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Abstract

We present a fast compression and decompression
technique for natural language texts. The novelty is
that the exact search can be done on the compressed text
directly, using any known sequential pattern matching
algorithm. Approrimate search can also be done effi-
ciently without any decoding. The compression scheme
uses a semi-static word-based modeling and a Huff-
man coding where the coding alphabet is byte-oriented
rather than bit-oriented. We use the first bit of each
byte to mark the beginning of a word, which allows the
searching of the compressed pattern directly on the com-
pressed text. We achieve about 33% compression ratio
for typical English texts. When searching for simple
patterns, our experiments show that running our algo-
rithm on a compressed text is almost twice as fast as
running agrep on the uncompressed version of the same
text. When searching complex or approzimate patterns,
our algorithm is up to 8 times faster than agrep.

1. Introduction

In this paper we present a new technique to search
for patterns on compressed texts, where the patterns
are compressed and the search is processed without any
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decoding of the compressed text. The main advantages
of this scheme are simplicity, efficiency and flexibility,
since complex searches can be performed almost at the
same search cost of simple searches. Moreover, the
reduced I/O to read the compressed text makes this
algorithm even faster than those that work on plain
uncompressed text.

The compressed matching problem was first defined
in the work of Amir and Benson [1] as the task of per-
forming string matching in a compressed text without
decompressing it. Giving a text 7', a corresponding
compressed string Z, and a pattern P, the compressed
matching problem consists in finding all occurrences
of P in T, using only P and Z. A naive algorithm,
which first decompresses the string Z and then per-
forms standard string matching, takes time O(u + m),
where v = |T| and m = |P|. An optimal algorithm
takes worst-case time O(n + m), where n = |Z|. In
[2], a new criterion, called eztra space, for evaluating
compressed matching algorithms, was introduced. Ac-
cording to the extra space criterion, algorithms should
use at most O(n) extra space, optimally O(m) in ad-
dition to the n-length compressed file. Most likely an
optimal run-time algorithm that takes O(n) additional
extra space may not be feasible in practice.

The approzimate text searching problem is to find
all substrings in a text database that are at a given
“distance” k or less from a pattern p. The distance
between two strings is the minimum number of inser-
tions, deletions or substitutions of single characters in
the strings that are needed to make them equal. The
case in which k& = 0 corresponds to the classical exact
matching problem.



In our compression scheme we use a word-based
Huffman code where the code assigned to each text
word is a sequence of whole bytes and the Huffman
tree has degree 128 instead of 2. Consequently, in each
byte we use 7 bits for the Huffman code and 1 bit to
signal the beginning of a codeword. As shown in [8],
using bytes instead of bits does not significantly de-
grade the compression ratios. The positive aspects are
that byte processing is much faster than bit processing,
and compression and decompression are very fast.

Our searching algorithm compresses the pattern and
then searches for the compressed pattern directly in the
compressed text. The search can start at any point in
the compressed text because all the bytes that start a
codeword are marked with their highest bit set. For
exact searching any conventional pattern matching al-
gorithm can be used and for approximate searching we
use a multi-pattern matching algorithm, as explained
later on. These features allow the combination of our
method with two-level indexing schemes, such as the
method proposed in Glimpse [?]. Glimpse divides the
text space in logical blocks and builds an inverted file
where each list of word occurrences points to the cor-
responding blocks. Searching is done by first perform-
ing a search in the inverted file and then a sequential
search in all the selected blocks. By using our com-
pression scheme for the whole text, direct search can
be done over each block, improving the search times.

These features allows the combination of our method
with two level index schemes, such as the method pro-
posed in Glimpse [?]. Glimpse divides the text space
in logical blocks and builds an inverted file where each
list of word occurrences points to the corresponding
blocks. Searching is done by first doing a search in the
inverted file and then a sequential search in all the se-
lected blocks. By using our compression scheme for the
whole text, direct search can be done over each block
improving the search times.

