
Direct Pattern Matching on Compressed TextEdleno Silva de Moura�Depto. de Ciência da Computa�c~aoUniv. Federal de Minas GeraisBelo Horizonte, Brasiledleno@dcc.ufmg.br Gonzalo NavarroyDepto. de Ciencias de la Computaci�onUniv. de ChileSantiago, Chilegnavarro@dcc.uchile.clNivio ZivianizDepto. de Ciência da Computa�c~aoUniv. Federal de Minas GeraisBelo Horizonte, Brasilnivio@dcc.ufmg.br Ricardo Baeza-YatesyDepto. de Ciencias de la Computaci�onUniv. de ChileSantiago, Chilerbaeza@dcc.uchile.clAbstractWe present a fast compression and decompressiontechnique for natural language texts. The novelty isthat the exact search can be done on the compressed textdirectly, using any known sequential pattern matchingalgorithm. Approximate search can also be done e�-ciently without any decoding. The compression schemeuses a semi-static word-based modeling and a Hu�-man coding where the coding alphabet is byte-orientedrather than bit-oriented. We use the �rst bit of eachbyte to mark the beginning of a word, which allows thesearching of the compressed pattern directly on the com-pressed text. We achieve about 33% compression ratiofor typical English texts. When searching for simplepatterns, our experiments show that running our algo-rithm on a compressed text is almost twice as fast asrunning agrep on the uncompressed version of the sametext. When searching complex or approximate patterns,our algorithm is up to 8 times faster than agrep.1. IntroductionIn this paper we present a new technique to searchfor patterns on compressed texts, where the patternsare compressed and the search is processed without any�This work has been partially supported by capesscholarship.yThis work has been partially supported by Fondecyt grant1-950622 and amyri Project.zThis work has been partially supported by CNPq grant520916/94-8 and amyri Project.

decoding of the compressed text. The main advantagesof this scheme are simplicity, e�ciency and exibility,since complex searches can be performed almost at thesame search cost of simple searches. Moreover, thereduced I/O to read the compressed text makes thisalgorithm even faster than those that work on plainuncompressed text.The compressed matching problem was �rst de�nedin the work of Amir and Benson [1] as the task of per-forming string matching in a compressed text withoutdecompressing it. Giving a text T , a correspondingcompressed string Z, and a pattern P , the compressedmatching problem consists in �nding all occurrencesof P in T , using only P and Z. A naive algorithm,which �rst decompresses the string Z and then per-forms standard string matching, takes time O(u+m),where u = jT j and m = jP j. An optimal algorithmtakes worst-case time O(n + m), where n = jZj. In[2], a new criterion, called extra space, for evaluatingcompressed matching algorithms, was introduced. Ac-cording to the extra space criterion, algorithms shoulduse at most O(n) extra space, optimally O(m) in ad-dition to the n-length compressed �le. Most likely anoptimal run-time algorithm that takes O(n) additionalextra space may not be feasible in practice.The approximate text searching problem is to �ndall substrings in a text database that are at a given\distance" k or less from a pattern p. The distancebetween two strings is the minimum number of inser-tions, deletions or substitutions of single characters inthe strings that are needed to make them equal. Thecase in which k = 0 corresponds to the classical exactmatching problem.

