Smallest Suffixient Sets
as a Repetitiveness Measure

1,2[0000—0002—2286—741X

Gonzalo Navarro!2l I

Giuseppe Romana?[0000-0002-3489-0684]
Cristian Urbina

, and
1,2[0000—0001—8979—9055]

! Department of Computer Science, University of Chile, Chile
2 Center for Biotechnology and Bioengineering (CeBiB), Chile
{gnavarro,crurbina}@dcc.uchile.cl
3 Department of Mathematics and Computer Science, University of Palermo, Italy
giuseppe.romanaOl@unipa.it

Abstract. A suffixient set is a novel combinatorial object that captures
the essential information of repetitive strings in a way that, provided with
a random access mechanism, supports various forms of pattern matching.
In this paper, we study the size x of the smallest suffixient set as a
repetitiveness measure: we place it between known measures and study
its sensitivity to various string operations.

Keywords: Repetitive sequences- Burrows-Wheeler Transform-
Text compressibility

1 Introduction

The study of repetitive string collections has recently attracted considerable
interest from the stringology community, triggered by practical challenges such
as representing huge collections of similar strings in a way that they can be
searched and mined directly in highly compressed form [2526]. An example is
the Furopean ’1+ Million Genomes’ Initiativfﬂ which aims at sequencing over a
million human genomes: while this data requires around 750TB of storage in raw
form (using 2 bits per base), the high similarity between human genomes would
allow storing it in querieable form using two orders of magnitude less space.

An important aspect of this research is to understand how to measure repet-
itiveness, especially when those measures reflect the size of compressed repre-
sentations that offer different access and search functionalities on the collection.
Various repetitiveness measures have been proposed, from abstract lower bounds
to those related to specific text compressors and indices; a relatively up-to-date
survey is maintained [27]. Understanding how those measures relate to each other
sheds light on what search functionality is obtained at what space cost.

A relevant measure proposed recently is the size y of the smallest suffizient
set of the text collection [6], whose precise definition will be given later. Within

4 https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes

2 G. Navarro, G. Romana, and C. Urbina

O(x) size, plus a random-access mechanism on the string, it is possible to support
some text search functionalities, such as finding one occurrence of a pattern, or
finding its maximal exact matches (MEMs), which is of central use on various
bioinformatic applications [4].

While there has been some work already on how to build minimal suffixient
sets and how to index and search a string within their size, less is known about
that size, x, as a measure of repetitiveness. It is only known [6] that v = O(x)
and x = O(F) on every string family, where v is the size of the smallest string
attractor of the collection (a measure that lower bounds most repetitiveness
measures) [I8] and 7 is the number of equal-letter runs of the Burrows-Wheeler
Transform (BWT) [3] of the reversed string.

In this paper we better characterize x as a repetitiveness measure. First, we
study how it behaves when the string undergoes updates, showing in particular
that it grows by O(1) when appending or prepending symbols, but that it can
grow additively by 2(logn) upon arbitrary edit operations or rotations, and by
£2(y/n) when reversing the string. Second, we show that y = O(r) on every string
family, where r is the number of equal-letter runs of the BWT of the string. We
also show that there are string families where x = o(v), where v is the size of the
smallest lexicographic parse [28] (an alternative to the size of the Lempel-Ziv
parse [20], which behaves similarly). In particular, this holds on the Fibonacci
strings, where we fully characterize the only 2 smallest suffixient sets of size 4,
and further prove that y < o + 2 on all substrings of episturmian words over
an alphabet of size o. Since v = O(r) on all string families, this settles x as a
strictly smaller measure than r, which is a more natural characterization than
in terms of the reverse string. We also show that x is incomparable with most
“copy-paste” based measures [25], as there are families where it is strictly smaller
and others where it is strictly larger than any of those measures.

This result relates to the important question of whether a measure p is reach-
able (i.e., one can represent the string within O(u) space), accessible (i.e., one can
access any string position from an O(u)-size representation, in sublinear time),
or searchable (i.e., one can search for patterns in sublinear time within space
O(p)). Measure r is, curiously, the only one to date being reachable and search-
able, but not known to be accessible. Now y emerges as a measure smaller than
r, which can search if provided with a mechanism to efficiently access substrings
(r does not need access to support searches). Unlike r, y is yet not known to be
reachable (as its relation to the smallest known reachable measure, the size b of
the smallest bidirectional macro scheme [31]], remains unknown). As said, it is
known that v = O(x), but it is unknown whether ~ is reachable or not.

