Algorithms for Transposition Invariant String Matching
(Extended Abstract)

Veli Mikinen™, Gonzalo Navarro>**, and Esko Ukkonen!*

! Department of Computer Science, P.O Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland.
{vmakinen,ukkonen}@cs.helsinki.fi
2 Center for Web Research, Department of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl

Abstract. Given strings A and B over an alphabet X C U, where U is some numerical universe
closed under addition and subtraction, and a distance function d(A, B) that gives the score of the
best (partial) matching of A and B, the transposition invariant distance is mingey{d(A +¢, B)}, where
A+t = (a1 +t)(az+1t)...(am +t). We study the problem of computing the transposition invariant
distance for various distance (and similarity) functions d, that are different versions of edit distance.
For all these problems we give algorithms whose time complexities are close to the known upper bounds
without transposition invariance. In particular, we show how sparse dynamic programming can be used
to solve transposition invariant problems.

Topic: Algorithms and data structures.

1 Introduction

Transposition invariant string matching is the problem of matching two strings when all the char-
acters of either of them can be “shifted” by some amount . By “shifting” we mean that the strings
are sequences of numbers and we add or subtract ¢ from each character of one of them.

Interest in transposition invariant string matching problems has recently arised in the field of
music information retrieval (MIR) [4,16,17]. In music analysis and retrieval, one often wants to
compare two music pieces to test how similar they are. A reasonable way of modeling music is to
consider the pitches and durations of the notes. Often the durations are omitted, too, since it is
usually possible to recognize the melody from a sequence of pitches. In this paper, we study distance
measures for pitch sequences (of monophonic music) and their computation.

In general, edit distance measures can be used for matching two pitch sequences. There are,
however, couple of properties related to music that should be taken into account. Transposition
invariance is one of those; the same melody is perceived even if the pitch sequence is shifted from
one key to another. Another property is the continuity of the alignment; the size of the gaps between
matches should be limited, since one long gap in a central part can make a crucial difference in
perception. Small gaps should be accepted, e.g. for removing “decorative” notes.

We study how these two properties can be embedded in evaluating the edit distance measures.
The summary of our results is given in Section 3.

The full version of this paper appears as a technical report |21|. There we also study “easier”
(non-gapped) measures of similarity under transposition invariance (like Hamming distance and
(6,v)—matching |5, 19]), that have other applications besides MIR.

* Supported by the Academy of Finland under grant 22584.
** Supported by Millenium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

2 Definitions

Let X be a finite numerical alphabet, which is a subset of some universe U that is closed under
addition and subtraction (U is either Z or R in the sequel, and ¥ is called either integer or real
alphabet, respectively). Let A = ajas ... ay,, and B = biby...b, be two strings over ¥*, i.e. a;,b; €
Yiforall 1 <i<m,1 <5 <n. We will assume w.l.o.g that m < n, since the distance measures we
consider are symmetric. String A’ is a substring of Aif A’ = Aj j=ai...ajforsomel <i<j <m.
String A" is a subsequence of A, denoted by A" C A, if A" = a;,a;, . .- @, for some indexes
1<y <o < <Z"Au‘ < m.

The following measures can be defined. The length of the longest common subsequence (LCS)
of A and B is les(A, B) = max{|S| | SC A, S C B}. The edit distance [18,27,23] between A and B
is the minimum number of edit operations that are needed to convert A into B. Particularly, in the
unit cost Levenshtein distance dy, the set of edit operations consists of character insertions, deletions,
and substitutions. If the substitution operation is forbidden, we get a distance dip, which is actually
a dual problem of evaluating the LCS; it is easy to see that dip(A,B) = m +n — 2 - les(A, B).
For convenience, we will mainly use the minimization problem dip (not lcs) in the sequel. If only
deletion for characters of B are allowed, we get a distance dp.

String A is a transposed copy of B (denoted by A =! B) if B = (a; +t)(ag +t) - (am + 1) =
A+t for some t € U. Definitions for a transposed substring and a transposed subsequence can
be stated similarly. The transposition invariant versions of the above distance measures d, where
x € {L,ID,D} can now be stated as d.(A, B) = mingey di(A + t, B).

We also define o limited versions of the edit distance measures, where the distance (gap) between
two matches is limited by a constant o > 0, i.e. if (a7, bj) and (a;, bj) are matches, then [i—i'—1| < «
and |7 — 7' — 1] < «. We get distances di’a,dﬁ;}, and dBa.

The approzimate string matching problem, based on the above distance functions, is to find the
minimum distance between A and any substring of B. In this case we call A the pattern and denote
it Py, = p1p2- - Pm, and call B the text and denote it Ty _, = tit9---t,, and usually assume
that m << n. A closely related problem is the thresholded search problem where, given P, T, and
a threshold value k > 0, one wants to find all the text positions j, such that d(P,Tj, ;) < k for
some j;. We will refer collectively to these two closely related problems as the search problem.

In particular, if distance dp is used in approximate string matching, we obtain a problem known
as episode matching [20,8]. It can also be stated as follows: Find the shortest substring of the text
that contains the pattern as a subsequence.

Our complexity results are different depending on the form of the alphabet Y. We will distinguish
two cases. An integer alphabet is any alphabet ¥ C Z. For integer alphabets, |¥| will denote
max(Y) — min(X¥) + 1. A real alphabet will be any other ¥ C R. For any string A = a ... a;,, we
will call ¥4 = {a; | 1 < i < m} the alphabet of A. In these cases we will use |¥4| = max(X4) —
min(Y4) + 1 < |¥| when Y4 is taken as an integer alphabet. On real alphabets, |¥4| < m will
denote the cardinality of the set Y 4.