Let u,n and m be as defined above. Let j be
the number of text words of the pattern. For exact
searching, our approach finds all pattern occurrences
in O(n + m) time (which is optimal) and near O(+/u)
extra space. For approximate searching our algorithms
find all pattern occurrences in O(n + ji/u + m) time
and near O(+/u) extra space.

The algorithms presented in this paper are being
used in a software package called cgrepboyer. cgrep-
boyer is an exact and approximate compressed match-
ing tool for large text collections. The software
package is available from ftp://dcc.ufmg.br/pub/-
research/~nivio/cgrepboyer, as a prototype in its
version 1.0.

This paper is organized as follows. In Section 2 we

present related work found in the literature. In Sec-
tion 3 we present the byte word based Huffman com-
pression, the method used as a base for our method

In Section 4 we show our compression method
and presents experimental compression performance
results. In Section 5 we present a method to search
for patterns on compressed texts. In this section we
also show some analytical and experimental results. In
Section 6 we present some conclusions and future work
directions.

2. Related Work

In [9] it was presented a compressed matching al-
gorithm for the LZ1 classic compression scheme [19]
that runs in time O(nlog”(u/n) + m). In [2] it was
presented a compressed matching algorithm for the
LZ78 compression scheme that finds the first occur-
rence in time O(n + m?) and space O(n + m?) or in
time O(nlogm + m) and in space O(n + m). Other
authors have also presented interesting methods for
compressed pattern matching with LZ codes [10, 14].
In [10, 14] it was presented algorithms for treating LZ
compressed files. The ploblems solved include language
recognize problems and specific search problems such
as to find all occurrences of a pattern represented by
his LZ code, all periods, all palindromes and all squares
in the text. All these works [9, 2, 10, 14] were pre-
sented only in a theoretical framework, with no im-
plementation of their algorithms, while we implement
and experimentally evaluate our algorithms. More-
over, our implementation considers both the compres-
sion/decompression schemes and the exact and approx-
imate compressed matching problems.

Another text compression scheme that allows direct
searching was proposed by [15]. His scheme packs pairs
of frequent characters in a single byte, leading to a com-
pression ratio of approximately 70% for typical text
files. Like that work we want also to keep the search at
byte level for efficiency. However, our approach leads
to a better compression ratio, of less than half (33%
against 70%) the compression ratio of [15]. Moreover,
our searching algorithm can deal efficiently with ap-
proximate compressed matching, comparing favorably
against agrep [18], the fastest known software to search
uncompressed text.

The searching algorithm presented in this paper is a
variant of the scheme presented in [8], which provides
good compression ratio and also permits fast searching
on the compressed text. However, they concomitantly
traverse the Huffman tree downwards, as if they were
decompressing the text. In this work we have mod-
ified the compression scheme to permit direct search



of compressed patterns, so decoding the text at search
time is not necessary anymore. As a consequence of
our new scheme, any known sequential pattern match-
ing algorithm can be used for exact search. Approxi-
mate search can also be done efficiently by generating
all the possible compressed patterns that matches with
the query and making a multi-pattern search over the
compressed text.

3. The Compression Scheme

We use a zero-order semi-static word-based model-
ing and Huffman coding [13]. In the semi-static mod-
eling the encoder makes a first pass over the text to
obtain the parameters (in this case the frequency of
each different text word) and performs the actual com-
pression in a second pass. In a word-based model [6, 16]
the words of the text are taken as the alphabet to be
used during the coding phase. Since the text is not only
composed of words but also of separators, a model must
also be chosen for them. We parse the text into space-
less words [8]. In this method words and separators are
placed in the same alphabet. If a word is followed by a
space, we just encode the word. If not, we encode the
word and then the separator. At decoding time, we de-
code a word and assume that a space follows, except if
the next symbol corresponds to a separator. This idea
was firstly presented in [7].