2 Preliminaries

An ordered alphabet ¥ = {a,...,a,} is a finite set of symbols equipped with a
total order < such that a; < as < -+ < a,. When o = 2, we assume Y = {a, b}
with a < b. The special symbol $, if it appears, is always assumed to be the
smallest of the alphabet.

Smallest Suffixient Sets as a Repetitiveness Measure 3

&)@ &—@ 0

Fig. 1. Relations between relevant repetitiveness measures and how our results place
x among them. An arrow pu1 — po means that 1 = O(u2) for all strings and, save
for ¢ = 2, Zno — Zend, and Zend —> 2., there is a string family where u1 = o(p2).
The dotted arrows mark only this last condition, so they are not transitive. Measures
in light gray nodes are known to be reachable; those in dark gray are accessible and
searchable; and r is hatched because it is searchable but not known to be accessible.

A string w[l..n] (or simply w if it is clear from the context) of length |w| = n
over the alphabet X is a sequence w[l]w[2]- - w[n] of symbols where w[i] € X
for all ¢ € [1,n]. The empty string of length 0 is denoted e. We denote by X*
the set of all strings over ¥. Additionally, we let X+ = X*\ {e} and X* =
{w € X*||w| = k}. We denote by w[i..j] the substring w[ijw[i + 1] ---w[j]. If
x=z[l..n] and y = y[1..m] are strings, we define the concatenation operation
applied on x and y, as the string obtained by juxtaposing these two strings,
that is, x -y = a[1]z[2] - - - z[n]y[1] - - - y[m] = xy. A string x is a substring of w if
w = yxz for some y, z € X*. A string x is a prefiz of w if w = xy for some y € X*.
Analogously, z is a suffiz of w if w = ya for some y € X*. We say that substrings,
prefixes, and suffixes are non-trivial if they are different from w and e. The set
of substrings of w is denoted by F,,. We also let F,,(k) = F, N Xk The reverse
of a finite string w is the string w* = w[n]-w[n—1]---w[1]. We denote by R(w)
the multiset of rotations of w[l..n], that is, R(w) = {w[i + 1..nJw[l..i]|i €
[1..n]}. The Burrows- Wheeler transform (BWT) of a string w, denoted BWT(w),
is the transformation of w obtained by collecting the last symbol of all rotations
in R(w) in lexicographic order. The BWT matriz B(w) of w is the (nxn)-matrix
where the i-th row is the i-th rotation of w in lexicographic order.

A right-infinite string w —we use boldface to emphasize its infinite length—
over Y is any infinite sequence ZT — X. The set of all infinite strings over X is
denoted Y. A substring of w is the finite string w[i..j] for any 1 < i < j. A
prefix of w is a finite substring of the form w[1..n] for some n > 0. The substring
complexity function Py (k) : ZT U {0} — Z* counts the number of distinct
substrings of length k in w, for any k € Z1t U {0}, that is, Py (k) = |Fw(k)|. For
a finite string w(l..n], the domain of P, is restricted to [0..n].

2.1 Measures of Repetitiveness

In this work, we will relate x, in asymptotic terms, with several well-established
measures of repetitiveness [25127]: 0 = maxye(o. .n)(Fuw(k)/k) (a measure of sub-
string complexity), v (the smallest string attractor), b (the size of the smallest

4 G. Navarro, G. Romana, and C. Urbina

bidirectional macro scheme), z (the size of the Lempel-Ziv parse), z,, (the same
without allowing phrases to overlap their sources), z. (the size of the greedy
LZ-End parse), zenq (the size of the minimal LZ-End parse), v (the size of the
smallest lexicographic parse), r (the number of equal-letter runs in the BWT of
the string), g (the size of the smallest context-free grammar generating only the
string), g.; (the same allowing run-length rules), and ¢ (the size of the smallest
collage system generating only the string). Except for §, v and r, these measures
are said to be copy-paste because they refer to a way of cutting the sequence into
chunks that can be copied from elsewhere in the same sequence. Indeed, § and
~ are lower-bound measures, the former known to be unreachable and the latter
not known to date to be reachable; all the others are. The smallest measures
known to be accessible (and searchable) are zenq and g,;, and r is searchable but
not known to be accessible.