3 Related Work and Summary of Results

The first thing to notice is that the problem of exact transposition invariant string matching is
extremely easy to solve. For the comparison problem, the only possible transposition is t = b; — ay.

For the search problem, one can use the relative encoding of both the pattern (p} = pa2 — p1,ph =
p3s — p2,...) and the text (¢| = to — t1,t, = t3 — ta,...), and use the whole arsenal of methods
developed for exact string matching. Unfortunately, this relative encoding seems to be of no use
when the exact comparison is replaced by an approximate one.

Transposition invariance (as far as we know) was introduced in the string matching context in the
work of Lemstrém and Ukkonen [17]. They proposed (among other measures) transposition invariant
longest common subsequence (LCTS) as a measure of similarity between two monophonic music
(pitch) sequences. They gave a descriptive nick name for the measure: “Longest Common Hidden
Melody”. As the alphabet of pitches is some limited integer alphabet X' C 7Z, the transpositions that
have to be considered are T = {b—a | a,b € ¥'}. This gives a brute force algorithm for computing the
length of the LCTS [17|: Compute les(A +t, B) using O(mn) dynamic programming for each t € T.
The runtime of this algorithm is O(]X|mn), where typically |¥| = 256. In the general case, where
X could be unlimited, one could instead use the set of transpositions T' = {b —a | a € A,b € B}.
This is because some characters must match in any meaningful transposition. The size of T" could
be mn, which gives O(m?n?) worst case time for real alphabets. Thus it is both of practical and
theoretical interest to improve this algorithm.

We will also use a brute force approach as described above, but since most transpositions produce
sparse instances of the dynamic programming problem, we can use specialized sparse dynamic
programming algorithms to get good worst case bounds. Moreover, we show a connection between
the resulting sparse dynamic programming problems and semi-static range minimum queries. We
obtain simple yet efficient algorithms for the distances dEa, d}]’g., and dBO‘.

For LCS (and thus for dip) there already exists Hunt-Szymanski [15] type (sparse dynamic pro-
gramming) algorithms whose time complexities depend on the number r of matching pairs between
the compared strings. The complexity of the Hunt-Szymanski algorithm is O((r + n)logn). As the
sum of values r over all different transpositions is mn, we get the bound O(mnlogn) for the trans-
position invariant case. Later improvements |1, 10] yield O(mnloglogn) time. We improve this to
O(mnloglogm) by giving a new sparse dynamic algorithm for LCS. This algorithm can also be
gsneralized to the case where gaps are limited by a constant «, giving O(mnlogn) for evaluating
dll’gé (Av B)'

Eppstein et. al. [10] have proposed sparse dynamic programming algorithms for more com-
plex distance computations such as Wilbur-Lipman fragment alignment problem [28,29]. Also the
unit cost Levenshtein distance can be solved using these techniques [13]. Using this algorithm, the
transposition invariant case can be solved in O(mn loglogn) time. However, the algorithm does not
generalize to the case of a-limited gaps, and thus we develop an alternative solution that is based on
semi-static range minimum queries. This gives us O(mn log? nloglog m) for evaluating di’o‘(A7 B).

Finally, we give a new O(m + n + r) time sparse dynamic programming algorithm for episode
matching. This gives us O(mn) time for transposition invariant episode matching.

Table 1 gives a list of upper bounds that are known for these problems without transposition
invariance. Table 2 gives the achieved upper bounds for the transposition invariant variants of these
problems.

Table 1. Upper bounds for string matching without transposition invariance. We omit bounds that depend on the
treshold & in the search problems. For dfy it is also easy to improve the bound below to O(mn) using min-deques
[12] in each row and column of the DP matrix.

distance|distance evaluation searching
exact O(m) O(m +n)
dip, dv O(mn/logm) O(mn/logm) [7]
dn O(m + n) (greedy) O(mn/logm) [8]
i, dT, O(amn) O(ammn) |22] (Chapter 10, Sect. 4.2)
ap, O(m + n) (greedy) O(mn) [9, 6]

Table 2. Upper bounds for transposition invariant string matching. We have not added, for clarity, the size of the
output in the (thresholded) search complexity, nor the preprocessing time in Lemma 2. The bounds on these distances
are valid in real alphabets provided we replace § by §/u, where p is the minimum distance between two characters
in Aorin B.

distance| distance evaluation searching

exact O(m) O(m+n)

diy O(mnloglogm) O(mnloglogm)
dys O(mnlogn) O(mnlogm)

b O(mnloglogn) O(mnloglogm)
ay O(mnlog® nloglog m)|O(mnlog® mloglogm)
dp™ O(mn) O(mn)

4 Computation of Transposition Invariant Edit Distances

Let us first review how the edit distances can be computed using dynamic programming [18,27,
23|. Let A = ajaz -+ ay, and B = biby -+ by,. For dip, evaluate an (m + 1) x (n + 1) matrix (d;;),
0<i<m,0<j<n, using the recurrence

d@j = mln((lf a; = bj then di,Ljfl else OO), diij + 1, d@jfl + 1), (1)

with initialization d; o =i for 0 <i <m and dg; = j for 0 < j < n.

The matrix (d;;) can be evaluated (in some suitable order, like row-by-row or column-by-column)
in O(mn) time, and the value dp,, equals dip(A, B).

