
Alphabet-Independent Compressed Text Indexing

DJAMAL BELAZZOUGUI

Université Paris Diderot

GONZALO NAVARRO

University of Chile

Self-indexes are able to represent a text within asymptotically the information-theoretic lower
bound under the kth order entropy model, and offer access to any text substring and indexed

pattern searches. Their time complexities are not optimal, however; in particular they are always

multiplied by a factor that depends on the alphabet size. In this paper we achieve, for the first
time, full alphabet-independence in the time complexities of self-indexes, while retaining space

optimality. We obtain also some relevant byproducts.

Categories and Subject Descriptors: E.1 [Data Structures]: ; E.4 [Coding and Information
Theory]: Data Compaction and Compression

General Terms: Algorithms

Additional Key Words and Phrases: Compression, Text Indexing, Succinct Data Structures, Suffix
Trees.

1. INTRODUCTION

Text indexes are data structures built on a text T [1, n], over alphabet [1, σ], that
support pattern searches. The most popular text indexes in stringology are the
suffix tree [Weiner 1973; McCreight 1976; Apostolico 1985; Ukkonen 1995] and the
suffix array [Gonnet et al. 1992; Manber and Myers 1993; Kärkkäinen and Sanders
2003]. The importance of these data structures cannot be overemphasized: one can
find whole books dedicated to problems that are solved with them in areas like In-
formation Retrieval [Baeza-Yates and Ribeiro-Neto 2011], Bioinformatics [Gusfield
1997], and Stringology [Crochemore and Rytter 2003].

Among many other more sophisticated functionalities, suffix trees can count the
occurrences of a pattern P [1,m] in T in time tcount = O(m), and even tcount =
O(m/ logσ n). Suffix arrays achieve time tcount = O(m log n), and even tcount =
O(m + log n). After counting, they can locate the position of any such occurrence
in T in time tlocate = O(1). As the text is available, one can extract any text
substring T [i, i+ `− 1] in optimal time textract = O(`/ logσ n).

However, theO(n log n)-bit space complexity of both suffix trees and suffix arrays,
given that representing the plain text needs only n log σ bits, renders these classical

First author partially supported by the French ANR-2010-COSI-004 MAPPI Project. Both au-

thors partially funded by Millennium Institute for Cell Dynamics and Biotechnology, Grant ICM

P05-001-F, Mideplan, Chile.
An early partial version of this paper appeared in Proc. ESA’11.
Authors’ address: Djamal Belazzougui, Dept. of Computer Science, University of Helsinki, Fin-

land, djamal.belazzougui@gmail.com. Gonzalo Navarro, Dept. of Computer Science, University
of Chile, gnavarro@dcc.uchile.cl

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · Alphabet-Independent Compressed Text Indexing

structures unapplicable for large text collections, precisely in the cases where they
would be most useful.

Compressed text self-indexes [Navarro and Mäkinen 2007] are an answer to the
space problem. They represent a text T within asymptotically the space needed to
store it in compressed form. Within this compressed space, self-indexes allow not
only extracting any substring of T , but also counting and locating the occurrences
of patterns. They have been shown to be practical and surprisingly competitive
[Ferragina et al. 2009].

A popular model to measure text compressibility is the empirical entropy [Manzini
2001]: the kth order empirical entropy of T , 0 ≤ Hk(T) ≤ Hk−1(T) ≤ log σ,1 is
a lower bound to the bits per symbol emitted by any statistical compressor that
models T considering the context of k symbols that precede the one to encode.

Starting with the FM-index [Ferragina and Manzini 2000] and the Compressed
Suffix Array (CSA) [Grossi and Vitter 2000; Sadakane 2000], self-indexes have
evolved up to a point where they have reached asymptotically optimal space within
the kth order entropy model, that is, nHk(T)+o(n log σ) bits [Sadakane 2003; Grossi
et al. 2003; Ferragina and Manzini 2005; Ferragina et al. 2007; Barbay et al. 2007;
Barbay et al. 2010; Navarro and Mäkinen 2007]. This remarkable space reduction
achieved by self-indexes is paid in terms of higher time complexities compared to
the classical suffix trees and arrays.

Table I lists the current space-optimal self-indexes. All follow a model where a
sampling step s is chosen (which costs O((n log n)/s) bits, so we need s = ω(logσ n)
for asymptotic space optimality), and then locating an occurrence costs s multiplied
by some factor that depends on the alphabet size σ. The time for extracting is
linear in s + `, and is also multiplied by the same factor. Recently, the concept
of asymptotic space optimality has been carried out one step further, achieving
o(nHk(T)) + o(n) ⊆ o(n log σ) extra space [Barbay et al. 2010]. This is important
for highly compressible texts.

The only index achieving locating and extracting times independent of σ is by
Sadakane [2003], yet its counting time is the worst. On the other hand, various
FM-indexes [Ferragina et al. 2007; Barbay et al. 2010] achieve O(m) counting,
O(s) locating, and O(s + `) extraction time when the alphabet is polylogarithmic
in the text size, σ = O(polylog(n)). Achieving the same for larger alphabets, where
log σ = ω(log log n), has been open.2

Grossi et al. [2003] have described other structures that escape from this gen-
eral scheme, however they need to use more than the optimal space. By us-
ing (2 + ε)nHk(T) + o(n log σ) bits, for any ε > 0, they achieve the optimal
O(m/ logσ n) counting time, albeit with an additive polylogarithmic penalty of

p(n) = O(log(3+ε)/(1+ε)
σ n log2 σ). They can also achieve sublogarithmic locating

time, O(log1/(1+ε) n). Finally the extraction time is also optimal plus the polylog-
arithmic penalty, O(`/ logσ n+ p(n)).

1Our logarithms are base 2.
2Since we will be interested in the case σ = ω(1), we can write space complexities of the form

o(n log σ) without ambiguity on whether the sublinearity is on n or σ. Nevertheless, we will be
more specific whenever possible. In particular, the notation o(nHk(T)) will mean o(n) ·Hk(T).

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 3

Source Space (+O(n logn
s

)) Counting Locating Extracting

GGV03 nHk + o(n log σ) O(m log σ + log4 n) O(s log σ) O((s+ `) log σ)

Sad03 nHk + o(n log σ) O(m logn) O(s) O(s+ `)

FMMN07 nHk + o(n log σ) O(m log σ
log logn

) O(s log σ
log logn

) O((s+ `) log σ
log logn

)

BHMR07 nHk + o(n log σ) O(m log log σ) O(s log log σ) O((s+ `) log log σ)

BGNN10 nHk + o(nHk) + o(n) O(m log σ
log logn

) O(s log σ
log logn

) O((s+ `) log σ
log logn

)

BGNN10 nHk + o(nHk) + o(n) O(m log log σ) O(s log log σ) O((s+ `) log log σ)

Ours nHk + o(nHk) +O(n) O(m) O(s) O(s+ `)

GGV03 = [Grossi et al. 2003]; Sad03 = [Sadakane 2003]; FMMN07 = [Ferragina et al. 2007];
BHMR07 = [Barbay et al. 2007]; BGNN10 = [Barbay et al. 2010].

Table I. Current and our new complexities for asymptotically optimal-space self-indexes. The

space results (in bits) hold for any k ≤ α logσ(n) − 1 and constant 0 < α < 1, and any

sampling parameter s. The counting time is for a pattern of length m and the extracting
time for ` consecutive symbols of T . The space for Sadakane’s structure [Sadakane 2003]

refers to a more recent analysis [Navarro and Mäkinen 2007]; see also the clarifications in
www.dcc.uchile.cl/gnavarro/fixes/acmcs06.html.

The main contribution of this article is the last row of Table I. We achieve, for
the first time, full alphabet independence for all alphabet sizes, both in time and
space complexity and within the strictest model of asymptotic space-optimality, at
the sole price of converting an o(n)-bit redundancy into O(n). This is an important
step towards leveraging the time penalties incurred by asymptotically space-optimal
compressed text indexes.

Our general strategy is to build on top of FM-indexes and CSAs, in particular
using recent variants that support operation select in constant time (see Section 2.2
for the meaning of operations select, rank, and access on sequences) in order to
achieve fast locate and extract. Achieving O(m) time for count is much more dif-
ficult, because it builds on operation rank, which cannot be supported in constant
time [Belazzougui and Navarro 2012]. To circumvent the use of this operation we
use a combination of Compressed Suffix Trees (CSTs) and monotone minimal per-
fect hash functions (mmphfs). After we review in Section 2 some basic concepts on
text indexing, the layout of the article is as follows.

