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Abstract

This work presents an efficient linear average time
algorithm to sort lists of integers that follow skewed dis-
tributions. It also studies a particular case where the
list follows the Zipf’s distribution, and presents a ex-
ample application where the algorithm s used to reduce
the time to build word-based Huffman codes.

1 Introduction

Sorting a generic list of numbers is a well stud-
ied problem that can be efficiently solved by using
generic algorithms, such as quicksort [Hoa62], and
shellsort [She59]. However, a generic algorithm may
not be the best choice when the list to be sorted has
some initial order, for example, when many elements in
the list are already sorted. An alternative in these cases
is to use adaptive algorithms, which take advantage of
the partial order of the list to accelerate the sorting
process [ECW92]. A sorting algorithm is adaptive if
it sorts sequences that are close to sorted faster than
random sequences, doing it without knowing how far
the list is from the sorted sequence [PM95]. Therefore,
the adaptive algorithms do not take advantage of pre-
viously known characteristics about the distribution of
the elements.
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Another alternative to reduce the sorting times is
to change the model used to determine the key order.
Most of the classic sorting algorithms work under the
“comparison based” model, i.e., they sort the list ex-
clusively through pairwise comparison. However, there
are also alternative sorting methods where the content
of the keys are used to obtain their position without
need to compare them to each other. We will call them
methods “content based” in this work. They can ob-
tain better results because real machines allow many
other operations besides comparison [AHNR98]. Ex-
amples of content based methods are radizsort [Knu73]
and groupsort [BSA9T].

In this work, we are interested in developing sorting
algorithms for special cases of lists of integers that fol-
low skewed distributions (we will call these lists skewed
lists of integers). In this case, previous knowledge
about the lists to be sorted can be used to reduce
the sorting times by using special purpose algorithms
(note that the lists is not partially sorted, and therefore
the main core of adaptive sorting algorithms [ECW92]
does not apply). We present here a new special pur-
pose content based sorting algorithm which deals effi-
ciently with these lists, taking linear average time to
sort them. We also show an example application of
our algorithm in text compression, using it to sort the
list of frequencies of words in natural language texts.
These lists follow the Zipf’s distribution [Zip49], a well
known skewed distribution.

2 Groupsort algorithm

The groupsort algorithm [BSA97] partitions the
range of numbers to be sorted in K groups, called buck-
ets. It makes a first pass over the list to compute the



number of elements in each group. After this pass, the
elements are distributed on their buckets according to
these values. Figure 1 shows an example of groupsort
working on a list of 16 elements and using 3 buckets
(K = 3) with ranges 1-30, 31-60 and 61-90. A first
pass over the list indicates that the buckets 1, 2 and 3
have 7, 5 and 4 elements respectively. The algorithm
distributes the elements on the buckets as shown in the
lower part of Figure 1. After this stage, each partition
is sorted again individually as a new list. The authors
have suggested that this new sorting can be done with
the groupsort itself or another sorting algorithm ac-
cording to an efficiency criterion defined by them.

Original list:

10|50 5 |90|60|20(40|80|20|30(15|90|50|85| 1|35

List After the partition in buckets:

10| 5(20({20| 30| 15| 1 [ 50( 60| 40| 50| 35( 90| 80| 90| 85

Bucket 2
(3110 60)

Bucket 1
(1to 30)

Bucket 3
(61 to 90)

Figure 1. Example showing the partition of a list in

groupsort using 3 buckets (K = 3)

The performance of groupsort depends on how uni-
form is the distribution of the elements on the buckets.
The authors have suggested that the subrange value
of each bucket should be chosen so that the elements
are evenly distributed across the buckets. In practice,
this restriction decreases the performance due to the
additional cost to calculate the subranges.

3 Remainingsort strategy

We are interested in designing a sorting algorithm
for skewed lists of integers. A common feature in these
lists is that most elements have small values, and the
number of elements with a given value z quickly de-
creases as x increases. jFrom these observations, we
derive a sorting strategy based on groupsort. The main
modification we have proposed is to divide the list in
K + 1 buckets, where the first K buckets have range
1 (i.e. they accept only one value) and the last bucket
gets the remaining numbers of the list. Therefore, the
first K buckets are sorted on the partition step and
there is only one remaining bucket to sort after that —
we will call this bucket “remaining bucket”. This is an

important improvement when our strategy is compared
against groupsort, where all the K buckets should be
sorted after the partition step. We will call this new
sorting strategy remainingsort.