Figure 1 presents an example of compression using
Huffman coding for spaceless words method. The set
of symbols in this case is {,L, a, each, is, for, rose},
whose frequencies are 1, 2, 1, 1, 1, 3, respectively (U
represents a space).

|each| |,|—| ||for| Iis |

Original text:

for each rose, a rose is a rose

Compressed text: 0010 0000 1 0001 01 1 0011 01 1

The original method proposed by Huffman [13] uses
a binary code. In [8] the Huffman code assigned to
each text word is a sequence of whole bytes and the
Huffman tree has degree 256 instead of 2. They use 8
bits instead of 1 bit at each level of the Huffman tree.

Because of this we call this compression scheme Byte
Huffman. In practice byte processing is much faster
than bit processing because bit shifts and masking op-
erations are not necessary at decoding or search time.

As pointed out in Moura et al. [8], searching in
a text compressed by the Byte-Huffman scheme can-
not be done by compressing the pattern and apply-
ing a conventional search algorithm. This is due
to the possibility of finding false matches during the
search. The problem is exemplified in Figure 2, where
the words real, word, ghost have received the 8-bit
codes (or byte-codes) 85 32, 29 12 99, 32 29 12,
respectively. If we are searching for the word ghost,
which does not exist in the original text, we find a false
occurrence.

Word Code

real 85 32 Original Text ...real word...

word 29 12 99 — 1
host Compressed Text ...85 32 29 12 99..
ghos 32 29 12

ghost ?

We solve this problem by identifying the point where
each word starts in the compressed text. If we knew
that byte 32 in the compressed text of the Figure 2 is
not the first byte of a word, we would simply not report
a match. This can be done by using a Huffman tree of
degree 128, instead of 256, and using the first bit of the
byte-code as a flag bit. This bit has the value 1 only
when a digit in the compressed text is the first digit of
a word and 0 otherwise.

In the example, if we search "ghost", we do not
search the byte string 32 29 12 but 160 29 12 instead
(where 160 = 32 + 128). Therefore, our final code is
also a byte oriented code, which permits the application
of conventional text search algorithms directly on the
compressed text.

As we show below in the experimental results sec-
tion, no significant decrease of the compression ratio
is experienced by using bytes instead of bits. On the
other hand, decompression of byte Huffman code is
faster than decompression of binary Huffman code. All
techniques for efficient encoding and decoding men-
tioned in [20] can easily be extended to this case.



4. Compression and Decompression Per-
formance

For the experimental results we used literary texts
from the TREC collection [11]. We have chosen the
following texts: AP Newswire (1989), DOE - Short ab-
stracts from DOE publications, FR - Federal Register
(1989), wsJ - Wall Street Journal (1987, 1988, 1989)
and ZIFF - articles from Computer Selected disks (Ziff-
Davis Publishing). Table 1 presents some statistics
about the five text files. We considered a word as
a contiguous string of characters in the set {A...Z,
a...z, 0...9} separated by other characters not in the
set {A...Z, a...z, 0...9}. All tests were run on a SUN
SparcStation 4 with 96 megabytes of RAM running So-
laris 2.5.1.

Table 2 shows the entropy and compression ratios
achieved for Huffman, byte Huffman, 7-bits Huffman,
Compress and Gzip for files of the TREC collection. The
space used to store the vocabulary is included in all
Huffman compression methods. The overhead of our
method compared with the Byte Huffman is near 3%.
As it can be seen, the increase in the compression ratio
with the 7-bits method is not so significant. In most
cases we are still below Gzip.

Files
Method
AP WSJ DOE ZIFF FR
Entropy 26.20 | 26.00 | 24.60 | 27.50 | 25.30

Huffman (1 bit) | 27.41 | 27.13 | 26.25 | 28.93 | 26.88
Byte Huffman 31.16 | 30.60 | 30.19 | 32.90 | 30.14
7-bits Huffman | 34.12 | 33.70 | 32.74 | 36.08 | 33.53
Compress 43.80 | 42.94 | 41.08 | 41.56 | 38.54
Gzip 38.56 | 37.53 | 34.94 | 34.12 | 27.75

Table 3 shows the compression and decompression
times achieved for Huffman, byte Huffman, 7-bits Huff-
man, Compress and Gzip for files of the TREC collec-
tion. Our method has almost the same performance of
the Byte Huffman method. In compression, we are 2-3
times faster than Gzip and only 17% slower than Com-
press (whose compression ratios are worse than those of
Gzip). In decompression we are more than 20% faster
than Gzip and three times faster than Compress.