(1) In Section 3 we review mmphfs and show, as an easy and immediate application
to self-indexes, a way to achieve O(s) locating time and O(s + `) extracting
time. This result is, however, incompatible with the rest of the article, because
it needs constant-time access and for the rest we need constant-time select, and
one cannot have both with o(n log σ) space redundancy, at least for log σ =
Θ(log n) [Golynski 2009]. Thus we need a completely different approach in
order to obtain also O(m) counting time (however, see point (7)).

(2) In Section 4 we show how different aspects of the FM-index and CSA represen-
tations can be combined to obtain the same result of point (1), now assuming
a representation giving constant-time select. This does not use mmphfs, and
is a direct improvement on previous results [Barbay et al. 2010]. It involves
extending operation select to operate in constant time on a string that has
been partitioned to achieve kth order entropy [Ferragina et al. 2005].

(3) In Section 5 we give our first result towards O(m)-time counting, which has
independent interest. We show how to enhance the CST of Sadakane [2007]

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

4 · Alphabet-Independent Compressed Text Indexing

in order to speed up the important operation child(v, c), which gives the child
of a node v by a symbol c. In the original formulation [Sadakane 2007] this
operation takes time O(tSA log σ), where tSA is the time to compute the content
of a cell of the suffix array or of its inverse permutation using the underlying
FM-index or CSA (usually tSA = tlocate). Using mmphfs, we improve the time
to O(tSA) at the cost of O(n log log σ) bits of space. This extra space is within
the usual o(n log σ) bits of redundancy posed by CSTs. No other CST had
achieved O(tSA) time [Fischer et al. 2009; Fischer 2010; Russo et al. 2011].
Only Sadakane [2007] had a way to achieve this time complexity, but this
required much more space, O(n log σ) bits, which is not anymore compressed.

(4) In Section 6 we build on the result of point (3) to design a method that descends
in a CST from the root towards the node representing a string of length m, in
timeO(m), usingO(n log tSA) extra bits and assuming the underlying text index
is the one described in point (2). Combined with that text index, we almost
achieve our main goal, except that we add a redundancy of O(n log log n). The
main difficulty is how to represent the suffix tree skips succinctly, and the result
also has independent interest for traversing CSTs in general.

(5) In Section 7 we finally achieve our goal. For this sake we do not use the suffix
tree traversal considered in points (3) and (4), but instead simulate backward
search, the native pattern matching technique of the FM-index, using mmphf-
supported Weiner links [Weiner 1973] on the CST. This allows us doing the
backward steps with operation select instead of rank and achieve O(m) time
for the whole process. We design a way to store the mmphfs so that the
redundancy they pose is also compressed, o(nHk(T)) +O(n) bits. That is, we
increase the best known redundancy by only O(n) bits.

(6) In Section 8 we give the index of point (5) a stronger functionality of indepen-
dent interest. This index carries out m steps in O(m) time, but an individual
backward step can take up to O(m) time. In some applications it might be
useful to support an individual backward step in constant time, for example for
approximate matching on FM-indexes [Lam et al. 2008; Mäkinen et al. 2010],
or in general to simulate any suffix tree traversal [Baeza-Yates and Gonnet
1996; Gusfield 1997] on an FM-index, or for other totally different tasks [Ohle-
busch et al. 2010; Beller et al. 2011]. By adding more data to the index we
achieve constant-time backward steps, yet the extra redundancy goes back to
O(n log log σ) bits.

(7) Finally, in Section 9 we close the circle by showing how one can achieve counting
time O(m + s) over the simple index proposed in point (1). For this sake we
adapt the ideas developed in point (6).

2. COMPRESSED TEXT SELF-INDEXES

2.1 Suffix Tries, Trees, and Arrays

Given a text T [1, n] over alphabet [1, σ], each substring T [i, n] is called a suffix.
A suffix trie is a digital tree where all the suffixes of T have been inserted. More
precisely, once the prefix of a suffix T [i, n] is unique, the suffix trie node becomes a
leaf recording the suffix position i. Thus the suffix trie has exactly n leaves, one per
suffix of T . A suffix tree compacts the unary paths in the suffix trie, so that edges

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 5

are labeled by strings. Note the strings labeling the children of a node start with
distinct symbols. After compaction, only the O(n) branching nodes of the suffix
trie become explicit nodes in the suffix tree. The other suffix trie nodes, which are
not represented in the suffix tree, are called implicit (implicit nodes can be thought
of as hidden inside suffix tree edges). The suffix tree has O(n) nodes: n leaves and
at most n− 1 internal nodes.

We assume that suffix tries and trees store the children of each node in lex-
icographic order of the (symbol or string) labels of the corresponding edges. If
we collect their leaves in order, the result is the suffix array A[1, n] of T . This
is just a permutation of [1, n] that sorts the suffixes of T in lexicographic order:
T [A[i], n] < T [A[i+ 1], n] for all i.

Suffix tries can be used for counting the occurrences of P [1,m] in time O(m) as
follows: descend from the root according to the successive symbols P [i]. Constant
time per node is achieved with a perfect hash function that stores the symbols
labeling the edges toward the children of each node. If at some point the desired
child does not exist, then P does not occur in T . Otherwise we arrive at a node
v, and the number of leaves below v is the number of occurrences of P in T . The
process on the suffix tree is similar, except that the edges are labeled by strings and
thus we may need to consume several symbols of P to descend to a child. Actually
the search may end at the middle of an edge leading to a node v, in which case
the subtree rooted at v contains all the occurrences of P . The occurrences can be
located by traversing all the leaves below v. On a suffix array we simply binary
search the interval A[sp, ep] containing all the suffixes that start with P . This takes
O(m log n) time, or O(m+ log n) with extra longest common prefix information.

For more complex traversals, the concept of suffix link and Weiner link are rele-
vant. We say that a suffix trie or tree node represents the string that is obtained by
concatenating the edge labels from the root to the node (the length of this string
is called the string depth of the node). A suffix link in a suffix trie or tree is a
pointer from a node u representing a string cX to the node v representing string
X, v = slink(u), where c is a symbol and X is a string. A kind of opposite function
is called a Weiner link, u = wlink(v, c). On the suffix tree, these functions are de-
fined only on explicit nodes. Note that, if u is an explicit node, then v = slink(u)
is also explicit; similarly, if wlink(v, c) is explicit, then v is also explicit.

Suffix trees and arrays take O(n log n) bits of space. While the first constructions
required O(n log σ) time for suffix trees [Weiner 1973; McCreight 1976; Ukkonen
1995] and O(n log n) time for suffix arrays [Manber and Myers 1993], O(n) time
construction, independently of the alphabet size, was achieved later for both [Farach
1997; Kärkkäinen and Sanders 2003]. For more information please refer to the
abundant bibliography on suffix trees and arrays [Apostolico 1985; Gusfield 1997;
Crochemore and Rytter 2003; Baeza-Yates and Ribeiro-Neto 2011].

2.2 Compressed Sequence Representations and Zero-Order Entropy

An important subproblem that arises in compressed text self-indexing is that of
representing a sequence S[1, n], over an alphabet [1, σ], supporting the following
operations:

—access(S, i) = S[i], in time taccess;

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

6 · Alphabet-Independent Compressed Text Indexing

—rankc(S, i), the number of times symbol c appears in S[1, i], in time trank; and

—selectc(S, i), the position in S of the ith occurrence of c, in time tselect.

For the particular case of bitmaps (i.e., σ = 2, where the symbols are called 0
and 1), constant-time operations can be achieved using n + o(n) bits [Jacobson
1989; Clark 1996; Munro 1996]. When the number of 1s in S, n1, is much smaller
than n, a compressed representation [Raman et al. 2002] taking log

(
n
n1

)
+ o(n) =

n1 log n
n1

+ O(n1) + o(n) bits and still solving the operations in constant time, is
convenient. The space can also be written as nH0(S) + o(n) bits, where H0(S) is
the zero-order entropy of S. In general,

H0(S) =
∑
c∈[1,σ]

nc
n

log
n

nc
≤ log σ, (1)

where nc is the number of times c occurs in S.
General sequences can also be represented within asympotically zero-order en-

tropy space, nH0(S)+o(n log σ) bits, and even nH0(S)+o(nH0(S))+o(n). Among
the many compressed sequence representations [Golynski et al. 2006; Ferragina
et al. 2007; Barbay et al. 2007; Barbay et al. 2010; Grossi et al. 2010], we empha-
size two results for this article. The first corresponds to Theorem 1, variant (i), of
the recent result of Barbay et al. [2010]. The second is obtained by using the same
theorem, yet replacing the representation of Golynski et al. [2006] for the sequences
of similar frequency, by another recent result of Grossi et al. [2010] (the scheme
itself compresses to Hk(S) + o(n log σ) bits, with stricter restrictions on k; when
combining with Barbay et al. we only use the fact that it takes n log σ + o(n log σ)
bits).