The known relations between those measures are summarized in Fig.[1} where
we have added the results we obtain in this paper with respect to x.

2.2 Edit Operations and Sensitivity Functions

The so-called edit operations are insertion, substitution and deletion of a single
character on a string. We denote insy(w), subx(w), dely(w) the sets of strings
that can be obtained by applying an edit operation to w. In addition, we let
prepend,.(w) and appendy.(w) be insy(w) restricted to the insertion being
made at the beginning and the end of the string, respectively.

A repetitiveness measure p is monotone or non-decreasing to the insertion
of a single character if p(w’) — u(w) > 0 for any w and w’ € insy(w). More
generally, the additive sensitivity and multiplicative sensitivity functions of a
repetitiveness measure p to the insertion of a single character are the maxi-
mum possible values of p(w’) — p(w) and p(w’)/pu(w), respectively. We define
the concept of monotonicity and sensitivity functions for the remaining string
operations analogously.

3 Suffixient Sets and the Measure x

In this section we define the central combinatorial objects and measures we
analyse on this work. Note that some of our definitions are slightly different
from their original formulation [4/5], because we do not always assume that all
strings are $-terminated.

Definition 1 (Right-maximal Substrings and Right-extensions [4)5]).
Let w € X*. A substring x of w is right-maximal if there exist at least two
distinct symbols a,b € X such that both xa and zb are substrings of w. For any
right-maximal substring x of w, the substrings xa with a € X are called right-
extensions. We denote the set of right-extensions in w by E.(w) = {za | I : b #
a,xa € Fy,xb € Fop }.

Smallest Suffixient Sets as a Repetitiveness Measure 5

We distinguish a special class of right-extensions that are not suffixes of any
other right-extension.

Definition 2 (Super-maximal Extensions [4)5]). The set of super-maximal
extensions of w is S,(w) = {z € E.(w) | Vy € E.,y = zx = z = ¢}. Moreover,
we let sre(w) = |S-(w)].

We now define suffixient sets for strings not necessarily $-terminated; we
introduce later the special terminator $.

Definition 3 (Suffixient Set [4)5]). Let w[l..n] € X*. A set S C [1..n] is
a suffixient set for w if for every right-extension x € E,(w) there exists j € S
such that z is a suffix of w[l..j].

Intuitively, a suffixient set is a collection of positions of [1..|w|] capturing
all the right-extensions appearing in w. The smallest suffixient sets, which are
suffixient sets of minimum size, have also been characterized in terms of super-
maximal right-extensions. The next definition simplifies the original one [4/5].

Definition 4 (Smallest Suffixient Set). Let w[l..n] € X*. A suffizient set
S C[1..n] is a smallest suffixient set for w if there is a bijection pos : S, — S
such that every x € S, is a suffix of w[l..pos(x)].

In its original formulation, the measure is defined over $-terminated strings.
Here, we define x(w) with the $ being implicit, not being part of w.

Definition 5 (Measure x [4)5]). Let w € X* and assume $ ¢ F,,. Then,
x(w) =|S|, where S is a smallest suffizient set for w$.

One can see from the above definitions that x is well-defined because x(w) =
sre(w$). We will use this relation to prove results on x via sre.

4 Sensitivity of x to String Operations

The sensitivity to string operations has been studied for many repetitiveness
measures [IQITOTATH2429/30]. It is desirable for a repetitiveness measure to
not change much upon small changes in the sequence. Some repetitiveness mea-
sures are resistant to edit operations. For instance, b, z and g can only increase
by a multiplicative constant after an edit operation [I], though they can increase
only by a O(1) additive factor when prepending or appending a character. On the
other hand, r can increase by a @(logn) factor when appending a character [15]
Prop. 37]. Other results have been obtained concerning more complex string
operations, like reversing a string [14], or applying a string morphism [9/T0].

In this section we study how sre and x behave in this respect. We start by
proving the following useful lemma.

Lemma 1. If E.(w;) C E.(ws), then sre(w;) < sre(ws).

6 G. Navarro, G. Romana, and C. Urbina

Proof. Let x,y € S.(w1) with x # y. Because x € FE,(ws), there exists z €
Sr(w2) with z a suffix of z. Because y is not a suffix of x and vice versa, y
cannot be a suffix of z. Therefore, the map z +— 2 with z € S.(w1), z € S, (w2),
and z = 2’z for some 2’ € X* is injective and then sre(w;) < sre(ws). O

We now prove that sre(w) grows only by O(1) when prepending or appending
characters.