Figure 2 shows an example where we divide the list
using four buckets. The first three buckets have range
1, getting the values 1,2 and 3 respectively. The re-
maining elements are placed on the fourth bucket (the
“remaining bucket”), which is the only one we need to
sort.

Original list:

1|1 (210|113 (1|3 |2 (1|5 |1 |12(1(2

List After the partition in buckets:

1111111122 |2 |3 |3]|10|5(12

Bucket ‘ Bucket ‘ Bucket ‘ Remaining
1 2 3 Bucket
(x=1) x=2) x=3) (x>3

Figure 2. Example showing the partition of a list us-
ing 3 buckets of range 1 (K = 3) plus the remaining
bucket

If K is sufficiently large the remaining bucket can be
sorted with any conventional algorithm without chang-
ing the overall complexity of the sorting process. On
the other hand, the value of K should be small in order
to reduce the extra space used by the algorithm (which
is K counters). Therefore, a good choice is to establish
a K that gives an O(n/logn) remaining bucket size,
where n is the number of elements in the list. This
choice allows an O(n) time sorting of the remaining
bucket. Given a list I with n elements to be sorted,
and a function G such that the sequence G(1), ..., G(n)
corresponds the list L sorted, then a good value for K
would be G(|n/logn]). This value can be obtained
through a linear time algorithm to obtain the k-th el-
ement from the unordered array (for £ = n/logn) or
it can be estimated directly if the G distribution is
known.

Our sorting algorithm wuses therefore K =
[G(|n/logn])] extra space to sort the list. The to-
tal time is that of initializing the K counters, perform-
ing a linear pass over the list to increment the coun-
ters, making another pass over the counters to gener-
ate the elements in order, and sorting the remaining
bucket. Since we have selected K as the minimum
value that makes the final pass linear, the total cost



is O(K + n) = O(G(n/logn) + n).

If K is too large, the extra space required by the
algorithm will not be practical, and another sorting
strategy should be used. In particular, the algorithm
has overall linear time if G(n/logn) = O(n). For
skewed distributions, G(¢) tends to decrease quickly as
1 increases, and therefore it is more probable that this
condition holds.

The complete remainingsort algorithm follows.

1. Compute K = [G(|n/logn])] either by estima-
tion of G or by a linear time algorithm for the
k-th element.

2. Create K + 1 counters for the number of elements
on each bucket, where the (K + 1)-th is the “re-
maining bucket”.

3. Count the number of elements on each bucket by
a linear pass over the list. Each element z <
K increments counter z, otherwise it increments
counter K + 1.

4. Put the elements in their corresponding buckets.

5. Sort the remaining bucket using a conventional
sorting procedure

4 Sorting Zipfian Sequences with Re-
mainingsort

The general idea described in the last section can
be applied with good results to a wide variety of list
of integers that follows skewed distributions. An im-
portant example is given when G follows the Zipf’s
distribution [Zip49]. The Zipf’s law states that, if we
order the n elements of the list in decreasing order
(obtaining 1, ..., ), then the value of the first ele-
ment is ¥ times that of the s-th element, for every 3,
for a constant #. This means that the value of the
i-th element is z; = N/(:H), where N = " | =,
H=HY = 2?21 1/7%, and @ is a small constant
value greater than 1.

We show now that if K = O(z,(logn)?) and the
list to be sorted follows the Zipf’s law, then the num-
ber of elements in the remaining bucket is O(n/log n).
From the Zip’s law, the value of the element at position
n/logn of the list in decreasing order is:

N  (logn)’N/n?

n \0
(logn) H H

K:Jﬁ(ﬁ) - (1)

We show now that N/(z,n’) = H. Since the small-
est element in the list is z,, we can use Zipf’s law to

write its value as N/(n? H). Equating both expressions
we have
N N

¥ n®H = zanf (2)

and therefore, from Eq. (1) and Eq. (2) we have
K = O(zn(logn)?).

