
Algorithms for Transposition Invariant String Mat
hing(Extended Abstra
t)Veli Mäkinen1?, Gonzalo Navarro2??, and Esko Ukkonen1?1 Department of Computer S
ien
e, P.O Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finland.{vmakinen,ukkonen}�
s.helsinki.fi2 Center for Web Resear
h, Department of Computer S
ien
e, University of ChileBlan
o En
alada 2120, Santiago, Chile. gnavarro�d

.u
hile.
lAbstra
t. Given strings A and B over an alphabet � � U, where U is some numeri
al universe
losed under addition and subtra
tion, and a distan
e fun
tion d(A;B) that gives the s
ore of thebest (partial) mat
hing of A and B, the transposition invariant distan
e is mint2Ufd(A+ t; B)g, whereA + t = (a1 + t)(a2 + t) : : : (am + t). We study the problem of
omputing the transposition invariantdistan
e for various distan
e (and similarity) fun
tions d, that are di�erent versions of edit distan
e.For all these problems we give algorithms whose time
omplexities are
lose to the known upper boundswithout transposition invarian
e. In parti
ular, we show how sparse dynami
 programming
an be usedto solve transposition invariant problems.Topi
: Algorithms and data stru
tures.1 Introdu
tionTransposition invariant string mat
hing is the problem of mat
hing two strings when all the
har-a
ters of either of them
an be �shifted� by some amount t. By �shifting� we mean that the stringsare sequen
es of numbers and we add or subtra
t t from ea
h
hara
ter of one of them.Interest in transposition invariant string mat
hing problems has re
ently arised in the �eld ofmusi
 information retrieval (MIR) [4, 16, 17℄. In musi
 analysis and retrieval, one often wants to
ompare two musi
 pie
es to test how similar they are. A reasonable way of modeling musi
 is to
onsider the pit
hes and durations of the notes. Often the durations are omitted, too, sin
e it isusually possible to re
ognize the melody from a sequen
e of pit
hes. In this paper, we study distan
emeasures for pit
h sequen
es (of monophoni
 musi
) and their
omputation.In general, edit distan
e measures
an be used for mat
hing two pit
h sequen
es. There are,however,
ouple of properties related to musi
 that should be taken into a

ount. Transpositioninvarian
e is one of those; the same melody is per
eived even if the pit
h sequen
e is shifted fromone key to another. Another property is the
ontinuity of the alignment; the size of the gaps betweenmat
hes should be limited, sin
e one long gap in a
entral part
an make a
ru
ial di�eren
e inper
eption. Small gaps should be a

epted, e.g. for removing �de
orative� notes.We study how these two properties
an be embedded in evaluating the edit distan
e measures.The summary of our results is given in Se
tion 3.The full version of this paper appears as a te
hni
al report [21℄. There we also study �easier�(non-gapped) measures of similarity under transposition invarian
e (like Hamming distan
e and(Æ;
)�mat
hing [5, 19℄), that have other appli
ations besides MIR.? Supported by the A
ademy of Finland under grant 22584.?? Supported by Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile.

2 De�nitionsLet � be a �nite numeri
al alphabet, whi
h is a subset of some universe U that is
losed underaddition and subtra
tion (U is either Z or R in the sequel, and � is
alled either integer or realalphabet, respe
tively). Let A = a1a2 : : : am and B = b1b2 : : : bn be two strings over ��, i.e. ai; bj 2� for all 1 � i � m; 1 � j � n. We will assume w.l.o.g that m � n, sin
e the distan
e measures we
onsider are symmetri
. String A0 is a substring of A if A0 = Ai:::j = ai : : : aj for some 1 � i � j � m.String A00 is a subsequen
e of A, denoted by A00 v A, if A00 = ai1ai2 : : : aijA00j for some indexes1 � i1 < i2 < � � � < ijA00j � m.The following measures
an be de�ned. The length of the longest
ommon subsequen
e (LCS)of A and B is l
s(A;B) = maxfjSj j S v A;S v Bg. The edit distan
e [18, 27, 23℄ between A and Bis the minimum number of edit operations that are needed to
onvert A into B. Parti
ularly, in theunit
ost Levenshtein distan
e dL the set of edit operations
onsists of
hara
ter insertions, deletions,and substitutions. If the substitution operation is forbidden, we get a distan
e dID, whi
h is a
tuallya dual problem of evaluating the LCS; it is easy to see that dID(A;B) = m + n � 2 � l
s(A;B).For
onvenien
e, we will mainly use the minimization problem dID (not l
s) in the sequel. If onlydeletion for
hara
ters of B are allowed, we get a distan
e dD.String A is a transposed
opy of B (denoted by A =t B) if B = (a1 + t)(a2 + t) � � � (am + t) =A + t for some t 2 U. De�nitions for a transposed substring and a transposed subsequen
e
anbe stated similarly. The transposition invariant versions of the above distan
e measures d� where� 2 fL; ID;Dg
an now be stated as dt�(A;B) = mint2U d�(A+ t; B).We also de�ne ��limited versions of the edit distan
e measures, where the distan
e (gap) betweentwo mat
hes is limited by a
onstant � > 0, i.e. if (ai0 ; bj0) and (ai; bj) are mat
hes, then ji�i0�1j � �and jj � j0 � 1j � �. We get distan
es dt;�L ; dt;�ID , and dt;�D .The approximate string mat
hing problem, based on the above distan
e fun
tions, is to �nd theminimum distan
e between A and any substring of B. In this
ase we
all A the pattern and denoteit P1:::m = p1p2 � � � pm, and
all B the text and denote it T1:::n = t1t2 � � � tn, and usually assumethat m << n. A
losely related problem is the thresholded sear
h problem where, given P , T , anda threshold value k � 0, one wants to �nd all the text positions jr su
h that d(P; Tjl:::jr) � k forsome jl. We will refer
olle
tively to these two
losely related problems as the sear
h problem.In parti
ular, if distan
e dD is used in approximate string mat
hing, we obtain a problem knownas episode mat
hing [20, 8℄. It
an also be stated as follows: Find the shortest substring of the textthat
ontains the pattern as a subsequen
e.Our
omplexity results are di�erent depending on the form of the alphabet �. We will distinguishtwo
ases. An integer alphabet is any alphabet � � Z. For integer alphabets, j�j will denotemax(�) �min(�) + 1. A real alphabet will be any other � � R. For any string A = a1 : : : am, wewill
all �A = fai j 1 � i � mg the alphabet of A. In these
ases we will use j�Aj = max(�A) �min(�A) + 1 � j�j when �A is taken as an integer alphabet. On real alphabets, j�Aj � m willdenote the
ardinality of the set �A.3 Related Work and Summary of ResultsThe �rst thing to noti
e is that the problem of exa
t transposition invariant string mat
hing isextremely easy to solve. For the
omparison problem, the only possible transposition is t = b1� a1.2