In our compression scheme we use a word-basedHu�man code where the code assigned to each textword is a sequence of whole bytes and the Hu�mantree has degree 128 instead of 2. Consequently, in eachbyte we use 7 bits for the Hu�man code and 1 bit tosignal the beginning of a codeword. As shown in [8],using bytes instead of bits does not signi�cantly de-grade the compression ratios. The positive aspects arethat byte processing is much faster than bit processing,and compression and decompression are very fast.Our searching algorithm compresses the pattern andthen searches for the compressed pattern directly in thecompressed text. The search can start at any point inthe compressed text because all the bytes that start acodeword are marked with their highest bit set. Forexact searching any conventional pattern matching al-gorithm can be used and for approximate searching weuse a multi-pattern matching algorithm, as explainedlater on. These features allow the combination of ourmethod with two-level indexing schemes, such as themethod proposed in Glimpse [?]. Glimpse divides thetext space in logical blocks and builds an inverted �lewhere each list of word occurrences points to the cor-responding blocks. Searching is done by �rst perform-ing a search in the inverted �le and then a sequentialsearch in all the selected blocks. By using our com-pression scheme for the whole text, direct search canbe done over each block, improving the search times.These features allows the combination of our methodwith two level index schemes, such as the method pro-posed in Glimpse [?]. Glimpse divides the text spacein logical blocks and builds an inverted �le where eachlist of word occurrences points to the correspondingblocks. Searching is done by �rst doing a search in theinverted �le and then a sequential search in all the se-lected blocks. By using our compression scheme for thewhole text, direct search can be done over each blockimproving the search times.Let u; n and m be as de�ned above. Let j bethe number of text words of the pattern. For exactsearching, our approach �nds all pattern occurrencesin O(n +m) time (which is optimal) and near O(pu)extra space. For approximate searching our algorithms�nd all pattern occurrences in O(n + jpu + m) timeand near O(pu) extra space.The algorithms presented in this paper are beingused in a software package called cgrepboyer. cgrep-boyer is an exact and approximate compressed match-ing tool for large text collections. The softwarepackage is available from ftp://dcc.ufmg.br/pub/-research/�nivio/cgrepboyer, as a prototype in itsversion 1.0.This paper is organized as follows. In Section 2 we

present related work found in the literature. In Sec-tion 3 we present the byte word based Hu�man com-pression, the method used as a base for our method. In Section 4 we show our compression methodand presents experimental compression performanceresults. In Section 5 we present a method to searchfor patterns on compressed texts. In this section wealso show some analytical and experimental results. InSection 6 we present some conclusions and future workdirections.2. Related WorkIn [9] it was presented a compressed matching al-gorithm for the LZ1 classic compression scheme [19]that runs in time O(n log2(u=n) + m). In [2] it waspresented a compressed matching algorithm for theLZ78 compression scheme that �nds the �rst occur-rence in time O(n + m2) and space O(n + m2) or intime O(n logm + m) and in space O(n + m). Otherauthors have also presented interesting methods forcompressed pattern matching with LZ codes [10, 14].In [10, 14] it was presented algorithms for treating LZcompressed �les. The ploblems solved include languagerecognize problems and speci�c search problems suchas to �nd all occurrences of a pattern represented byhis LZ code, all periods, all palindromes and all squaresin the text. All these works [9, 2, 10, 14] were pre-sented only in a theoretical framework, with no im-plementation of their algorithms, while we implementand experimentally evaluate our algorithms. More-over, our implementation considers both the compres-sion/decompression schemes and the exact and approx-imate compressed matching problems.Another text compression scheme that allows directsearching was proposed by [15]. His scheme packs pairsof frequent characters in a single byte, leading to a com-pression ratio of approximately 70% for typical text�les. Like that work we want also to keep the search atbyte level for e�ciency. However, our approach leadsto a better compression ratio, of less than half (33%against 70%) the compression ratio of [15]. Moreover,our searching algorithm can deal e�ciently with ap-proximate compressed matching, comparing favorablyagainst agrep [18], the fastest known software to searchuncompressed text.The searching algorithm presented in this paper is avariant of the scheme presented in [8], which providesgood compression ratio and also permits fast searchingon the compressed text. However, they concomitantlytraverse the Hu�man tree downwards, as if they weredecompressing the text. In this work we have mod-i�ed the compression scheme to permit direct search2