We can sort the remaining bucket in O(n) time us-
ing a conventional comparison based sorting algorithm.
This is because its size is n' = O(n/logn), and a clas-
sical sort on it costs O(n'logn’) = O(n). Therefore,
the overall time complexity of the remainingsort algo-
rithm is O(n) as well. The extra space used to perform
the sorting is only the necessary to compute the size of
each bucket, which is O(z,(log n)?). It is important to
observe that z,, tends to be a small number due to the
characteristics of the Zipfian distributions. If it is not
possible to estimate a reasonable value of z,, before the
sorting, it can be obtained also in linear time without
change the average time complexity. However, we are
interested in the more general K = ¢(Inn)®.

5 An Example of Application

We present now an application of the remainingsort
to reduce the time to construct Huffman codes [Huf52]
when the alphabet symbols are words and the source to
be compressed is a natural language text. This coding
scheme, known as word-based Huffman [BSTW86], has
important applications on information retrieval sys-
tems, were it is used to reduce the storage costs and to
improve the search performance [ZM95, MNZBY98b,
MNZBY98a]. In fact, the Huffman code construction
represents only a small portion of the overall compres-
sion times. However, we are investigating alternative
schemes to allow editing in compressed text where the
Huffman code is rebuilt periodically. Contributions to
reduce the Huffman coding construction times can be
decisive to the success these new ideas.

More formally, a word-based Huffman code can
be defined as a minimum-redundancy code. Given
a source alphabet S = [sy,...,s,|, where each sym-
bol s; has an associated weight (or probability) p;,
a minimum-redundancy code C of base b is a list
[c1, .-y Cn), Where ¢; € {0,...,b— 1} and such that C
is prefix free (which means ¢; is not a prefix of ¢; V
i # j) and Y. | pi|c;| is minimized. It is usual to
denote minimum-redundancy codes as Huffman codes
due to a famous algorithm proposed by David Huff-
man [Huf52] to solve this problem.

Some recent works have presented fast algorithms
to construct Huffman codes [MK95, MT98, MPL98].



However, these works make the assumption that the
alphabet list is given in increasing order of symbol fre-
quencies (or weights). Therefore, it is necessary to sort
the alphabet list before applying these algorithms. Fur-
thermore, the Huffman code construction phase is lin-
ear, while sorting the alphabet list can be O(nlogn)
using general comparison based algorithms. Hence,
sorting the frequencies is the heaviest part of the al-
gorithm.

The alphabet used when constructing word-based
Huffman codes is composed of words extracted from a
natural language text. It is widely accepted in the in-
formation retrieval community that the frequency dis-
tribution of these words follows the Zipf’s law [Zip49],
where N is the total number of words in the text and
n is the size of the vocabulary. Therefore, the remain-
ingsort algorithm for Zipfian distributions can be ap-
plied in the sorting phase of the word-based Huffman
code construction. The combination of the algorithm
presented in [MK95] with our new sorting algorithm
results in a fast linear time method to construct word-
based Huffman codes.

Experiments with natural language texts show that
the value of the constant € for natural language texts
is between 1.5 and 2.0 [ANZ97]. Further, the least
frequent word of a text (z,) has a small number of
occurrences that is close to 1 (in almost all natural
language the texts there are many words with fre-
quency 1 [BYN97]). Therefore, the extra space used
by the remainingsort algorithm in this application is
K = O((log n)?), which is a small extra space require-
ment.

To show the usefulness of the idea we made ex-
periments using literary texts from the TREC collec-
tion [Har95]. We have chosen the following texts: ap
Newswire (1989), doe - Short abstracts from doe publi-
cations, fr - Federal Register (1989), wsj - Wall Street
Journal (1987, 1988, 1989) and =ziff - articles from
Computer Selected disks (Ziff-Davis Publishing). We
put all these files together to obtain a text vocabu-
lary composed of 681 thousand words. We have also
produced fragments of this vocabulary by parsing the
TREC files and storing partial vocabularies from size
1,000 to 681,000. All the experiments were run on a
SUN SparcStation 4 with 96 megabytes of RAM run-
ning Solaris 2.5.1.