Lemma 2. Let w € X*, and ¢ € X. It holds sre(w) < sre(wc) < sre(w) + 2.

Proof. The lower bound follows from Lemmal[I] For the upper bound, we analyse
the new right-extensions that may arise due to appending ¢ to w. For any fixed
suffix xzc of we:

1. if za does not appear in w for any a # ¢, then zc induces no new right-
extensions in wc;

2. if for some a # b, za and xb were both substrings of w, and ¢ # a and ¢ # b,
then xc is a new right-extension of wc;

3. if x is always followed by a # ¢ in w (hence, xa is not a right-extension of
w), then both xa and zc are new right-extensions of we.

Cases 1 and 2 induce at most one new super-maximal right-extension in
total for all possible xc, namely the longest right-extension in wc that is a
suffix of we. For Case 3, consider a fixed a € Y. For all the increasing-
length suffixes zic, xac, . . ., xyc of we that became right-extensions together with
ria,Tsa,...,xia, one can see that the latter form a chain of suffixes of x;a.
Hence, we only have one possible new super-maximal right-extension ending with
a, namely z;a. Observe that the chain of suffixes x1a,z2a,...,z;a is unique: if
the suffix z is always followed by a, any suffix y of z is either right-maximal in w
(and y falls within Case 2), or it is always followed by an a (because x is always
followed by an a), i.e. y = x; for some i € [1..¢]. O

Lemma 3. Let w € X* and ¢ € X. It holds sre(w) < sre(cw) < sre(w) + 2.

Proof. The lower bound follows from Lemma [I} For the upper bound, let cxa
be the smallest prefix of cw that is not a right-extension of w, but is a right-
extension of cw (if it exists). This means that cza does not appear in w (other-
wise, it would be a right-extension of w), so no prefix of cw of length |cza| or
more is right-maximal. Hence, all prefixes of cw shorter than cxa were already
right-extensions, and all prefixes longer than cra cannot be right-extensions.
Therefore, cra together with some cxb appearing in w are the only possible new
right-extensions in cw with respect to w. O

By letting ¢ = $ ¢ F,, in Lemma [2| we relate x to sre (note that x is
always at least sre+ 1 because of the new super-maximal extension ending with
$). This makes clear the relation between Combinatorics on words [2I] with
suffixient sets, via the common notion of right-special factors (what we call here
right-maximal substrings).

Smallest Suffixient Sets as a Repetitiveness Measure 7

Corollary 1. Let w € X*. It holds sre(w) + 1 < x(w) < sre(w) + 2.

Note that, while the value sre(w) is non-decreasing after appending a char-
acter, this is not the case for the measure y.

Lemma 4. The measure x is not monotone to appending a character.

Proof. Let w = abaab. It holds S,(w$) = {aa,ab,ab$,aba} and S,(wa$) =
S, (abaaba$) = {ab, aba$, abaa}. Hence, x(w) = 4 and x(wa) = 3. O

Now we study how much sre(w) can vary upon edit operations in arbitrary
positions, rotations, and reversals. We will use the following famous string family.

Definition 6. A binary de Bruijn sequence of order k > 0 [Z] contains every
binary string in {a, b}* as a substring evactly once. The length of these strings
isn = 2% + (k —1). The set of binary de Bruijn sequences of order k is dB(k).

Lemma 5. It holds sre(w) = 2 = Q2(n) for any w[1..n] € dB(k).

Proof. Let w[l..n| be a binary de Bruiju string of order k. By definition, w
contains every binary string of length k£ as a substring exactly once. As all the
possible pairs of strings za and xb of length k appear in w, it follows that all the
strings in F,, (k) are right-extensions. Moreover, each za and zb of length k are
super-maximal right-extensions: otherwise, there would exist some ¢ € {a,b}
such that cra and cxb are both substrings of w, which raises a contradiction
since the k-length string cx cannot appear twice in w. Moreover, there are no
right-maximal strings of length k or greater; hence, there are no right-extensions
of length greater than k. It follows that sre(w) = |F, (k)| = 2F = 02(n). O

The following lemma uses the de Bruijn family to show that sre can grow
by 2(logn) upon arbitrary edit operations and rotations.