For the sear
h problem, one
an use the relative en
oding of both the pattern (p01 = p2 � p1; p02 =p3 � p2; : : :) and the text (t01 = t2 � t1; t02 = t3 � t2; : : :), and use the whole arsenal of methodsdeveloped for exa
t string mat
hing. Unfortunately, this relative en
oding seems to be of no usewhen the exa
t
omparison is repla
ed by an approximate one.Transposition invarian
e (as far as we know) was introdu
ed in the string mat
hing
ontext in thework of Lemström and Ukkonen [17℄. They proposed (among other measures) transposition invariantlongest
ommon subsequen
e (LCTS) as a measure of similarity between two monophoni
 musi
(pit
h) sequen
es. They gave a des
riptive ni
k name for the measure: �Longest Common HiddenMelody�. As the alphabet of pit
hes is some limited integer alphabet � � Z, the transpositions thathave to be
onsidered are T = fb�a j a; b 2 �g. This gives a brute for
e algorithm for
omputing thelength of the LCTS [17℄: Compute l
s(A+ t; B) using O(mn) dynami
 programming for ea
h t 2 T.The runtime of this algorithm is O(j�jmn), where typi
ally j�j = 256. In the general
ase, where�
ould be unlimited, one
ould instead use the set of transpositions T0 = fb � a j a 2 A; b 2 Bg.This is be
ause some
hara
ters must mat
h in any meaningful transposition. The size of T0
ouldbe mn, whi
h gives O(m2n2) worst
ase time for real alphabets. Thus it is both of pra
ti
al andtheoreti
al interest to improve this algorithm.We will also use a brute for
e approa
h as des
ribed above, but sin
e most transpositions produ
esparse instan
es of the dynami
 programming problem, we
an use spe
ialized sparse dynami
programming algorithms to get good worst
ase bounds. Moreover, we show a
onne
tion betweenthe resulting sparse dynami
 programming problems and semi-stati
 range minimum queries. Weobtain simple yet e�
ient algorithms for the distan
es dt;�L , dt;�ID , and dt;�D .For LCS (and thus for dID) there already exists Hunt-Szymanski [15℄ type (sparse dynami
 pro-gramming) algorithms whose time
omplexities depend on the number r of mat
hing pairs betweenthe
ompared strings. The
omplexity of the Hunt-Szymanski algorithm is O((r + n) log n). As thesum of values r over all di�erent transpositions is mn, we get the bound O(mn log n) for the trans-position invariant
ase. Later improvements [1, 10℄ yield O(mn log log n) time. We improve this toO(mn log logm) by giving a new sparse dynami
 algorithm for LCS. This algorithm
an also begeneralized to the
ase where gaps are limited by a
onstant �, giving O(mn log n) for evaluatingdt;�ID (A;B).Eppstein et. al. [10℄ have proposed sparse dynami
 programming algorithms for more
om-plex distan
e
omputations su
h as Wilbur-Lipman fragment alignment problem [28, 29℄. Also theunit
ost Levenshtein distan
e
an be solved using these te
hniques [13℄. Using this algorithm, thetransposition invariant
ase
an be solved in O(mn log log n) time. However, the algorithm does notgeneralize to the
ase of �-limited gaps, and thus we develop an alternative solution that is based onsemi-stati
 range minimum queries. This gives us O(mn log2 n log logm) for evaluating dt;�L (A;B).Finally, we give a new O(m + n+ r) time sparse dynami
 programming algorithm for episodemat
hing. This gives us O(mn) time for transposition invariant episode mat
hing.Table 1 gives a list of upper bounds that are known for these problems without transpositioninvarian
e. Table 2 gives the a
hieved upper bounds for the transposition invariant variants of theseproblems. 3

Table 1. Upper bounds for string mat
hing without transposition invarian
e. We omit bounds that depend on thetreshold k in the sear
h problems. For d�ID it is also easy to improve the bound below to O(mn) using min-deques[12℄ in ea
h row and
olumn of the DP matrix.distan
e distan
e evaluation sear
hingexa
t O(m) O(m+ n)dID; dL O(mn= logm) O(mn= logm) [7℄dD O(m+ n) (greedy) O(mn= logm) [8℄d�ID; d�L O(�mn) O(�mn) [22℄ (Chapter 10, Se
t. 4.2)d�D O(m+ n) (greedy) O(mn) [9, 6℄Table 2. Upper bounds for transposition invariant string mat
hing. We have not added, for
larity, the size of theoutput in the (thresholded) sear
h
omplexity, nor the prepro
essing time in Lemma 2. The bounds on these distan
esare valid in real alphabets provided we repla
e Æ by Æ=�, where � is the minimum distan
e between two
hara
tersin A or in B. distan
e distan
e evaluation sear
hingexa
t O(m) O(m+ n)dtID O(mn log logm) O(mn log logm)dt;�ID O(mn log n) O(mn logm)dtL O(mn log log n) O(mn log logm)dt�L O(mn log2 n log logm) O(mn log2m log logm)dt;�D O(mn) O(mn)4 Computation of Transposition Invariant Edit Distan
esLet us �rst review how the edit distan
es
an be
omputed using dynami
 programming [18, 27,23℄. Let A = a1a2 � � � am and B = b1b2 � � � bn. For dID, evaluate an (m + 1) � (n + 1) matrix (dij),0 � i � m, 0 � j � n, using the re
urren
edi;j = min((if ai = bj then di�1;j�1 else1); di�1;j + 1; di;j�1 + 1); (1)with initialization di;0 = i for 0 � i � m and d0;j = j for 0 � j � n.The matrix (dij)
an be evaluated (in some suitable order, like row-by-row or
olumn-by-
olumn)in O(mn) time, and the value dmn equals dID(A;B).A similar method
an be used to
al
ulate the distan
e dL(A;B). Now, the re
urren
e isdi;j = min((if ai = bj then di�1;j�1 else di�1;j�1 + 1); di�1;j + 1; di;j�1 + 1); (2)with initialization di;0 = i for 0 � i � m and d0;j = j for 0 � j � n.The re
urren
e for the distan
e dD(A;B), that is used in episode mat
hing, isdi;j = if ai = bj then di�1;j�1 else di;j�1 + 1; (3)with initialization di;0 =1 for 0 � i � m and d0;j = j for 1 � j � n. Note that dD(A;B)
an alsobe
omputed using a greedy algorithm; the re
urren
e is only given be
ause it
an be generalizedto the sear
h problem, too. 4