A similar method can be used to calculate the distance dy,(A, B). Now, the recurrence is

di,j = mln((lf a; = bj then difl,jfl else di,11j71 + 1), diij + 1, di,jfl + 1), (2)

with initialization d; o =i for 0 <i <m and dy; = j for 0 < j < n.
The recurrence for the distance dp(A, B), that is used in episode matching, is

di,j =if a; = bj then difl,jfl else di,jfl + 1, (3)

with initialization d; g = oo for 0 <i < m and dg; = j for 1 < j < n. Note that dp(A, B) can also
be computed using a greedy algorithm; the recurrence is only given because it can be generalized
to the search problem, too.

The corresponding search problems can be solved by assigning zero to the values in the first row
(recall that we identify pattern P = A and text T'= B). To find the best approximate match, we
take ming<j<p dp, j. For thresholded searching, we report the endpositions of the occurrences, i.e.,
those j where d,, ; < k.

To solve our tranposition invariant problems, we could try to prove that only some transpositions
need to be checked, as is the case with some easier distance measures |21]. This does not seem to be
possible with the more flexible measures of similarity studied here. Therefore we choose a different
approach: We compute the distances in all required transpositions, but we use algorithms that are
more efficient than the above basic dynamic programming solutions, such that the overall complexity
does not exceed by much the worst case complexities of computing the distances in one transposition.

Let M be the set of matching characters between strings A and B, i.e. M = M(A,B) =
{(t,7) | a; = b;,1 <i <m,1 <j<mn} Let r =r(A, B) = |M(A,B)|. Let us redefine T in this
section to be the set of those transpositions that make some characters match between A and B,
that is T = {b; —a; | 1 <i < m,1 < j < n}. One could compute the above edit distances and
solve the search problems by running the above recurrences over all pairs (A + ¢,B), where t € T.
In integer alphabet this takes O(|X|mn) time, and O(|X4||¥'g|mn) time in real alphabet. This
kind of procedure can be significantly speeded up if the basic dynamic programming algorithms are
replaced by suitable “sparse dynamic programming” algorithms.

Lemma 1 If an algorithm computes a distance d(A, B) in O(g(r(A, B))f(m,n)) time, where g is
a concave function, then the transposition invariant distance d*(A, B) = miner d(A +t, B) can be
computed in O(g(mn)f(m,n)) time.

Proof. Let ry = r(A+t, B) be the number of matching character pairs between A + ¢ and B. Then

> g(r)fm,n) = f(m,n) > g (Z{j la;+t=10;,1<;< n}|)

teT teT i=1

< f(m.n)g <ZZ|{j|ai+t=bj71 San}>

i=1 teT

m
= f(m,n)g <Z n) = g(mn)f(m,n).0
=1
The rest of the section devotes to developing algorithms that depend on r.

4.1 Preprocessing

As a first step, we need a way of constructing the match set M sorted in some order that enables
sparse evaluation of matrix (d;;). We use column-by-column order (', j') <¢ (i, j) in the sequel, that
is defined as follows: j' < j or (j' = j and i’ > i).! The match set corresponding to a transposition
t will be called M; = {(i,7) | a; +t = b;}.

! Note that our definition differs from the usual column-by-column order in condition i’ > . This is to simplify the
algorithms later on.

Lemma 2 The match sets M; = {(,7) | a; +t = bj}, each sorted in column-by-column order, for
all transpositions t € T, can be constructed with the following complexities. On integer alphabet,
O(|X| + mn). On real alphabet , O(mlog | X 4| + nlog | Xp| + |Xal|Xs|log(|Xal|Xs|) + mn). Both
bounds can be achieved using O(mn) space.

Proof. In the integer case we can proceed naively to obtain O(| Y|+ mn) time using array indexing
to get the transposition where each pair (7, j) has to be added.

The case of real alphabets with O(mn) memory is solved as follows. Create a balanced tree
Ta where every character a = a; of A is inserted, maintaining for each such a € ¥4 a list £, of
the positions i of A, in increasing order, such that a = a;. Do the same for B and 7g. This costs
O(mlog|Xa| +nlog|Xp|). In which follows we will speak indistinctly of characters of ¥4 (¥'p) and
nodes of T4 (Tg). For each node a in T4 and b in Tg, initialize M}, _, = () and insert it into a tree
of transpositions, Tr. At the same time, create a simple list P, for each node b in Tp containing,
for each node a of T4, a pointer to the node a of 74 and to the node b — a in 7y. This takes
O(|Xal|Xp|log(|Xa||Xs])) time, since |T| < |X4||Xp|. Finally, traverse all the lists of positions
Ly of Tp in synchronization, getting consecutive positions j in B (this is done, e.g., by putting all
the tree nodes b in a heap sorted by the first position in the list L, extracting the smallest, and
reinserting it with the next position in the list). For each extracted position j of B corresponding
to a node b in Tp, traverse its list of pairs P, = {(i,t) € (Ta node, 71 node)}. For each such list
element, add (7,) to set M; in Ty. This takes overall O(nlog|X'g| + mn) time. 0

The preprocessing can be made more space-efficient with some penalty in the time requirement;
the details can be found in [21].

4.2 Computing the Longest Common Subsequence

For LCS (and thus for dip) there exist algorithms that depend on r. The classical Hunt-Szymanski
[15] algorithm has running time O(rlogn) if the set of matches M is already given in the proper
order. Using Lemma 1 we can conclude that there is an algorithm for transposition invariant LCS
that has time complexity O(mnlogn). There are even faster algorithms for LCS [1,10]; Epp-
stein et. al. [10] improved an algorithm of Apostolico and Guerra [1| achieving running time
O(Dloglogmin(D, "5t)). where D < r is the number of dominant matches (see, e.g., [1] for a
definition). Using this algorithm, we have the bound O(mn loglogn) for the transposition invariant
case.

