
A

Computing MEMs and Relatives on Repetitive Text Collections

Gonzalo Navarro, CeBiB and University of Chile, Chile

We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern P [1 . .m] on
a large repetitive text collection T [1 . . n] over an alphabet of size σ, which is represented as a (hopefully
much smaller) run-length context-free grammar of size grl. We show that the problem can be solved in time
O(m2 logϵ n), for any constant ϵ > 0, on a data structure of size O(grl). Further, on a locally consistent
grammar of size O(δ log n log σ

δ logn
), the time decreases to O(m logm(logm+ logϵ n)). The value δ is a function

of the substring complexity of T and Ω(δ log n log σ
δ logn

) is a tight lower bound on the compressibility of repetitive
texts T , so our structure has optimal size in terms of n, σ, and δ. We extend our results to several related
problems, such as finding k-MEMs, MUMs, rare MEMs, and applications.

Categories and Subject Descriptors: E.1 [Data structures]; E.2 [Data storage representations]; E.4
[Coding and information theory]: Data compaction and compression; F.2.2 [Analysis of algorithms
and problem complexity]: Nonnumerical algorithms and problems—Pattern matching, Computations on
discrete structures, Sorting and searching

Additional Key Words and Phrases: Repetitive texts; Substring complexity; Grammar compression; Locally
consistent parsing; Compressed data structures; MEMs; MUMs

1. INTRODUCTION AND RELATED WORK
Inexact sequence matching is the norm in Bioinformatic applications. Mutations in
the genomes, and even the possible errors that arise in the sequence acquisition pro-
cess, makes researchers expect to see differences between the patterns they look for
and what they call their occurrences [Gusfield 1997; Ohlebusch 2013; Mäkinen et al.
2015]. For example, when assembling a genome one must align the reads (which are
sequences obtained from the DNA of an individual, a few hundreds or thousands nu-
cleotides long) to a reference genome (of length typically in the billions) or a set thereof.
For the reasons above, the read may not appear in the genome in exact form, so one
looks for the longest substrings of the read that appear in the genome, to determine
the most likely positions where to align it. In pangenomics, one may compare the sub-
strings of a whole gene or chromosome against another, or against a set of genomes
representative of a population, to find conserved regions and spot the places that dif-
fer, which may indicate genetic variations or diseases.

Those examples are applications of one of the most relevant tools for inexact match-
ing, which is finding the Maximal Exact Matches (MEMs) of a given pattern P [1 . .m] in
a text T [1 . . n]. A MEM is a maximal substring P [i . . j] that appears in T (i.e., P [i−1 . . j]
and P [i . . j+1] are out of bounds or do not occur in T). In the alignment of reads, m is in
the hundreds or thousands; when aligning a chromosome m can surpass the millions.

Supported by Fondecyt grant 1-200038, Chile, and Basal Funds FB0001, ANID, Chile.
A preliminary version of this article appeared in Proc. CPM’23 [Navarro 2023].
Author’s addresses: Gonzalo Navarro, Center for Biotechnology and Bioengineering (CeBiB) and Depart-
ment of Computer Science, University of Chile, Chile. gnavarro@dcc.uchile.cl
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1549-6325/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 G. Navarro

If the text is one genome, n can be in the billions, but genomic collections may contain
hundreds to thousands of genomes.

In this paper we are interested in the case where T is known in advance and thus
can be indexed so that, later, we can efficiently find the MEMs of many patterns P in
it. This is the case in the two applications we have mentioned; in the pangenomic case
T can be taken as the concatenation of all the genomes in the collection. Many other
applications of the problem of finding the MEMs of a new string in a static collection of
strings are mentioned by Gusfield [1997], Ohlebusch [2013], and Mäkinen et al. [2015],
including simplified problems like finding longest common substrings and equivalent
problems like computing matching statistics.

Finding MEMs on an indexed text T is a classic problem in stringology and can
be solved in optimal O(m) time using a suffix tree of T [Weiner 1973; McCreight
1976]. Gusfield [1997, Sec. 7.8], for example, shows how to solve the analogous prob-
lem of computing matching statistics (we discuss this equivalence later). In applica-
tions where we handle massive texts T , however, suffix trees are too large to be main-
tained in main memory, even if they use linear space. The suffix tree of a single human
genome, for example, whose length is about 3 billion bases, may require 60GB of mem-
ory with a decent implementation. This rules out suffix trees to represent genomes
on the large bioinformatic collections that are arising, and make researchers look for
alternatives using less space. For example, Ohlebusch et al. [2010] and Belazzougui
et al. [2013] use indices based on the Burrows-Wheeler Transform (BWT) [Burrows
and Wheeler 1994] to compute MEMs in time O(m log σ), where σ is the alphabet size.
Such indices take just a few GBs on a human genome, an order of magnitude below
the space required with suffix trees.

When considering large collections of genomes, however, even such sharp space re-
duction can be insufficient. Projects to sequence 100,000 human genomes have been
completed1, and current projects aim to sequencing millions of human genomes2. In
that scenario, even the BWT-based representations will need petabytes of main mem-
ory to run, or resort to orders of magnitude slower disk storage.

A fortunate situation is that many of the fastest growing text collections, including
genome collections, are highly repetitive [Navarro 2021a]: two genomes of the same
species feature a small percentage of differences only. Several text indices exploiting
repetitiveness to reduce space have appeared [Navarro 2021b]. While probably not
competitive with the BWT-based indices we mentioned when indexing one genome,
those indices may take orders of magnitude less space than the raw data, not just of
its indices, when representing a collection of many genomes.

Those compressed indices support exact pattern matching, that is, they can list all
the positions where P occurs in T . While useful, this is insufficient to efficiently imple-
ment the MEM finding algorithms. This is the problem we address in this paper.

1.1. MEM finding with indices for repetitive text collections
The classic MEM-finding algorithm runs on a suffix tree, and those that run on BWT-
based data structures emulate it. Compressed suffix trees for highly repetitive text
collections do exist, but do not compress that much. Gagie et al. [2020] show how to
simulate a suffix tree within space O(r log n

r), where r is the number of equal-letter
runs in the BWT of T . This representation can simulate the suffix-tree-based algorithm
in time O(m log n

r) if we run it backwards on P , using operations parent and Weiner
link instead of child and suffix link. The problem is the space: while r is an accepted
measure of repetitiveness [Kempa and Kociumaka 2020], it is a weak one [Navarro

1https://www.genomicsengland.co.uk/initiatives/100000-genomes-project
2https://b1mg-project.eu

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:3

2021a; Kempa and Kociumaka 2020], and multiplying it by log n
r makes it grow by an

order of magnitude. Current implementations of compressed suffix trees for repetitive
texts achieve remarkable space, but still use at least 2–4 bits per symbol [Russo et al.
2011; Farruggia et al. 2018; Cáceres and Navarro 2022; Boucher et al. 2021a].

Another trend has been to expand the functionality of a more basic compressed text
index for repetitive text (typically, a compressed suffix array [Manber and Myers 1993])
so as to support specific operations, MEMs in our case. Bannai et al. [2020] show how
to compute matching statistics (from where MEMs are easily extracted in O(m) time)
by extending the RLBWT-index [Mäkinen et al. 2010], in O(m(s + log log n)) time and
O(r) space, with the help of a data structure that provides access to a symbol of T
in time O(s). This can be, for example, the samples of the RLBWT-index, which add
O(n/s) space to the index, or a context-free grammar of T , which provides access in
time s = O(log n) [Bille et al. 2015]. Various implementations of this idea [Rossi et al.
2022; Boucher et al. 2021b; Tatarnikov et al. 2023] showed its practicality on large
genome collections, with indices that are an order of magnitude smaller than the text.

All those results have been obtained on the so-called suffix-based compressed indices
for repetitive collections [Navarro 2021b]. This is natural because those emulate vari-
ants of suffix trees or arrays, which simplifies the problem of simulating the suffix tree
traversal of the classic MEM-finding algorithm. Even a naive search for all the O(m2)
substrings of P can be run in O(m2 log log n) time on those O(r)-sized indices.

The problem is much harder on the so-called parsing-based indices [Navarro 2021b].
Those are potentially smaller than the suffix-based indices because they build on
stronger measures of repetitiveness. For example, the size g of the smallest context-
free grammar that generates T is usually considerably smaller than r [Navarro 2021a].
Because these indices cut T into phrases, even exact pattern matching is complicated
because the occurrences of P can appear in many different forms, and many possible
cuts of P must be tried out (m− 1 in the general case) [Claude et al. 2021]. This makes
the problem of finding MEMs considerably harder. We are only aware of the results
of Gao [2022], who computes matching statistics in time O(m2 logϵ γ + m log n) using
O(δ log n log σ

δ logn) space (for any constant ϵ > 0), or O(m2+m log γ log log γ+m log n) time us-
ing O(γ log γ) further space. Here δ ≤ γ are lower-bounding measures of repetitiveness
[Kempa and Prezza 2018; Christiansen et al. 2020]. The size O(δ log n log σ

δ logn) matches
a tight lower bound on the size of compressed representations of T [Kociumaka et al.
2023], so a structure of this size uses asymptotically optimal space for every n, σ, δ.

1.2. Our contribution
MEM finding is a fundamental bridge between exact and inexact pattern matching.
Inexact matching is essential in many applications, most prominently bioinformatic
ones, that feature huge yet repetitive sequence collections that render standard so-
lutions inapplicable. Our paper provides the first bridge to inexact matching within
optimal δ-bounded space and subquadratic time, thereby offering manageable space
and time simultaneously. We now provide the details.

Let grl be the size of any run-length context-free grammar generating T (those in-
clude and extend classic context-free grammars). The smallest such grammar is of size
grl = O(δ log n log σ

δ logn) [Kociumaka et al. 2023]. We first show that, on an index of size
O(grl), one can compute the MEMs in time O(m2 logϵ grl), for any constant ϵ > 0. This
is done by sliding the window P [i . . j] of the classic algorithm while we simulate the
process of searching for that window with the grammar. The simulation is carefully
crafted to avoid expensive operations, so the time stays proportional to the number of
cuts tried out on a single search for P . The space O(grl) is the least known to support

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 G. Navarro

direct access to T with logarithmic time guarantees [Navarro 2021a], so improving our
space is likely to involve breaking this long-standing barrier as well. Our result essen-
tially matches the first one of Gao [2022], which, although he did not claim so, could
also run within O(grl) space.

We further show that, on a particular grammar featuring local consistency proper-
ties [Kociumaka et al. 2024], we can reduce the time to O(m logm(logm + logϵ n)) by
exploiting the fact that only O(log(j − i + 1)) cuts need to be tried out for P [i . . j], and
using more sophisticated techniques to amortize the costs. This grammar is of size
O(δ log n log σ

δ logn), which is optimal for every n, σ, and δ, and within this space we sharply
break the quadratic time of previous solutions that run in grammar-bounded space.

We note that a recent result [Kempa and Kociumaka 2023] (simultaneous with our
conference version [Navarro 2023]) offers suffix-based functionality within parsing-
based space, by computing suffix array entries within O(δ log n log σ

δ logn) space. While this
result is remarkable in its generality and could be used to find MEMs, the time to
compute suffix array entries is O(log4+ϵ n), which would render a MEM-finding solu-
tion based on it not competitive with our results.

We then turn to consider several relatives of the MEM finding problem, adapting
our main algorithm to solve them:

— A natural generalization of MEMs are k-MEMs, the maximal substrings of P that
appear at least k times in T . Those identify the parts of P that have sufficient support
in T , for example regions of a gene that appear in most genomes of a collection, or
regions in a reference genome that have sufficient coverage in a set of reads. Even
with k given at query time, this problem is also easily solved in O(m) time with a
suffix tree [Navarro 2016], but obtaining the same on grammars is not so direct.
We generalize our results on MEMs to find k-MEMs in time O(km2 logϵ n) within
O(grl) space, or in time O(m logm(logm + k logϵ n)) within O(δ log n log σ

δ logn) space. For
k = ω(log2 n), we provide faster solutions that run in time O(m2 log2+ϵ n) and O(g)

space, or in time O(m logm log2+ϵ n) and O(δ log n log σ
δ logn) space.

— A stricter version of MEMs are MUMs (maximal unique matches), which are maxi-
mal matches that appear exactly once in P and in T . MUMs have various applications
to sequence alignment [Delcher et al. 1999; Mäkinen et al. 2015; Giuliani et al. 2022].
Classical solutions using suffix trees [Sung 2010] and suffix arrays [Ohlebusch 2013]
compute MUMs in O(m + n) time, though they are easily seen to take O(m) time if
P and T are indexed separately. MUMs are also computed in time O(m log σ) using a
BWT-based index [Belazzougui et al. 2013]. The only compressed-space solution for
repetitive texts we know [Giuliani et al. 2022] computes MUMs in O(r) space (plus a
grammar on T) and O(m log n) time. We compute MUMs within the same space and
time complexities as for finding the MEMs.

— A natural generalization of MUMs are rare MEMs [Ohlebusch and Kurtz 2008],
which also have applications in whole genome alignment [Ohlebusch 2013, p. 419].
We say that a MEM is k-rare if it appears at most k times in P and in T , so MUMs are
1-rare MEMs. We show that k-rare MEMs can be computed within the same space
and time of k-MEMs.

We finally show, through applications to problems like data compression and genome
assembly, that our techniques open the door to using parsing-based indices in stringol-
ogy problems that had been addressed only through the more powerful (but more
space-consuming) suffix-based ones.

Compared to the conference version of this paper [Navarro 2023], the key result,
Section 6, was largely rewritten due to simplifications, improvements, and filling con-

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:5

siderable gaps of the conference version. Several minor problems were fixed in other
sections as well. A new set of extensions of the basic result to related problems, as well
as applications of our result, are also included in Sections 7 and 8. Finally, the whole
paper includes more detailed explanations, figures, and a better presentation.

The roadmap of the paper is as follows. In Section 2 we formally define MEMs, the
problem of finding them, and the variants we consider in the paper. We also describe
the algorithms for finding MEMs and how they are adapted to find their variants. In
Section 3 we describe the basic grammar-based index for pattern matching, on which
our simple solution builds. This simple solution, quadratic in m, is described in Sec-
tion 4. Section 5 then describes the more sophisticated locally consistent grammar we
will use, and how the pattern matching problem is solved on it. The more complex, sub-
quadratic, algorithm to find MEMs on locally consistent grammars is then described
in Section 6. This is the central result of the article. Section 7 shows how the tools we
have developed can be used to solve the related problems we have considered: k-MEMs,
MUMs, k-rare MEMs, and so on. We explore some direct and not so direct applications
of our results in Section 8. We conclude and give future work directions in Section 9.