5. Searching on Compressed Text

The search for a pattern on a compressed text is
made in two phases. In the first phase we compress the
pattern using the same structures used to compress the
text. In the second phase we search for the compressed
pattern. In an exact pattern search, the first phase
generates a unique pattern that can be searched with
any conventional search algorithm. In an approximate
search, the first phase generate all the possibilities of
compressed codes that match with the original pattern
in the vocabulary of the compressed text. In this last
case we use a multi-pattern algorithm to search the
text.

Compressing the pattern when we are performing an
exact search is similar to the coding phase of the Huff-
man compression. We search for each symbol (word or
separator) of the pattern in the Huffman vocabulary
and then generate the compressed code for it. If there
is a symbol in the pattern that is not in the vocabu-
lary then there are no occurrences of the pattern in the
text.

If we are doing approximate search, then we need
to generate compressed codes for all symbols in the
Huffman vocabulary that match with the symbols in
the pattern. For each symbol in the pattern we make a
list of the compressed codes of the vocabulary symbols
that matches with it.

To search the symbols in the vocabulary we use the
same algorithms proposed by Moura et al [8]. For
phrase patterns allowing k errors (k¥ > 0) that contains
sets of characters at any position we use the algorithm
presented in [4]. If v is the size of the vocabulary and
w is the length of a symbol W, this runs in O(v + w)
time to search W. For more complicated patterns al-
lowing %k errors (k > 0) containing unions, wild cards
or regular expressions we use the algorithm presented
in [18], which runs in O(kv + w) time to search W.

For exact search, after obtaining the compressed
code (a sequence of bytes) we can choose any known al-
gorithm to process the search. In the experimental re-
sults presented in this paper we used the Boyer-Moore-
Horspool-Sunday (BMHS) [17] algorithm, which has
good practical performance.

If we are doing approximate search then the origi-
nal pattern is represented by the set of lists Ly, .., L;,
where L; has the compressed codes that matches the



Fil Text Vocabulary Vocab./Text
e Size (bytes) #Words Size (bytes) | #Words Size #Words
AP | 237,766,005 | 38,977,670 | 1,564,050 | 209,272 | 0.65% | 0.53%
DOE | 181,871,525 | 28,505,125 | 1,949,140 | 235,133 | 1.07% | 0.82%
FR | 219,987,476 | 34,455,982 | 1,284,092 | 181,965 | 0.58% | 0.52%
wsy | 262,757,554 | 42,710,250 | 1,549,131 | 208,005 | 0.59% | 0.48%
ZIFF | 242,660,178 | 39,675,248 | 1,826,349 | 255,107 | 0.75% | 0.64%
TREC
Compression Decompression
Method
AP WSJ DOE ZIFF FR AP WSJ DOE ZIFF FR
Huffman (1 bit) 490 526 360 518 440 170 | 185 121 174 151
Byte Huffman 487 520 356 515 435 106 | 117 81 112 96
7-bits Huffman 491 534 364 527 446 112 | 121 85 116 99
Compress 422 456 308 417 375 367 | 407 273 373 | 331
Gzip 1333 | 1526 | 970 1339 | 1048 | 147 | 161 105 139 111

i-th symbol of the original pattern. To start the search
in the compressed text we choose one of these lists and
use any multi-pattern search algorithm to find the oc-
currences of their elements in the text. When an occur-
rence of one element of the first list searched is found,
we look the other lists to verify if there is an occurrence
of the entire pattern at this position.