Lemma 1. [Barbay et al. 2010; Grossi et al. 2010] A sequence S[1, n]
over alphabet [1, σ] can be represented within nH0(S)+o(n(H0(S)+1))+O(σ log n)
bits of space, so that the operations are supported in times either (1) taccess = trank =
O(log log σ) and tselect = O(1), or (2) tselect = trank = O(log log σ) and taccess = O(1).

2.3 Compressed Suffix Arrays (CSAs)

Compressed Suffix Arrays (CSAs) [Grossi and Vitter 2000; Sadakane 2003; Grossi
et al. 2003] are self-indexes representing T [1, n] and its suffix array A[1, n] in
compressed form. Their main component is function Ψ(i) = A−1[(A[i] mod n)+1],
which lets us advance virtually in T : If A[i] = j, then A[Ψ(i)] = j+ 1, that is, Ψ(i)
tells where in A is the pointer to the text position next to that pointed from A[i].
CSAs represent array Ψ within compressed space and can provide constant-time
access time to any value Ψ(i). A sparse bitmap D[1, n] marks position 1 and the
positions i such that T [A[i]] 6= T [A[i − 1]], that is, the points in A where the first
symbol of the pointed suffixes changes. In addition, the distinct symbols in T are
stored in a string Q[1, σ], in lexicographic order. By storing D in compressed form
[Raman et al. 2002], D and Q occupy O(σ log n) + o(n) bits and we have constant-
time rank and select on D. Then we can compute any T [A[i]] = Q[rank1(D, i)]
in O(1) time. Moreover, the relation T [A[i] + k] = T [A[Ψk(i)]] lets us retrieve any
string T [A[i], A[i] + `− 1] in time O(`).

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 7

This enables the simple binary search for P [1,m] on A, as we can extract in
O(m) time any string T [A[i], A[i] +m− 1] needed for comparing P with the suffix
of T pointed from any A[i]. This allows us to count in time O(m log n).

For locating those occurrences, we sample T regularly every s positions. We store
a bitmap V [1, n], where V [j] = 1 iffA[j] mod s = 0, plus an array SA[rank1(V, j)] =
A[j]/s for those j where V [j] = 1. To find A[i] we compute successively j = Ψk(i)
for k = 0, 1, . . . , s − 1 until V [j] = 1; then A[i] = SA[rank1(V, j)] · s + k. Thus we
can locate any occurrence in time O(s), using O((n log n)/s) extra bits.

For extracting arbitrary substrings T [i, i+ `− 1] we use basically the same sam-
pling. We store ST [j] = A−1[1 + s · j] for j = 0, 1, . . . , n/s. Then we compute
j = b(i − 1)/sc and extract the longer substring T [j · s + 1, i + ` − 1]. Since the
extraction starts from A[ST [j]] we obtain the first character as c = T [A[ST [j]]] =
rank1(D,ST [j]), and we use Ψ to find the positions in A pointing to the con-
secutive characters to extract. Thus extract requires time O(s + `), again using
O((n log n)/s) extra bits.

2.4 The Burrows-Wheeler Transform and High-Order Entropy

The Burrows-Wheeler Transform (BWT) [Burrows and Wheeler 1994] of a text
T [1, n] is a string T bwt[1, n], where the symbols of T have been reordered. It is
defined as T bwt[i] = T [A[i]− 1] (or T [n] if A[i] = 1). Thus there is a close relation
between T bwt and A: T bwt is the sequence of symbols preceding the suffixes of T
once they are lexicographically sorted.

The BWT is a reversible transform. Assuming T finishes with a special character
$ smaller than all the others, it holds A[1] = n and thus T [n] = T bwt[1]. Now,
given that we have decoded T [i] = T bwt[j], it holds T [i− 1] = T bwt[LF (j)], where
LF (j) = C[c] + rankc(T

bwt, j), c = T bwt[j], and C is a small array storing in C[c]
the number of symbols < c in T . Note this function LF is the inverse of Ψ: If
A[j] = i+ 1, then A[LF (j)] = i.

The BWT makes the text more compressible, in the following sense. The kth
order entropy of T , Hk(T), is a lower bound on the number of bits per symbol
emitted by a statistical compressor that encodes each symbol of T as a function
of the next k symbols.3 It holds 0 ≤ Hk(T) ≤ Hk−1(T) ≤ H0(T) ≤ log σ for any
k > 0. The precise formula is

Hk(T) =
∑

W∈[1,σ]k

n(TW)

n
H0(TW) =

∑
W∈[1,σ]k

n(TW)

n

∑
c∈[1,σ]

nc(TW)

n(TW)
log

n(TW)

nc(TW)

=
∑

cW∈[1,σ]k+1

nc(TW)

n
log

n(TW)

nc(TW)
=

∑
cW∈[1,σ]k+1

n(TcW)

n
log

n(TW)

n(TcW)
, (2)

where TX is a string formed by the characters preceding string X in T , n(TX) =
|TX |, and nc(TX) is the number of occurrences of symbol c in string TX .

Now let us partition S = T bwt into σk contexts SW , for all W ∈ [1, σ]k, as follows.
If A[sp(W), ep(W)] is the range of A where the suffixes start with string W , then

3As compression proceeds left to right, using the preceding k symbols is much more popular, but
the definition we use relates better with the BWT. The difference in entropy when using one or
the other definition is negligible [Ferragina and Manzini 2005].

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

8 · Alphabet-Independent Compressed Text Indexing

SW = S[sp(W), ep(W)]. The remarkable property is that TW = SW , as these are
the symbols that precede the occurrences of W in T . Thus, by compressing each
context SW of S to zero-order entropy, we obtain kth order entropy compression
for the original string T .

2.5 The FM-index

The FM-index [Ferragina and Manzini 2005] is a compressed self-index built on the
BWT. In its modern form [Ferragina et al. 2007], the index cuts T bwt optimally
into partitions, and represents each partition as a zero-order compressed sequence
supporting rank and access operations. From their analysis [Ferragina et al. 2007]
it follows that if each such sequence S is represented within |S|H0(S)+o(|S|H0(S))+
o(|S|) + O(σ log n) bits of space, then the overall space of the index is nHk(T) +
o(nHk(T)) + o(n) + O(σk+1 log n), for any k. The latter term is usually removed
by assuming k ≤ α logσ(n) − 1 and constant 0 < α < 1. This is the space Barbay
et al. [2010] achieve, and the best space reported so far for compressed text indexes
under the kth order entropy model (see Table I).

Although the FM-index computes the optimal partitioning of T bwt [Ferragina
et al. 2005], we can analyze it as if it cut the partitions using contexts of length k
in order to achieve kth order compression (and the space will always be at least that
good [Ferragina et al. 2007]). Thus assume we cut the BWT into σk partitions. The
FM-index marks them in a sparse bitmap E that is represented within O(σk log n)+
o(n) bits and offers constant-time rank and select [Raman et al. 2002]. In order to
compute function LF , we need to compute access and rank over the whole T bwt,
not only over a partition. Bitmap E lets us know which position of which partition
must be accessed to solve access or rank. For the latter, we also need to know rank
up to the beginning of each partition. This can be tabulated within O(σk+1 log n)
bits. Therefore the time to compute LF is tLF = O(taccess + trank), where taccess and
trank refer to the times to execute the operations within a single partition.

The time to compute LF impacts all the times of the FM-index. We use LF
for locating and extracting just like CSAs use Ψ, but traversing T in backward
direction: by sampling T regularly every s positions, any cell A[i] can be computed
in time O(s · tLF), and any substring of T of length ` can be extracted in time
O((s + `) · tLF). In order to achieve tLF = O(1), we will have to avoid the use of
rank, as it cannot be computed in constant time [Belazzougui and Navarro 2012].