2. MAXIMAL EXACT MATCHES (MEMS) AND RELATIVES
We use the classic notation on strings S[1 . . n], so S[i] is the ith symbol of S, S[i . . j]
denotes S[i] · · ·S[j] (i.e., the concatenation of symbols S[i] to S[j] and the empty string
ε if i > j), S[. . j] = S[1 . . j] and S[i . .] = S[i . . n]. The concatenation of strings S and S′ is
denoted S ·S′. We assume that the reader is familiar with the concepts related to suffix
trees [Weiner 1973; McCreight 1976; Crochemore and Rytter 2002]. In particular, we
will use the RAM model of computation and assume the alphabet is integer, which
enables suffix trees where one can move from a node to a child, by a given alphabet
symbol, in constant time. Those suffix trees can be built in linear time [Farach-Colton
et al. 2000], plus linear expected time to build perfect hash functions on the children
of every node.

We start by defining the problems of finding MEMs and k-MEMs, and how to solve
them on suffix trees.

Definition 2.1. A Maximal Exact Match (MEM) of a pattern P [1 . .m] in a string T
is a nonempty substring P [i . . j] that occurs in T , but in addition

— i = 1 or P [i− 1 . . j] does not occur in T , and
— j = m or P [i . . j + 1] does not occur in T .

Definition 2.2. A k-MEM of a pattern P [1 . .m] in a string T is a nonempty substring
P [i . . j] that occurs at least k times in T , but in addition

— i = 1 or P [i− 1 . . j] occurs fewer than k times in T , and
— j = m or P [i . . j + 1] occurs fewer than k times in T .

Definition 2.3. Given a text T [1 . . n] that can be preprocessed, the MEM-finding
problem is that of, given a pattern P [1 . .m], return the range (i, j) of each of its MEMs
P [i . . j] in T , in increasing order of i (and j). A position where each MEM occurs in T
must also be returned. The k-MEM finding problem is defined analogously, for k given
at query time.

The MEM and k-MEM finding problems can be solved in O(m) time with a suffix tree
of T . Algorithm 1 shows the solution for MEMs, abstracting away some complications
of implementing it on the long edges of suffix trees.

The algorithm slides a window P [i . . j] of variable size along P , maintaining the in-
variants that (i) every MEM ending before j has already been reported, (ii) the longest
suffix of P [. . j] that occurs in T is P [i . . j], and (iii) v is the suffix tree locus of P [i . . j]. It

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 G. Navarro

1 i← 1; j ← 0 ;
2 v ← suffix tree root ;
3 while j < m do
4 if v has no child labeled P [i] then
5 i← i+ 1 ; j ← j + 1 ;
6 end
7 else
8 while j < m and v has a child labeled P [j + 1] do
9 j ← j + 1 ; v ← the child of v by P [j + 1] ;

10 end
11 report (i, j) with some occurrence of v ;
12 while i ≤ j < m and v has no child labeled P [j + 1] do
13 i← i+ 1 ; v ← the suffix link of v ;
14 end
15 end
16 end

Algorithm 1: Finding the MEMs of P [1 . .m] in T using the suffix tree of T .

scan

report report

extend

extend

shorten

Fig. 1. Schematic view of the phases of the MEM finding algorithm on a suffix tree.

iterates along four phases: scanning, extending, reporting, and shortening; see Fig. 1.
The scanning phase (lines 4–6) considers the case i = j+1 (so v is the suffix tree root),
where i and j are increased as long as one cannot descend from v by P [j + 1]. The
extending phase (lines 8–10) starts when we have found a child of the root by P [i] and
then descend from v as much as possible by P [i . . j], increasing j. When we cannot fur-
ther descend from the locus of P [i . . j] by P [j + 1], the invariants imply that P [i . . j] is
a MEM, which is reported in line 11. Finally, the shortening phase (lines 12–14) estab-
lishes the conditions that will allow increasing j again, by increasing i until P [i . . j+1]
occurs in T (or i > j). The tree suffix link is used to move from the locus of P [i . . j] to
that of P [i+ 1 . . j]. Since each step increases i or j, the total time is O(m).

To adapt the algorithm to k-MEMs, we just ask that the suffix tree nodes we reach
by P [j + 1] not only exist, but also that their subtrees contain k leaves at least.

Other notions related to MEMs are the MUMs and the k-rare MEMs.

Definition 2.4. A k-rare MEM of a pattern P [1 . .m] in a string T is a nonempty
substring P [i . . j] that occurs in both P and T , at most k times in both cases. Further,

— i = 1 or P [i− 1 . . j] does not occur in T , and
— j = m or P [i . . j + 1] does not occur in T .

A 1-rare MEM is called a Maximal Unique Match (MUM).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:7

The problem of finding the k-rare MEMs of T is defined analogously as that of finding
the k-MEMs. A variant of Algorithm 1 to find the k-rare MEMs uses also a suffix tree of
P , and traverses both suffix trees in synchronization, maintaining the locus of P [i . . j]
in both suffix trees as it slides the window P [i . . j]. It reports (i, j) in line 11 only if the
number of leaves descending from both loci is at most k. The time is still O(m), now in
expectation due to the need of building the suffix tree of P .

3. GRAMMAR BASED INDICES
Let T [1 . . n] be a text. Grammar-based compression of T consists in replacing it by
a context-free grammar (CFG) that generates only T [Kieffer and Yang 2000]. The
compression ratio is then the size of the grammar divided by the text size.

We consider a slightly more powerful type of grammar called run-length CFG (RL-
CFG), which includes run-length rules of constant size. We disallow rules of the form
A→ ε, which are easily removed without increasing the grammar size.

Definition 3.1. A Run-Length Context-Free Grammar (RLCFG) for T is a context-
free grammar that generates only T , having exactly one rule per nonterminal A. The
rules are of the form A→ B1 · · ·Bt for t > 0 and terminals or nonterminals Bi (this rule
is said to be of size t), and of the form A→ Bt for t > 1 and a terminal or nonterminal
B, which is identical to A → B · · ·B with t copies of B, but is said to be of size 2. The
size of the RLCFG is the sum of the sizes of its rules. A Context-Free Grammar (CFG)
for T is a RLCFG for T that does not use rules of the form A→ Bt.

Clearly, the size grl of the smallest RLCFG for T is always less than or equal to the
size g of the smallest CFG for T . Grammar-based compression (with or without run-
length rules) has proved to be particularly effective on highly repetitive texts [Navarro
2021b]. While finding the smallest grammar is NP-hard [Charikar et al. 2005], heuris-
tics like RePair obtain very good results [Larsson and Moffat 2000].

3.1. The grammar tree
Since they have exactly one rule per nonterminal, the RLCFGs that generate a single
string T have a unique parse tree, defined as follows [Christiansen et al. 2020, Sec. 4].

Definition 3.2. The parse tree of a RLCFG for T has a root labeled with the initial
symbol. If a node is labeled A and its rule is A→ B1 · · ·Bt, then the node has t children
labeled B1, . . . , Bt left to right. If its rule is A→ Bt, then the node has t children labeled
B. The ith left-to-right leaf of the parse tree is thus labeled T [i].

While the parse tree has size Ω(n), a convenient representation of a RLCFG is the
so-called grammar tree, which is of size O(grl) [Christiansen et al. 2020, Sec. 6].

Definition 3.3. The grammar tree of a RLCFG is obtained by pruning its parse tree,
preserving the leftmost internal node labeled A for each nonterminal A, and converting
the others to leaves. Further, for the remaining internal nodes labeled A with rules
A→ Bt we preserve their first child only, replacing the other t− 1 children (which are
leaves) with a single special leaf labeled B[t−1]. If the RLCFG size is grl, its grammar
tree has grl + 1 nodes.

We will sometimes identify a nonterminal with its (only) internal node in the gram-
mar tree. Fig. 2 gives an example.

We call exp(A) the string of terminals to which symbol A expands, that is, exp(a) = a
for terminals a, exp(A) = exp(B1) · · · exp(Bt) if A → B1 · · ·Bt, and exp(A) = exp(B)t

(i.e., t concatenations of exp(B)) if A → Bt. The grammar tree defines a parse (or
partition into substrings called phrases) of T , as follows.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 G. Navarro

_

B

A

C B a

D

D

A B _ C

B a

A_

l a _

s a l

A B _ C _ A e n C d a

e n C d a

l a s a l

Fig. 2. A grammar for T = la sal sala la ensalada and its grammar tree. For example, exp(C) = sala, and
the parsing induced by the grammar is l · a · · s · a · l · · sal · a · · la · e · n · sala · d · a.

Definition 3.4. The grammar tree, with leaves v1, . . . , vk, induces the parse T =
exp(v1) · exp(v2) · · · exp(vk) into phrases exp(vi).

3.2. Primary occurrences
A classic grammar-based index [Claude et al. 2021] divides the occurrences of a pat-
tern P [1 . .m] into primary and secondary, depending on whether they cross a phrase
boundary or lie within a phrase, respectively (if m = 1, its occurrences ending a phrase
are taken as primary). The index builds on the fact that every pattern P has pri-
mary occurrences and that all the secondary ones can be found inside pruned leaves
of nonterminals that contain other occurrences. The mechanism to find the primary
occurrences is based on the parsing, but defined in a particular way to avoid report-
ing multiple times the primary occurrences that cross several phrase boundaries. The
mechanism was extended to RLCFGs [Christiansen et al. 2020, Sec. 6 and App. A].

Definition 3.5. Let X and Y be multisets of strings defined as follows. For each
rule A → B1 · · ·Bt, for each 1 < s ≤ t, the string exp(Bs−1)

rev (i.e., exp(Bs−1) read
backwards) is inserted in X and the string exp(Bs) · · · exp(Bt) is inserted in Y; we say
those two are corresponding strings. Similarly, for each rule A → Bt, exp(B)rev is
inserted in X and exp(B)t−1 is inserted in Y. A grid G has one row per string in Y and
one column per string in X . After lexicographically sorting X and Y, a point (x, y) is
set in G if the xth string of X corresponds to the yth string of Y.

The grammar-based index includes a Patricia tree TX storing the strings of X and
another Patricia tree TY storing the strings of Y [Morrison 1968]. We add some data
to the Patricia tree nodes for convenience. Each Patricia tree node v stores the range
[v1, v2] of the left-to-right ranks of the leaves descending from v. The edges of the Patri-
cia tree nodes can represent strings, so prefixes that end in the middle of an edge that
leads to a node v correspond to virtual nodes u; the range [u1, u2] is the same [v1, v2].
The nodes v also store their string depth |v|, which is also easily computed for virtual
nodes as we descend or ascend in the Patricia tree. Finally, let X = exp(Bs−1)

rev ∈ X
be one string descending from node x ∈ TX , then we store ⟨x⟩ = Bs−1 associated with
x. Similarly, a node y ∈ TY that prefixes exp(Bs) · · · exp(Bt) ∈ Y stores ⟨y⟩ = Bs (from
where we can obtain the subsequent siblings Bs+1 · · ·).

Each primary occurrence consists of a suffix of some string X ∈ X matching P [1 . . r]
corresponding to some string Y ∈ Y whose prefix matches P [r + 1 . .m], for some 1 ≤
r < m (if m = 1, it is just a suffix of X matching P) [Christiansen et al. 2020, Sec. A.4].
Therefore, to find the primary occurrences of P , the index tries out every cutting point
r, and searches TX for P [1 . . r]rev and TY for P [r + 1 . .m]. If both nodes x ∈ TX and
y ∈ TY exist, then the points in the orthogonal range [x1, x2]× [y1, y2] of G represent the
primary occurrences of P cut at position r, and are efficiently found with a geometric
data structure on G. The actual index stores a pointer to the node Bs−1 in the grammar
tree; we instead store the position p of T where exp(Bs−1) ends for such point, so we
know that P occurs in T [p− r + 1 . . p− r +m]. See Fig. 3.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:9

e,8

d,2

l,1

a,
1

n,6

s,3

_,12
_,17

a,10

$

a,1 d,2

_
,1

$

_,1

l,1

l,11

s,16

$

_ _ _

[1,15],0,A3

[4,7],1,C2

[8,8],2,D10

[9,9],8,D7

[10,11],1,B3

[12,12],6,D8

[13,15],3,D2

[10,10],1,B3

[11,11],11,D6

[13,13],20,D2

[14,15],4,D4

[14,14],16,D4

[15,15],6,D9

[1,3],1,A3

[4,5],1,C2

[6,6],2,A2

[7,7],2,B2

[2,2],12,D5

[3,3],17,D3

3[1,1],1,A

_la_ensalada
_sala_la_ensalada
a

a
a_
al
da
ensalada
l

la_ensalada
nsalada
sal_sala_la_ensalada

sala_la_ensalada
salada

1

4

6

10

16

17

22

5

21

11

_

3

7

12

15

2

a
la

s
a
la

s

d e sla
s

nla
s

la
s

_
a
l

a
l

T
Y

X
Y

G

Fig. 3. The grid for the grammar of Fig. 2, and the ranges induced by the search for P = ”a ”. We obtain
the position 2, which is inside the internal node for nonterminal A of the grammar tree, and the position
11, which is inside the internal node for nonterminal D of the grammar tree (starting inside child C). The
occurrence at position 14 is secondary. On the right, the Patricia tree TY . We write [y1, y2], |y|, ⟨y⟩ inside
every node y. We use $ to denote the string terminator.

Since |X |, |Y| ≤ grl, both the Patricia trees and the grid take O(grl) space. The index
also needs to verify the matches of the Patricia trees. For this purpose it uses an O(grl)-
space data structure E that can extract, in O(ℓ) time, any length-ℓ prefix or suffix of
exp(A), for any nonterminal A [Christiansen et al. 2020, Lem 6.6]. If x is a node of TX ,
its corresponding string is the |x|-length reversed suffix of any string between the x1th
and the x2th in X . We can then obtain the string representing node x by using E on
⟨x⟩; analogously using E on ⟨y⟩ for nodes y ∈ TY .

3.3. Secondary occurrences
Each primary occurrence found inside a nonterminal A triggers a number of secondary
occurrences:

(1) Every other occurrence of A in the grammar tree (which is necessarily a leaf) con-
tains an occurrence of P .

(2) The occurrence in A also occurs in the parent of A in the grammar tree.