The existing sparse dynamic programming algorithms for LCS, however, do not extend to the
case of a limited gaps. We will give a simple but efficient algorithm for LCS that generalizes to this
case. We will also use the same technique when developing an efficient algorithm for the Levenshtein
distance with o limited gaps. Moreover, by replacing the data structure used in the algorithm by a
more efficient one described in Appendix A, we can achieve O(rloglogm) complexity, which gives
O(mn loglog m) for the transposition invariant LCS (which is better than the previous bound, since
m < n).

We will need the following (sparsity) lemma to give a fast algorithm for dip. Let (i',5") <? (i,)
denote a partial order defined as 7' < i and j' < j, and let (i, j") <P (i,j) denote another partial
order defined as i’ <, j' < j, and (i',5") # (4,7).

Lemma 3 The recurrence (1) can be replaced by

g = Jmin{d(@) +i =i = g aw =0y, (7)) <P (6 5)y when a; # b ()
W \mindd(i, j) i —i' 4 j = 7 =2 | ag = by, (i, 5') <P (i,§)} when a; = b; ’

where doo =0 and ag = by.

Proof. Consider the evaluation of the matrix (d;;) as a shortest path computation in which one
can either proceed one cell down (cost 1), one cell to the right (cost 1) or one cell forward in the
diagonal (cost oo if the corresponding characters do not match, otherwise 0). The paths that take
only horizontal and vertical steps from cell (', j") to cell (i, j) have cost cost i —i' 4+ j — j'. The paths
that consist of one diagonal movement (from (i —1,j — 1) to (7,j)) and otherwise of horizontal and
vertical movements (from (i, j") to (i — 1,7 — 1)) have cost i —i' =1+ j —j' — 1, when a; = b;. The
paths that take more diagonal steps either have cost oo or pass through some cell (i", ;") # (i',)
such that (i",j") <P (i,7), a;» = bjn. Using induction, one can see that the path cost from (i, ;")
plus d;» j» is always smaller or equal to the path cost from (i',j') plus dy j. Finally, if a; = b,
then any path to (i, j) that takes diagonal steps and does not traverse through (i — 1,7 — 1) can be
replaced by equal or smaller cost path that traverses through (i — 1,5 — 1). O

The obvious strategy to use the above lemma is to keep the already computed values d(i’, j') for
each 7', j’ such that ay = b; in some data structure so that their minimum can be retrieved efficiently
when computing the value of d(i, j). One difficulty here is that the values stored are not comparable
as such since we want the minimum just after i —i' 4+ j — j' — 2 is added. This can be solved by storing
values d(i', j') — i’ — j" instead. Then, after retrieving the minimum value, one can add i+ j — 2 to
get the correct value for d(7, 7). To get the minimum value from range (i, j') € [—00,4) X [—00, j)
we need a dynamic data structure that can support one-dimensional range queries (the column-by-
column traversal order guarantees that all points are in range [—00, 7)). In addition, the range query
should not be output sensitive; it should only report the minimum value, not all the points in the

?

range.

A balanced binary tree can be used as a such data structure. We can use the row number i’ as
a sort key, and store values d(i’, j') — i’ — j' in the leaves. Then we can store in each internal node
the minimum of the values d(i’, ') — ¢’ — j' in its subtree.

Lemma 4 A balanced binary tree T supports the following operations in O(logn) amortized time,
where n is the amount of elements inserted in the tree.

— T.Insert(k,v): Inserts value v into tree with key k.

— T.Delete(v): Deletes all elements with value > v.

— v ="T.Minimum(k,+): Returns the minimum of values that have key > k.

— v ="T.Minimum(k, —): Returns the minimum of values that have key < k.

— v ="T.Minimum(l,r): Returns the minimum of values that have key > 1 and < r.

Proof. The balanced tree described above is easily updated when a new key k is inserted, as the
only additional operation is to change the value v’ of any traversed internal node by min(v,v’).
Deletion needs a parallel tree organized by value v, so that deleting all the values larger than v can
be done by disconnecting O(logn) subtrees. This parallel tree stores pointers to the original tree

T, so we can remove also the nodes from 7. Since we remove all values larger than v, minimum
values computed at internal nodes in 7 need not be updated. So the deletion of each node takes
O(log n) time. Since one cannot delete more elements than those inserted, the amortized time for
deletions is O(log n). Minimum over ranges of keys are obtained by taking the minimum value over
the O(logn) nodes that are traversed when searching for the keys. For simplicity we will speak of
the balanced tree T, ignoring the fact that the data structure is composed of two trees. (We note,
however, that deletions are strictly necessary only when matching with a—limited gaps.) O

We are ready to give the algorithm. Initialize a balanced binary tree T by adding the value of
doo — 1 —j = 0 with key i = 0 (7 .Insert(0,0)). Proceed with the match set M that is sorted in
column-by-column order and make the following operations at each pair (i, 7):

(1) Take the minimum value from 7 whose key is smaller than the current row number i (d =
T .Minimum(i,—)). Add i + j — 2 to this value (d < d+i+j —2).

(2) Add the current value d minus the current row number i and current column number j into 7
with the current row number as a key (7.Insert(i,d —i —j)).

Finally, dip(A, B) = T.Minimum(m + 1, =) + m + n.

One can easily see that the above algorithm works correctly; the column-by-column evaluation
and the range query restricted by the row number in 7 guarantee that the (', ;') <P (i,j) condition
holds.

Clearly, the time complexity is O(rlogr).