The FM-index has a particular and more efficient way of counting, that is,
determining the suffix array area A[sp, ep] where pattern P occurs, so that its
occurrences can be counted as ep − sp + 1 and each of those occurrence posi-
tions can be located using A[i], for sp ≤ i ≤ ep. Counting is done via the so-
called backward search, which processes the pattern in reverse order. Let A[sp, ep]
be the interval for P [i + 1,m], then the interval for P [i,m] is A[sp′, ep′], where
sp′ = C[c] + rankc(T

bwt, sp − 1) + 1 and ep′ = C[c] + rankc(T
bwt, ep), where

c = P [i]. This requires computing O(m) times operation rank, yet this rank op-
eration is of a more general type than for LF (i.e., it does not hold T bwt[i] = c for
rankc(T

bwt, i)). Therefore, achieving linear time for counting will require a more
elaborate technique to get rid of the rank operation.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 9

2.6 Compressed Suffix Trees (CSTs)

CSAs and FM-indexes support operations count, locate, and extract, but they lack
the richer functionality offered by suffix trees. A compressed suffix tree (CST) is
a compact data structure offering those more sophisticated operations. A CST is
usually built on top of a CSA or FM-index, which simulates a suffix array, and adds
some extra space to support more operations. In fact the underlying index must
support operations A[i] as well as A−1[j], both in time called tSA (in compressed
text indexes it usually holds tSA = tlocate; this holds in particular with the sampling
scheme described in Section 2.3).

Sadakane [2007] proposed the first CST. It uses O(n) bits on top of a CSA and
supports many complex operations in constant time (e.g., from going to the parent,
or following a suffix link, to computing lowest common ancestors). Part of the
O(n) bits are spent in 2n balanced parentheses that, via a DFS traversal, represent
the topology of the suffix tree. That is, each suffix tree node corresponds to an
opening parenthesis, and all its subtree is recursively represented before closing
that parenthesis.

Surprisingly, one of the most basic suffix tree operations is rather slow. Operation
child(v, c), which returns the child of v by (a string starting with) symbol c, takes
O(tSA log σ) time. Sadakane shows how to reduce this time to O(tSA), yet the price
is huge: O(n log σ) further bits of space.

Other later CSTs [Fischer et al. 2009; Fischer 2010; Russo et al. 2011] aimed
mostly at reducing the O(n) bits of redundancy, but they are usually slower for all
the operations. In particular, none of them achieve O(tSA) time for operation child.

3. MONOTONE MINIMAL PERFECT HASH FUNCTIONS, AND A WARM UP

A monotone minimal perfect hash function (mmphf) [Belazzougui et al. 2009a;
2009b] f : [1, u]→ [1, n], for n ≤ u, assigns consecutive values 1, 2, . . . , n to domain
values u1 < u2 < . . . < un, and arbitrary values to the rest. Seen another way, it
maps the elements of a set {u1, u2, . . . , un} ⊆ [1, u] into consecutive values in [1, n].
Yet a third view is a bitmap B[1, u] with n bits set; then f(i) = rank1(B, i) where
B[i] = 1 and f(i) is arbitrary where B[i] = 0.

A mmphf on B does not give sufficient information to reconstruct B, and thus it
can be stored within less than log

(
u
n

)
bits, more precisely O(n log log u

n + n) bits.
This allows using it to speed up operations while adding an extra space that is
asymptotically negligible. A second type of mmphf we will use later in the article
requires O(n log log log u

n+n) bits of space, and answers queries in time O(log log u
n).

As a simple application of mmphfs, we show how to compute function LF on a
sequence S within time O(taccess), by using additional O(|S|(logH0(S) + 1)) bits of
space. For each symbol c appearing in S we build a mmphf fc which records all the

positions at which c appears in S. This hash function occupies O(nc(log log |S|nc
+1))

bits, where nc is the number of occurrences of c in S. Summing up over all characters
we get additional space usage O(|S|(logH0(S) + 1)) bits.

Lemma 2. If c occurs nc times in S, then
∑
c∈[1,σ] nc log log |S|nc

≤ |S| logH0(S).

Proof. According to the log-sum inequality, given σ pairs of numbers ac, bc > 0,
it holds

∑
ac log ac

bc
≥ (
∑
ac) log (

∑
ac/

∑
bc). Use ac = nc/|S| and bc = −ac log ac

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

10 · Alphabet-Independent Compressed Text Indexing

to obtain the claim, using Eq. (1).

The LF function can now be easily computed in time O(taccess) as LF (i) =
C[c] + fc(i), where c = T bwt[i], since we know that fc is well-defined at i. There-
fore the time of the LF function becomes O(1) if we have constant-time access
to T bwt. Consider now partitioning the BWT as in Section 2.4. Our extra space
is O(|S|(logH0(S) + 1)) within each partition S of the BWT. This adds up to
O(n(logHk(T) + 1)).

Lemma 3. Let T bwt = S1S2 . . . Then
∑
i |Si| logH0(Si) ≤ |T | logHk(T).

Proof. We apply again the log-sum inequality, using ai = |Si| and bi = |Si|H0(Si).
Then Eq. (2) completes the proof.

Therefore, we obtain the following result.

Lemma 4. By adding O(n(logHk(T) + 1)) bits to an FM-index built on text
T [1, n] over alphabet [1, σ], one can compute the LF function in time tLF = O(taccess),
where taccess is the time needed to access any element in T bwt.

If we choose the sequence representation (2) of Lemma 1, so that taccess = O(1),
we achieve constant-time LF computation (Lemma 4) and, consequently, locate
time O(s) and extract time O(s+ `), at the cost of O((n log n)/s) extra bits.

The sequence representation for each partition S takes |S|H0(S)+o(|S|H0(S))+
o(|S|)+O(σ log n) bits. Added over all the partitions (recall Section 2.5), this gives
the main space term nHk(T)+o(nHk(T))+o(n)+O(σk+1 log n), as explained. On
top of this, Lemma 4 requires O(n(logHk(T) + 1)) bits. This is o(nHk(T)) +O(n)
if Hk(T) = ω(1), and O(n) otherwise.

To reduce the O(n) space term to o(n), we will show how to ensure that the space
of the mmphf of each S is not only O(|S|(logH0(S) + 1)), but also o(|S|H0(S)) +
o(|S|). Again, this clearly holds unless H0(S) = O(1), so we focus on this case.

Note that Barbay et al. [2010] (on which we are building in Lemma 1) achieves
constant time for all the operations when the frequency of the involved symbol
exceeds |S|/ log |S|.4 Therefore, we only need to build mmphfs fc for those symbols

c with frequency nc ≤ |S|/ log |S|. Note that such a symbol contributes log |S|nc
≥

log log |S| bits to H0(S). Therefore, if H0(S) = O(1), then the total number of
occurrences of those less frequent symbols must be O(|S|/ log log |S|).

We further divide those symbols into medium frequency, that is, |S|/2(log log |S|)2 ≤
nc ≤ |S|/ log |S|, and low frequency, nc < |S|/2(log log |S|)2 . From the medium fre-

quency symbols, the space per occurrence spent by the mmphf is O(log log |S|nc
) =

O(log log log |S|). As there are at most O(|S|/ log log |S|) such symbols, the total
space spent on them is O(|S| log log log |S|/ log log |S|) = o(|S|). The mmphfs of the
low-frequency symbols, instead, can require O(log log |S|) bits per symbol; however,
there can only be, in total, O(|S|/(log log |S|)2) occurrences of those symbols. The

reason is that each such symbol contributes log |S|nc
> (log log |S|)2 to H0(S) = O(1).

4Barbay et al. [2010] prove that σ` < 21/ log |S||s`|/nc, where ` is the class to which symbol c is
assigned, s` is the string of the symbols of class `, and σ` is the number of symbols c assigned to

class `. Thus, if nc > |S|/ log |S|, it holds σ` < 21/ log |S||s`| log |S|/|S| ≤ log |S|. On the other
hand, the symbols of classes where σ` ≤ log |S| are represented in a constant-time wavelet tree.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 11

Therefore, when H0(S) = O(1), we can make the total space of the mmphfs o(|S|).
This yields the main result of this section.

Theorem 1. Given a text T [1, n] over alphabet [1, σ], one can build an FM-index
occupying nHk(T)+o(nHk(T))+o(n)+O((n log n)/s+σk+1 log n) bits of space for
any k ≥ 0 and s > 0, such that counting is supported in time tcount = O(m log log σ),
locating is supported in time tlocate = O(s), and extraction of a substring of T of
length ` is supported in time textract = O(s+ `).

For example, choosing s = log n log log n and k ≤ α logσ(n)−1 we get nHk(T))+
o(nHk(T))+o(n) bits of space. In order to improve counting time to O(m), however,
we will need a much more sophisticated approach that cannot be combined with
this first simple result.