From each primary occurrence in A, then, we recursively trigger searches to the
next occurrence of A and to the parent of A in the grammar tree. If we keep track of
the offset of the occurrence within exp(B) for each node B in the way, we can report
the position of a secondary occurrence each time we reach the root of the grammar
tree. In the classic CFG-based index, this is shown to amortize to constant time per
secondary occurrence if each nonterminal is the root or appears at least twice in the
grammar (the grammar can be modified to enforce this condition) [Claude et al. 2021].
The mechanism was extended to RLCFGs and to cases where the grammar cannot
be modified [Christiansen et al. 2020, Sec. 6 and A.4]: each node points to its closest
ancestor that is the root or occurs twice in the grammar tree, and the run-length nodes
are treated in a special form to extract all the secondary occurrences they encode.

A particularly relevant observation for this paper [Navarro 2019] is that, on CFGs,
the number of occurrences triggered by a primary occurrence depends only on that
primary occurrence, hence the number can be precomputed and associated with its
point in the grid.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 G. Navarro

4. A QUADRATIC-TIME SOLUTION FOR MEMS
We now present a quadratic-time solution for finding MEMs that works with any RL-
CFG of size grl for T . We use the O(grl)-space data structures described in the previous
section. Since CFGs are also RLCFGs, our algorithm also runs on any CFG.

The generic idea follows that of Algorithm 1, sliding a window P [i . . j] along the
pattern. A trivial solution would be to use the classic search described in Section 3 for
every window P [i . . j], to determine whether it occurs in T . Applied on any CFG of size
g, such solution takes time O((j − i+1)2 + (j − i+1) logϵ g) for any constant ϵ > 0 if we
resort to the classic index [Claude et al. 2021, Cor. 1], because it needs to check every
cutting point inside P [i . . j]. This leads to O(m3 + m2 logϵ g) time complexity. Using
the best current solution for arbitrary RLCFGs [Christiansen et al. 2020, Thm. A.4],
this search takes O((j − i + 1) log n) time, leading to O(m2 log n) total time for finding
the MEMs of P in T within O(grl) space. In this section we will reduce this time only
slightly, but will set the grounds of a much better solution in the next section.

The key aspect of the solution is to avoid redoing the search for every window. In
particular, the trivial solution computes all the cuting points for every window P [i . . j],
while two consecutive windows share most of them. We instead maintain, along the
process, a set of so-called active positions r ∈ [i . . j].

Definition 4.1. A position r ∈ [i . . j] is active on the window P [i . . j] iff there is a
primary occurrence of P [r . . j] in T with the cut P [r] · P [r + 1 . . j].

Note that, since we slide the window P [i . . j] forwards, once a position r becomes
inactive, it will not become active again. Note also that it is possible that r = j and
thus P [r + 1 . . j] = ε, which is needed to find the MEMs of length 1.

4.1. Algorithm
The algorithm maintains invariants (i–ii) of Algorithm 1, that is, when the window is
P [i . . j], all MEMs ending before j have already been reported and the longest suffix
of P [. . j] that occurs in T is P [i . . j]. Instead of the locus of P [i . . j] maintained in Algo-
rithm 1, our algorithm maintains the set R ⊆ [i . . j] of active positions for P [i . . j], and
for each such active position r ∈ R it stores (see the left of Fig. 4):

— The node yr ∈ TY corresponding to P [r + 1 . . j]; this node can be virtual. Note that
[y1r , y

2
r] is the same range of rows in G of the strings of Y that start with P [r + 1 . . j].

— The length ℓr of the maximum prefix of P [r + 1 . .] that prefixes a string in TY ; note
that r is active iff r + ℓr ≥ j, so ℓr can be zero if r = j.

— The node xr ∈ TX corresponding to the longest prefix of P [i . . r]rev that exists in TX ,
and such that there are points in G in the range [x1

r, x
2
r] × [y1r , y

2
r], that is, there is a

primary occurrence in T with the cut P [r− |xr|+1 . . r] ·P [r+1 . . j]. Note again that
xr can be virtual and that [x1

r, x
2
r] is the same range of columns in G of the strings of

X that start with P [r−|xr|+1 . . r]rev. Further, note we are interested only in values
r − |xr|+ 1 ≥ i because, by invariant (ii), P [i− 1 . . j] does not occur in T .

Our algorithm, depicted in Algorithm 2, iterates over j, from 0 to m− 1, and at each
cycle it extends the current window so that it ends in j + 1. When i = j + 1 (including
when we start with i = 1 and j = 0), the window is empty and there are no active
positions. This corresponds to the scanning phase of Algorithm 1; the other phases are
not as clearly separated. Line 3 first sees if we can descend from the root of TX by
P [j+1], so as to start a new nonempty substring P [j+1, j+1]. If this is not possible, it
just increases i and proceeds with the next value of j. Otherwise, there will be active
positions for the window ending at j + 1 and we enter into the main process.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:11

xr

y
r

xr
y

r

+1r j+2j+1

y
rxr

l r

j

T TX Y

i r

| || |

T TX Y

i

Fig. 4. On the left, the general relation between the nodes xr and yr for a general r ∈ [i . . j]: while |xr|
must be at most r − i + 1 but it can be less, |yr| in TY must be exactly j − r; otherwise r becomes inactive.
On the right, the computation we carry out for a new r = j + 1: we compute ℓr , though yr corresponds to
the root of TY , and compute xr . Later, as j grows, yr will descend in TY and xr will possibly ascend in TX .

1 i← 1; R← ∅ ;
2 for j ← 0, . . . ,m− 1 do
3 if i = j + 1 and the root of TX has no child labeled P [j + 1] then i← i+ 1 ;
4 else
5 yj+1 ← root of TY ;
6 v ← descend in TY as much as possible with P [j + 2 . .] ; ℓj+1 ← |v| ;
7 xj+1 ← descend in TX as much as possible with P [i . . j + 1]rev ;
8 rmin ← j + 1 ;
9 for r ∈ R do

10 if r + ℓr ≤ j then R← R \ {r} ;
11 else
12 yr ← child of yr by P [j + 1] ;
13 while range [x1

r, x
2
r]× [y1r , y

2
r] is empty do

xr ← (virtual) parent of xr ;
14 if |xr| = 0 then R← R \ {r} ;
15 else if r − |xr| < rmin − |xrmin

| then rmin ← r ;
16 end
17 end
18 l← rmin − |xrmin |+ 1 ;
19 if l > i then
20 report (i, j) with position T [p− j + i . . p] ;
21 i← l
22 end
23 if i ≤ j + 1 then
24 p← j + 1− rmin + some text position in [x1

rmin
, x2

rmin
]× [y1rmin

, y2rmin
] ;

25 R← R ∪ {j + 1}
26 end
27 end
28 end
29 if i ≤ m then report (i,m) with position T [p−m+ i . . p] ;

Algorithm 2: Finding the MEMs of P [1 . .m] in T using a grammar-based index.

Lines 5–7 first create the new active position r = j+1, with the corresponding yr set
at the root of TY . To compute ℓr, we descend in TY as much as possible by P [r + 1 . .].
To compute xr, we also descend in TX as much as possible by P [i . . r]rev. Those are
classic Patricia tree searches, first reaching a candidate node v by comparing only the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 G. Navarro

[]P ..r rev

rx

rx

r
y

r
y

P r ..j[+1]

P j[+1]

new

new

T
Y

T
X

G

Fig. 5. Recomputing xr in TX when yr descends in TY by P [j + 1]. If the range in G becomes empty, we
move to the parent of xr (twice in this example) until it becomes nonempty again.

branching characters in the trie, and then verifying which ancestor of v is the correct
answer. The verification proceeds by extracting the needed prefix from ⟨v⟩ in TY (at
most ℓr + 1 characters) or the needed suffix in TX (at most |xr|+ 1 characters). See the
right of Fig. 4.

Note that, once we compute ℓr, we know for every later j that we can descend from
yr by P [j + 1] iff r + ℓr ≥ j + 1, and therefore we can compute the child node on the
Patricia tree without accessing the text, both for explicit and virtual nodes yr. Thus,
by computing ℓr once when the active position r is created, in time O(ℓr), we save all
the accesses to T we would need to descend from virtual nodes yr ∈ TY . This would
have been problematic because, when yr is not the root, its text position is not phrase-
aligned, and thus we cannot access its first symbols in constant time using E (recall
Section 3.2).

Lines 8–17 then remove the positions that are no longer active and update the vari-
ables of the surviving ones. Line 10 first removes the active positions r where r+ℓr = j.
On the remaining ones, each yr moves to its child by P [j + 1] in TY in line 12, without
accessing T as explained.

Since moving down with yr may shrink the interval [y1r , y2r], line 13 updates the node
xr accordingly, because the range [x1

r, x
2
r] × [y1r , y

2
r] could now become empty. For every

active position r, as long as there are no points in [x1
r, x

2
r] × [y1r , y

2
r], we move xr to

its parent in TX . This process eventually terminates because, when xr is the root and
[x1

r, x
2
r] is the whole range of columns, we know that there are points in the band [y1r , y

2
r]

because it corresponds to the node yr. Fig. 5 illustrates the process. If xr became the
root, however, r is not active anymore per Definition 4.1, so line 14 removes it from R.

Lines 8, 15, and 18 compute the active position rmin that yields occurrences starting
at the leftmost position in the window, l = rmin−|xrmin |+1. This minimization includes
the active position j + 1 we have not yet inserted in R. It is then necessary to make i
grow to l to re-establish invariant (ii) for P [i . . j + 1]. If l > i, then P [i . . j + 1] does not
occur in T and thus (i, j) was a MEM, by invariant (ii). Lines 20–21 then report the
MEM (i, j) with its text position p (collected in the previous cycle of j) and increase i
to l, since only P [l . . j +1] occurs in T . Increasing i could make it exceed j +1 and thus
make the window empty; otherwise line 24 collects the text position p of some point in
[x1

rmin
, x2

rmin
]× [y1rmin

, y2rmin
], to be reported in case (i, j + 1) turns out later to be a MEM.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:13

Finally, j+1 is inserted in R as an active position. Line 27 reports the final MEM when
j reaches m, which again is correct by invariant (ii).

The geometric queries performed on G in line 13 are called (orthogonal) range empti-
ness queries. These tell whether there is any point in a given rectangle of the grid. The
other geometric queries are those of line 24, where we ask, in case a rectangle is not
empty, for some point within it (and we extract the text position p from the satellite
data of the point). This second query is generally a subproduct of the first, so both can
be seen as the same query.

4.2. Analysis
For each value of j, Algorithm 2 spends O(1) time per active position. Since there are
O(m) active positions at any time, this amounts to O(m2) time.

The exceptions are lines 6, 7, and 13, which are better charged to each active posi-
tion r, from its creation to its inactivation. When r is created, we spend O(m) time to
compute ℓr ≤ m and xr (since |xr| ≤ m). Later, we can decrease |xr| several times, per-
forming one range emptiness query in [x1

r, x
2
r]× [y1r , y

2
r] per decrement of |xr| (in fact we

can go directly to the lowest physical ancestor of xr rather than to its possibly virtual
parent node, as otherwise the range [x1

r, x
2
r] will not change). Thus, we perform overall

O(m2) emptiness queries, up to m per position r along its life. Keeping the variables
associated with active positions allows us amortizing these costs along the process.

A two-dimensional range predecessor query on G can be answered in O(logϵ grl) time
and O(grl) space for any constant ϵ > 0 [Belazzougui and Puglisi 2016]. This query re-
turns the point with largest y coordinate in [x1

r, x
2
r]× [0, y2r]. That point has y coordinate

≥ y1r iff the range [x1
r, x

2
r] × [y1r , y

2
r] is nonempty, so we determine range emptiness and

obtain a point in the range if it exists, all in time O(logϵ grl). The total cost of the MEM
finding algorithm is then O(m2 logϵ grl), dominated by the O(m2) geometric queries.

The grammar data structures we use are those of the classic solution [Claude et al.
2021] (we would not obtain better times in this section by using the more sophisticated
index of Christiansen et al. [2020]). Most of the construction cost is dominated by that
of sorting X and Y in order to build the Patricia trees. Those sets can be sorted in
time O(grl log

2 n) time and O(grl log n) space [Claude et al. 2021, Sec. 3 & 5.1], or in
O(n) time and space using the suffix arrays of T and T rev [Manber and Myers 1993;
Kärkkäinen et al. 2006]. While those construction times have been given for CFGs,
they also apply to RLCFGs because we only introduce two strings for the rules of the
form A → Bt, and use general sorting algorithms. The other main component of the
construction cost is that of the data structures that support the geometric queries on
G, which can be built in time O(grl

√
log grl) [Belazzougui and Puglisi 2016].

THEOREM 4.2. Assume we have a RLCFG of size grl that generates only T [1 . . n].
Then, for any constant ϵ > 0, we can build a data structure of size O(grl) that finds
the MEMs of any given pattern P [1 . .m] in time O(m2 logϵ grl) ⊆ O(m2 logϵ n), returning
an occurrence of each MEM. The data structure can be built in O(grl log

2 n) time and
O(grl log n) space, or in O(n + grl

√
log grl) time and O(n) space. The query process uses

O(m) additional space on top of the data structure.

If we use the smallest RLCFG that generates T , then it holds that grl =
O(δ log n log σ

δ logn) [Navarro 2021a], which matches a lower bound on the space needed to
represent repetitive strings (see next section for details). With this bound, the time of
the algorithm can be written as O(m2(logϵ δ+ log log n)). On the other hand, by using a
range emptiness data structure of size O(grl log log grl) [Chan et al. 2011], the index is
slightly larger but we can find the MEMs in time O(m2 log log grl). As far as we know,
however, the construction time of this data structure is not established.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 G. Navarro

5. INDEXING LOCALLY CONSISTENT GRAMMARS (LCGS)
Before entering into the details of our more sophisticated solution for finding MEMs,
we must introduce some new concepts. A locally consistent grammar (LCG) is a kind of
RLCFG that guarantees that equal substrings of T are covered by similar subtrees of
the parse tree, differing in O(1) nonterminals at each level of both subtrees. LCGs have
been used to produce grammar-based indices that find all the primary occurrences
with only a logarithmic number of cuts in P , thereby obtaining exact pattern searches
in time that grows only linearly with m [Christiansen et al. 2020; Kociumaka et al.
2024]. In this paper we make use of the latest result [Kociumaka et al. 2024]. We
present a lighter informal description; see the original paper for full details.

Since LCGs are not necessarily the smallest RLCFGs that generate a given text T ,
we will use another goal for the space achieved by a LCG [Raskhodnikova et al. 2013;
Christiansen et al. 2020].