The choice of the first list searched is fundamental
for the performance of the algorithm. An heuristic to
make this choice is to verify the size of the smallest code
in each list and choose the list that has the largest value
among these. This choice comes directly from the cost
to search a list of patterns. Longer code words have less
probability of occurrence in the text, which translates
into less verifications for occurrences of elements of the
other lists. Moreover, most text searching algorithms
work faster on longer patterns.

The multi-pattern search algorithm chosen to search
the elements of each list is an efficient technique pro-
posed by Baeza-Yates and Navarro [4, 5] to handle
multiple patterns. This algorithm is an extension of
the Boyer-Moore-Horspool-Sunday (BMHS) [17] algo-
rithm, which has a cost of O(nlog(c)/c) on average,
where n is the size in bytes of the compressed text
and c is the length of the smaller compressed pattern
searched.

We analyze the performance of our searching algo-
rithm. The analysis considers a random text, which is
very appropriate because the compressed text is mainly
random.

For the analysis we consider that: the vocabulary
has v = O(v?) words, for 0 < 3 < 1 [12]. Typically, 8
is between 0.4 and 0.6 [3, 7], and therefore v is close to
O(+/u) (although this is not essential to our analysis).
The compressed search patterns are of length ¢ (typi-
cally ¢ = 3 or 4 bytes, but this is not essential for the
analysis), the original text has u characters, the com-
pressed text has n characters, k is the number of errors
allowed, the pattern has m characters and j different
words of length myq,...,m; (}27_, m; = m).

We first consider the compression phase, where
the main cost is searching in the vocabulary. Look-
ing exactly for a word of length w in the vocabu-
lary can be done in O(m) in the worst case by us-
ing a trie or on average by using hashing. There-
fore, looking exactly for all words in the pattern has
a cost of O(>_1_, m;) = O(m). On the other hand,
if we search a complex pattern we preprocess all the
words at a cost O(juf + Y 7_, m;) = O(juP + m) or
O(jkuP 4+ >1_, m;) = O(jkuP + m) depending on the
algorithm used. In all reasonable cases the preprocess-
ing phase is sub-linear in the text size and negligible in



cost.

We consider now text searching for natural language
texts. The multi pattern algorithm used in the second
phase makes the search time near O((nlog(c)/c) + ¢)
on average, where c is the length of the shortest code
among the words in the compressed pattern list chosen.

The performance evaluation of the algorithms pre-
sented in this section was obtained by means of 120
randomly chosen patterns. In fact we considered 40
patterns containing 1 word, 40 patterns containing 2
words, 40 patterns containing 3 words, and submitted
each one to the searching algorithms. All experiments
were run on the wsJ text file and the results were ob-
tained with 99% confidence interval. The size of the
wSJ uncompressed was 262.8 megabytes and the size
of the compressed files were 80.4 megabytes with the
Byte Huffman method and 88.6 megabytes with the
7-bits Huffman method.

The programs used in the experiment are: agrep, a
software developed by Wu and Manber [18]; cgrep [8],
a software to search on compressed texts obtained with
Byte Huffman; and cgrep7bits is our program to search
on compressed texts using the algorithms described in
this section.

The table 4 shows that our method is slightly bet-
ter than cgrep for both exact and approximate search.
When compared with the agrep, cgrep7bits is almost
eight times faster. Note that agrep were run on
the uncompressed version of the text and cgrep and
cgrep7bits were run on the compressed version of the
text. The exact search performed in the experiments
of this extended abstract is done by discarding the sep-
arators during the search.

6. Conclusions

We have presented a new compression scheme that
has good compression and decompression performance
with good compression ratio. We also presented a
new algorithm to perform compressed pattern match-
ing over the texts generated by the compression algo-
rithm. Our scheme permits direct search on the com-
pressed text by using any conventional algorithm for
exact search and also permits approximate search by
converting the search into a multi-pattern exact search.
The method does not decode the text at search time.
Our searching scheme is close in performance to the
fastest algorithm to search on compressed text known
in the literature [8].
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