4. FAST LOCATING AND EXTRACTING USING SELECT

Our strategies for achieving O(m) counting time make use of constant-time select
operation on the sequences, and therefore will be incompatible with Theorem 1. In
this section we develop a new technique that achieves linear locating and extracting
time using constant-time select operations.

Consider the σk partitions S1, S2, . . . of T bwt into contexts of length k. This
time we represent each partition using variant (1) of Lemma 1, so the total space
is nHk(T) + o(nHk(T)) + o(n) + O(σk+1 log n) bits. Unlike the case of operation
access, the use of bitmap E to mark the beginnings of the partitions and the
support for local select in the partitions is not sufficient to support global select
on T bwt (recall Section 2.5).

To obtain global select we follow the idea of Golynski et al. [2006]. We set up
σ bitmaps Bc, c ∈ [1, σ], of total length n + o(n), as Bc = 10nc(S1)10nc(S2) . . .,
where nc(Si) is the number of occurrences of c in Si. As there are overall n 0s and
σk+1 1s across all the bitmaps Bc, all of them can be represented in compressed
form [Raman et al. 2002] using O(σk+1 log n) + o(n) bits, answering rank and
select queries in constant time. Now q = rank1(select0(Bc, j)) = select0(Bc, j)− j
tells us the partition number where the jth occurrence of c lies in T bwt, and it is
the rth occurrence within Sq, where r = select0(Bc, j) − select1(Bc, q). Thus we
can implement in constant time operation selectc(T

bwt, j) = select1(E, q) − 1 +
selectc(Sq, r), since the local select operation in Sq takes constant time.

It is known [Lee and Park 2007] that the Ψ function can be simulated on top
of T bwt as Ψ(i) = selectc(T

bwt, j), where c = T [A[i]] and i is the jth suffix in A
starting with c. Therefore we can store bitmap D and string Q of Section 2.3 so as
to compute in constant time r = rank1(D, i), c = Q[r], and j = i−select1(D, r)+1.

With this representation we have a constant-time simulation of Ψ using an FM-
index, and hence we can locate in time tlocate = O(s) and extract a substring of
length ` of T in time textract = O(s+`) using O((n log n)/s) extra space, as explained
in Section 2.3. That is, we can reprove Theorem 1 with a constant-time select
representation, which is compatible with the linear-time counting data structures
that are presented next.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

12 · Alphabet-Independent Compressed Text Indexing

5. IMPROVING CHILD OPERATION IN SUFFIX TREES

We now give a result that has independent interest. We improve the time of opera-
tion child in the CST of Sadakane [2007], from O(tSA log σ) to O(tSA). This cannot
be achieved with any of the existing schemes using less than Θ(n log σ) extra space.
We do it with O(n log log σ) ⊆ o(n log σ) extra space.

Given any node of degree d, whose d children are labeled with (strings starting
with) symbols c1, c2, . . . , cd, we store all of the symbols in a mmphf fv occupying
O(d log log σ) bits. As the sum of the degrees of all of the nodes in the suffix tree
is at most 2n− 1, the total space usage is O(n log log σ) bits.

To answer query child(v, c) we evaluate fv(c) = i and verify that the ith child
of v, u, descends by symbol c. If it does, then u = child(v, c); otherwise v has no
child labeled c.

Lemma 5. Given a suffix tree we can build an additional data structure that
occupies O(n log log σ) bits, so as to support operation child(v, c) in the time required
by computing the ith child of v, u, for any given i, plus the time to extract the first
symbol of edge (v, u).

As explained in Section 2.6, Sadakane’s CST represents the tree topology using
balanced parentheses. If we use, say, the parentheses representation of Sadakane
and Navarro [2010], then the ith child of node v is computed in constant time, as
well as all the other operations on parentheses needed in Sadakane’s CST. On the
other hand, computing the first symbol of edge (v, u) takes time O(tSA). Therefore,
we implement child(v, c) in time O(tSA) at the price of O(n log log σ) extra bits.

Sadakane’s CST space is |CSA| + O(n) bits, where |CSA| is the size of the
underlying self-index. This new variant raises the space to |CSA|+O(n log log σ),
which is higher when σ = ω(1). However, in this case, the new extra space is well
within the usual o(n log σ) bits of redundancy of most underlying CSAs (though
not all [Barbay et al. 2010]).

6. IMPROVING COUNTING TIME IN COMPRESSED SUFFIX TREES

Using the encoding of the child operation described in the previous section we can
find the suffix array interval A[sp, ep] corresponding to a pattern P [1,m] in time
O(m · tSA). We show now how to enhance the suffix tree structure with O(n log tSA)
additional bits of space so that this operation requires just the time for extracting
m symbols from T given its pointer from A.

To achieve this complexity we store, in addition to the tree topology and to the
data structure of the previous section, the length of the string labeling the edge
arriving at each node, whenever this number is smaller than tSA − 1. If it is larger
than that, then we store a special marker.

Given a pattern P , we traverse the suffix tree top-down. Each time we arrive at
a node u and we are inspecting symbol c in P , we use the result of the previous
section to find the child v = child(u, c) descending by a string starting with c, and
continue the traversal from v. We do not, however, spend O(tSA) time to verify that
the mmphf fc has given us the correct child (i.e., we do not verify that there is a
child descending by c), but we just trust the mmphf. Moreover, the other symbols
of the string labeling the edge (u, v) are not verified but just skipped in P .

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 13

For skipping the characters, we need to know the length of the edge. We notice
that, whenever that length is below tSA, we can get it directly from v. Otherwise,
we compute it in O(tSA) time using the CST of Sadakane [2007], as the string depth
of v minus that of u, depth(v) − depth(u). Note that, because we are skipping at
least tSA characters, the total time to traverse the trie is O(m) (this is true even
if m < tSA since we know in constant time whether the next skip surpasses the
remaining pattern suffix).

Finally, after we have completed the traversal, we need to check whether the
obtained result was right or not. For that we need to extract the first m characters
of any of the suffixes below the node arrived at, and compare it with P . If they
match, we return the computed range, otherwise P does not occur in T .

Lemma 6. Given a text T [1, n] we can add a data structure occupying O(n log tSA)
bits on top of its CST, so that the suffix array range corresponding to a pattern
P [1,m] can be determined within the time to extract a substring of length m from
T whose position in the suffix array is known.

This gives us a first alphabet-independent FM-index. We can use the FM-index
of Section 4 and choose any s = O(polylog(n)), so that log tSA = O(log log n). Such
a limitation on s is not a problem because one prefers to have s as small as possible
as long as the redundancy is small, and s = Θ(log n) suffices to have O(n)-bit
redundancy.

Theorem 2. Given a text T [1, n] over alphabet [1, σ], one can build an FM-
index occupying nHk(T)+o(nHk(T))+O(n log log n+(n log n)/s+σk+1 log n) bits
of space for any k ≥ 0 and s = O(polylog(n)), such that counting is supported in
time tcount = O(m), locating is supported in time tlocate = O(s), and extraction of a
substring of T of length ` is supported in time textract = O(s+ `).

Therefore, we have improved the previous result [Barbay et al. 2010] to reach
alphabet-independence. On the negative side, we have increased the redundancy
from o(n) to O(n log log n). Even if n log log n ∈ o(n log σ) whenever log σ =
ω(log log n) (and otherwise the problem is already solved [Ferragina et al. 2007]),
this increase is unsatisfactory. In the next section we present a more sophisticated
approach that almost recovers the original redundancy.

7. BACKWARD SEARCH IN LINEAR TIME

We can achieve O(m) time and compressed redundancy by using the suffix tree to
do backward search instead of descending in the tree. As explained in Section 2.5,
backward search requires carrying out O(m) rank operations. We will manage to
simulate the backward search with operations select instead of rank. We will make
use of mmphfs to aid in this simulation.