Definition 5.1. Given a text T [1 . . n] we define, for every ℓ > 0, Tℓ as the number of
distinct length-ℓ substrings in T , and then

δ = δ(T) = max{Tℓ/ℓ, ℓ > 0}.

The set of values Tℓ is called the substring complexity of T . For (almost) any choice of
text length n, alphabet size σ, and measure δ, there exists family of texts sharing those
parameters where Ω(δ log n log σ

δ logn) space (measured in log(n)-bit words) is necessary to
distinguish any text T of the family from the other members [Kociumaka et al. 2023].
We then aim at using space O(δ log n log σ

δ logn) for a grammar (and for an index), as this
is asymptotically optimal. We note that, for every particular T with parameters n,
σ, and δ, there exists a RLCFG of size grl = O(δ log n log σ

δ logn) generating T [Kociumaka
et al. 2024], so the size of the smallest RLCFG is a finer lower bound than this δ-based
measure. Indeed, there are text families where grl = o(δ log n log σ

δ logn) (e.g., if Tn = (ab)n,
then δ = σ = 2, grl = O(1), and δ log n log σ

δ logn = Θ(log n)). The index of Theorem 4.2 is
then potentially smaller, yet slower, than the one we will develop in this section.

5.1. The grammar
We first define the grammar [Kociumaka et al. 2024, Sec. 3], which is produced level
by level, for O(log n) levels. Let Σ be the alphabet of the text T [1 . . n] and also the set
of grammar terminals. Let Sk be the sequence of terminals and nonterminals forming
level k of the grammar. Let ℓk = (4/3)⌈k/2⌉−1, and let Ak be the set of symbols A of the
previous level k − 1 such that |exp(A)| ≤ ℓk. Only the symbols in Ak can be grouped to
form new nonterminals in level k; the others are said to be “paused” in that level.

Our string at level 0 is S0 = T . To form the string S1, we detect the maximal runs of
(at least 2) equal consecutive symbols in S0 that are in A1 = Σ. For each such run, say
of t symbols a ∈ A1, we create the rule A→ at and replace the run by the nonterminal
A. The resulting sequence after all the runs have been replaced is S1 = rle1(S0), which
contains terminals and nonterminals. To form level 2, we define a function π2 that
reorders at random the distinct symbols of S1, and use it to define blocks in S1. Each
“local minimum” position 0 < i < |S1| such that

π2(S1[i− 1]) > π2(S1[i]) < π2(S1[i+ 1])

terminates a block. We also set ends of blocks at |S1| and before and after every symbol
not in A2 (which is still Σ per the formula of ℓk, so the runs introduced in S1 cannot
yet be grouped). For each distinct resulting block S1[i . . j] we create a new rule A →
S1[i . . j] and replace every occurrence of the same block in S1 by A. The resulting string

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:15

S
0

S
8

S
10

S
20

S
12

l a _ a _ l a e n d aas l a as l as l _ _

A A A DC B C

A A A DCG H

E F

A DCG H

J

K

K I

A l a _

B l _

G C B

H F E

E

F

C s a

D e n s a

d a

l a

J A G C

L

D H

K

I

A2
J K I

Fig. 6. Our LCG built over T = ”la sal sala la ensalada”. We use the lexicographic values of terminals and
nonterminals as their permutation, and show with rectangles the formed blocks (the underscore is taken as
the smallest terminal). We show the levels Sk where the value of ℓk allows changes in the parsing; symbols
that cannot yet be grouped are in dashed rectangles.

is called S2 = bc2(S1). The process continues in the same way for odd and even levels:
Sk = rlek(Sk−1) if k is odd,
Sk = bck(Sk−1) if k is even,

until we reach |Sk| = 1 for some k = O(log n); see Fig. 6. The algorithm is Las Vegas
type, trying out functions πk until obtaining some desired grammar size; otherwise
any functions πk yield a correct grammar of size O(n) and height O(log n). Kociumaka
et al. [2024] prove that, after O(1) attempts (i.e., in O(n) expected time), a RLCFG of
asymptotically optimal size O(δ log n log σ

δ logn) is obtained.
A key property of this grammar is local consistency. Let Bk be the set of all the ends

of level-k blocks:
Bk = {|exp(Sk[. . j])|, 1 ≤ j ≤ |Sk|},

where we are extending exp(·) homomorphically to strings. The cuts of level k that fall
inside the substring at T [i . . j] have the following positions inside T [i . . j]:

Bk(i, j) = {p− i+ 1, p ∈ Bk ∩ [i . . j − 1]}.
Local consistency makes the sets Bk(i, j) and Bk(i′, j′) similar if T [i . . j] = T [i′ . . j′],
except at the extremes: let αk = ⌈8ℓk⌉, then Bk(i+ 2αk, j − αk) = Bk(i′ + 2αk, j

′ − αk).
An additional property of the resulting grammar is that it is locally balanced: the

subtree of the parse tree rooted at nonterminal A is of height O(log |exp(A)|). This is
a consequence of the fact that in Sk there are fewer than 1 + 4(j − i + 1)/ℓk+1 blocks
ending inside T [i . . j], and the height of A is never more than the level k of the string
Sk where it was created.

5.2. Pattern searching
Let us now define which cuts of P we need to try out in order to capture all the primary
occurrences with this grammar [Kociumaka et al. 2024, Sec. 4]. Since ends of blocks in
Bk(i, j) correspond to the phrase endings where a primary occurrence T [i . . j] = P can
be cut, our set of cutting positions must suffice to capture those possible block endings
for all k and for every possible T [i . . j] that matches P . We define

Mk(i, j) = Bk(i, j) \ [2αk+1 + 1 . . j − i− αk+1]

∪ {min(Bk(i, j) ∩ [2αk+1 + 1 . . j − i− αk+1])},

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 G. Navarro

that is, all the cutting points in the extremes, where the different occurrences of T [i . . j]
may differ, and just the leftmost one in the part that is guaranteed to be equal. Over
all the levels, we build

M(i, j) =
⋃
k≥0

Mk(i, j).

The key point [Kociumaka et al. 2024, Lem. 4.2] is that M(i, j) depends only on
the content of T [i . . j] (not on its position in T), so we can define M(P) = M(i, j) if
P = T [i . . j], and this is the same set for every possible occurrence of P in T . Further,
|Mk(i, j)| = O(1) and |M(P)| = O(logm). In operational terms, this means that, at
query time, we parse P in O(m) time using the same rules we defined for T , producing
a parse tree of height O(logm) and finding the O(logm) cutting points M(P).

6. FASTER MEM FINDING USING LCGS
The idea to use the index of the preceding section is to exploit the fact that O(log(j −
i+ 1)) cutting points suffice to find all the primary occurrences of any window P [i . . j].
We will then maintain the parse tree of P [i . . j], and the set M(P [i . . j]), as we slide
the window through P , and use them to maintain the number |R| of active positions
within O(logm). We also need more sophisticated mechanisms to avoid the quadratic
costs in lines 6, 7, and 13 of Algorithm 2.

The new algorithm is shown in Algorithm 3. We first parse the pattern in a way
analogous to the text in line 1, in O(m log logm) time. We then compute in line 2 the
deepest nodes vxr and vyr we can reach in TX and TY by descending with P [. . r]rev and
P [r + 1 . .], respectively; note the depth ℓr of Algorithm 2 is now |vyr|. These deepest
nodes are computed for all 1 ≤ r < m at once because this allows a more efficient
computation, O(m log2 m) time instead of quadratic.

In the main loop, lines 7–8 compute the set M(i, j + 1) = M(P [i . . j + 1]) of O(logm)
cutting points for P [i . . j + 1], in O(m logm) overall time.

Lines 9–22 update R according to this new set. Lines 9–12 remove the active posi-
tions r that do not anymore belong to M(i, j + 1) or do not reach P [j + 1]. The node
yr for the remaining positions is updated by descending in TY ; as in Algorithm 2, this
does not need access to the text because the path towards vyr has been verified. This
takes O(m logm) time.

Lines 13–17 incorporate new active positions in R, which appeared in M(i, j+1) and
reach P [j + 1]; now a position r can enter and leave M(i, j), and hence R, more than
once. Further, unlike in Algorithm 2, r may enter R not only when r = j + 1, so yr is
not necessarily the root of TY . Instead, yr is now found as the highest ancestor of vyr in
TY with string depth ≥ j − r+1. This corresponds to a weighted ancestor query, where
the weights of the nodes y are their string lengths |y|. This query can be solved in time
O(log log n), within O(|TY |) space and preprocessing time [Amir et al. 2007]. As we see
in Section 6.2, this loop executes O(m) times overall, so it contributes O(m log log n) to
the total time.

Finally, since all the ranges [y1r , y
2
r] have potentially changed by including P [j + 1],

lines 19–22 recompute for every r ∈ R the lowest ancestor xr of the deepest node
vxr such that [x1

r, x
2
r] × [y1r , y

2
r] is nonempty. This is not done by successively going to

the parent in TX as in Algorithm 2, but using so-called (orthogonal) range successor
queries. The total time of these queries along the whole process is O(m logm logϵ g),
where ϵ > 0 is any constant. The positions r such that their node xr becomes the root
of TX are removed from R.

Lines 23–34 are as in Algorithm 2; again our range successor queries yield some
point within the nonempty rectangle they find, for line 24. The total query time is then

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:17

1 Parse P , computing all Pk ; (Section 6.1)
2 Compute nodes vxr ∈ TX and vyr ∈ TY for all 1 ≤ r < m ; (Section 6.3)
3 i← 1 ; R← ∅ ;
4 for j ← 0, . . . ,m− 1 do
5 if i = j + 1 and the root of TX has no child labeled P [j + 1] then i← i+ 1 ;
6 else
7 Advance all ik/jk until Pk[ik]/Pk[jk] contain P [i]/P [j + 1] ; (Section 6.1)
8 Compute M(i, j + 1) ; (Section 6.2)
9 for r ∈ R do

10 if r ̸∈M(i, j + 1) or r + |vyr| ≤ j then R← R \ {r} ;
11 else yr ← child of yr by P [j + 1] ;
12 end
13 for r ∈M(i, j + 1) \R (Section 6.2) do
14 if r + |vyr| > j then
15 R← R ∪ {r} ;
16 yr ← weightedAncestor(TY , vyr, j − r + 1) ;
17 end
18 end
19 for r ∈ R do
20 xr ← rangeExpand([vx1

r, vx
2
r], [y

1
r , y

2
r]) ; (Section 6.4)

21 if |xr| = 0 then R← R \ {r} ;
22 end
23 rmin ← argmin{r − |xr|, r ∈ R} ;
24 l← rmin − |xrmin

|+ 1 ;
25 if l > i then
26 report (i, j) with position T [p− j + i . . p] ;
27 i← l ;
28 end
29 if i ≤ j + 1 then
30 p← j + 1− rmin + some text position in [x1

rmin
, x2

rmin
]× [y1rmin

, y2rmin
]

31 end
32 end
33 end
34 if i ≤ m then report (i,m) with position T [p−m+ i . . p] ;

Algorithm 3: Finding the MEMs of P [1 . .m] in T using our LCG-based index.

O(m(log2 m+ log log n+ logm logϵ g)) ⊆ O(m logm(logm+ logϵ n)). We now describe all
the algorithmic components of our solution.

6.1. Parsing the pattern
In this section we preprocess the pattern so that, later, we can efficiently have the
parse tree of every substring P [i . . j] as we slide the window along P . We first parse
the whole P , using the same permutations πk used to parse T , so as to create sequences
Pk analogous to those Sk built when parsing T . We note that |Pk| = O(m/ℓk) [Kociu-
maka et al. 2024, Cor. 3.9], thus the number of levels k is O(logm) and the total size of
the parse is O(m). Kociumaka et al. [2024, Sec. 5.2], modifying the method described
by Christiansen et al. [2020, Sec. 6.2], show how to obtain all the sequences Pk in O(m)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 G. Navarro

time: they start from3 P0 = P and, in every level, use the runs and local minima rules
to define the blocks (Section 5). They use perfect hash functions to find the nontermi-
nals assigned to those blocks when they appeared in T . Those hash functions are built
at indexing time.

As the window P [i . . j] slides over P , we will maintain indices ik and jk for all k, so
that Pk[ik . . jk] is the minimal window of Pk covering P [i . . j] (for k = 0 this is i0 = i
and j0 = j). When j or i increase, we check whether each jk and ik must be increased
as well (for which we maintain |exp(A)| for every nonterminal A).

While the total time to maintain the parse is clearly in O(m logm), it can also be
shown to be O(m). The reason is that, when j (resp., i) increases, we verify from k = 0
upwards if jk (resp., ik) needs to increase in order to minimally cover P [i . . j]. Because
all the cuts in Pk+1 are also in Pk, we can stop as soon as jk (resp., ik) does not increase,
without need to verify the higher values of k. Therefore, each unit of work in Pk+1 can
be charged to a new reached block Pk[jk] (resp., to a just abandoned block Pk[ik]). All
the work then adds up to O(m), the total length of all the strings Pk.

Note that, even if P appears in T , the parsing of P may generate blocks that do not
occur in T , and thus we will not have nonterminals for those in the grammar of T .
We assign arbitrary unused permutation values πk (e.g., larger than all the existing
ones) to those new blocks. Blocks in higher levels containing those new symbols will
be necessarily new as well. As explained in Section 5, the generated grammar is still
of size O(m) and height O(logm). Further, the search algorithm stays correct, because
the new blocks we find and the symbols we assign them form a valid parse of the text
T ′ = T$nP , where $ does not appear elsewhere in T or P : in S1 we would have formed
the run $n, whose length would have paused it until the end of the process, so P would
be parsed separately of T . If our parse of P missed an occurrence in T , then it would
also miss an occurrence in T ′, where all the blocks found in the parsing of the pattern
are known.

We need dynamic data structures to maintain those new symbols we produce, so as
to recognize them if they reappear in Pk. We must store keys (a, ℓ) associated with runs
aℓ of odd levels, and tries for the blocks of the even levels. Since both the values (a, ℓ)
and the number of children in trie nodes belong to discrete universes of size O(m), we
can use dynamic predecessor data structures [Pătraşcu and Thorup 2006] to operate
in time O(log logm) in all cases. Added over the O(m) symbols we process along the
parse, the time to create and search unknown blocks is bounded by O(m log logm).