The algorithm also generalizes easily to the search problem; the 0 values in the first row can be
added implicitly by using d < min(i,d + i + j — 2) in step (1) above. Also, every value d; ; = d
computed in step (2) above induces a value dy, j45 < d+ (m — i) 4+ s in the last row, which can be
used either to keep the minimum d,, ; value, or to report all values d,,, ; < k in thresholded searching
(each d; j induces a range at the last row where values are < k; after computing all values d; ;, the
last row can be traversed by keeping book on the active ranges in order to report each occurrence
only once). The time complexity does not change except for the size of the output, but it can be
improved since n >> m; we can delete those nodes that cannot give the minima, i.e., values d such
that min(i,d + ¢ + j — 2) = i. This means that, before we process elements in column j, we can
remove all the values v > —j + 2. The running time becomes O(rlogm) with O(m?) space, since
this is the number of possibly relevant matches at any time.

We will show in Appendix A that the balanced binary tree can be replaced by a priority queue.
Moreover an implementation of priority queue can be used that supports operations in O(log log u)
time, where 1...u is the range of values inserted in the structure. The structure does not store the
values of d; ; but the row numbers i, and thus we can replace log n with loglog m.

Let us now consider the case with « limited gaps. The only change we need in our algorithms
is to make sure that, in order to compute d; j, we only take into account the matches that are in
the range (', ;') € [i — a —1,i) x [j — a — 1,7). What we need to do is to change the range [—00, 1)
into [i —a—1,7) in T, as well as to delete elements in column < j — « — 1 after processing elements
in column j. The former is easily accomplished by using query 7. Minimum(i — « — 2,i) at phase
(1) of the algorithm. The latter needs an extra tree organized by j values, similar to the one used
for the Delete operation. In fact, for searching, this tree can replace the one used for Delete and
we would obtain the same running time, as the relevant a values cannot exceed m in the search

problem. However, the reduction to priority queues does not work anymore, and the log log m factor
must be replaced by logn in the bounds.
By using Lemma 1 and the above algorithms, we get the following result.

Theorem 5 The transposition invariant distance dj, (A, B) can be computed in O(mnloglogm)
time and O(mn) space. The corresponding search problem can be solved in O(mnloglogm) time
and in O(m?) space. For the case of a limited gaps, dﬁg‘(A,B), the space requirements remain the
same, but the time bounds are O(mnlogn) for distance computation and O(mnlogm) for searching.
The preprocessing bounds in Lemma 2 need to be added to these bounds.

Note that to achieve space complexity O(m?) we need to slide a window of length m over the
text, and run preprocessing and computation in parallel so that all transpositions are evaluated in
each window. All occurrences will still be found since values in column j can not affect the values
in column 7 + m.

4.3 Computing the Levenshtein Distance

For the Levenshtein distance, there exists a O(rloglog min(r, mn/r)) sparse dynamic program-
ming algorithm [10,13]. Using this algorithm, the transposition invariant case can be solved in
O(mnloglogn) time. As with the LCS, this algorithm does not generalize to the case of « limited
gaps. We develop an alternative solution for the Levenshtein distance by generalizing our range
query approach to the LCS. This new algorithm can be further generalized to solve the problem of
a-limited gaps.

The Levenshtein distance dp, has a sparsity property similar to the one given for dip in Lemma 3.
The following lemma can be proven using similar arguments as in the proof of Lemma 3.

Lemma 6 The recurrence (2) can be replaced by

min {
dij =
min {

where do g = 0 and ag = by.

i3 45— ay = by <id gl =i <j—i} U
ilv /)+Z’7i/‘ai’:bj’ajISjajliil>j7i}
NAj =i =1 ay =bp,i' <i g =i <j—i} U ’
)

{d

{d(when a; # b;
{a(’ b,
(A7) +i— i — 1 ap =by,f < g —i' >j—i} =D

(5)

v,

N

J
J
J
Z?]

This relation is however much more complex than the one for djp. In the case of djp we could
store values dy ;o in a comparable format (by storing dy j — i’ — j' instead) so that the minimum
of range (i',5') <P (i,j) could be retrieved efficiently. For df, there does not seem to be such a
comparable format, since the path length from (i, j') to (7, j) may be either i — ¢ — 1 or j — 7' — 1.

Let us call the two sets in the lower minimization formula of the above lemma as the lower
region. and the upper region, respectively. Our strategy is to maintain separate data structures for
both regions. Each value d; j» will be stored in both structures in such a way that the stored values
in each structure are comparable.

Let £ denote the data structure for the lower region and U/ the data structure for the upper
region. If we store values dy j — j' in £, we can take the minimum over those values plus j — 1 to

get the value of d; ;. However, we want this minimum over a subset of values stored in £, i.e. over
those dj j — j' whose coordinates satisfy i’ < ¢,j" —i' < j —i. Similarly, if we store values dy ;o — '
in U, we can take minimum over those values whose coordinates satisfy j' < 7.7 —4' > j — i, plus
i — 1 to get the value of d; ; (the actual minimum is then the minimum of upper region and the
lower region).

What is left to be explained is how the minima of subsets of £ and U/ can be obtained. For the
upper region, we can use the same structure as for dip; if we keep values dy y — i’ in a balanced
binary tree U with key 7' —i’, we can make one-dimensional range search to locate the minimum of
values dj_j —i' whose coordinates satisfy j' —i' > j —i. The column-by-column traversal guarantees
that ¢/ only contains values dy j; — i’ for whose coordinates hold j' < j. Thus, the upper region can
be handled efficiently.