7.1 Weiner Links

The backward step on the suffix array range for X = P [i + 1,m] leads to the
suffix array range for cX = P [i,m]. When cX is represented by an explicit suffix
tree node u (and hence that of X, v, is explicit too), this operation corresponds
to taking a Weiner link on character c = P [i], u = wlink(v, c) and v = slink(u)
(recall Section 2.1). If cX is not represented by an explicit node, then we will call

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

14 · Alphabet-Independent Compressed Text Indexing

u’ v’

v

wlink(c)

XY

cX

Z

wlink(c) (implicit)

aW

u

u’ v’

v

XY

cX

Z

aW

w_c(v’)

v’’

u

w’
_c
(v’
)

Fig. 1. On the left, relations between suffix tree nodes and the strings they represent, when

wlink(v, c) does not exist. Straight lines are suffix tree edges and curved lines are suffix tree paths;

arrows represent Weiner links. The dashed node is implicit, and the dashed arrow represents the
nonexistent Weiner link. Dashed arcs indicate the strings represented by each node. On the right,

the mmphfs wc and w′
c.

u′ the explicit suffix tree node representing the longest prefix of cX, Y , so that
cX = Y aW for a ∈ [1, σ]. Then we call u = child(u′, a) in the suffix tree, and u
represents a string Z of which cX is a prefix. In such a case, still assuming v is
explicit, we call v′ its closest ancestor such that wlink(v′, c) is defined. It can be
seen that, if v′ exists, then it holds u′ = wlink(v′, c). Figure 1 (left) illustrates all
these relations.

Lemma 7. Let v, u′, u be as discussed. Let v′ be the closest ancestor of v with
wlink(v′, c) defined. Then, if v′ exists, it holds v′ = slink(u′) and u′ = wlink(v′, c).

Proof. Let v represent X and u′ represent Y . Let v′ represent the prefix X ′ of
X, then u′′ = wlink(v′, c) is an explicit node that represents cX ′. If |cX| > |cX ′| >
|Y |, then u′′ is between u and u′, contradicting the definition of u′. If |cX ′| < |Y |
then slink(u′) is between v and v′, contradicting the definition of v′. Then it must
be |cX ′| = |Y |, and thus u′′ = u′.

We use the CST of T [Sadakane 2007], so that each node is identified by its
preorder value in the parentheses sequence (recall Section 2.6). We use mmphfs to
represent the Weiner links. For each symbol c ∈ [1, σ] we create a mmphf wc and
traverse the subtree Tc rooted at child(root, c). As we traverse the (explicit) nodes
of Tc in preorder, the suffix links lead us to suffix tree nodes also in preorder (as
the strings remain lexicographically sorted after removing their first c). By storing
all those suffix link preorders in function wc, we have that wc(v) gives in constant
time wlink(v, c) if it exists, and an arbitrary value otherwise. More precisely, wc
gives preorder numbers within Tc; it is very easy to convert them to global preorder
numbers.

Assume now we are in a suffix tree node v corresponding to suffix array interval
A[sp, ep] and to pattern suffix X = P [i+1,m]. We wish to determine if the Weiner
link wlink(v, c) exists for c = P [i]. We can compute wc(v) = u, so that if the
Weiner link exists, then it leads to node u.

We can determine whether u is the correct Weiner link as follows. First, and
assuming the preorder of u is within the bounds corresponding to Tc, we use the

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 15

CST to obtain in constant time the range A[sp′, ep′] corresponding to u [Sadakane
2007]. Now we want to determine if the backward step with c from A[sp, ep] leads
us to A[sp′, ep′] or not. Lemma 8 shows how this can be done using four select
operations.

Lemma 8. Let A[sp, ep] be the suffix array interval for string X, then A[sp′, ep′]
is the suffix array interval for string cX iff

selectc(T
bwt, i− 1) < sp ∧ selectc(T

bwt, i) ≥ sp, and

selectc(T
bwt, j) ≤ ep ∧ selectc(T

bwt, j + 1) > ep,

where i = sp′ − C[c], j = ep′ − C[c], C[c] is the number of occurrences of symbols
< c in the text T , and T bwt is the BWT of T .

Proof. Note the range of A corresponding to the suffixes that start with symbol
c begins at A[C[c] + 1]. Then A[sp′] is the ith suffix starting with c, and A[ep′] is
the jth. The classical backward search formula (Section 2.5) for sp′ is given next;
then we transform it using rank/select inequalities.

sp′ = C[c] + rankc(T
bwt, sp− 1) + 1

⇔ i− 1 = rankc(T
bwt, sp− 1)

⇔ selectc(T
bwt, i− 1) ≤ sp− 1 ∧ selectc(T

bwt, i) ≥ sp.

The formula for ep′ is similar.

ep′ = C[c] + rankc(T
bwt, ep)

⇔ j = rankc(T
bwt, ep)

⇔ selectc(T
bwt, j) ≤ ep ∧ selectc(T

bwt, j + 1) > ep.

Thus we have shown how, given a CST node v, we can compute wlink(v, c) or
determine it does not exist, in time O(tselect). Now we describe a backward search
process on the suffix tree instead of on the suffix array ranges.

7.2 The Traversal

We start at the tree root with the empty suffix P [m + 1,m]. In general, being at
tree node v corresponding to suffix X = P [i+ 1,m], we look for u = wlink(v, c) for
symbol c = P [i]. If it exists, then we have found node u corresponding to pattern
suffix cX = P [i,m] and we are done for that iteration.

If there is no Weiner link from v, it might be that cX is not a substring of T and
the search should terminate. However, as explained, it might also be that there is
no explicit suffix tree node for cX, but it falls between node u′ representing a prefix
Y of cX (cX = Y aW) and node u = child(u′, a) representing string Z, of which
cX is a prefix.

Our goal is to find node u, which corresponds to the same suffix array interval of
cX. For this sake we consider the parent of v, its parent, and so on, until finding
the nearest ancestor v′ such that u′ = wlink(v′, c) exists.5 If we reach, and consider,

5Actually we could by chance get the right range A[sp′, ep′] from an incorrect node, but this would
just speed up the algorithm by finding u ahead of time.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

16 · Alphabet-Independent Compressed Text Indexing

the root without finding a Weiner link, then cX is not in T , and neither is P . Else,
once we have found u′, we compute u = child(u′, a) and finish. The correctness of
this procedure stems from Lemma 7.

However, computing child would be too slow for our purposes, as we require to
complete a step in constant time. Instead, we precompute it using a new mmphf w′c,
as follows. For each node u = child(u′, a) in Tc, we compute v′ = slink(u′) and store
v′′ = child(v′, a) in w′c; note each such v′′ is stored exactly once in w′c. Moreover,
the preorders of v′′ follow the same order of u. Thus, whenever u′ = wlink(v′, c),
we have the desired child in w′c(child(v′, a)) = u. Figure 1 (right) illustrates this.

Now, if wlink(v, c) does not exist, we traverse v and its successive ancestors v′

looking for w′c(v
′). This will eventually reach node u, so we verify correctness of

the mmphf values by comparing directly with the suffix array interval of v, using
Lemma 8. Note this test also establishes that cX is a prefix of Z. Only the suffix
tree root cannot be dealt with w′c, but we can easily precompute the σ nodes
child(root, c).

Actually only function w′c suffices. Assume wlink(v, c) = u exists. Then consider
u′, the parent of u. There will also be a Weiner link from an ancestor v′ of v to
u′. This ancestor will have a child v′′ that points to w′c(v

′′) = u, and either v′′ = v
or v′′ is an ancestor of v. So we do not check for wlink(v, c) but directly v and its
ancestors using w′c. The mmphf wc does not need to be built nor used.

7.3 Time and Space

The total number of steps amortizes to O(m): Each time we go to the parent, the
depth of our node in the suffix tree decreases. Each time we move by a Weiner
link, the depth increases at most by 1, since for any branching node in the path
to u′ = wlink(v′, c) there is a branching node in the path to v′. Since we compute
m Weiner links, the total number of operations is O(m). All the operations in
the CST tree topology take constant time, and therefore the time tselect dominates.
Hence the overall time is O(m · tselect).

As for the space, the subtree Tc contains nc leaves and at most 2nc nodes (where
nc is the number of occurrences of symbol c in the text); thus mmphf w′c stores at
most 2nc values in the range [1, 2n]. Therefore it requires space O(nc(log log n

nc
+1))

bits, which added over all c ∈ [1, σ] gives a total of O(n(logH0(T)+1)), by Lemma 2.
In order to further reduce this space, we partition the mmphfs according to

the O(σk) partitions of the BWT. As in Section 2.4, consider all the possible
context strings Wi of length k,6 their suffix tree nodes vi, and their correspond-
ing suffix array intervals A[spi, epi]. The corresponding BWT partition is thus
SWi = Si = T bwt[spi, epi], of length ni = n(Si) = |Si| = epi − spi + 1. We
split each function w′c into O(σk) subfunctions wic, each of which will only store
the suffix tree preorders that correspond to nodes descending from vi. There
are at most 2ni consecutive preorder values below node vi, thus the universe of
the mmphf wic is of size O(ni). Moreover, the links stored at wic depart from
the subtree that descends from string cWi, whose number of leaves is the num-
ber of occurrences of c in Si, nc(Si). Thus the total space of all the mmphfs is

6Recall from Section 2.5 that the compression booster admits a more flexible partition into suffix
tree nodes; but we can choose this way for simplicity of exposition.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 17∑
c,iO(nc(Si)(log log ni

nc(Si)
+ 1)) = O(n(logHk(T) + 1)), by using Lemma 2 on

each Si and then Lemma 3.
Note there are O(σk) nodes with context shorter than k. A simple solution is to

make a “partition” for each such node, increasing the space by O(σk log n). It is
easy, along our backward search, to know the context Wi we are in, and thus know
which mmphf to query.