The
orresponding sear
h problems
an be solved by assigning zero to the values in the �rst row(re
all that we identify pattern P = A and text T = B). To �nd the best approximate mat
h, wetake min0�j�n dm;j . For thresholded sear
hing, we report the endpositions of the o

urren
es, i.e.,those j where dm;j � k.To solve our tranposition invariant problems, we
ould try to prove that only some transpositionsneed to be
he
ked, as is the
ase with some easier distan
e measures [21℄. This does not seem to bepossible with the more �exible measures of similarity studied here. Therefore we
hoose a di�erentapproa
h: We
ompute the distan
es in all required transpositions, but we use algorithms that aremore e�
ient than the above basi
 dynami
 programming solutions, su
h that the overall
omplexitydoes not ex
eed by mu
h the worst
ase
omplexities of
omputing the distan
es in one transposition.Let M be the set of mat
hing
hara
ters between strings A and B, i.e. M = M(A;B) =f(i; j) j ai = bj; 1 � i � m; 1 � j � ng. Let r = r(A;B) = jM(A;B)j. Let us rede�ne T in thisse
tion to be the set of those transpositions that make some
hara
ters mat
h between A and B,that is T = fbj � ai j 1 � i � m; 1 � j � ng. One
ould
ompute the above edit distan
es andsolve the sear
h problems by running the above re
urren
es over all pairs (A + t,B), where t 2 T.In integer alphabet this takes O(j�jmn) time, and O(j�Ajj�B jmn) time in real alphabet. Thiskind of pro
edure
an be signi�
antly speeded up if the basi
 dynami
 programming algorithms arerepla
ed by suitable �sparse dynami
 programming� algorithms.Lemma 1 If an algorithm
omputes a distan
e d(A;B) in O(g(r(A;B))f(m;n)) time, where g isa
on
ave fun
tion, then the transposition invariant distan
e dt(A;B) = mint2T d(A + t; B)
an be
omputed in O(g(mn)f(m;n)) time.Proof. Let rt = r(A+ t; B) be the number of mat
hing
hara
ter pairs between A+ t and B. ThenXt2T g(rt)f(m;n) = f(m;n)Xt2T g mXi=1 jfj j ai + t = bj ; 1 � j � ngj!� f(m;n)g mXi=1Xt2T jfj j ai + t = bj ; 1 � j � ngj!= f(m;n)g mXi=1 n! = g(mn)f(m;n):utThe rest of the se
tion devotes to developing algorithms that depend on r.4.1 Prepro
essingAs a �rst step, we need a way of
onstru
ting the mat
h set M sorted in some order that enablessparse evaluation of matrix (dij). We use
olumn-by-
olumn order (i0; j0) <
 (i; j) in the sequel, thatis de�ned as follows: j0 < j or (j0 = j and i0 > i).1 The mat
h set
orresponding to a transpositiont will be
alled Mt = f(i; j) j ai + t = bjg.1 Note that our de�nition di�ers from the usual
olumn-by-
olumn order in
ondition i0 > i. This is to simplify thealgorithms later on. 5

Lemma 2 The mat
h sets Mt = f(i; j) j ai + t = bjg, ea
h sorted in
olumn-by-
olumn order, forall transpositions t 2 T,
an be
onstru
ted with the following
omplexities. On integer alphabet,O(j�j +mn). On real alphabet , O(m log j�Aj + n log j�Bj + j�Ajj�B j log(j�Ajj�B j) +mn). Bothbounds
an be a
hieved using O(mn) spa
e.Proof. In the integer
ase we
an pro
eed naively to obtain O(j�j+mn) time using array indexingto get the transposition where ea
h pair (i; j) has to be added.The
ase of real alphabets with O(mn) memory is solved as follows. Create a balan
ed treeTA where every
hara
ter a = ai of A is inserted, maintaining for ea
h su
h a 2 �A a list La ofthe positions i of A, in in
reasing order, su
h that a = ai. Do the same for B and TB. This
ostsO(m log j�Aj+n log j�B j). In whi
h follows we will speak indistin
tly of
hara
ters of �A (�B) andnodes of TA (TB). For ea
h node a in TA and b in TB, initialize Mb�a = ; and insert it into a treeof transpositions, TT. At the same time,
reate a simple list Pb for ea
h node b in TB
ontaining,for ea
h node a of TA, a pointer to the node a of TA and to the node b � a in TT. This takesO(j�Ajj�B j log(j�Ajj�B j)) time, sin
e jTj � j�Ajj�B j. Finally, traverse all the lists of positionsLb of TB in syn
hronization, getting
onse
utive positions j in B (this is done, e.g., by putting allthe tree nodes b in a heap sorted by the �rst position in the list Lb, extra
ting the smallest, andreinserting it with the next position in the list). For ea
h extra
ted position j of B
orrespondingto a node b in TB, traverse its list of pairs Pb = f(i; t) 2 (TA node, TT node)g. For ea
h su
h listelement, add (i; j) to set Mt in TT. This takes overall O(n log j�Bj+mn) time. utThe prepro
essing
an be made more spa
e-e�
ient with some penalty in the time requirement;the details
an be found in [21℄.4.2 Computing the Longest Common Subsequen
eFor LCS (and thus for dID) there exist algorithms that depend on r. The
lassi
al Hunt-Szymanski[15℄ algorithm has running time O(r log n) if the set of mat
hes M is already given in the properorder. Using Lemma 1 we
an
on
lude that there is an algorithm for transposition invariant LCSthat has time
omplexity O(mn log n). There are even faster algorithms for LCS [1, 10℄; Epp-stein et. al. [10℄ improved an algorithm of Apostoli
o and Guerra [1℄ a
hieving running timeO(D log logmin(D; mnD)), where D � r is the number of dominant mat
hes (see, e.g., [1℄ for ade�nition). Using this algorithm, we have the bound O(mn log log n) for the transposition invariant
ase.The existing sparse dynami
 programming algorithms for LCS, however, do not extend to the
ase of ��limited gaps. We will give a simple but e�
ient algorithm for LCS that generalizes to this
ase. We will also use the same te
hnique when developing an e�
ient algorithm for the Levenshteindistan
e with ��limited gaps. Moreover, by repla
ing the data stru
ture used in the algorithm by amore e�
ient one des
ribed in Appendix A, we
an a
hieve O(r log logm)
omplexity, whi
h givesO(mn log logm) for the transposition invariant LCS (whi
h is better than the previous bound, sin
em � n).We will need the following (sparsity) lemma to give a fast algorithm for dID. Let (i0; j0) <p (i; j)denote a partial order de�ned as i0 < i and j0 < j, and let (i0; j0) �p (i; j) denote another partialorder de�ned as i0 � i, j0 � j, and (i0; j0) 6= (i; j).6