The problem now is the lower region. We could use row-by-row traversal to handle this case
efficiently, but then we would have the symmetric problem with the upper region. No traversal
order will allow us to limit to one-dimensional range searches in both regions simultaneously; we
will need two-dimensional range searches in one of them. Let us consider the two-dimensional range
search for the lower region. We would need a query that retrieves the minimum of values dy j» — j'
whose coordinates satisfty i’ < 4,5 — i’ < j —i. We make a coordinate transformation to make this
triangle region into a rectangle; we map each value dy j — j' into an zy-plane to coordinate ¢', j' —i'.
What we need in this plane, is a rectangle query [—o00,i) x [-00,j —). We will in Lemma 7 specify
an abstract data structure for £ that supports this operation. Such structure is given in [11]; we
will review this structure in Appendix A.

Lemma 7 There is a data structure R that, after O(nlogn) time preprocessing, supports the fol-
lowing operations in amortized O(lognloglogn) time and O(nlogn) space, where n is the number
of elements in the structure:

— R.Update(x,y,v): Update value at coordinate x,y to v (under condition that the current value
must be larger than v).

— v = R.Minimum(ly,lo, —,—): Retrieve the minimum of values whose x-coordinate is smaller
than 1y and y-coordinate is smaller than ls.

We are now ready to give the sparse dynamic programming algorithm for the Levenshtein dis-
tance. Initialize a balanced binary tree U for the upper region by adding the value of dgg —i =0
with key i = 0 (U.Insert(0,0)). Initialize a data structure L for the lower region (R of Lemma 7)
with the triples (i, j, o0) such that (i, j) € M U{(0,0)}. Update value of dyo—j = 0 with keys i =0
and j —i = 0 (L.Update(0,0,0)). Proceed with the match set M = {(4,7) | a; = b;} that is sorted
in column-by-column order and make the following operations at each pair (i, 7):

(1) Take the minimum value from U whose key is larger or equal to the current diagonal j — i
(d =U.Minimum(j —i—1,4)). Add ¢ — 1 to this value (d' + d' +1i—1).

(2) Take the minimum value from £ inside the rectangle [—oc,i) X [—oc,j — i) (d”
L.Minimum(i,j —i,—,—)). Add j — 1 to this value (d" + d" +j —1).

(3) Choose the minimum of d' and d" as the current value d = d, ;.

(4) Add the current value d minus i into U with key j —i (U.Insert(j —i,d —1i)).

(5) Add the current value d minus j into £ with keys i and j — i (L.Update(i,j —i,d — j)).

10

Finally, di, (A, B) = min(U.Minimum(n —m — 1,+) + m, L.Minimum(m + 1,n —m, —, —) + n).

The correctness of the algorithm should be clear from the above discussion. The time complexity
is O(rlog rloglog r) (r elements are inserted and updated into the lower region structure, and r times
it is queried). The space usage is O(r log r). We can reduce the time complexity to O(r log r log log m)
since the loglogn factor in Lemma 7 is actually loglogu, where 1...wu is the the range of values
added to the (secondary) structure (see Appendix A). We can implement the structure in Lemma 7
so that u = m.

The algorithm can be modified for the search problem similarly as dip, by implicitly adding
values 0 in the first row of the current column and considering the effect of each computed d; ; value
in the last row of the matrix. However, removing unnecessary elements from the structures (those
that can not give minima for the current column) is not anymore possible, since the structure for the
lower region is semi-static; points can not be removed so that the structure would remain balanced.
However, we can partition the text into O(n/m) substrings of length 2m so that the consecutive
substrings overlap by m characters. Then we can run the algorithm on each piece at a time, and no
occurrences will be missed, since the values in column j can not affect the values in column j + m.
This gives O(r log m log log m) search time and O(m?logm) space usage.

Using this algorithm, the transposition invariant distance computation can be solved in
O(mnlognloglogm) time, and the search problem in O(mn log mloglogm) time. These are, by a
log n factor, worse than what can be achieved by using the algorithm of Eppstein et. al [10] (that
algorithm can be also generalized to the search problem similarly as above).

However, the advantage of our range query approach is that we can now easily solve the case of
a limited gaps. Consider the lower region. We need the minimum over the values whose coordinates
(i'.j") satisty i' € [i —a—1,i), j/ € [—a—1,7), and j' — i’ € [—oc,j —i). We map each
dy j — j' into three dimensional space to coordinate (i’,j’, 7' —i'). As we will show in Appendix A,
the data structure of Lemma 7 can be generalized to answer three-dimensional (orthant) queries of
the form R.Minimum(ly,ls,13, —,+, —) (minimum value of points whose first coordinate is smaller
than [y, second larger than [y, and third smaller than l3). We can use query R.Minimum(i,j —
a—2,j —i,—,+,—) when computing the value of d; ; from the lower region, since ' > i —a — 1
when j' — i’ < j — i, and column-by-column order guarantees that ;' < j. The upper region case
is now symmetric and can be handled similarly. The data structure R can be implemented so that
we get overall time complexity O(rlog? rloglogm). For the search problem, this can be reduced to
O(rlog® mloglog m).

Using Lemma 1 with the above algorithms, we obtain the following result for the transposition
invariant case.

Theorem 8 Transposition invariant Levenshtein distance di(A,B) can be computed in
O(mnloglogn) time and in O(mn) space. The corresponding search problem can be solved in
O(mnloglogm) time and O(m?) space. For the case of a limited gaps, dEa(A, B), the time require-
ments are O(mn log? nloglogm) and O(mnlog? mloglogm), and space requirements O(mnlog? n)
and O(m?log®m), respectively, for distance computation and for searching. The preprocessing
bounds in Lemma 2 need to be added to these bounds.

11

4.4 Episode Matching

Finally we look at the episode matching problem and the d}, distance, which has a simple sparse
dynamic programming solution. The following lemma for dp is easy to prove.