By combining the results of Section 4, using a sequence representation with
tselect = O(1), with our backward counting algorithm, we have the final result.

Theorem 3. Given a text T [1, n] over alphabet [1, σ], one can build an FM-
index occupying nHk(T)+o(nHk(T))+O(n+(n log n)/s+σk+1 log n) bits of space
for any k ≥ 0 and s > 0, such that counting is supported in time tcount = O(m),
locating is supported in time tlocate = O(s), and extraction of a substring of T of
length ` is supported in time textract = O(s+ `).

For example, by choosing s = log n and k ≤ logσ n− logσ log n, we get nHk(T) +
o(nHk(T)) +O(n) bits of space.

8. BACKWARD STEP IN O(1) TIME

In the previous section we have shown that them backward steps used in a backward
search for counting occurrences of a pattern P [1,m] can be done in O(m · tselect)
time. However, any individual backward step can take as much as O(m · tselect)
time. In this section we show that a data structure occupying O(n log log σ) bits of
space is sufficient to support any backward step in time O(tselect).

To get this result, we augment the data structure described in Section 7 with
implicit Weiner links, that is, those leaving from an explicit suffix tree node but
leading to an implicit one (this can be visualized as pointing within an edge, see
Figure 1 left).

To get our result, we use the same encoding as in Section 7. That is, for a subtree
Tc rooted at child(root, c) we create a mmphf wc that stores all the preorder num-
bers of the nodes that are sources of Weiner links with destination in Tc. However,
this time we also store the sources of implicit Weiner links.

Now we note that, for a given node u in Tc, we always have an explicit Weiner
link pointing to it, but potentially one or more implicit Weiner links pointing within
the edge that leads to u. We store in wc all those sources as pointing to u. As a
consequence, the mmphf wc will store repeated entries that must be dealt with.

We store a bitmap Bc that, for each node of Tc listed in preorder, stores a 1
followed by as many zeros as the number of Weiner links (including implicit ones)
pointing to that node (or to the edge leading to the node). Then the mmphf wc
can be thought of as pointing to the zeros of Bc. In order to recover the destination
of the Weiner link wlink(v, c) starting from a node v and labeled with character c,
we first compute wc(v), which gives us a virtual location x. Then the final answer
will be the node with preorder number select0(Bc, x) − x. This will give us the
destination of the Weiner link node if it exists, or garbage otherwise. We still need
to check the final result using Lemma 8. Hence we do not need to carry out the
upward traversal looking for an ancestor v′ of v where w′c(v

′) is defined, but we
simply use wc(v).

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

18 · Alphabet-Independent Compressed Text Indexing

The number of Weiner links, including implicit ones, is known to be O(n). We
include a proof for completenes7.

Lemma 9. There are O(n) implicit Weiner links.

Proof. Leaves can have only one (implicit or explicit) Weiner link. Consider
then an internal suffix tree node v, representing string X, and an implicit Weiner
link leaving from v. Since v is internal, the text must contain at least two strings, Xa
and Xb. Now consider the destination u of the implicit Weiner link wlink(v, c) = u,
so u represents cX. Since u is an implicit node, there is a string cXd in the text
for only one possible d, so that either d 6= a or d 6= b. This means that one of the
occurrences of Xa and Xb in the text is not preceded by c, but rather by some
e 6= c. That means that the text contains two disticnt strings eX and cX. Now
consider the suffix tree built on the reverse text. It must contain an internal node
vr representing string X with at least two children, labeled with strings starting
with c and e. Therefore, there is an edge from vr to child(vr, c). This edge is an
injective function of v and c. Thus, since the suffix tree of the reverse text has O(n)
edges, there are O(n) implicit Weiner links wlink(v, c) leaving from internal nodes
v of the suffix tree of the text.

As a consequence, the space for all the Bc bitmaps is O(n) bits. As for the
functions wc, we have that the total number of Weiner links is O(n). These are
partitioned into σ functions wc, each of them containing an arbitrary number of
elements n′c (not necessarily nc = |Tc| because of the repeated nodes). Thus the
total space used by all the wc mmphfs is bounded by

∑
cO(n′c(log log n

n′
c

+ 1)) bits,

which by convexity of the logarithm is O(n log log σ) bits, as
∑
n′c = n.

Using again a constant-time select self-index as in the previous section, we obtain
the following extended result.

Theorem 4. Given a text T [1, n] over alphabet [1, σ], one can build an FM-index
occupying nHk(T)+o(nHk(T))+O(n log log σ+(n log n)/s+σk+1 log n) bits of space
for any k ≥ 0 and s > 0, such that counting is supported in time tcount = O(m),
locating is supported in time tlocate = O(s), and extraction of a substring of T of
length ` is supported in time textract = O(s+ `). A backward step that starts from a
valid interval can be computed in O(1) time.

In particular, this gives constant-time support to the Weiner link operation on
CSTs. For example that of Sadakane [2007] takes O(log n) time on top of its
original CSA [Sadakane 2003]. Our new compressed suffix array representation
gives constant time for computing Ψ and LF , and thus constant-time support for
both suffix and Weiner links.

9. CONSTANT-ACCESS REPRESENTATIONS REVISITED

We have achieved our best results with sequence representations that support
constant-time select, and left the result of Section 3 as a warmup exercise. In
this section we consider the situation where the sequence representation must give
constant-time access (and select in time O(log log σ)), due to other restrictions.

7We thank Roman Kolpakov for explaining it to us.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 19

We show how we can achieve O(m+ s) counting time, at the price of O(n log log σ)
bits of redundancy.

We use the technique of Section 8, yet without checking the correctness of each
backward step. Since we have added all the necessary Weiner links, either the
mmphf w′c(v) gives us the correct answer or there is no occurrence of cX in the
text, where v represents string X. Thus we can carry out all the steps and only at
the end we need to check that the range we have obtained is correct or not.

The range is correct if and only if pattern P occurs in T , so all we have to do
is to extract any occurrence in the range and compare it with P . This is done in
time O(m+ s) using locate and extract.

Theorem 5. Given a text T [1, n] over alphabet [1, σ], one can build an FM-index
occupying nHk(T) + o(nHk) +O(n log log σ+ (n log n)/s+ σk+1 log n) bits of space
for any k ≥ 0 and s > 0, such that counting is supported in time tcount = O(m+ s),
locating is supported in time tlocate = O(s), and extraction of a substring of T of
length ` is supported in time textract = O(s+ `).

10. CONCLUSIONS

This article contributes to bridging the gap in the time performances of classical
and compressed text indexes. While the former use O(n log n) bits to index a text
T of length n, they offer time performances that are independent of the alphabet
size σ. Compressed indexes, instead, use space asymptotically equal to that of the
compressed text, but their time performances worsen as the alphabet size grows.

Our results show that it is possible to retain compressed space while achieving
query times that are independent of the alphabet size, and that depend only on
the input/output size plus a sampling step s that allows one trade time for space.
Moreover, in our main result (Theorem 3), we have also removed the dependence
on the alphabet size from the redundancy space of the compressed indexes. That
is, the redundancy is sublinear in the compressed text size (o(nHk(T))) and not in
the plain text size (o(n log σ)). The only aspect of the result that depends on σ is
the extra redundancy term O(σk+1 log n). However, this rather limits k and it is
essentially unavoidable under the kth order empirical entropy model [Gagie 2006].
Therefore, we have achieved full alphabet independence within compressed space.

Our results carry over compressed suffix trees (CSTs), which have much richer
functionality than text indexes [Sadakane 2007; Fischer et al. 2009; Fischer 2010;
Russo et al. 2011]. CSTs are generally alphabet-independent, but depend on an
underlying self-index. Thus our new alphabet-independent self-indexes immedi-
ately yield alphabet-independent CSTs. The only exception was the child query of
Sadakane [2007], which we have also made alphabet-independent in this article.