of compressed patterns, so decoding the text at searchtime is not necessary anymore. As a consequence ofour new scheme, any known sequential pattern match-ing algorithm can be used for exact search. Approxi-mate search can also be done e�ciently by generatingall the possible compressed patterns that matches withthe query and making a multi-pattern search over thecompressed text.3. The Compression SchemeWe use a zero-order semi-static word-based model-ing and Hu�man coding [13]. In the semi-static mod-eling the encoder makes a �rst pass over the text toobtain the parameters (in this case the frequency ofeach di�erent text word) and performs the actual com-pression in a second pass. In a word-based model [6, 16]the words of the text are taken as the alphabet to beused during the coding phase. Since the text is not onlycomposed of words but also of separators, a model mustalso be chosen for them. We parse the text into space-less words [8]. In this method words and separators areplaced in the same alphabet. If a word is followed by aspace, we just encode the word. If not, we encode theword and then the separator. At decoding time, we de-code a word and assume that a space follows, except ifthe next symbol corresponds to a separator. This ideawas �rstly presented in [7].Figure 1 presents an example of compression usingHu�man coding for spaceless words method. The setof symbols in this case is f,t, a, each, is, for, roseg,whose frequencies are 1, 2, 1, 1, 1, 3, respectively (trepresents a space). e��� XXX0 1 rosee��� XXX0 1e hhhh((((0 1eHH��each ,t0 1 iseHH��for 10 aOriginal text:Compressed text: 0010 0000 1 0001 01 1 0011 01 1for each rose, a rose is a roseThe original method proposed by Hu�man [13] usesa binary code. In [8] the Hu�man code assigned toeach text word is a sequence of whole bytes and theHu�man tree has degree 256 instead of 2. They use 8bits instead of 1 bit at each level of the Hu�man tree.

Because of this we call this compression scheme ByteHu�man. In practice byte processing is much fasterthan bit processing because bit shifts and masking op-erations are not necessary at decoding or search time.As pointed out in Moura et al. [8], searching ina text compressed by the Byte-Hu�man scheme can-not be done by compressing the pattern and apply-ing a conventional search algorithm. This is dueto the possibility of �nding false matches during thesearch. The problem is exempli�ed in Figure 2, wherethe words real, word, ghost have received the 8-bitcodes (or byte-codes) 85 32, 29 12 99, 32 29 12,respectively. If we are searching for the word ghost,which does not exist in the original text, we �nd a falseoccurrence.
...real word...real

word
ghost Compressed Text

Original Text

Word Code

...85 32 29 12 99...

ghost ?

85 32

32 29 12
29 12 99

We solve this problem by identifying the point whereeach word starts in the compressed text. If we knewthat byte 32 in the compressed text of the Figure 2 isnot the �rst byte of a word, we would simply not reporta match. This can be done by using a Hu�man tree ofdegree 128, instead of 256, and using the �rst bit of thebyte-code as a ag bit. This bit has the value 1 onlywhen a digit in the compressed text is the �rst digit ofa word and 0 otherwise.In the example, if we search "ghost", we do notsearch the byte string 32 29 12 but 160 29 12 instead(where 160 = 32 + 128). Therefore, our �nal code isalso a byte oriented code, which permits the applicationof conventional text search algorithms directly on thecompressed text.As we show below in the experimental results sec-tion, no signi�cant decrease of the compression ratiois experienced by using bytes instead of bits. On theother hand, decompression of byte Hu�man code isfaster than decompression of binary Hu�man code. Alltechniques for e�cient encoding and decoding men-tioned in [20] can easily be extended to this case.3