Lemma 9 The recurrence (3) can be replaced by
where j' is the largest j' < j such that a;_y = by, doo =0, and ag = by.

Consider an algorithm that traverses the match set M = {(i,7) | a; = b;} in the column-by-
column order. We will maintain for each row a value c(i) that gives the largest j' < j such that
a; = by, and a value d(i) = d; y. First, initialize these values to oo, except that ¢(0) = 0 and
d(0) = 0. Let (i,j) € M be the current pair whose value we need to evaluate. Then d = d;; =
d(i—1)+j—c(i — 1) — 1. We can now update the values of the current row: ¢(i7) = j and d(i) = d.
One can easily see that the above recurrencies can be implemented using dynamic programming in
O(r) time, r = | M| (preprocessing time for constructing M needs to be added to this).

The above algorithm generalizes to the search problem and to the episode matching problem by
implicitly initializing values ¢(0) = j — 1 and d(0) = 0 for the values in the first row.

The problem of « limited gaps can be handled easily; we simply avoid updating d(i) as defined
when j —¢(i — 1) — 1 > «. In this case we set d(i) = oc.

Theorem 10 The episode matching problem can be solved in O(|X| 4+ m + n +r) time in integer
alphabet and O((m + n)log|X 4| + r) time in real alphabet (both in O(m + n + r) space). The
transposition invariant episode matching problem can be solved in O(mn) time. The same bound
applies in the case of a limited gaps. The preprocessing bounds in Lemma 2 need to be added to the
bounds for the transposition invariant cases.

5 Conclusions and Future Work

We studied a brute force approach for transposition invariant edit distance computation. However,
as we noticed, most of the tranpositions produce sparse instances of the edit distance problem, and
specialized algorithms could be used to solve these sparse instances efficiently. These kind of sparse
dynamic programming algorithms already existed in the literature; we gave new sparse dynamic
algorithms for episode matching and for matching with « limited gaps in the LCS and in the
unit cost Levenshtein distance. The problem of matching with a-limited gaps demonstrated the
connection between sparse dynamic programming and the problem of semi-static range searching
for minima.

An interesting remaining question is whether the log factors could be avoided to achieve O(mn)
for transposition invariant edit distance. For episode matching we achieved the O(mn) bound, except
that the preprocessing can (in very uncommon situations on real alphabets) take O(mnlogn) time.

12

References

1.

w

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.
28.

29.

A. Apostolico and C. Guerra. The longest common subsequence problems revisited. Algorithmica 2:315 336,
1987.

M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. LATIN 2000), pp. 88-94, 2000.

J. L. Bentley. Multidimensional divide-and-conquer. Comm. ACM, 23:214 229, 1980.

T. Crawford, C.S. Tliopoulos, and R. Raman. String matching techniques for musical similarity and melodic
recognition. Computing in Musicology 11:71-100, 1998.

M. Crochemore, C.S. Iliopoulos, T. Lecroq, and Y.J. Pinzon. Approximate string matching in musical sequences.
In Proc. PSC 2001, pp. 26-36, 2001.

M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsichlas. Approximate string matching
with gaps. Nordic Journal of Computing 9(1):54 65, Spring 2002.

M. Crochemore, G. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence alignment algorithm for unrestricted
cost matrices. In Proc. SODA’2002, pp. 679 688. ACM-SIAM, 2002.

G. Das, R. Fleischer, I.. Gasieniec, D. Gunopulos, and J. Kéarkkdinen. Episode matching. In Proc. CPM’97,
LNCS 1264, Springer, pp. 12-27, 1997.

M.J. Dovey. A technique for “regular expression” style searching in polyphonic music. In Proc. ISMIR 2001, pp.
179-185, October 2001.

D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Ttaliano. Sparse dynamic programming I: linear cost functions. J.
of the ACM 39(3):519 545, July 1992.

H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems. Proc.
STOC’84, pp. 135 143, 1984.

H. Gajewska and R. Tarjan. Deques with heap order. Information Processing Letters 12(4):197 200, 1986.

7. Galil and K. Park. Dynamic programming with convexity, concavity and sparsity. Theoretical Computer
Science 92:49 76, 1992.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal of Computing,
13:338-355, 1984.

J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common subsequences. Commun.
ACM, 20(5):350-353, May 1977.

K. Lemstrom and J. Tarhio. Searching monophonic patterns within polyphonic sources. In Proc. RIAO 2000 ,
pp. 1261 1279 (vol 2), 2000.

K. Lemstrém and E. Ukkonen. Including interval encoding into edit distance based music comparison and
retrieval. In Proc. AISB 2000, pp. 53 60, 2000.

V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Sowiet Physics Doklady
6:707-710, 1966.

C. lliopoulos, M. Crochemore, G. Navarro, and Y. Pinzon. A bit-parallel suffix automaton approach for (d,~)
matching in music retrieval. Submitted for publication, 2002.

H. Mannila and H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in sequences. In Proc. KDD’95,
AAAT Press, pp. 210 215, 1995.

V. Mikinen, G. Navarro, and E. Ukkonen. Algorithms for Transposition Invariant String Matching.
Technical Report TR/DCC-2002-5, Department of Computer Science, University of Chile, July 2002,
“ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/ti__matching.ps.gz”

D. Sankoff and J. B. Kruskal, editors. Time Warps, String Edits, and Macromolecules: The Theory and Practice
of Sequence Comparison. Addison-Wesley Publishing Company, 1983.

P. Sellers. The theory and computation of evolutionary distances: Pattern recognition. J. of Algorithms, 1(4):359
373, 1980.