This does not mean that there are no further challenges in this area; actually
there are many. Some open problems are:

(1) Compared with the previously least alphabet-sensitive compressed self-index
[Barbay et al. 2010], we have achieved full alphabet independence at the price
of converting an o(n)-bits term in their space redundancy into O(n). It is open
whether one can achieve full alphabet independence within o(n) redundancy.
The difference is important for not-so-large alphabets.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

20 · Alphabet-Independent Compressed Text Indexing

(2) Our times are linear in the input (i.e., O(m) for counting the occurrences of a
pattern of length m) or in the output (i.e., O(`) time for displaying ` consecutive
text symbols), plus O(s). However, some classical indexes achieve optimal times
in the RAM model, O(m/ logσ n) and O(`/ logσ n), respectively. It is open
whether one can achieve optimal times within optimal space (say, under the
Hk(T) entropy model). Grossi et al. [2003] have partially achieved this goal,
using cnHk(T) bits for any c > 2, and with a polylogarithmic additive penalty
in both times.

(3) Spending O((n log n)/s) bits of redundancy and having additive penalties of
O(s) for all the operations is not necessarily the best possible use of the space.
There exists an incomparable alternative [Grossi et al. 2003] that uses cnHk(T)

space and supports, for example, locating in time O(log1/(c−1)
σ n + log σ). Is

there a storage model obtaining the best from both, or doing even better?

(4) Finally, some of the results we obtained, such as faster suffix tree traver-
sals, constant-time backward steps, or linear counting time on constant-access
sequence representations, require o(n log σ) bits of redundancy. It is open
whether this can be reduced to sublinear on the compressed text size, that
is, to o(nHk(T)) bits.

REFERENCES

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on

Words, NATO ISI Series (1985), pp. 85–96. Springer-Verlag.

Baeza-Yates, R. and Gonnet, G. H. 1996. Fast text searching for regular expressions or au-

tomaton searching on tries. Journal of the ACM 43, 6, 915–936.

Baeza-Yates, R. and Ribeiro-Neto, B. 2011. Modern Information Retrieval (2nd ed.). Addison-
Wesley.

Barbay, J., Gagie, T., Navarro, G., and Nekrich, Y. 2010. Alphabet partitioning for com-
pressed rank/select and applications. In Proc. 21st ISAAC (2010), pp. 315–326. Part II.

Barbay, J., He, M., Munro, J. I., and Rao, S. S. 2007. Succinct indexes for strings, binary

relations and multi-labeled trees. In Proc. 18th SODA (2007), pp. 680–689.

Belazzougui, D., Boldi, P., Pagh, R., and Vigna, S. 2009a. Monotone minimal perfect hashing:

searching a sorted table with o(1) accesses. In Proc. 20th SODA (2009), pp. 785–794.

Belazzougui, D., Boldi, P., Pagh, R., and Vigna, S. 2009b. Theory and practise of monotone

minimal perfect hashing. In Proc. 10th ALENEX (2009).

Belazzougui, D. and Navarro, G. 2012. New lower and upper bounds for representing sequences.
In Proc. 20th ESA, LNCS 7501 (2012), pp. 181–192.

Beller, T., Gog, S., Ohlebusch, E., and Schnattinger, T. 2011. Computing the longest
common prefix array based on the Burrows-Wheeler transform. In Proc. 18th SPIRE (2011),
pp. 197–208.

Burrows, M. and Wheeler, D. 1994. A block sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation.

Clark, D. 1996. Compact Pat Trees. Ph. D. thesis, University of Waterloo, Canada.

Crochemore, M. and Rytter, W. 2003. Jewels of Stringology. World Scientific.

Farach, M. 1997. Optimal suffix tree construction with large alphabets. In Proc. 38th FOCS

(1997), pp. 137–143.

Ferragina, P., Giancarlo, R., Manzini, G., and Sciortino, M. 2005. Boosting textual com-
pression in optimal linear time. Journal of the ACM 52, 4, 688–713.

Ferragina, P., González, R., Navarro, G., and Venturini, R. 2009. Compressed text indexes:
From theory to practice. ACM Journal of Experimental Algorithmics 13, article 12.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

D. Belazzougui, G. Navarro · 21

Ferragina, P. and Manzini, G. 2000. Opportunistic data structures with applications. In Proc.

41st FOCS (2000), pp. 390–398.

Ferragina, P. and Manzini, G. 2005. Indexing compressed text. Journal of the ACM 52, 4,

552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed representations

of sequences and full-text indexes. ACM Transactions on Algorithms 3, 2, article 20.

Fischer, J. 2010. Wee LCP. Information Processing Letters 110, 317–320.

Fischer, J., Mäkinen, V., and Navarro, G. 2009. Faster entropy-bounded compressed suffix
trees. Theoretical Computer Science 410, 51, 5354–5364.

Gagie, T. 2006. Large alphabets and incompressibility. Information Processing Letters 99, 6,
246–251.

Golynski, A. 2009. Cell probe lower bounds for succinct data structures. In Proc. 20th SODA

(2009), pp. 625–634.

Golynski, A., Munro, J. I., and Rao, S. S. 2006. Rank/select operations on large alphabets: a

tool for text indexing. In Proc. 17th SODA (2006), pp. 368–373.

Gonnet, G., Baeza-Yates, R., and Snider, T. 1992. Information Retrieval: Data Structures and

Algorithms, Chapter 3: New indices for text: Pat trees and Pat arrays, pp. 66–82. Prentice-Hall.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes. In

Proc. 14th SODA (2003), pp. 841–850.

Grossi, R., Orlandi, A., and Raman, R. 2010. Optimal trade-offs for succinct string indexes.

In Proc. 37th ICALP (2010), pp. 678–689.

Grossi, R. and Vitter, J. 2000. Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. In Proc. 32nd STOC (2000), pp. 397–406.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences: Computer Science and Compu-

tational Biology. Cambridge University Press.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th FOCS (1989), pp.
549–554.

Kärkkäinen, J. and Sanders, P. 2003. Simple linear work suffix array construction. In Proc.
30th ICALP, LNCS 2719 (2003), pp. 943–955.

Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, C.-K., and Yiu, S.-M. 2008. Compressed indexing
and local alignment of DNA. Bioinformatics 24, 6, 791–797.

Lee, S. and Park, K. 2007. Dynamic rank-select structures with applications to run-length
encoded texts. In Proc. 19th CPM (2007), pp. 95–106.

Mäkinen, V., Välimäki, N., Laaksonen, A., and Katainen, R. 2010. Unified view of backward

backtracking in short read mapping. In T. Elomaa, H. Mannila, and P. Orponen Eds.,
Algorithms and Applications (Ukkonen Festschrift), LNCS 6060 (2010), pp. 182–195. Springer.

Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM
Journal of Computing 22, 5, 935–948.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3,
407–430.

McCreight, E. 1976. A space-economical suffix tree construction algorithm. Journal of the
ACM 23, 2, 262–272.

Munro, I. 1996. Tables. In Proc. 16th FSTTCS (1996), pp. 37–42.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-

veys 39, 1, article 2.

Ohlebusch, E., Gog, S., and Kügel, A. 2010. Computing matching statistics and maximal

exact matches on compressed full-text indexes. In Proc. 17th SPIRE (2010), pp. 347–358.

Raman, R., Raman, V., and Rao, S. 2002. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In Proc. 13th SODA (2002), pp. 233–242.

Russo, L., Navarro, G., and Oliveira, A. 2011. Fully-compressed suffix trees. ACM Transac-
tions on Algorithms 7, 4, article 53.

Sadakane, K. 2000. Compressed text databases with efficient query algorithms based on the
compressed suffix array. In Proc. 11th ISAAC (2000), pp. 410–421.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

22 · Alphabet-Independent Compressed Text Indexing

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix arrays. Journal

of Algorithms 48, 2, 294–313.

Sadakane, K. 2007. Compressed suffix trees with full functionality. Theory of Computing Sys-
tems 41, 4, 589–607.

Sadakane, K. and Navarro, G. 2010. Fully-functional succinct trees. In Proc. 21st SODA

(2010), pp. 134–149.

Ukkonen, E. 1995. On-line construction of suffix trees. Algorithmica 14, 3, 249–260.

Weiner, P. 1973. Linear pattern matching algorithm. In Proc. 14th Ann. IEEE Symp. on
Switching and Automata Theory (1973), pp. 1–11.

ACM Transactions on Algorithms, Vol. TBD, No. TDB, Month Year.