Lemma 3 The re
urren
e (1)
an be repla
ed bydi;j = �minfd(i0; j0) + i� i0 + j � j0 j ai0 = bj0 ; (i0; j0) �p (i; j)g when ai 6= bjminfd(i0; j0) + i� i0 + j � j0 � 2 j ai0 = bj0 ; (i0; j0) <p (i; j)g when ai = bj ; (4)where d0;0 = 0 and a0 = b0.Proof. Consider the evaluation of the matrix (dij) as a shortest path
omputation in whi
h one
an either pro
eed one
ell down (
ost 1), one
ell to the right (
ost 1) or one
ell forward in thediagonal (
ost 1 if the
orresponding
hara
ters do not mat
h, otherwise 0). The paths that takeonly horizontal and verti
al steps from
ell (i0; j0) to
ell (i; j) have
ost
ost i� i0+j�j0. The pathsthat
onsist of one diagonal movement (from (i� 1; j � 1) to (i; j)) and otherwise of horizontal andverti
al movements (from (i0; j0) to (i� 1; j � 1)) have
ost i� i0� 1+ j � j0� 1, when ai = bj. Thepaths that take more diagonal steps either have
ost 1 or pass through some
ell (i00; j00) 6= (i0; j0)su
h that (i00; j00) �p (i; j), ai00 = bj00 . Using indu
tion, one
an see that the path
ost from (i00; j00)plus di00;j00 is always smaller or equal to the path
ost from (i0; j0) plus di0;j0. Finally, if ai = bj ,then any path to (i; j) that takes diagonal steps and does not traverse through (i� 1; j � 1)
an berepla
ed by equal or smaller
ost path that traverses through (i� 1; j � 1). utThe obvious strategy to use the above lemma is to keep the already
omputed values d(i0; j0) forea
h i0; j0 su
h that ai0 = bj0 in some data stru
ture so that their minimum
an be retrieved e�
ientlywhen
omputing the value of d(i; j). One di�
ulty here is that the values stored are not
omparableas su
h sin
e we want the minimum just after i�i0+j�j0�2 is added. This
an be solved by storingvalues d(i0; j0)� i0 � j0 instead. Then, after retrieving the minimum value, one
an add i+ j � 2 toget the
orre
t value for d(i; j). To get the minimum value from range (i0; j0) 2 [�1; i) � [�1; j),we need a dynami
 data stru
ture that
an support one-dimensional range queries (the
olumn-by-
olumn traversal order guarantees that all points are in range [�1; j)). In addition, the range queryshould not be output sensitive; it should only report the minimum value, not all the points in therange.A balan
ed binary tree
an be used as a su
h data stru
ture. We
an use the row number i0 asa sort key, and store values d(i0; j0)� i0 � j0 in the leaves. Then we
an store in ea
h internal nodethe minimum of the values d(i0; j0)� i0 � j0 in its subtree.Lemma 4 A balan
ed binary tree T supports the following operations in O(log n) amortized time,where n is the amount of elements inserted in the tree.� T :Insert(k; v): Inserts value v into tree with key k.� T :Delete(v): Deletes all elements with value � v.� v = T :Minimum(k;+): Returns the minimum of values that have key > k.� v = T :Minimum(k;�): Returns the minimum of values that have key < k.� v = T :Minimum(l; r): Returns the minimum of values that have key > l and < r.Proof. The balan
ed tree des
ribed above is easily updated when a new key k is inserted, as theonly additional operation is to
hange the value v0 of any traversed internal node by min(v; v0).Deletion needs a parallel tree organized by value v, so that deleting all the values larger than v
anbe done by dis
onne
ting O(log n) subtrees. This parallel tree stores pointers to the original tree7

T , so we
an remove also the nodes from T . Sin
e we remove all values larger than v, minimumvalues
omputed at internal nodes in T need not be updated. So the deletion of ea
h node takesO(log n) time. Sin
e one
annot delete more elements than those inserted, the amortized time fordeletions is O(log n). Minimum over ranges of keys are obtained by taking the minimum value overthe O(log n) nodes that are traversed when sear
hing for the keys. For simpli
ity we will speak ofthe balan
ed tree T , ignoring the fa
t that the data stru
ture is
omposed of two trees. (We note,however, that deletions are stri
tly ne
essary only when mat
hing with ��limited gaps.) utWe are ready to give the algorithm. Initialize a balan
ed binary tree T by adding the value ofd0;0 � i � j = 0 with key i = 0 (T :Insert(0; 0)). Pro
eed with the mat
h set M that is sorted in
olumn-by-
olumn order and make the following operations at ea
h pair (i; j):(1) Take the minimum value from T whose key is smaller than the
urrent row number i (d =T :Minimum(i;�)). Add i+ j � 2 to this value (d d+ i+ j � 2).(2) Add the
urrent value d minus the
urrent row number i and
urrent
olumn number j into Twith the
urrent row number as a key (T :Insert(i; d� i� j)).Finally, dID(A;B) = T :Minimum(m+ 1;�) +m+ n.One
an easily see that the above algorithm works
orre
tly; the
olumn-by-
olumn evaluationand the range query restri
ted by the row number in T guarantee that the (i0; j0) <p (i; j)
onditionholds.Clearly, the time
omplexity is O(r log r).The algorithm also generalizes easily to the sear
h problem; the 0 values in the �rst row
an beadded impli
itly by using d min(i; d + i + j � 2) in step (1) above. Also, every value di;j = d
omputed in step (2) above indu
es a value dm;j+s � d+ (m� i) + s in the last row, whi
h
an beused either to keep the minimum dm;j value, or to report all values dm;j � k in thresholded sear
hing(ea
h di;j indu
es a range at the last row where values are � k; after
omputing all values di;j, thelast row
an be traversed by keeping book on the a
tive ranges in order to report ea
h o