4. Compression and Decompression Per-formanceFor the experimental results we used literary textsfrom the trec collection [11]. We have chosen thefollowing texts: ap Newswire (1989), doe - Short ab-stracts from doe publications, fr - Federal Register(1989), wsj - Wall Street Journal (1987, 1988, 1989)and ziff - articles from Computer Selected disks (Zi�-Davis Publishing). Table 1 presents some statisticsabout the �ve text �les. We considered a word asa contiguous string of characters in the set fA: : :Z,a: : :z, 0: : :9g separated by other characters not in theset fA: : :Z, a: : :z, 0: : :9g. All tests were run on a sunSparcStation 4 with 96 megabytes of RAM running So-laris 2.5.1.Table 2 shows the entropy and compression ratiosachieved for Hu�man, byte Hu�man, 7-bits Hu�man,Compress and Gzip for �les of the trec collection. Thespace used to store the vocabulary is included in allHu�man compression methods. The overhead of ourmethod compared with the Byte Hu�man is near 3%.As it can be seen, the increase in the compression ratiowith the 7-bits method is not so signi�cant. In mostcases we are still below Gzip.Method Filesap wsj doe ziff frEntropy 26.20 26.00 24.60 27.50 25.30Hu�man (1 bit) 27.41 27.13 26.25 28.93 26.88Byte Hu�man 31.16 30.60 30.19 32.90 30.147-bits Hu�man 34.12 33.70 32.74 36.08 33.53Compress 43.80 42.94 41.08 41.56 38.54Gzip 38.56 37.53 34.94 34.12 27.75Table 3 shows the compression and decompressiontimes achieved for Hu�man, byte Hu�man, 7-bits Hu�-man, Compress and Gzip for �les of the trec collec-tion. Our method has almost the same performance ofthe Byte Hu�man method. In compression, we are 2-3times faster than Gzip and only 17% slower than Com-press (whose compression ratios are worse than those ofGzip). In decompression we are more than 20% fasterthan Gzip and three times faster than Compress.

5. Searching on Compressed TextThe search for a pattern on a compressed text ismade in two phases. In the �rst phase we compress thepattern using the same structures used to compress thetext. In the second phase we search for the compressedpattern. In an exact pattern search, the �rst phasegenerates a unique pattern that can be searched withany conventional search algorithm. In an approximatesearch, the �rst phase generate all the possibilities ofcompressed codes that match with the original patternin the vocabulary of the compressed text. In this lastcase we use a multi-pattern algorithm to search thetext.Compressing the pattern when we are performing anexact search is similar to the coding phase of the Hu�-man compression. We search for each symbol (word orseparator) of the pattern in the Hu�man vocabularyand then generate the compressed code for it. If thereis a symbol in the pattern that is not in the vocabu-lary then there are no occurrences of the pattern in thetext.If we are doing approximate search, then we needto generate compressed codes for all symbols in theHu�man vocabulary that match with the symbols inthe pattern. For each symbol in the pattern we make alist of the compressed codes of the vocabulary symbolsthat matches with it.To search the symbols in the vocabulary we use thesame algorithms proposed by Moura et al [8]. Forphrase patterns allowing k errors (k � 0) that containssets of characters at any position we use the algorithmpresented in [4]. If v is the size of the vocabulary andw is the length of a symbol W , this runs in O(v + w)time to search W . For more complicated patterns al-lowing k errors (k � 0) containing unions, wild cardsor regular expressions we use the algorithm presentedin [18], which runs in O(kv +w) time to search W .For exact search, after obtaining the compressedcode (a sequence of bytes) we can choose any known al-gorithm to process the search. In the experimental re-sults presented in this paper we used the Boyer-Moore-Horspool-Sunday (BMHS) [17] algorithm, which hasgood practical performance.If we are doing approximate search then the origi-nal pattern is represented by the set of lists L1; ::; Lj,where Li has the compressed codes that matches the4

Files Text Vocabulary Vocab./TextSize (bytes) #Words Size (bytes) #Words Size #Wordsap 237,766,005 38,977,670 1,564,050 209,272 0.65% 0.53%doe 181,871,525 28,505,125 1,949,140 235,133 1.07% 0.82%fr 219,987,476 34,455,982 1,284,092 181,965 0.58% 0.52%wsj 262,757,554 42,710,250 1,549,131 208,005 0.59% 0.48%ziff 242,660,178 39,675,248 1,826,349 255,107 0.75% 0.64%trecMethod Compression Decompressionap wsj doe ziff fr ap wsj doe ziff frHu�man (1 bit) 490 526 360 518 440 170 185 121 174 151Byte Hu�man 487 520 356 515 435 106 117 81 112 967-bits Hu�man 491 534 364 527 446 112 121 85 116 99Compress 422 456 308 417 375 367 407 273 373 331Gzip 1333 1526 970 1339 1048 147 161 105 139 111i-th symbol of the original pattern. To start the searchin the compressed text we choose one of these lists anduse any multi-pattern search algorithm to �nd the oc-currences of their elements in the text. When an occur-rence of one element of the �rst list searched is found,we look the other lists to verify if there is an occurrenceof the entire pattern at this position.The choice of the �rst list searched is fundamentalfor the performance of the algorithm. An heuristic tomake this choice is to verify the size of the smallest codein each list and choose the list that has the largest valueamong these. This choice comes directly from the costto search a list of patterns. Longer code words have lessprobability of occurrence in the text, which translatesinto less veri�cations for occurrences of elements of theother lists. Moreover, most text searching algorithmswork faster on longer patterns.The multi-pattern search algorithm chosen to searchthe elements of each list is an e�cient technique pro-posed by Baeza-Yates and Navarro [4, 5] to handlemultiple patterns. This algorithm is an extension ofthe Boyer-Moore-Horspool-Sunday (BMHS) [17] algo-rithm, which has a cost of O(n log(c)=c) on average,where n is the size in bytes of the compressed textand c is the length of the smaller compressed patternsearched.