P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an efficient priority queue. Math. Systems
Theory, 10:99 127, 1977.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Inf. Proc. Letters
6(3):80 82, 1977.

J. Vuillemin. A unifying look at data structures. Comm. ACM, 23(4):229-239, 1980.

R. Wagner and M. Fisher. The string-to-string correction problem. J. of the ACM 21(1):168 173, 1974.

W. J. Wilbur and D. J. Lipman. Rapid similarity searches of nucleic acid and protein data banks. In Proc. Nat.
Acad. Sci., USA, 80:726-730, 1983.

W. J. Wilbur and D. J. Lipman. The contect-dependent comparison of biological sequence. SIAM J. Appl. Math.
44(3):557-567, 1984.

13

A Range Searching for Minima

We will now describe the data structure R of Lemma 7. Let S be a labeled finite set of points
in two-dimensional Euclidean space. The size of S is n = |S|. By “labeled” we mean that there
is a function ¢ : S — R that gives a label ((s) for each point s € S. The minimum label range
query problem is to retrieve the minimum label ((s) over points s € S that belong to some query
rectangle [I,r] x [b,t]. Efficient solutions for this problem are given by Gabow, Bentley, and Tarjan
[11]. We review these solutions here and give some alternative (easier to describe) solutions to keep
our exposition as self-contained as possible.

When the set S is static, the one-dimensional case of the problem can be solved as follows
[11]. Sort S in increasing order and construct an array A[l...n] of the labels in that order. Then
construct a Cartesian tree [26] on the array A, and preprocess the tree for least common ancestor
queries (LCA). Range minimum queries can now be answered by two binary searches on A to
find the first ¢ and the last j entry inside the query, and a least common ancestor query to find the
minimum value among A[i], A[i+1],... A[j] in O(1) time [14]. See [2] for a more detailed description
of the connection between range minimum queries and LCA.

The two-dimensional version can then be solved by first constructing a balanced binary tree
with points in S as leaves and x-coordinate as the search key (actually this can be seen as a range
tree [3]). Each internal node v of the tree contains a list of points in S (in order of y-coordinate);
the lists are defined recursively as follows. Node v contains a subset of the points in the list of its
parent such that the z-coordinate of each point is less than the parent’s key if v is the left child, or
such that the x-coordinate is greater or equal to the parent’s key if v is the right child. An array A
like above is constructed for each such list, and each of them is preprocessed to answer (discrete)
minimum range queries in O(1) time. The two-dimensional range query [l,r] x [b,t] can now be
answered as follows. Find each node of the tree such that the associated point list is totally inside
the z-range [, r], and whose parent’s list is not. For each such node make two binary searches and
a range minimum query to find the minimum value from the y-range [b,¢]. The minimum over all
these nodes is the minimum value from range [I, 7] x [b,]. The overall search time is O(log” n), since
there are at most O(logn) nodes whose lists must be queried, and each binary search takes at most
O(logn) time. This can be further reduced to O(logn) by using fractional cascading; the arrays of
a parent and a child can be linked such a way that if the first and the last entries that belong to the
query range in the parent array are known, then the corresponding entries in the child array can be
found by following the links from the parent array. This has the effect that the binary searches are
only needed in one node; in its subtree the entries are found by following the links.

So far we have discussed the static case. We would need a semi-static version, where the labels
of the points can be updated. This case can be handled by replacing the above arrays with balanced
binary trees; each node of the primary z-coordinate search tree contains a secondary tree which
is the balanced binary tree of Lemma 4 with y-coordinate as the key, and the label as the value.
We can conclude that updates and two dimensional range queries for minimum can be supported
in O(log?n) time in this structure. It is also easy to see that the structure can be constructed in
O(nlogn) time (we can sort the points in both x- and y-order, and then construct each binary tree
in linear time).

What is left is to reduce O(log? n) to O(log n log log). This improvement hardly can be achieved
for the general case where the query rectangle is limited in all directions. However, we are interested

14

in a query of the form [—o00,l) X [~00,t) (this is called orthant searching [11]). Consider the one-
dimensional case [—oc,l). We will show (following [11]) that it is enough to use a queue to solve
this problem. First, it is enough to store those points s whose label is the minimum in the range
[—00, s]. We keep these points (actually their indices in the sequential order) in a queue). When
inserting a new point s;, we can test whether its label is smaller than the label of the point s;/, where
i" = Q.predecessor(i) that would precede it in the queue. If it is not, we do not insert the point.
Otherwise we insert the point, and remove points Q.successor(i), Q.successor(Q.successor(i)), . ..
until we find a point s;» whose label is smaller than the label of s;. This guarantees that a range
query [—o0,l) can be answered by ((Sq predecessor(iy)), Where i is the rank of [if inserted to S.

It takes log|S| time to find the rank of [(using binary search in sorted S), so as such, this
improvement is not useful in the one-dimensional case. However, since we use this structure multiple
times in the nodes of the primary tree for two-dimensional queries, the binary search is only needed
once. Also, the structure can be used in the one-dimensional case when points are integers smaller
than n; we can store the points in the queue, not their indices, and avoid the binary search in the
query.

The above mentioned operations on a queue can be supported in O(loglogn) time (amortized
time for insert) using the priority queue of Van Emde Boas [24,25]. Note that this O(loglogn)
bound requires that the inserted values are in the range [1...n], which is the case here. Replacing
the balanced binary tree of Lemma 4 with this priority queue, we have proven Lemma 7.

The general case of d > 2-dimensional orthant searching for minimum can be solved in
O(log? ' nloglogn) time and in O(nlog? ' n) space, by constructing these range trees for higher
dimensions recursively.

15