The first objective of the experiments was to deter-
mine a good practical value for the constant c. ¢ should
be large enough to reduce the time necessary to sort
the remaining bucket, and should be as small as pos-
sible in order to reduce the extra space and counter
processing time used by the algorithm. Figure 3 shows
experiments with a large range of values for the con-

stant ¢ when the remainingsort algorithm is applied to
the TREC vocabulary. The figure shows that the best
result is obtained with the value ¢ = 6. After this
point, the time to sort the remaining bucket is not sig-
nificant anymore and the running time is determined
by the time to divide the elements in their buckets, so
increasing ¢ will increase the running time.

0.54
0.52

0.5 r
0.48 | \

0.46

Time (seconds)

0.44

0.42

0.4
(0]

5 10 15 20 25 30
value of the constant c

Figure 3. Sorting times for the remainingsort algo-
rithm when varying the constant ¢ from 1 to 30,

running over the whole TREC vocabulary

After determining a good value for the constant
¢, we made experiments comparing the performance
of the remainingsort algorithm against an adaptive
quicksort specially designed to deal with lists with a
large amount of equal keys [Weg85, ECW92], which
we will reference as quicksort-equal. The idea used
in this quicksort is to not process sublists where all
the elements have the same value. We have considered
other alternatives to compare with, such as all the gen-
eral sorting algorithms described in [Knu73] and also
the adaptive algorithms described in [ECW92, PM95].
However, the faster algorithm we found to compare
with remainingsort when sorting text vocabularies by
frequency is the quicksort variation presented in the
experiments.

Figure 4 shows the performance of these algorithms
when running over the TREC vocabulary. Our algo-
rithm in these experiments was more then twice faster
than quicksort-equal.

Table 1 shows the best fit curves obtained when ap-
plying the least squares method to the data presented
in Figure 4. We have matched the time results with the
best curves Cin(In(n))** and Can®?, where Cy, a1, C2
and «a, are constants. This table indicates that the
running times of remainingsort increase at the same
ratio of the input, which matches our analytical re-
sults about the linearity of the algorithm when sort-
ing vocabulary frequencies. In this experiments, the



quicksort-equal algorithm has resulted in a sublinear
curve, but the best practical time results where ob-
tained by the remainingsort and the curves are so close
that this difference tends to be almost constant.

0.9

remainingsort ——
0.8 quicksort-equal -+ 7
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0.5
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Number of Elements (Thousands)

Figure 4. Sorting times for the remainingsort and
quicksort-equal when constructing the Huffman

code for the TREC vocabulary

n(log(n))** n?
Method (log(n))

o error as error
remainingsort 0.000 | 2.10% | 1.000 | 2.10%
quicksort-equal | -0.012 | 3.25% | 0.990 | 3.22%

Table 1. Best values for o and errors when fitting the
curves n(log(n))* and n® with the remainingsort,

and quicksort-equal

6 Conclusions

We have presented a special purpose technique to
sort lists that follow skewed distributions. This is a
simple idea which can be applied to a wide variety of
situations, but its usefulness depends on the contents
of the lists to be sorted. We have also used this more
general idea to derive an algorithm to sort lists that
follows the Zipf’s distribution. We have shown ana-
lytically that this algorithm has linear average time
and needs O(z,(logn)?) extra space, where z, is the
smallest element in the list and n is the number of el-
ements in the list. We also have shown an application
where this algorithm is used to fast sorting alphabets
when building word-based Huffman codes on natural
language texts in linear average time.

The general ideas presented here can be used in
many real world situations. We have shown in this arti-
cle just an example. Another example of application we
are considering now is to use the remainingsort strat-
egy to rank documents in information retrieval system.
The idea is to apply the remainingsort when the doc-
uments are ranked by the number of links that points
to them. As shown in [BP98], a list of documents,
when they are represented by this number, follows a
skewed distribution where the most popular element is
the value 1, which is a good situation for the remain-
ingsort strategy.
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