We analyze the performance of our searching algo-rithm. The analysis considers a random text, which isvery appropriate because the compressed text is mainlyrandom.For the analysis we consider that: the vocabularyhas v = O(u�) words, for 0 < � < 1 [12]. Typically, �is between 0.4 and 0.6 [3, 7], and therefore v is close toO(pu) (although this is not essential to our analysis).The compressed search patterns are of length c (typi-cally c = 3 or 4 bytes, but this is not essential for theanalysis), the original text has u characters, the com-pressed text has n characters, k is the number of errorsallowed, the pattern has m characters and j di�erentwords of length m1; :::;mj (Pji=1mi = m).We �rst consider the compression phase, wherethe main cost is searching in the vocabulary. Look-ing exactly for a word of length w in the vocabu-lary can be done in O(m) in the worst case by us-ing a trie or on average by using hashing. There-fore, looking exactly for all words in the pattern hasa cost of O(Pji=1mi) = O(m). On the other hand,if we search a complex pattern we preprocess all thewords at a cost O(ju� +Pji=1mi) = O(ju� + m) orO(jku� +Pji=1mi) = O(jku� +m) depending on thealgorithm used. In all reasonable cases the preprocess-ing phase is sub-linear in the text size and negligible in5

cost.We consider now text searching for natural languagetexts. The multi pattern algorithm used in the secondphase makes the search time near O((n log(c)=c) + t)on average, where c is the length of the shortest codeamong the words in the compressed pattern list chosen.The performance evaluation of the algorithms pre-sented in this section was obtained by means of 120randomly chosen patterns. In fact we considered 40patterns containing 1 word, 40 patterns containing 2words, 40 patterns containing 3 words, and submittedeach one to the searching algorithms. All experimentswere run on the wsj text �le and the results were ob-tained with 99% con�dence interval. The size of thewsj uncompressed was 262.8 megabytes and the sizeof the compressed �les were 80.4 megabytes with theByte Hu�man method and 88.6 megabytes with the7-bits Hu�man method.The programs used in the experiment are: agrep, asoftware developed by Wu and Manber [18]; cgrep [8],a software to search on compressed texts obtained withByte Hu�man; and cgrep7bits is our program to searchon compressed texts using the algorithms described inthis section.The table 4 shows that our method is slightly bet-ter than cgrep for both exact and approximate search.When compared with the agrep, cgrep7bits is almosteight times faster. Note that agrep were run onthe uncompressed version of the text and cgrep andcgrep7bits were run on the compressed version of thetext. The exact search performed in the experimentsof this extended abstract is done by discarding the sep-arators during the search.6. ConclusionsWe have presented a new compression scheme thathas good compression and decompression performancewith good compression ratio. We also presented anew algorithm to perform compressed pattern match-ing over the texts generated by the compression algo-rithm. Our scheme permits direct search on the com-pressed text by using any conventional algorithm forexact search and also permits approximate search byconverting the search into a multi-pattern exact search.The method does not decode the text at search time.Our searching scheme is close in performance to thefastest algorithm to search on compressed text knownin the literature [8].