6.2. Maintaining the cutting points and R

We compute M(P [i . . j]) as follows. Per its definition, Mk(i, j) contains the positions
in P of blocks ending within Pk[ik . . jk − 1] that (i) belong to [i0 . . i0 + 2αk+1 − 1], (ii)
are the leftmost in [i0 + 2αk+1 . . j − 1], or (iii) belong to [j0 − αk+1 . . j0 − 1]. Those are
collected consecutively to the right of Pk[ik] and to the left of Pk[jk]. Further, there are
a constant number of such block endings in every level k, because a segment of length
O(αk+1) contains only O(1) block endings in Pk [Kociumaka et al. 2024, Lem. 3.8].

We merge all the sets Mk(i, j) to form M(i, j) = M(P [i . . j]). This set is eas-
ily created in sorted order and removing duplicates, because all the block ends of
Pk+1[ik+1 . . jk+1 − 1] also exist in Pk[ik . . jk − 1]. Therefore for (i) we must collect the
block ends of P0[i0 . . j0 − 1] covering [i0 . . i0 + 2α1 − 1], then append the block ends of
P1[i1 . . j1 − 1] covering [i0 + 2α1 . . i0 + 2α2 − 1], then the blocks ends of P2[i2 . . j2 − 1]
covering [i0 + 2α2 . . i0 + 2α3 − 1], and so on. For (ii), we collect the sequence of the left-
most block ends in [i0+2αk+1 . .], which is increasing with k. Finally, for (iii) we proceed

3They actually start from P0 = #P$, surrounding P with new symbols, but this was inherited from the
previous parse [Christiansen et al. 2020] and not really needed in theirs [Kociumaka et al. 2024].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:19

P
0

P
1

P
2

P
3

P
4

Fig. 7. A schematic view of a parsing of P , shading the involved ranges Pk[ik . . jk], and the block ends that
make it to Mk(i, j), assuming they happen to be the first 4 and the last 2 in each level. Dashed segments
indicate block ends that are already reported in a lower level.

analogously as for (i), prepending for increasing k the block ends of Pk[ik . . jk − 1] that
are in [j0 − αk+1 + 1 . . j0 − αk]. Since the three sequences are obtained in increasing
order, they can be merged in time O(logm). See Fig. 7.

Just as in Section 6.1, the total time of this computation can be made O(m) by work-
ing only as long as jk (resp., ik) increases, so that the constant amount of work around
ik+1 and jk+1 can be charged to the linear traversal of the window Pk[ik . . jk]. Precisely,
if i0 + 2αk+1 − 1 (resp., j0 − αk+1 − 1) does not coincide with a block end in Pk, then no
further changes will occur in Mk′(i, j) for any k′ ≥ k. Further, the changes that occur
in the lists Mk′(P [i . . j]) for k′ < k are placed within the O(k) first and last positions in
M(i, j), so these updates can be done in O(1) amortized time per increase of j or i. The
number of times the loop of lines 13–18 executes, consequently, is also O(m) along the
whole process.

6.3. Patricia tree searches
As explained, we will find beforehand the deepest nodes vxr ∈ TX for all P [. . r]rev and
vyr ∈ TY for all P [r+1 . .]. We make use of the following result, which was key to obtain
subquadratic times in grammar-based indexing.

LEMMA 6.1 (CHRISTIANSEN ET AL. [2020, LEM. 6.5]). Let S be a set of strings
and assume we have a data structure supporting extraction of any length-ℓ prefix of
strings in S in time fe(ℓ) and computation of a given Karp-Rabin signature κ of any
length-ℓ prefix of strings in S in time fh(ℓ). We can then build a data structure of
size O(|S|) such that, later, given a pattern P [1 . .m] and τ suffixes Q1, . . . , Qτ of P ,
we find the ranges of strings in (the lexicographically-sorted) set S prefixed by each Qi,
in O(m+ τ(fh(m) + logm) + fe(m)) total time.

The Karp-Rabin function κ [Karp and Rabin 1987] used in the lemma guarantees no
collisions between substrings of T , so the resulting searches are always correct for the
suffixes Qi that occur as a prefix in S; for the others the structure correctly answers
Qi does not occur.

When S = X or S = Y, our data structure E provides the required prefix/suffix
extraction in time fe(ℓ) = O(ℓ). We consider next how to compute the signatures κ. We
focus on the more complicated case of Y ∈ Y; the case of X ∈ X is analogous.

6.3.1. Computing signatures. A result of independent interest is that we can obtain
fh(ℓ) = O(log ℓ) time on our grammar. Recall that, on Karp-Rabin signatures, we can
compute in O(1) time one of κ(S ·S′), κ(S), and κ(S′), given the other two [Christiansen
et al. 2020, Sec. A.3].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 G. Navarro

S
0

S
10

S
2

S
11

S
14

S
22

a d e l s_

F D CEBA

H GI J K

L

s al a _

A C

l _

B

G

C

J

A A
[1]

K

se n a

D

l a d a

E F

I

H

L

Fig. 8. On the left, the grammar tree of the LCG of Fig. 7, distinguishing the levels where the nodes are
formed. On the right, the data structure E for prefix access. To compute κ(exp(L)[. . 6]) = κ(“la sal”), we
search the ancestors of L in E for the lowest one with expansion length at least 6, which is J. From J we
go towards the 6th leaf, doing the downward path J → G → B → l in the grammar tree, composing the
signatures of the left siblings in the path: κ(exp(A)), κ(exp(C)), and κ(exp(l)).

LEMMA 6.2. The Karp-Rabin signature κ(Y [. . ℓ]) of any Y ∈ Y can be computed in
time O(log ℓ) with our grammar.

PROOF. We build on the same structure E used for extraction from the root of TY .
The strings in Y are concatenations Y = exp(Bs) · · · exp(Bt) of siblings in rules A →
B1 · · ·Bt of the grammar tree. The node v ∈ TY of Y stores ⟨v⟩ = Bs. Let us first assume
that |exp(Bs)| ≥ ℓ, so the signature can be computed on exp(Bs)[. . ℓ].

Structure E [Gasieniec et al. 2005] is a set of tries on the grammar symbols. The
terminals Σ form the trie roots. If A→ B1 · · ·Bt, then B1 is the parent of A. If A→ Bt,
then B is the parent of A. Any ancestors C,D of Bs in the tries are nodes that descend
from Bs by the leftmost path in the parse tree. The structure E can jump from Bs to
any trie ancestor in constant time. Our grammar is locally balanced: there can be only
one block ending inside exp(Bs[. . ℓ]) at levels k ≥ 1 + 2 log4/3(4ℓ) [Kociumaka et al.
2024, Lem. 3.8]. Thus, the parent node C of the nonterminal D formed at level k has
height d ≤ k + 1 in the parse tree and its expansion exp(C) contains exp(Bs[. . ℓ]) as a
prefix. The node C can then be found in O(log log ℓ) time with exponential search on
the ancestors of Bs in the trie. Therefore, we have that exp(Bs)[. . ℓ] = exp(C)[. . ℓ] and
can compute the signature on C instead. See Fig. 8.

The basic algorithm to compute signatures takes time O(log2 ℓ) [Christiansen et al.
2020, Lem 6.7]. It moves from C towards the leaf L of the parse tree that corresponds
to exp(C)[ℓ]. Let C → C1 · · ·Ct, then it stores every wi(C) = |exp(C1 · · ·Ci)| and every
κi(C) = κ(exp(C1 · · ·Ci)). The algorithm finds, in O(log i) ⊆ O(log ℓ) time, using expo-
nential search, the Ci that is in the path to L (i.e., wi−1 < ℓ ≤ wi), sets ℓ ← ℓ − wi−1,
collects κi−1(C), and continues by Ci. It composes all those κ values towards L to ob-
tain κ(Y [. . ℓ]). In rules C → Ct

1 it obtains i in constant time but spends O(log i) time to
compute κi−1(C) from the stored κ(exp(C1)).

Instead, an O(log n) time algorithm [Christiansen et al. 2020, Thm. A.3]4 replaces
the exponential searches by a more sophisticated scheme, whose cost is the telescoping
sum

∑p
h=1 log(th/th−1) ≤ log tp, where th is the number of children (counting C → Ct

1

4They build on the scheme of Bille et al. [2017] and mention in passing that they could compute the finger-
print in O(log ℓ) time with their grammar, but they had overlooked several issues we fix only now.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:21

b

bc

a

a

cc −1

Fig. 9. Illustration of the suffixes that belong to Qa,b (top). The algorithm only knows that the prefix they
share with Y ends at or after a but does not exceed b. After testing whether they reach c, the suffixes are
moved either to Qa,c−1 (bottom left) or to Qc,b (bottom right), and tested again.

as having t children) of the ancestor at distance h of leaf L. In their case, they start
from the root, which could have tp = n, but if we start it from a node C, its time is
log tp ≤ log |exp(C)|. Another component of the cost is the number of times one leaves
from heavy paths; this is again O(log n) in general but just O(d) = O(log ℓ) if we start
from the position of C in its heavy path.

It could be, however, that exp(C) is as long as n. Because it was formed in Sk, how-
ever, the child D = Ci of C belongs to Ak (only those nonterminals are allowed to form
rules in Sk), and thus by definition |exp(Ci)| ≤ ℓk and log |exp(Ci)| = O(k) = O(log ℓ).
We can then find i and compute κi−1(C) in time O(log i) ⊆ O(log ℓ) with the basic
method [Christiansen et al. 2020, Lem 6.7] and then continue from Ci, where the more
sophisticated technique [Christiansen et al. 2020, Thm. A.3] completes the computa-
tion in another O(log |exp(Ci)|) ⊆ O(log ℓ) time.

In case |exp(Bs)| < ℓ, we find the first s < i ≤ t such that wi(A) ≥ ℓ, and compute
instead the signature of exp(Bi)[. . ℓ−wi−1(A)], to then compose it with the stored val-
ues κs−1(A) and κi−1(A) to obtain the final signature κ(Y [. . ℓ]) = κ(exp(A)[ws−1(A) +
1 . . ws−1(A) + ℓ]).

6.3.2. Batched searches. The search for all the nodes vyr, 1 ≤ r < m, corresponds
to searching TY for every suffix P [r + 1 . .] and returning the deepest reached node.
Note that Lemma 6.1 does not yield the node vyr, but rather its corresponding range
[vy1r , vy

2
r]. By performing a lowest common ancestor (LCA) query on TY from the vy1rth

and vy2rth leaves, we obtain v = lca(vy1r , vy
2
r) (identifying leaves with their ranks). The

answer is indeed vyr = v if |v| = m − r; if m − r < |v| then vyr is the virtual node of
string length m− r on the edge of TY that leads to v. Linear-space LCA data structures
built in linear time and answering lca in O(1) time are well known [Bender et al. 2005].

It seems Lemma 6.1 will perform the desired searches in time O(m logm). The prob-
lem is that the lemma works only if P [r+1 . .] actually prefixes some string in Y. Other-
wise, unlike classical trie searching, it does not yield the maximum prefix of P [r+ 1 . .]
that prefixes some string in Y. We will resort to, essentially, binary searching for those
longest prefixes using Lemma 6.1 as an internal tool.

Assume m is a power of 2 for simplicity; the general case is easily deduced. We define
sets Qa,b of positions, containing those values r such that P [r+1 . . a] is known to prefix
a string in Y and P [r + 1 . . b+ 1] is known not to prefix a string in Y (if r + 1 > a, then
P [r + 1 . . a] = ε prefixes all strings in Y). We start with the set Q1,m = {1, . . . ,m}. To
process a set Qa,b, we search for all the τ = |Qa,b| suffixes {P [r + 1 . . c], r ∈ Qa,b} of
P [. . c] using Lemma 6.1, with c = (a+b+1)/2 (which is always integer because b−a+1
is always a power of 2). The values r where P [r + 1 . . c] is found are moved to Qc,b, and
the others to Qa,c−1 (if r + 1 > c, we directly move r to Qc,b without searching for it).
Whenever P [r + 1 . . c] is found in Y, we will associate with r the corresponding node
vr,c ∈ TY ; when P [r+1 . . c] is not found, we will retain their previous node vr,a instead.
(In the beginning all such nodes are vr,r and equal the root of TY .) See Fig. 9

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 G. Navarro

Note that the values b − a + 1 halve as the elements in Qa,b are separated into two
sets. Any value r is then moved O(logm) times until it ends up in a set of the formQc,c;
at this point we know that the longest prefix of P [r + 1 . .] that is also a prefix in Y is
P [r + 1 . . c], and also know its node vr,c = vyr.

The cost of using Lemma 6.1 has two parts. The cost fh(m) + logm = O(logm) can
be charged to each of the τ suffixes sought, and there is an additional global cost of
m + fe(m) = O(m). Since every suffix P [r + 1 . .] participates O(logm) times in the
lemma, the first cost adds up to O(m log2 m) over all the m− 1 positions r. The second
part is potentially very large, however: the suffixes in Qa,b may start well to the left of
a, thus the pattern is P [. . c], not P [a . . c]; a simple application of the lemma would lead
to a quadratic cost again. We address this problem next.

6.3.3. Smarter substring extractions. To reduce this time, we consider where the O(m)
cost in Lemma 6.1 comes from. A first part refers to the time needed to compute the
Karp-Rabin signatures for all the suffixes inQa,b. This cost is easily maintained within
O(m) overall because we can compute the signatures κ(P [r + 1 . .]), for all 1 ≤ r < m,
in a single pass over P , and then any κ(P [r + 1 . . j]) is obtained in constant time from
κ(P [r + 1 . .]) and κ(P [j + 1 . .]).

The second part of the O(m) cost corresponds to the time fe(m) to verify the longest
suffix among those that passed some previous filters; the rest of the verification is built
on that extracted suffix. Let P [r + 1 . . c] be the longest candidate suffix. If r + 1 > a,
we extract the actual suffix P [r + 1 . . c] regularly in time fe(c − r) = O(b − a) with E ,
because P [r + 1 . .] starts at the root of TY .

Otherwise, r+ 1 ≤ a and thus P [r+ 1 . . a] had been successfully matched before and
we have its node vr,a ∈ TY . As mentioned, the process of Lemma 6.1 performs several
checks before doing the final extraction of the longest suffix surviving the checks. We
will add a new check to those, which can only speed up the process: the candidate node
v for P [r + 1 . . c] must now descend from vr,a in order to be further considered. The
descendance check is performed in constant time by comparing the leaf range [v1, v2]
of v with that of vr,a. If v passes the test, we know that it does start with P [r + 1 . . a],
and then only need to extract P [a+ 1 . . c] from the text, which is of length O(b− a).