urren
eonly on
e). The time
omplexity does not
hange ex
ept for the size of the output, but it
an beimproved sin
e n >> m; we
an delete those nodes that
annot give the minima, i.e., values d su
hthat min(i; d + i + j � 2) = i. This means that, before we pro
ess elements in
olumn j, we
anremove all the values v � �j + 2. The running time be
omes O(r logm) with O(m2) spa
e, sin
ethis is the number of possibly relevant mat
hes at any time.We will show in Appendix A that the balan
ed binary tree
an be repla
ed by a priority queue.Moreover an implementation of priority queue
an be used that supports operations in O(log log u)time, where 1 : : : u is the range of values inserted in the stru
ture. The stru
ture does not store thevalues of di;j but the row numbers i, and thus we
an repla
e log n with log logm.Let us now
onsider the
ase with ��limited gaps. The only
hange we need in our algorithmsis to make sure that, in order to
ompute di;j, we only take into a

ount the mat
hes that are inthe range (i0; j0) 2 [i��� 1; i)� [j ��� 1; j). What we need to do is to
hange the range [�1; i)into [i��� 1; i) in T , as well as to delete elements in
olumn � j��� 1 after pro
essing elementsin
olumn j. The former is easily a

omplished by using query T :Minimum(i � �� 2; i) at phase(1) of the algorithm. The latter needs an extra tree organized by j values, similar to the one usedfor the Delete operation. In fa
t, for sear
hing, this tree
an repla
e the one used for Delete andwe would obtain the same running time, as the relevant � values
annot ex
eed m in the sear
h8

problem. However, the redu
tion to priority queues does not work anymore, and the log logm fa
tormust be repla
ed by log n in the bounds.By using Lemma 1 and the above algorithms, we get the following result.Theorem 5 The transposition invariant distan
e dtID(A;B)
an be
omputed in O(mn log logm)time and O(mn) spa
e. The
orresponding sear
h problem
an be solved in O(mn log logm) timeand in O(m2) spa
e. For the
ase of ��limited gaps, dt;�ID (A;B), the spa
e requirements remain thesame, but the time bounds are O(mn log n) for distan
e
omputation and O(mn logm) for sear
hing.The prepro
essing bounds in Lemma 2 need to be added to these bounds.Note that to a
hieve spa
e
omplexity O(m2) we need to slide a window of length m over thetext, and run prepro
essing and
omputation in parallel so that all transpositions are evaluated inea
h window. All o

urren
es will still be found sin
e values in
olumn j
an not a�e
t the valuesin
olumn j +m.4.3 Computing the Levenshtein Distan
eFor the Levenshtein distan
e, there exists a O(r log log min(r;mn=r)) sparse dynami
 program-ming algorithm [10, 13℄. Using this algorithm, the transposition invariant
ase
an be solved inO(mn log log n) time. As with the LCS, this algorithm does not generalize to the
ase of ��limitedgaps. We develop an alternative solution for the Levenshtein distan
e by generalizing our rangequery approa
h to the LCS. This new algorithm
an be further generalized to solve the problem of��limited gaps.The Levenshtein distan
e dL has a sparsity property similar to the one given for dID in Lemma 3.The following lemma
an be proven using similar arguments as in the proof of Lemma 3.Lemma 6 The re
urren
e (2)
an be repla
ed bydi;j = 8>><>>:min�fd(i0; j0) + j � j0 j ai0 = bj0 ; i0 � i; j0 � i0 � j � ig [fd(i0; j0) + i� i0 j ai0 = bj0 ; j0 � j; j0 � i0 > j � ig when ai 6= bjmin�fd(i0; j0) + j � j0 � 1 j ai0 = bj0 ; i0 < i; j0 � i0 � j � ig [fd(i0; j0) + i� i0 � 1 j ai0 = bj0; j0 < j; j0 � i0 > j � ig when ai = bj ; (5)where d0;0 = 0 and a0 = b0.This relation is however mu
h more
omplex than the one for dID. In the
ase of dID we
ouldstore values di0;j0 in a
omparable format (by storing di0;j0 � i0 � j0 instead) so that the minimumof range (i0; j0) <p (i; j)
ould be retrieved e�
iently. For dL there does not seem to be su
h a
omparable format, sin
e the path length from (i0; j0) to (i; j) may be either i� i0 � 1 or j � j0 � 1.Let us
all the two sets in the lower minimization formula of the above lemma as the lowerregion and the upper region, respe
tively. Our strategy is to maintain separate data stru
tures forboth regions. Ea
h value di0;j0 will be stored in both stru
tures in su
h a way that the stored valuesin ea
h stru
ture are
omparable.Let L denote the data stru
ture for the lower region and U the data stru
ture for the upperregion. If we store values di0;j0 � j0 in L, we
an take the minimum over those values plus j � 1 to9