References[1] A. Amir and G. Benson. E�cient two-dimensionalcompressed matching. In Proc. Second IEEE DataCompression Conference, pages 279{288, March 1992.[2] A. Amir, G. Benson, and M. Farach. Let sleeping �leslie: pattern matching in z-compressed �les. Journal ofComputer and Systems Sciences, 52(2):299{307, 1996.[3] M. D. Ara�ujo, G. Navarro, and N. Ziviani. Largetext searching allowing errors. In R. Baeza-Yates, edi-tor, Proc. of the Fourth South American Workshop onString Processing, volume 8, pages 2{20. Carleton Uni-versity Press International Informatics Series, 1997.[4] R. Baeza-Yates and G. Navarro. A faster algorithmfor approximate string matching. In Proc. of Com-binatorial Pattern Matching (CPM'96), volume 1075,pages 1{13. Springer-Verlag LNCS, 1996.[5] R. Baeza-Yates and G. Navarro. Multiple approximatestring matching. In Proc. of Workshop on Algorithmsand Data Structures (WADS'97), volume 1272, pages174{184. Springer-Verlag LNCS, 1997.[6] J. Bentley, D. Sleator, R. Tarjan, and V.Wei. A locallyadaptive data compression scheme. Communicationsof the ACM, 29:320{330, 1986.[7] E. de Moura, G. Navarro, and N. Ziviani. Indexingcompressed text. In R. Baeza-Yates, editor, Proc.of the Fourth South American Workshop on StringProcessing, volume 8, pages 95{111. Carleton Univer-sity Press International Informatics Series, 1997.[8] E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast text searching allowing errors. In Proc. ofthe ACM Sigir'98. to appear.[9] M. Farach and M. Thorup. String matching in lempel-ziv compressed strings. In 27th ACM Annual Sympo-sium on the Theory of Computing, pages 703{712.[10] L. Gasieniec, M.Karpinksi, W.Plandowski, andW. Rytter. E�cient algorithms for lempel-ziv encod-ings. In Proc. of the Scandinavian Workshop on Algo-rithm Theory, 1996.[11] D. K. Harman. Overview of the third text retrievalconference. In Proc. Third Text REtrieval Confer-ence (TREC-3), pages 1{19, Gaithersburg, Maryland,1995. National Institute of Standards and TechnologySpecial Publication.[12] J. Heaps. Information Retrieval - Computational andTheoretical Aspects. Academic Press, 1978.[13] D. A. Hu�man. A method for the construction ofminimum-redundancy codes. In Proc. of the I.R.E.,volume 40, pages 1090{1101, 1952.[14] M. Karpinski, A. Shinohara, and W. Rytter. Patternmatching problem for strings with short descriptions.Nordic Journal of Computing, 4(2):172{186, 1997.[15] U. Manber. A text compression scheme that allowsfast searching directly in the compressed �le. ACMTransactions on Information Systems, 15(2):124{136,1997.[16] A. Mo�at. Word-based text compression. SoftwarePractice and Experience, 19(2):185{198, 1989.6

Algorithm k = 0 k = 1 k = 2 k = 3agrep 23.8 � 0.38 117.9 � 0.14 146.1 � 0.13 174.6 � 0.16cgrep 15.1 � 0.30 16.2 � 0.52 19.4 � 1.21 23.4 � 1.79cgrep7bits 14.1 � 0.18 15.0 � 0.33 17.0 � 0.71 22.7 � 2.23wsj[17] D. Sunday. A very fast substring search algorithm.Communications of the ACM, 33(8):133{142, 1990.[18] S. Wu and U. Manber. Fast text searching allowingerrors. Communications of the ACM, 35(10), 1992.[19] J. Ziv and A. Lempel. On the complexity of �nitesequences. IEEE Transactions on InformationTheory,22:75{81, 1976.[20] J. Zobel and A. Mo�at. Adding compression to a full-text retrieval system. Software Practice and Experi-ence, 25(8):891{903, 1995.

7