This time, however, the string to extract does not start at the root of TY , and thus
it requires a random access to T .5 Say that the node v to verify represents the string
Y = exp(Bs) · · · exp(Bt) ∈ Y, of which we want to extract Y [a− r+1 . . c− r] to compare
it with P [a + 1 . . c]. Recall, as in Lemma 6.2, that the strings in Y are concatenations
Y = exp(Bs) · · · exp(Bt) of consecutive siblings in rules A → B1 · · ·Bt of the grammar
tree (if A → Bt, then the node stores ⟨v⟩ = B[t−1] and we have Bs = B). Let us first
assume that |exp(Bs)| ≥ c− r, so the substring to extract is within exp(Bs)[. . c− r]. We
use again the structure E , now to extract the string in time O(b− a+ log c).

As in Lemma 6.2, we can search in O(log log c) time for the lowest descendant C of
Bs such that |exp(C)| ≥ c− r; its height is d = O(log c) because the grammar is locally
balanced. Since exp(Bs)[. . c−r] = exp(C)[. . c−r], we descend from C to the leaf L in the
parse tree representing exp(C)[a− r+1]. Using the same techniques as in Lemma 6.2,
the time is O(d) = O(log c). From L, exp(C)[a − r + 1 . . c − r] = Y [a − r + 1 . . c − r] is
extracted in time O(c− a) = O(b− a).

5It is tempting to say that, since we had already matched P [r + 1 . . a] from the root of TY , we could some-
how save the state of that extraction so as to continue without paying the overhead of the random access.
However, we might have never extracted the text of the node vr,a explicitly; its verification may have been
carried out as a subproduct of reading a longer suffix, starting before r + 1.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:23

vxr

r
y

rx

v
1

v
2

x x
><

21vx vx

T

X

Y

G

T

Fig. 10. Computing the lowest ancestor xr of vxr in TX for a given node yr ∈ TY . The initial empty area of
vxr is doubly hatched, and it is extended to the hatched nonempty area of xr .

In case |exp(Bs)| < c − r, the node C is not a descendant of Bs but we use C = A
instead. Given the limitation on |exp(Bs)|, the height of Bs is O(log c), and so is the
height of A.

The O(log c) ⊆ O(logm) cost is absorbed by other O(logm) costs we have already
considered. To account for the O(b − a) terms, let us arrange the sets Qa,b into levels;
all the sets with the same difference b − a + 1 belong to the same level. Concretely,
level 0 corresponds to Q1,m, and if Qa,b is of level ℓ, then its halves Qa,c−1 and Qc,b

are of level ℓ + 1. Level ℓ is then formed by 2ℓ sets whose ranges [a, b] partition [1,m].
Therefore, the sum of the b − a values over every level yields m, and adding over all
the O(logm) levels we have that the O(b− a) costs add up to O(m logm).

6.4. Range successor queries
Finally, we face the problem of, given a y-coordinate range [y1r , y

2
r] and the x-coordinate

range [vx1
r, vx

2
r] of the deepest node vxr ∈ TX reached by P [. . r]rev, find the lowest

ancestor xr of vxr such that the range [x1
r, x

2
r]× [y1r , y

2
r] in G is nonempty.

We will solve this query using (orthogonal) range successor queries: given a range
[vx1

r, vx
2
r]× [y1r , y

2
r], we can find the largest value x< ≤ vx1

r such that [x<, vx
2
r]× [y1r , y

2
r]

contains a point, and the smallest value x> ≥ vx2
r such that [vx1

r, x>]× [y1r , y
2
r] contains

a point. Those queries run in O(logϵ g) time on a grid with g points, using an O(g)-space
data structure, for any constant ϵ > 0 defined at construction [Nekrich and Navarro
2012]; its construction time is O(g

√
log g) [Belazzougui and Puglisi 2016].

The lowest ancestor xr of vxr containing some point in [x1
r, x

2
r] × [y1r , y

2
r] must then

satisfy x1
r ≤ x< or x2

r ≥ x>. In the first case, it is v1 = lca(x<, vx
2
r); in the second, it

is v2 = lca(vx1
r, x>). Both v1 and v2 are ancestors of vxr, and thus of each other. The

correct node xr is then the lowest of v1 and v2, which is known from the leaf ranges
stored at the nodes. Fig. 10 illustrates the process.

With this query, line 13 of Algorithm 2 does not cycle; it just performs one O(logϵ g)-
time step. It can then be counted as one of the O(|R|) operations performed in each
cycle j. Since there are O(m logm) such operations, this one adds O(m logm logϵ g) to
the total cost.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 G. Navarro

1 while l ≤ j + 1 do
2 q ← 0 ;
3 for r ∈ R do
4 if l = r − |xr|+ 1 then q ← q + sum of occurrences in [x1

r, x
2
r]× [y1r , y

2
r] ;

5 end
6 if q ≥ k then break ;
7 for r ∈ R do
8 if l = r − |xr|+ 1 then
9 xr ← (virtual) parent of xr ;

10 if |xr| = 0 then R← R \ {r} ;
11 end
12 end
13 l← l + 1
14 end

Algorithm 4: Modification to find the k-MEMs of P [1 . .m] in T using a grammar-
based index.

6.5. The final result
As stated, our time complexities add up to O(m(log2 m + log log n + logm logϵ grl)) for
a RLCFG of size grl. Since in our case grl = O(δ log n log σ

δ logn), we can write the time as
O(m logm(logm + logϵ δ + log log n)). The construction time of all the data structures
we use is dominated by the O(n log n) expected time needed to build the Karp-Rabin
hashes of Lemma 6.1 [Christiansen et al. 2020, Sec. 6.6] (the grammar is built in O(n)
expected time, see Kociumaka et al. [2024, Cor. 3.16]).

THEOREM 6.3. Let T [1 . . n], over an alphabet of size σ, have repetitiveness mea-
sure δ = δ(T). Then, for any constant ϵ > 0, we can build a data structure
of size O(δ log n log σ

δ logn) that finds the MEMs of any given pattern P [1 . .m] in time
O(m logm(logm + logϵ δ + log log n)) ⊆ O(m logm(logm + logϵ n)), returning an occur-
rence of each MEM. The data structure can be built in O(n log n) expected time. The
query process uses O(m) additional space on top of the data structure.

We have assumed m ≤ n throughout. If not, we can just extract T from the grammar,
build a suffix tree on it, and run the classic algorithm, all in O(n+m) = O(m) expected
time (the expectation owes to the suffix tree construction), or O(m logmin(m,σ)) worst-
case time if we do not build perfect hash functions on the children of suffix tree nodes.

7. RELATED PROBLEMS
We now apply our findings to solve some problems related to finding MEMs. In all
cases we will still consider that T is indexed with a grammar, whereas P is given in
online form and we can spend O(m) space at query time.

7.1. Finding k-MEMs
We first extend our results to finding the k-MEMs of P [1 . .m], where k is given at
query time together with P . The idea is to count the number of secondary occurrences
triggered from the primary occurrences we find in the grid. The total number of oc-
currences of P [i . . j] in T is the sum of those numbers over all the points in the areas
[x1

r, x
2
r]× [y1r , y

2
r] corresponding to the active positions r ∈ R.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:25

Algorithm 4 shows the lines we must insert right after line 18 of Algorithm 2 to
account for k-MEMs. In addition, in line 24 of Algorithm 2 we must collect some of the
points reached in line 4 of Algorithm 4, instead of one of rmin.

The new invariants for the window P [i . . j] are that (i) we have reported every k-
MEM ending before j, and that either (ii.1) R = ∅ and no k-MEM of P [. . j] ends at j, or
(ii.2) R ̸= ∅ and the k-MEM of P [. . j] ending at j is (i, j).

The required changes, in Algorithm 4, are that once we compute the leftmost position
l such that P [l . . j + 1] occurs in T , we check in lines 2–5 that there are at least k
occurrences of P [l . . j + 1]. Only the occurrences of the active positions r that reach
position l (i.e., l = r−|xr|+1) are counted. If we count less than k occurrences, then we
must advance l, going to the parent of all those nodes xr that reached l, and removing
the active positions r where xr becomes the root of TX .

The dominant term in the time complexity are the queries that count the sum of
occurrences in orthogonal subgrids [x1

r, x
2
r]× [y1r , y

2
r]. This query is performed |R| times

for every new value of j and of i (or l, in our case). With the bound |R| ≤ m, we have a
total time of O(τm2), where τ is the time of the geometric query.

The counting query can be done by performing up to k orthogonal range successor
queries on [x1

r, x
2
r] × [y1r , y

2
r], finding one primary and zero or more secondary occur-

rences from each point we find in the grid. Note that, although the process to find the
secondary occurrences ensures only amortized time [Claude et al. 2021], we need to
know only the number of such occurrences, so we know we have k occurrences as soon
as we perform k recursive calls along the process of finding the secondary occurrences.
In general, we stop as soon as we add up to k occurrences along all the primary and sec-
ondary occurrences triggered by all the points found in the consecutive range successor
queries on [x1

r, x
2
r]× [y1r , y

2
r]. Since each point brings in at least one primary occurrence,

and the range successor queries take O(logϵ grl) time, we obtain τ = O(k logϵ grl). This
yields a natural generalization of of Theorem 4.2.

THEOREM 7.1. The data structure of Theorem 4.2 can find the k-MEMs of any given
pattern P [1 . .m], for any k > 0 given with P , in time O(km2 logϵ grl).

Algorithm 4 can also be inserted right after line 24 of Algorithm 3. Now the size of
R is bounded by O(logm), which makes Algorithm 4 run in time O(τm logm).

THEOREM 7.2. The data structure of Theorem 6.3 can find the k-MEMs of any
given pattern P [1 . .m], for any k > 0 given with P , in time O(m logm(logm+ k(logϵ δ +
log log n))) ⊆ O(m logm(logm+ k logϵ n)).

These solutions, however, are impractical for large k. We can improve the time of
Theorem 7.1 by restricting our grammar to be a CFG, of size g ≥ grl. On CFGs, the
number of secondary occurrences triggered by each primary occurrence is a function
of the grid point only, and thus it can be precomputed and stored with the points. The
summing query can then be solved directly as a geometric query, in time O(log2+ϵ g)
for any constant ϵ > 0 chosen at index construction time, within O(g) space [Navarro
2019, Sec. 6]. The construction time does not change with respect to the basic solution.
This is then faster than the solution of Theorem 7.1 when k = ω(log2 g).

THEOREM 7.3. Assume we have a CFG of size g that generates only T [1 . . n]. Then,
for any constant ϵ > 0, we can build a data structure of size O(g) that finds the k-MEMs
of any given pattern P [1 . .m], for any k > 0 given with P , in time O(m2 log2+ϵ g). The
data structure can be built in O(g log2 n) time and O(g log n) space, or in O(n+ g

√
log g)

time and O(n) space. The query process uses O(m) additional space on top of the data
structure.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 G. Navarro

The time can drop to O(m2 log g) if we use the O(g log g) space of a faster and larger
geometric representation for g points that answers range counting queries in time
O(log g) [Alstrup et al. 2000]. The structure is built in O(g log2 g) expected time.

Although it is unknown how to set the point values in the grid so that they correctly
sum up the secondary occurrences on a general RLCFG, the problem can be handled
in our particular grammar [Kociumaka et al. 2024, Sec. 6] (see also the technique they
build on [Christiansen et al. 2020, Sec. 7], which has more details). The only obstacle
to use the technique is that it needs to compute the shortest period p = p(i, j) of any
window P [i . . j] we consider (this is the smallest positive value such that P [i . . j − p] =
P [i+ p . . j]). Kociumaka [2018, Thm. 1.1.2] shows how to preprocess P in O(m) time so
that any p(i, j) can be computed in O(logm) time. The total time per counting query is
then τ = O(logm+log2+ϵ g) for a grammar of size g, and the query time is O(τm logm).

THEOREM 7.4. Let T [1 . . n] have alphabet size σ and repetitiveness measure δ =

δ(T). Then, for any constant ϵ > 0, we can build a data structure of size O(δ log n log σ
δ logn)

that finds the k-MEMs of any given pattern P [1 . .m], for any k > 0 given with P , in time
O(m logm(logm + log2+ϵ(δ log n log σ

δ logn))) ⊆ O(m logm log2+ϵ n), returning an occurrence
of each MEM. The data structure can be built in O(n log n) expected time. The query
process uses O(m) additional space on top of the data structure.

Again, by spending O(δ log n log σ
δ logn log n) space, the range counting time drops to

O(log(δ log n log σ
δ logn)) [Kociumaka et al. 2024; Alstrup et al. 2000], and thus the total

query time becomes O(m logm(logm+ log(δ log n log σ
δ logn))) ⊆ O(m logm log n).

7.2. MUMs
As described in Section 2, a MUM between P and T is a maximal substring that ap-
pears exactly once in both P and T . We build on the following observation.

LEMMA 7.5. If P [i . . j] is a MUM between P and T , then it must be a MEM in T .

PROOF. If P [i . . j] is a MUM, then it appears exactly once in P and T . If it is not a
MEM in T , then either P [i− 1 . . j] or P [i . . j + 1] appear in T as well, and because they
cannot be more frequent than P [i . . j], they appear once both in P and in T . Therefore,
P [i . . j] is not maximal.

Our general strategy is then to find the MEMs of P in T and filter out those that
are not MUMs. We build the suffix tree of P in O(m) worst-case time [Farach-Colton
et al. 2000], without building the perfect hash functions on the children of suffix tree
nodes (the lack of perfect hashing will pose an O(m logm) time overhead to the algo-
rithms, which will be absorbed by higher complexities). Then we run Algorithm 2+4
(i.e., adding to Algorithm 2 the lines of Algorithm 4) for finding k-MEMs with k = 1.
This seems to be the same as finding MEMs, but we will modify the k-MEM finding
algorithm soon.

At the same time, we traverse the suffix tree of P , maintaining the locus of P [i . . j] by
using the child and suffix link operations, just as described in Algorithm 1. This time,
however, we run on the suffix tree of P itself, not of T . Further, we decide whether to
increase j (i.e., go to the child of the current suffix tree node) or to increase i (i.e., go to
the suffix link of the current node) following what Algorithm 2+4 does.

We use the implementation of Algorithm 4 used to prove Theorem 7.1. This imple-
mentation does not really compute the precise number q of occurrences of P [i . . j+1] in
T , but it works just enough to determine if q < k or q ≥ k (for us, q = 0 or q = 1). This
allows it to run in time proportional to k. We slightly extend its counting process until

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:27

determining whether q = 0, q = 1, or q ≥ 2, so that q = 1 determines that P [i . . j + 1]
appears exactly once in T . We then proceed as for k-MEMs with k = 1, but in case q ≥ 2
we record an invalid position in p.