get the value of di;j. However, we want this minimum over a subset of values stored in L, i.e. overthose di0;j0 � j0 whose
oordinates satisfy i0 < i; j0 � i0 � j � i. Similarly, if we store values di0;j0 � i0in U , we
an take minimum over those values whose
oordinates satisfy j0 < j; j0 � i0 > j � i, plusi � 1 to get the value of di;j (the a
tual minimum is then the minimum of upper region and thelower region).What is left to be explained is how the minima of subsets of L and U
an be obtained. For theupper region, we
an use the same stru
ture as for dID; if we keep values di0;j0 � i0 in a balan
edbinary tree U with key j0� i0, we
an make one-dimensional range sear
h to lo
ate the minimum ofvalues di0;j0� i0 whose
oordinates satisfy j0� i0 > j� i. The
olumn-by-
olumn traversal guaranteesthat U only
ontains values di0;j0 � i0 for whose
oordinates hold j0 < j. Thus, the upper region
anbe handled e�
iently.The problem now is the lower region. We
ould use row-by-row traversal to handle this
asee�
iently, but then we would have the symmetri
 problem with the upper region. No traversalorder will allow us to limit to one-dimensional range sear
hes in both regions simultaneously; wewill need two-dimensional range sear
hes in one of them. Let us
onsider the two-dimensional rangesear
h for the lower region. We would need a query that retrieves the minimum of values di0;j0 � j0whose
oordinates satisfty i0 < i; j0 � i0 � j � i. We make a
oordinate transformation to make thistriangle region into a re
tangle; we map ea
h value di0;j0�j0 into an xy-plane to
oordinate i0; j0� i0.What we need in this plane, is a re
tangle query [�1; i)� [�1; j� i). We will in Lemma 7 spe
ifyan abstra
t data stru
ture for L that supports this operation. Su
h stru
ture is given in [11℄; wewill review this stru
ture in Appendix A.Lemma 7 There is a data stru
ture R that, after O(n log n) time prepro
essing, supports the fol-lowing operations in amortized O(log n log log n) time and O(n log n) spa
e, where n is the numberof elements in the stru
ture:� R:Update(x; y; v): Update value at
oordinate x; y to v (under
ondition that the
urrent valuemust be larger than v).� v = R:Minimum(l1; l2;�;�): Retrieve the minimum of values whose x-
oordinate is smallerthan l1 and y-
oordinate is smaller than l2.We are now ready to give the sparse dynami
 programming algorithm for the Levenshtein dis-tan
e. Initialize a balan
ed binary tree U for the upper region by adding the value of d0;0 � i = 0with key i = 0 (U :Insert(0; 0)). Initialize a data stru
ture L for the lower region (R of Lemma 7)with the triples (i; j;1) su
h that (i; j) 2M [f(0; 0)g. Update value of d0;0� j = 0 with keys i = 0and j � i = 0 (L:Update(0; 0; 0)). Pro
eed with the mat
h set M = f(i; j) j ai = bjg that is sortedin
olumn-by-
olumn order and make the following operations at ea
h pair (i; j):(1) Take the minimum value from U whose key is larger or equal to the
urrent diagonal j � i(d0 = U :Minimum(j � i� 1;+)). Add i� 1 to this value (d0 d0 + i� 1).(2) Take the minimum value from L inside the re
tangle [�1; i) � [�1; j � i) (d00 =L:Minimum(i; j � i;�;�)). Add j � 1 to this value (d00 d00 + j � 1).(3) Choose the minimum of d0 and d00 as the
urrent value d = di;j .(4) Add the
urrent value d minus i into U with key j � i (U :Insert(j � i; d � i)).(5) Add the
urrent value d minus j into L with keys i and j � i (L:Update(i; j � i; d� j)).10

Finally, dL(A;B) = min(U :Minimum(n�m� 1;+) +m;L:Minimum(m+ 1; n�m;�;�) + n).The
orre
tness of the algorithm should be
lear from the above dis
ussion. The time
omplexityisO(r log r log log r) (r elements are inserted and updated into the lower region stru
ture, and r timesit is queried). The spa
e usage isO(r log r). We
an redu
e the time
omplexity to O(r log r log logm)sin
e the log log n fa
tor in Lemma 7 is a
tually log log u, where 1 : : : u is the the range of valuesadded to the (se
ondary) stru
ture (see Appendix A). We
an implement the stru
ture in Lemma 7so that u = m.The algorithm
an be modi�ed for the sear
h problem similarly as dID, by impli
itly addingvalues 0 in the �rst row of the
urrent
olumn and
onsidering the e�e
t of ea
h
omputed di;j valuein the last row of the matrix. However, removing unne
essary elements from the stru
tures (thosethat
an not give minima for the
urrent
olumn) is not anymore possible, sin
e the stru
ture for thelower region is semi-stati
; points
an not be removed so that the stru
ture would remain balan
ed.However, we
an partition the text into O(n=m) substrings of length 2m so that the
onse
utivesubstrings overlap by m
hara
ters. Then we
an run the algorithm on ea
h pie
e at a time, and noo

urren
es will be missed, sin
e the values in
olumn j
an not a�e
t the values in
olumn j +m.This gives O(r logm log logm) sear
h time and O(m2 logm) spa
e usage.Using this algorithm, the transposition invariant distan
e
omputation
an be solved inO(mn log n log logm) time, and the sear
h problem in O(mn logm log logm) time. These are, by alog n fa
tor, worse than what
an be a
hieved by using the algorithm of Eppstein et. al [10℄ (thatalgorithm
an be also generalized to the sear
h problem similarly as above).However, the advantage of our range query approa
h is that we
an now easily solve the
ase of��limited gaps. Consider the lower region. We need the minimum over the values whose
oordinates(i0; j0) satisfy i0 2 [i � � � 1; i), j0 2 [j � � � 1; j), and j0 � i0 2 [�1; j � i). We map ea
hdi0;j0 � j0 into three dimensional spa
e to
oordinate (i0; j0; j0 � i0). As we will show in Appendix A,the data stru
ture of Lemma 7
an be generalized to answer three-dimensional (orthant) queries ofthe form R:Minimum(l1; l2; l3;�;+;�) (minimum value of points whose �rst
oordinate is smallerthan l1, se
ond larger than l2, and third smaller than l3). We
an use query R:Minimum(i; j �� � 2; j � i;�;+;�) when
omputing the value of di;j from the lower region, sin
e i0 � i � � � 1when j0 � i0 � j � i, and
olumn-by-
olumn order guarantees that j0 < j. The upper region
aseis now symmetri
 and
an be handled similarly. The data stru
ture R
an be implemented so thatwe get overall time
omplexity O(r log2 r log logm). For the sear
h problem, this
an be redu
ed toO(r log2m log logm).Using Lemma 1 with the above algorithms, we obtain the following result for the transpositioninvariant
ase.Theorem 8 Transposition invariant Levenshtein distan
e dtL(A;B)
an be
omputed inO(mn log log n) time and in O(mn) spa
e. The
orresponding sear
h problem
an be solved inO(mn log logm) time and O(m2) spa
e. For the
ase of ��limited gaps, dt;�L (A;B), the time require-ments are O(mn log2 n log logm) and O(mn log2m log logm), and spa
e requirements O(mn log2 n)and O(m2 log2m), respe
tively, for distan
e
omputation and for sear
hing. The prepro
essingbounds in Lemma 2 need to be added to these bounds.11

