffix

array and its inverse, for example to implement compressed suffix trees [16] The rlfm-index and

rlcsa [33], which for pattern searching are dominated by the sr-index and the sr-csa, use their

regular text sampling to compute any such entry in time proportional to the sampling step 𝑠 .

Obtaining an analogous result on the sr-index or the r-csa would lead to practical compressed

suffix trees for highly repetitive text collections, which to date hardly reach the barrier of 2 bps on

real bioinformatic collections [3, 5, 37]. Other proposals for accessing the suffix array faster than

the rlfm-index [19, 42] illustrate this difficulty: they require even more space than the r-index.
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