When it comes to report (i, j) and its occurrence T [p − j + i . . p], we do so only if, in
addition (a) p is a valid position, which means P [i . . j] appears only once in T , and (b)
the locus of P [i . . j] in its suffix tree is (on an edge to) a leaf, which means that P [i . . j]
appears only once in P . We apply the same filter when reporting (i,m) in the last line
of Algorithm 2.

In the same way we have combined Algorithms 2 and 4, we can combine Algorithms 3
and 4. This yields the following result.

THEOREM 7.6. The data structures of Theorems 4.2 and 6.3 can find the MUMs of
T and any given pattern P [1 . .m], in the same asymptotic time they require to find the
MEMs. The query process uses O(m) additional space.

7.3. Rare MEMs
A MEM of P in T is k-rare if it appears in P and T , yet at most k times; MUMs are
1-rare MEMs. We can generalize the method of Section 7.2 so that we still look for k-
MEMs with k = 1, but work enough on the counting stage so as to determine whether
q = 0, 1 ≤ q ≤ k, or q > k. We store an invalid position p when q > k; otherwise we
proceed as for k = 1. When it comes to report (i, j), we do so only if (a) position p is valid
(i.e., P [i . . j] appears at most k times in T) and (b) the locus of P [i . . j] in the suffix tree
of v is (on the edge to) a node v having at most k descendant leaves (for which we store
the number of leaves that descend from the suffix tree nodes, which can be computed
in O(m) time once the suffix tree is built).

By counting the occurrences in different ways, we obtain the following result.

THEOREM 7.7. The data structures of Theorems 7.1, 7.2, 7.3, and 7.4 can find the
k-rare MEMs of T and any given pattern P [1 . .m], in the same asymptotic time they
require to find the k-MEMs of P in T . The query process uses O(m) additional space.

8. APPLICATIONS
We now describe other popular problems related to finding MEMs our results impact.

8.1. Matching statistics
A problem directly related to finding MEMs is that of computing the so-called match-
ing statistics, which we already discussed in the Introduction. While first defined by
Chang and Lawler [1994] for approximate string matching, they have a number of
bioinformatic applications like estimating the distance between genomes for phyloge-
netic reconstruction, estimating cross-entropy, computing string kernels, string min-
ing, and species estimation, to name a few [Ohlebusch 2013; Mäkinen et al. 2015].

Definition 8.1. Given a text T [1 . . n] that can be preprocessed, the matching statis-
tics problem is that of, given a pattern P [1 . .m], return the length M [q] of the longest
prefix of P [q . .] that occurs in T , for every 1 ≤ q ≤ m. A position where each such
longest prefix occurs must be given for each q.

Given a solution to the MEM finding problem, (i1, j1), . . . , (is, js) with increasing
values ir (and jr), we compute the matching statistics as follows. Set all M [q] to
zero and then traverse the tuples (ir, jr) in order. Set M [q] = jr − q + 1 for all
ir ≤ q ≤ min(jr, ir+1 − 1), assuming is+1 = m + 1. The occurrence of each M [q] > 0
is that of its MEM (ir, jr) shifted by q − ir. Conversely, given the matching statistics
M [q] for 1 ≤ q ≤ m, we obtain the MEMs by reporting, for increasing i, every pair
(i, i+M [i]− 1) such that i = 1 or M [i] ≥M [i− 1], and M [i] > 0.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 G. Navarro

Therefore, both problems are interchangeable as one output can be converted to the
other in optimal O(m) time. In particular, our results allow computing the matching
statistics of a patterm P [1 . .m] with respect to a text T [1 . . n] that is indexed in com-
pressed form, within the same space and times seen in Theorems 4.2 and 6.3.

8.2. MEMs against a collection of texts
Some applications, especially related to multiple alignment, consider computing the
MEMs and k-MEMs between a pattern P and a collection of texts T1, . . . , Tτ [Gusfield
1997, Sec. 7.6], and even more prominently, the MUMs [Mäkinen et al. 2015, Ch. 11].

Definition 8.2. The k-MEMs between P and a collection of texts T1, . . . , Tτ are the
maximal substrings of P that appear at least k times in each of the texts Tt, for 1 ≤
t ≤ τ . The case k = 1 corresponds to the MEMs between P and T1, . . . , Tτ . The k-rare
MEMs are the maximal substrings of P that appear between 1 and k times, both in P
and in each text Tt, for 1 ≤ t ≤ τ . The case k = 1 corresponds to MUMs.

While we only consider finding the MEMs and k-MEMs between a pattern P and a
text T , assume that we have the texts Tt in compressed form and we compute the list
of (k-)MEMs Mt = (it1, j

t
1), . . . , (i

t
st , j

t
st) between P and every Tt. Those lists come sorted

by increasing it and by increasing jt. We then compute the (k-)MEMs between P and
the collection by running a segment intersection algorithm on the lists Mt: we want
the maximal segments that are included in a segment of each Mt.

We set cursors ct = 1 for all t, and compute i = max{itct , 1 ≤ t ≤ τ} and
j = min{jtct , 1 ≤ t ≤ τ}. If i ≤ j we report the (k-)MEM (i, j). We then increment
the cursor(s) ct for which jtct = j, and continue until exhausting some of the lists. By
using a max-heap to maintain the values itct and a min-heap to maintain the values
jtct , the whole process takes time O(N log τ), where N is the total length of the lists Mt.
This complexity is negligible compared to that of computing the (k-)MEMs.

Finding MUMs and k-rare MEMs between P and texts T1, . . . , Tτ requires interven-
ing the combined Algorithm 3+4 we developed in Sections 7.2 and 7.3. Concretely, we
run in synchronization the algorithm for every Tt, apart from moving in the suffix tree
of P . We maintain the same interval P [i . . j] on all the texts, skipping the value of
j + 1 if the condition in line 5 of Algorithm 3 is true for any of the texts. Further, the
value l computed in line 24 must correspond to the maximum l over all the texts. For
that value of l, we will determine if any of the texts Tt has more than k occurrences of
P [i . . j], and if so, make the text position invalid so that this window is not reported.
The asymptotic cost is then the same as the sum of the costs of computing MUMs of
k-rare MEMs between P and every text Tt.

A weakness of this approach is that the texts Tt must be indexed separately, which
does not exploit their joint repetitiveness. If all the texts are indexed together, even
the problem of determining if a given pattern appears in all the documents is unex-
plored for grammar-based indices (whereas it is easy to solve with suffix-based ones
[Sadakane 2007], by counting in how many texts the pattern appears).

8.3. Relative Lempel-Ziv compression
Relative Lempel-Ziv (RLZ) [Kuruppu et al. 2010] is a compression algorithm that
first chooses a reference text R, and then compresses texts T by representing them
as minimum-length sequences of substrings of R. That is, RLZ represents T in
O(z) space by choosing a minimal number z of substrings of R such that T =
R[a1 . . b1] · · ·R[az . . bz].6 RLZ has proved particularly effective to compress collections

6We assume R contains every alphabet symbol, so T can always be covered by substrings of R.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:29

where every text is relatively close to each other, such as in genome collections of the
same species [Kuruppu et al. 2010] and web pages [Hoobin et al. 2011].

The compression algorithm traverses T [1 . . n] left to right, in streaming mode. If it
has already compressed T [1 . . i − 1], it finds the largest j ∈ [i . . n] such that T [i . . j]
occurs in R, say at R[a . . b] = T [i . . j], and outputs the pair (a, b). Finding those longest
prefixes T [i . . j] of T [i . . n] in R can be done in time O(j−i+1) with a suffix tree of R, for
a total expected compression time of O(n). More space-efficient implementations are
possible with compressed suffix arrays, where the matching of T [i . .] can proceed left-
to-right until finding a mismatch. Using a grammar-compressed index for R, instead,
is difficult because it is designed to match a fixed T [i . . j] with j known beforehand.

An issue with RLZ is how to choose the reference R. In genome collections of the
same species, choosing one random genome is efficient enough, but there are more
complex situations, such as metagenomic collections or other versioning scenarios. The
general premise is to aim for a relatively small R, especially because we need it in-
dexed in main memory in order to efficiently compress T . Various techniques to choose
or generate a good reference have been studied [Kuruppu et al. 2011a; 2011b; Liao
et al. 2016; Gagie et al. 2016]. On the other hand, however, the larger R, the better
compression we achieve in general, because we can potentially choose longer phrases.

With our techniques, we could represent R in grammar-compressed form, thus R
could be a much larger, repetitive, set of texts without compromising the main memory
space used by the index of R. For example, we could choose the whole set of genomes
in a collection as the reference, so as to compress a new genome T by choosing pieces
from the closest possible individuals. Our MEM-finding technique is precisely what we
need to simulate the searches for prefixes T [i . .] with unknown ending positions.

To compress T , we find the MEMs of T in R, (i1, j1), . . . , (is, js). By assuming as
before that R contains every alphabet symbol, it holds that i1 = 1, ir+1 ≤ jr for all r,
and js = n. The minimum coverage of T then contains z ≤ s substrings, which can be
built from the MEMs in O(s) time as follows: set cursors at c = 1 and p = 1. Output
pair (p, jc). Set p = jc + 1. Increment c as long as ic ≤ p. Continue until p = n + 1. We
can then compress T in time O(n log n(log n+logϵ r)), where r = |R|, using Theorem 6.3;
the time to cover T with the MEMs is asymptotically irrelevant.

8.4. All-pairs suffix-prefix matches
When assembling a genome from a set of reads without the help of a reference genome
(a.k.a., de novo fragment assembly), one relevant technique is to form a so-called “over-
lap graph”, where every node is a read and there is an edge of weight ℓ from node u to
node v iff the ℓ-length suffix of the read of u equals the ℓ-length prefix of the read of v.
One then aims, in broad terms, to traverse the overlap graph in a way that maximizes
the weights and collects all the reads [Setubal and Meidanis 1997, Ch. 4] [Gusfield
1997, Sec. 7.10]. A similar technique is used for transcript assembly [Mäkinen et al.
2015, Ch. 15]. To build the overlap graph, one needs to find all the suffix-prefix matches
between every pair of reads, disregarding those whose lengths are below a significance
threshold ℓmin. This problem, known as the “all-pairs suffix-prefix matching problem”,
can be solved in optimal time O(n + e), where n is the total length of the reads and e
is the number of edges in the resulting graph, yet it needs to build a suffix tree on the
concatenation of the reads [Mäkinen et al. 2015, Sec. 8.4.4] [Gusfield 1997, Sec. 7.10.1],
or an enhanced suffix array [Ohlebusch 2013, Sec. 5.6.7]. If one uses compressed suffix
arrays, then the time complexity becomes O(n log σ + e) [Ohlebusch 2013, Sec. 7.7.3].

Since collections of reads with high coverage are repetitive, we can use our LCG of
Section 5 to index the whole sequence T [1 . . n] of reads, using a special symbol $ as a
terminator for each. In order to find all the suffix-prefix matches in the set, we process
each read P [1 . .m] against T . We run a specialized version of Algorithm 3, only as long

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 G. Navarro

as i = 1 (because we are interested in the prefixes of P). Since the whole P occurs in
T , however, it is not necessary to check for this condition; we will just run the loop of
line 4 over lines 7–22, processing each whole read P .

For each iteration of the loop, where we have processed the window P [1 . . j] and now
consider j+1, we first simulate that P [j+1] = $, run the lines 7–22, and report all the
occurrences of P [. . j] · $ in T . That is, we collect all the primary occurrences and also
follow all the secondary occurrences for all active points r such that r − |xr| + 1 = 1
(i.e., they match P from position 1). Each such occurrence corresponds to the suffix of
some read matching the prefix P [. . j].7 This simulation is done only if j ≥ ℓmin.

After reporting the matches, we undo the updates performed in lines 7–22 when
simulating that P [j + 1] = $, and redo lines 7–22 for the actual value of P [j + 1].

Undoing is implemented by just maintaining a copy of the previous set R and all
the values jk, xr, and yr, re-stating them after the simulation. The time for simulating
P [j + 1] = $, undoing the simulation, and then running again with the actual value,
adds up to O(logm logϵ n). Considering the preprocessing of lines 1–2 and adding over
all the reads, the total time is in O(n logm(logm + logϵ n)), where m is the average
length of a read,8 plus the number of suffix-prefix matches found. The working space
on top of the index is just O(m).

9. CONCLUSIONS
We have obtained improved results, including the first subquadratic algorithm, to find
MEMs on parsing-based indices, which are the most promising in terms of space for
highly repetitive text collections. While suffix-based indices can preprocess T [1 . . n]
to find the MEMs of P [1 . .m] in T in time O(m log log n), their space is Ω(r), where
r (the number of runs in the BWT of T) is not such a strong measure of repetitive-
ness [Navarro 2021b]. Our first result is a data structure of size O(grl), where grl is
the size of the smallest RLCFG that generates T . This is currently the best possi-
ble space for any structure able to access T with relevant time guarantees [Navarro
2021b]. Our structure finds the MEMs in O(m2 logϵ n) time for any constant ϵ > 0.
This is very similar to the time of previous work [Gao 2022], which could also run
in O(grl) space. Within O(δ log n log σ

δ logn) space, we obtain the first subquadratic time,
O(m logm(logm + logϵ n)), on a particular RLCFG that has local consistency proper-
ties. This space is optimal for every n, σ, and δ, though grl is always O(δ log n log σ

δ logn) and
can be o(δ log n log σ

δ logn) in some text families [Kociumaka et al. 2023]. The MEM finding
algorithm is adapted to find the MUMs between P and T within the same space and
time complexities.

We also considered the extended problem of computing the k-MEMs of P , with k
given at query time. The above complexities are generalized by multiplying the logϵ n
terms by k, while retaining the space. For larger k, we obtain O(m2 log2+ϵ n) time
within space O(g) given a CFG of size g that generates T , and O(m logm log2+ϵ n) time
within space O(δ log n log σ

δ logn). We find k-rare MEMs, which generalize MUMs, within the
same space and time complexities of k-MEMs.

Our techniques are presented on a particular locally consistent grammar [Kociu-
maka et al. 2024] that yields the best complexities, but they would work on others
too (possibly without the same worst-case time guarantees). We believe they could be
successfully implemented on practical constructions of CFGs [Claude et al. 2021] built
with RePair [Larsson and Moffat 2000] or of locally consistent grammars based on in-

7Since P occurs in T , there will be a spurious match with itself, which is easily filtered out when found.
8This is because logm and log2 m are convex functions of m.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:31

duced suffix sorting [Dı́az-Domı́nguez et al. 2021; Nunes et al. 2022]. Further, even
lacking theoretical guarantees, the algorithm for arbitrary RLCFGs will probably be
competitive if implemented on Lempel-Ziv based indices [Kreft and Navarro 2013; Fer-
rada et al. 2018], which are considerably smaller than those based on grammars.