4.4 Episode Mat
hingFinally we look at the episode mat
hing problem and the dtD distan
e, whi
h has a simple sparsedynami
 programming solution. The following lemma for dD is easy to prove.Lemma 9 The re
urren
e (3)
an be repla
ed bydi;j = d(i� 1; j0) + j � j0 � 1; (6)where j0 is the largest j0 < j su
h that ai�1 = bj0, d0;0 = 0, and a0 = b0.Consider an algorithm that traverses the mat
h set M = f(i; j) j ai = bjg in the
olumn-by-
olumn order. We will maintain for ea
h row a value
(i) that gives the largest j0 < j su
h thatai = bj0 , and a value d(i) = di;j0. First, initialize these values to 1, ex
ept that
(0) = 0 andd(0) = 0. Let (i; j) 2 M be the
urrent pair whose value we need to evaluate. Then d = di;j =d(i� 1) + j �
(i� 1)� 1. We
an now update the values of the
urrent row:
(i) = j and d(i) = d.One
an easily see that the above re
urren
ies
an be implemented using dynami
 programming inO(r) time, r = jM j (prepro
essing time for
onstru
ting M needs to be added to this).The above algorithm generalizes to the sear
h problem and to the episode mat
hing problem byimpli
itly initializing values
(0) = j � 1 and d(0) = 0 for the values in the �rst row.The problem of ��limited gaps
an be handled easily; we simply avoid updating d(i) as de�nedwhen j �
(i� 1)� 1 > �. In this
ase we set d(i) =1.Theorem 10 The episode mat
hing problem
an be solved in O(j�j +m + n + r) time in integeralphabet and O((m + n) log j�Aj + r) time in real alphabet (both in O(m + n + r) spa
e). Thetransposition invariant episode mat
hing problem
an be solved in O(mn) time. The same boundapplies in the
ase of ��limited gaps. The prepro
essing bounds in Lemma 2 need to be added to thebounds for the transposition invariant
ases.5 Con
lusions and Future WorkWe studied a brute for
e approa
h for transposition invariant edit distan
e
omputation. However,as we noti
ed, most of the tranpositions produ
e sparse instan
es of the edit distan
e problem, andspe
ialized algorithms
ould be used to solve these sparse instan
es e�
iently. These kind of sparsedynami
 programming algorithms already existed in the literature; we gave new sparse dynami
algorithms for episode mat
hing and for mat
hing with ��limited gaps in the LCS and in theunit
ost Levenshtein distan
e. The problem of mat
hing with ��limited gaps demonstrated the
onne
tion between sparse dynami
 programming and the problem of semi-stati
 range sear
hingfor minima.An interesting remaining question is whether the log fa
tors
ould be avoided to a
hieve O(mn)for transposition invariant edit distan
e. For episode mat
hing we a
hieved the O(mn) bound, ex
eptthat the prepro
essing
an (in very un
ommon situations on real alphabets) take O(mn log n) time.12

Referen
es1. A. Apostoli
o and C. Guerra. The longest
ommon subsequen
e problems revisited. Algorithmi
a 2:315�336,1987.2. M. A. Bender and M. Fara
h-Colton. The LCA problem revisited. In Pro
. LATIN 2000), pp. 88-94, 2000.3. J. L. Bentley. Multidimensional divide-and-
onquer. Comm. ACM, 23:214�229, 1980.4. T. Crawford, C.S. Iliopoulos, and R. Raman. String mat
hing te
hniques for musi
al similarity and melodi
re
ognition. Computing in Musi
ology 11:71�100, 1998.5. M. Cro
hemore, C.S. Iliopoulos, T. Le
roq, and Y.J. Pinzón. Approximate string mat
hing in musi
al sequen
es.In Pro
. PSC 2001, pp. 26�36, 2001.6. M. Cro
hemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsi
hlas. Approximate string mat
hingwith gaps. Nordi
 Journal of Computing 9(1):54�65, Spring 2002.7. M. Cro
hemore, G. Landau, and M. Ziv-Ukelson. A sub-quadrati
 sequen
e alignment algorithm for unrestri
ted
ost matri
es. In Pro
. SODA'2002, pp. 679�688. ACM-SIAM, 2002.8. G. Das, R. Fleis
her, L. Gasienie
, D. Gunopulos, and J. Kärkkäinen. Episode mat
hing. In Pro
. CPM'97,LNCS 1264, Springer, pp. 12�27, 1997.9. M.J. Dovey. A te
hnique for �regular expression� style sear
hing in polyphoni
 musi
. In Pro
. ISMIR 2001, pp.179�185, O
tober 2001.10. D. Eppstein, Z. Galil, R. Gian
arlo, and G. F. Italiano. Sparse dynami
 programming I: linear
ost fun
tions. J.of the ACM 39(3):519�545, July 1992.11. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. S
aling and related te
hniques for geometry problems. Pro
.STOC'84, pp. 135�143, 1984.12. H. Gajewska and R. Tarjan. Deques with heap order. Information Pro
essing Letters 12(4):197�200, 1986.13. Z. Galil and K. Park. Dynami
 programming with
onvexity,
on
avity and sparsity. Theoreti
al ComputerS
ien
e 92:49�76, 1992.14. D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest
ommon an
estors. SIAM Journal of Computing,13:338�355, 1984.15. J. W. Hunt and T. G. Szymanski. A fast algorithm for
omputing longest
ommon subsequen
es. Commun.ACM, 20(5):350�353, May 1977.16. K. Lemström and J. Tarhio. Sear
hing monophoni
 patterns within polyphoni
 sour
es. In Pro
. RIAO 2000 ,pp. 1261�1279 (vol 2), 2000.17. K. Lemström and E. Ukkonen. In
luding interval en
oding into edit distan
e based musi

omparison andretrieval. In Pro
. AISB 2000, pp. 53�60, 2000.18. V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions and reversals. Soviet Physi
s Doklady6:707�710, 1966.19. C. Iliopoulos, M. Cro
hemore, G. Navarro, and Y. Pinzón. A bit-parallel su�x automaton approa
h for (Æ;
)�mat
hing in musi
 retrieval. Submitted for publi
ation, 2002.20. H. Mannila and H. Toivonen, and A. I. Verkamo. Dis
overing frequent episodes in sequen
es. In Pro
. KDD'95,AAAI Press, pp. 210�215, 1995.21. V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for Transposition Invariant String Mat
hing.Te
hni
al Report TR/DCC-2002-5, Department of Computer S
ien
e, University of Chile, July 2002,�ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/ti_mat
hing.ps.gz�22. D. Sanko� and J. B. Kruskal, editors. Time Warps, String Edits, and Ma
romole
ules: The Theory and Pra
ti
eof Sequen
e Comparison. Addison-Wesley Publishing Company, 1983.23. P. Sellers. The theory and
omputation of evolutionary distan
es: Pattern re
ognition. J. of Algorithms, 1(4):359�373, 1980.24. P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an e�
ient priority queue. Math. SystemsTheory, 10:99�127, 1977.25. P. van Emde Boas. Preserving order in a forest in less than logarithmi
 time and linear spa
e. Inf. Pro
. Letters6(3):80�82, 1977.26. J. Vuillemin. A unifying look at data stru
tures. Comm. ACM, 23(4):229�239, 1980.27. R. Wagner and M. Fisher. The string-to-string
orre
tion problem. J. of the ACM 21(1):168�173, 1974.28. W. J. Wilbur and D. J. Lipman. Rapid similarity sear
hes of nu
lei
 a
id and protein data banks. In Pro
. Nat.A
ad. S
i., USA, 80:726�730, 1983.29. W. J. Wilbur and D. J. Lipman. The
onte
t-dependent
omparison of biologi
al sequen
e. SIAM J. Appl. Math.44(3):557-567, 1984. 13