As we have shown in various applications, our development opens the door to run-
ning, on parsing-based indices, algorithms that were reserved to suffix-based ones.
This is because the classic exact pattern matching based on cutting points requires
that the pattern to match is completely specified from the beginning, therefore exclud-
ing problems where one must match parts of the pattern as far as possible. The holy
grail would be to simulate the suffix tree functionality within O(g) space, where g is
the size of the best grammar, from some relevant family, that represents the text, for
example g = O(δ log n log σ

δ logn) with our locally-consistent grammars. Currently we can do
this only in O(r log n

r) space with the r-index [Gagie et al. 2020], which is an O(log2 n)
factor away from δ-optimal space [Kempa and Kociumaka 2020]. A very important
step towards this goal is the recent index [Kempa and Kociumaka 2023] that com-
putes suffix array entries (and their inverses) in O(δ log n log σ

δ logn) space and O(log4+ϵ n)

time. Reducing the degree of this polylog is however essential to achieve results that
are also practical.

Acknowledgements
We thank Tatiana Starikovskaya, Tomasz Kociumaka, and Adrián Goga for useful
discussions, as well as a reviewer for careful notes.

REFERENCES
ALSTRUP, S., BRODAL, G., AND RAUHE, T. 2000. New data structures for orthogonal range searching. In

Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS). 198–207.
AMIR, A., LANDAU, G. M., LEWENSTEIN, M., AND SOKOL, D. 2007. Dynamic text and static pattern match-

ing. ACM Transactions on Algorithms 3, 2, article 19.
BANNAI, H., GAGIE, T., AND I, T. 2020. Refining the r-index. Theoretical Computer Science 812, 96–108.
BELAZZOUGUI, D., CUNIAL, F., KÄRKKÄINEN, J., AND MÄKINEN, V. 2013. Versatile succinct representa-

tions of the bidirectional Burrows-Wheeler Transform. In Proc. 21st Annual European Symposium on
Algorithms (ESA). 133–144.

BELAZZOUGUI, D. AND PUGLISI, S. J. 2016. Range predecessor and Lempel-Ziv parsing. In Proc. 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2053–2071.

BENDER, M. A., FARACH-COLTON, M., PEMMASANI, G., SKIENA, S., AND SUMAZIN, P. 2005. Lowest com-
mon ancestors in trees and directed acyclic graphs. Journal of Algorithms 57, 2, 75–94.

BILLE, P., GØRTZ, I. L., CORDING, P. H., SACH, B., VILDHØJ, H. ., AND VIND, S. 2017. Fingerprints in
compressed strings. Journal of Computer and System Sciences 86, 171–180.

BILLE, P., LANDAU, G. M., RAMAN, R., SADAKANE, K., RAO, S. S., AND WEIMANN, O. 2015. Random access
to grammar-compressed strings and trees. SIAM Journal on Computing 44, 3, 513–539.

BOUCHER, C., CVACHO, O., GAGIE, T., MANZINI, J. H. G., NAVARRO, G., AND ROSSI, M. 2021a. PFP
compressed suffix trees. In Proc. 23rd Workshop on Algorithm Engineering and Experiments (ALENEX).
60–72.

BOUCHER, C., GAGIE, T., I, T., KÖPPL, D., LANGMEAD, B., MANZINI, G., NAVARRO, G., PACHECO, A., AND
ROSSI, M. 2021b. PHONI: Streamed matching statistics with multi-genome references. In Proc. 31th
Data Compression Conference (DCC). 193–202.

BURROWS, M. AND WHEELER, D. 1994. A block sorting lossless data compression algorithm. Tech. Rep.
124, Digital Equipment Corporation.

CÁCERES, M. AND NAVARRO, G. 2022. Faster repetition-aware compressed suffix trees based on block trees.
Information and Computation 285B, article 104749.

CHAN, T. M., LARSEN, K. G., AND PATRASCU, M. 2011. Orthogonal range searching on the RAM, revisited.
In Proc. 27th ACM Symposium on Computational Geometry (SoCG). 1–10.

CHANG, W. AND LAWLER, E. 1994. Sublinear approximate string matching and biological applications.
Algorithmica 12, 4/5, 327–344.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 G. Navarro

CHARIKAR, M., LEHMAN, E., LIU, D., PANIGRAHY, R., PRABHAKARAN, M., SAHAI, A., AND SHELAT, A.
2005. The smallest grammar problem. IEEE Transactions on Information Theory 51, 7, 2554–2576.

CHRISTIANSEN, A. R., ETTIENNE, M. B., KOCIUMAKA, T., NAVARRO, G., AND PREZZA, N. 2020. Optimal-
time dictionary-compressed indexes. ACM Transactions on Algorithms 17, 1, article 8.

CLAUDE, F., NAVARRO, G., AND PACHECO, A. 2021. Grammar-compressed indexes with logarithmic search
time. Journal of Computer and System Sciences 118, 53–74.

CROCHEMORE, M. AND RYTTER, W. 2002. Jewels of Stringology. World Scientific.
DELCHER, A. L., KASIF, S., FLEISHMANN, R., PETERSON, J., WHITE, O., AND SALZBERG, S. 1999. Align-

ment of whole genomes. Nucleic Acids Research 27, 11, 2369–2376.
D ÍAZ-DOMÍNGUEZ, D., NAVARRO, G., AND PACHECO, A. 2021. An LMS-based grammar self-index with local

consistency properties. In Proc. 28th International Symposium on String Processing and Information
Retrieval (SPIRE). 100–113.

FARACH-COLTON, M., FERRAGINA, P., AND MUTHUKRISHNAN, S. 2000. On the sorting-complexity of suffix
tree construction. Journal of the ACM 47, 6, 987–1011.

FARRUGGIA, A., GAGIE, T., NAVARRO, G., PUGLISI, S. J., AND SIRÉN, J. 2018. Relative suffix trees. The
Computer Journal 61, 5, 773–788.

FERRADA, H., KEMPA, D., AND PUGLISI, S. J. 2018. Hybrid indexing revisited. In Proc. 20th Workshop on
Algorithm Engineering and Experiments (ALENEX). 1–8.

GAGIE, T., NAVARRO, G., AND PREZZA, N. 2020. Fully-functional suffix trees and optimal text searching in
BWT-runs bounded space. Journal of the ACM 67, 1, article 2.

GAGIE, T., PUGLISI, S. J., AND VALENZUELA, D. 2016. Analyzing Relative Lempel-Ziv reference construc-
tion. In Proc. 23rd International Symposium on String Processing and Information Retrieval. 160–165.

GAO, Y. 2022. Computing matching statistics on repetitive texts. In Proc. 32nd Data Compression Conference
(DCC). 73–82.

GASIENIEC, L., KOLPAKOV, R., POTAPOV, I., AND SANT, P. 2005. Real-time traversal in grammar-based
compressed files. In Proc. 15th Data Compression Conference (DCC). 458–458.

GIULIANI, S., ROMANA, G., AND ROSSI, M. 2022. Computing Maximal Unique Matches with the r-Index.
In Proc. 20th International Symposium on Experimental Algorithms (SEA). 22:1–22:16.

GUSFIELD, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press.

HOOBIN, C., PUGLISI, S. J., AND ZOBEL, J. 2011. Relative Lempel-Ziv factorization for efficient storage and
retrieval of web collections. Proceedings of the VLDB Endowment 5, 3, 265–273.

KÄRKKÄINEN, J., SANDERS, P., AND BURKHARDT, S. 2006. Linear work suffix array construction. Journal
of the ACM 53, 6, 918–936.

KARP, R. M. AND RABIN, M. O. 1987. Efficient randomized pattern-matching algorithms. IBM Journal of
Research and Development 2, 249–260.

KEMPA, D. AND KOCIUMAKA, T. 2020. Resolution of the Burrows-Wheeler Transform conjecture. In Proc.
61st IEEE Annual Symposium on Foundations of Computer Science (FOCS). 1002–1013.

KEMPA, D. AND KOCIUMAKA, T. 2023. Collapsing the hierarchy of compressed data structures: Suffix ar-
rays in optimal compressed space. In Proc. 64th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 1877–1886.

KEMPA, D. AND PREZZA, N. 2018. At the roots of dictionary compression: String attractors. In Proc. 50th
Annual ACM Symposium on the Theory of Computing (STOC). 827–840.

KIEFFER, J. C. AND YANG, E.-H. 2000. Grammar-based codes: A new class of universal lossless source
codes. IEEE Transactions on Information Theory 46, 3, 737–754.

KOCIUMAKA, T. 2018. Efficient data structures for internal queries in texts. Ph.D. thesis, University of
Warsaw.

KOCIUMAKA, T., NAVARRO, G., AND OLIVARES, F. 2024. Near-optimal search time in δ-optimal space, and
vice versa. Algorithmica 86, 1031–1056.

KOCIUMAKA, T., NAVARRO, G., AND PREZZA, N. 2023. Toward a definitive compressibility measure for
repetitive sequences. IEEE Transactions on Information Theory 69, 4, 2074–2092.

KREFT, S. AND NAVARRO, G. 2013. On compressing and indexing repetitive sequences. Theoretical Com-
puter Science 483, 115–133.

KURUPPU, S., PUGLISI, S. J., AND ZOBEL, J. 2010. Relative Lempel-Ziv compression of genomes for large-
scale storage and retrieval. In Proc. 17th International Symposium on String Processing and Informa-
tion Retrieval (SPIRE). 201–206.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Computing MEMs and Relatives on Repetitive Text Collections A:33

KURUPPU, S., PUGLISI, S. J., AND ZOBEL, J. 2011a. Optimized Relative Lempel-Ziv compression of
genomes. In Proc 34th Australasian Computer Science Conference (ACSC). Australian Computer So-
ciety, 91–98.

KURUPPU, S., PUGLISI, S. J., AND ZOBEL, J. 2011b. Reference sequence construction for relative compres-
sion of genomes. In Proc. 18th International Symposium on String Processing and Information Retrieval
(SPIRE). 420–425.

LARSSON, J. AND MOFFAT, A. 2000. Off-line dictionary-based compression. Proceedings of the IEEE 88, 11,
1722–1732.

LIAO, K., PETRI, M., MOFFAT, A., AND WIRTH, A. 2016. Effective construction of relative lempel-ziv dictio-
naries. In Proc. 25th International Conference on World Wide Web (WWW). 807–816.

MÄKINEN, V., BELAZZOUGUI, D., CUNIAL, F., AND TOMESCU, A. I. 2015. Genome-Scale Algorithm Design.
Cambridge University Press.

MÄKINEN, V., NAVARRO, G., SIRÉN, J., AND VÄLIMÄKI, N. 2010. Storage and retrieval of highly repetitive
sequence collections. Journal of Computational Biology 17, 3, 281–308.

MANBER, U. AND MYERS, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM Journal
on Computing 22, 5, 935–948.

MCCREIGHT, E. 1976. A space-economical suffix tree construction algorithm. Journal of the ACM 23, 2,
262–272.

MORRISON, D. 1968. PATRICIA – practical algorithm to retrieve information coded in alphanumeric. Jour-
nal of the ACM 15, 4, 514–534.

NAVARRO, G. 2016. Compact Data Structures – A practical approach. Cambridge University Press.
NAVARRO, G. 2019. Document listing on repetitive collections with guaranteed performance. Theoretical

Computer Science 777, 58–72.
NAVARRO, G. 2021a. Indexing highly repetitive string collections, part I: Repetitiveness measures. ACM

Computing Surveys 54, 2, article 29.
NAVARRO, G. 2021b. Indexing highly repetitive string collections, part II: Compressed indexes. ACM Com-

puting Surveys 54, 2, article 26.
NAVARRO, G. 2023. Computing MEMs on repetitive text collections. In Proc. 34th Annual Symposium on

Combinatorial Pattern Matching (CPM). article 22.
NEKRICH, Y. AND NAVARRO, G. 2012. Sorted range reporting. In Proc. 13th Scandinavian Symposium on

Algorithmic Theory (SWAT). 271–282.
NUNES, D., LOUZA, F., GOG, S., AYALA-RINCÓN, M., AND NAVARRO, G. 2022. Grammar compression by

induced suffix sorting. ACM Journal of Experimental Algorithmics 27, article 1.1.
OHLEBUSCH, E. 2013. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylo-

genetic Reconstruction. Oldenbusch Verlag.
OHLEBUSCH, E., GOG, S., AND KÜGEL, A. 2010. Computing matching statistics and maximal exact matches

on compressed full-text indexes. In Proc. 17th International Symposium on String Processing and Infor-
mation Retrieval (SPIRE). 347–358.

OHLEBUSCH, E. AND KURTZ, S. 2008. Space efficient computation of rare maximal exact matches between
multiple sequences. Journal of Computational Biology 15, 4, 357–377.

PĂTRAŞCU, M. AND THORUP, M. 2006. Time-space trade-offs for predecessor search. In Proc. 38th Annual
ACM Symposium on Theory of Computing (STOC). 232–240.

RASKHODNIKOVA, S., RON, D., RUBINFELD, R., AND SMITH, A. D. 2013. Sublinear algorithms for approx-
imating string compressibility. Algorithmica 65, 3, 685–709.

ROSSI, M., OLIVA, M., LANGMEAD, B., GAGIE, T., AND BOUCHER, C. 2022. MONI: A pangenomic index for
finding maximal exact matches. Journal of Computational Biology 29, 2, 169–187.

RUSSO, L. M. S., NAVARRO, G., AND OLIVEIRA, A. 2011. Fully-compressed suffix trees. ACM Transactions
on Algorithms 7, 4, article 53.

SADAKANE, K. 2007. Succinct data structures for flexible text retrieval systems. Journal of Discrete Algo-
rithms 5, 12–22.

SETUBAL, J. AND MEIDANIS, J. 1997. Introduction to Computational Molecular Biology. PWS Publishing
Company.

SUNG, W.-K. 2010. Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC Press.
TATARNIKOV, I., FARAHANI, A. S., KASHGOULI, S., AND GAGIE, T. 2023. MONI can find k-MEMs. In Proc.

34th Annual Symposium on Combinatorial Pattern Matching (CPM). article 26.
WEINER, P. 1973. Linear Pattern Matching Algorithms. In Proc. 14th IEEE Symp. on Switching and Au-

tomata Theory (FOCS). 1–11.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