A Range Sear
hing for MinimaWe will now des
ribe the data stru
ture R of Lemma 7. Let S be a labeled �nite set of pointsin two-dimensional Eu
lidean spa
e. The size of S is n = jSj. By �labeled� we mean that thereis a fun
tion ` : S ! R that gives a label `(s) for ea
h point s 2 S. The minimum label rangequery problem is to retrieve the minimum label `(s) over points s 2 S that belong to some queryre
tangle [l; r℄� [b; t℄. E�
ient solutions for this problem are given by Gabow, Bentley, and Tarjan[11℄. We review these solutions here and give some alternative (easier to des
ribe) solutions to keepour exposition as self-
ontained as possible.When the set S is stati
, the one-dimensional
ase of the problem
an be solved as follows[11℄. Sort S in in
reasing order and
onstru
t an array A[1 : : : n℄ of the labels in that order. Then
onstru
t a Cartesian tree [26℄ on the array A, and prepro
ess the tree for least
ommon an
estorqueries (LCA). Range minimum queries
an now be answered by two binary sear
hes on A to�nd the �rst i and the last j entry inside the query, and a least
ommon an
estor query to �nd theminimum value among A[i℄; A[i+1℄; : : : A[j℄ in O(1) time [14℄. See [2℄ for a more detailed des
riptionof the
onne
tion between range minimum queries and LCA.The two-dimensional version
an then be solved by �rst
onstru
ting a balan
ed binary treewith points in S as leaves and x-
oordinate as the sear
h key (a
tually this
an be seen as a rangetree [3℄). Ea
h internal node v of the tree
ontains a list of points in S (in order of y-
oordinate);the lists are de�ned re
ursively as follows. Node v
ontains a subset of the points in the list of itsparent su
h that the x-
oordinate of ea
h point is less than the parent's key if v is the left
hild, orsu
h that the x-
oordinate is greater or equal to the parent's key if v is the right
hild. An array Alike above is
onstru
ted for ea
h su
h list, and ea
h of them is prepro
essed to answer (dis
rete)minimum range queries in O(1) time. The two-dimensional range query [l; r℄ � [b; t℄
an now beanswered as follows. Find ea
h node of the tree su
h that the asso
iated point list is totally insidethe x-range [l; r℄, and whose parent's list is not. For ea
h su
h node make two binary sear
hes anda range minimum query to �nd the minimum value from the y-range [b; t℄. The minimum over allthese nodes is the minimum value from range [l; r℄� [b; t℄. The overall sear
h time is O(log2 n), sin
ethere are at most O(log n) nodes whose lists must be queried, and ea
h binary sear
h takes at mostO(log n) time. This
an be further redu
ed to O(log n) by using fra
tional
as
ading ; the arrays ofa parent and a
hild
an be linked su
h a way that if the �rst and the last entries that belong to thequery range in the parent array are known, then the
orresponding entries in the
hild array
an befound by following the links from the parent array. This has the e�e
t that the binary sear
hes areonly needed in one node; in its subtree the entries are found by following the links.So far we have dis
ussed the stati

ase. We would need a semi-stati
 version, where the labelsof the points
an be updated. This
ase
an be handled by repla
ing the above arrays with balan
edbinary trees; ea
h node of the primary x-
oordinate sear
h tree
ontains a se
ondary tree whi
his the balan
ed binary tree of Lemma 4 with y-
oordinate as the key, and the label as the value.We
an
on
lude that updates and two dimensional range queries for minimum
an be supportedin O(log2 n) time in this stru
ture. It is also easy to see that the stru
ture
an be
onstru
ted inO(n log n) time (we
an sort the points in both x- and y-order, and then
onstru
t ea
h binary treein linear time).What is left is to redu
e O(log2 n) to O(log n log log n). This improvement hardly
an be a
hievedfor the general
ase where the query re
tangle is limited in all dire
tions. However, we are interested14

in a query of the form [�1; l) � [�1; t) (this is
alled orthant sear
hing [11℄). Consider the one-dimensional
ase [�1; l). We will show (following [11℄) that it is enough to use a queue to solvethis problem. First, it is enough to store those points s whose label is the minimum in the range[�1; s℄. We keep these points (a
tually their indi
es in the sequential order) in a queue Q. Wheninserting a new point si, we
an test whether its label is smaller than the label of the point si0 , wherei0 = Q:prede
essor(i) that would pre
ede it in the queue. If it is not, we do not insert the point.Otherwise we insert the point, and remove points Q:su

essor(i); Q:su

essor(Q:su

essor(i)); : : :until we �nd a point si00 whose label is smaller than the label of si. This guarantees that a rangequery [�1; l)
an be answered by `(sQ:prede
essor(il)), where il is the rank of l if inserted to S.It takes log jSj time to �nd the rank of l (using binary sear
h in sorted S), so as su
h, thisimprovement is not useful in the one-dimensional
ase. However, sin
e we use this stru
ture multipletimes in the nodes of the primary tree for two-dimensional queries, the binary sear
h is only neededon
e. Also, the stru
ture
an be used in the one-dimensional
ase when points are integers smallerthan n; we
an store the points in the queue, not their indi
es, and avoid the binary sear
h in thequery.The above mentioned operations on a queue
an be supported in O(log log n) time (amortizedtime for insert) using the priority queue of Van Emde Boas [24, 25℄. Note that this O(log log n)bound requires that the inserted values are in the range [1 : : : n℄, whi
h is the
ase here. Repla
ingthe balan
ed binary tree of Lemma 4 with this priority queue, we have proven Lemma 7.The general
ase of d > 2-dimensional orthant sear
hing for minimum
an be solved inO(logd�1 n log log n) time and in O(n logd�1 n) spa
e, by
onstru
ting these range trees for higherdimensions re
ursively.

15