Lemma 6. Let w = a"ba*~2bxab®a*~! € dB(k) be the lexicographically small-
est binary de Bruijn sequence of order k [T1T2]. It holds:

. (Ins) sre(w) — sre(w’) = 2k — 2 if w' = a®*2bzrabFaF !,

. (Sub) sre(w) — sre(w’) = 2k — 3 if w' = a*ba*2bzabt ek !,
. (Del) sre(w) — sre(w’) = 2k — 4 if w' = a*ba*~2bzabF cab 1,

. (Rot) sre(w) — sre(w') = 2k — 2 if w' = ba*~2brabF a1

Bl Lo DS~

Proof. Observe that in each claim, w is obtained after performing a string
operation on the corresponding w’: in Claim 1, w € insy(w’); in Claim 2,
w € suby(w’); in Claim 3, w € dely(w'); in Claim 4, w € R(w’). We prove each
claim separately by comparing the super-maximal extensions of w’ before and
after performing the string operation on w’ that yields w, for which sre(w) = 2*
by Lemma [5]

For Claim 1, note that sre(w’) is the same as sre(a*brab¥a*~!), as prepend-
ing the character a multiple times to this string to obtain w’ never increases sre;
it only updates the super-maximal extension a* to a**! and a*~'b to a*b, and

8 G. Navarro, G. Romana, and C. Urbina

so on. For simplicity, we let w’ = a*¥bxrab®a*~!. The string w’ does not contain
substrings of length k of the form a’ba*~*~! for i € [1..k — 2], nor the substring
ba*~2b. Note that for each of these substrings y € F,,(k) with y ¢ F,(k), the
other corresponding right-extension 3’ in w sharing a length k — 1 prefix with y
is not a right-extension in w’. Moreover, note that all the suffixes of length k — 1
of these y are not suffixes of one another, nor of the length k — 1 suffixes of any
of the substrings ¢’ in w’. Hence, all k — 1 length binary strings still appear in
w’ as the suffix of some length k substring that remains a right-extension in w’,
and hence, super-maximal extensions of w’ have to be of length at least k. As
each string of length k appearing in w’ is unique, there are no super-maximal
extensions of length greater than k. Thus, sre(w’) = 2¥ — 2(k — 1) because we
are losing k — 1 pairs of super-maximal extensions of length k& with respect to w.
It follows that by inserting the b in w’ to yield w, sre increases by 2k — 2.

For Claim 2, note that exactly k substrings of length k are lost when sub-
stituting the last b of w by c: those of the form b’a*~* with 4 > 0. This means
that substrings ending in b’a*~*~! with 0 < i < k are not right-maximal in
w’, hence, 2(k — 1) super-maximal extensions are lost. Moreover, bk=2 is still
a right-maximal substring, since b*~! and b*~2c occur in w’. Observe that
only b*~2¢ is a super-maximal extension, while b*~! is a suffix of ab®*~!. Thus,
sre(w’) = 28 — 2(k — 1) + 1 and sre(w) — sre(w’) = 2k — 3.

For Claim 3, the analysis is similar to Claim 2, but in w’, b*~! remains as
a super-maximal extension. Thus, sre(w’) = 2¥ — 2(k — 1) + 2 and sre(w) —
sre(w') = 2k — 4.

For Claim 4, the analysis is similar to Claim 1, but in w’, ba*~2b appears,
while 2*~1b does not. Thus, sre(w’) = 2¥ — 2(k — 1) and sre(w) — sre(w’) =
2k — 2. O

We now show that sre can grow by 2(y/n) upon string reversals.

Lemma 7. Letk > 0. Let wy, = Hl.cfl ca’ba* T " #,aba* 1§, on the alphabet

=0

Y ={a,b,c} UU;cpo. k11 {#i, $i}- It holds sre(wy) — sre(wf) =k — 1.

Proof. Observe that by construction, any substring of wy containing #; or $;
is not right-maximal, as these symbols are unique. Hence, the right-extensions
of wy cannot cross from one side to the other side of those special delimiters.
Moreover, substrings of the form a’ba*~i=! for i € [0..k — 1] appear exactly
twice in wy and their right-extensions are super-maximal. By looking at the
structure of the string wy and carefully analyzing its right-extensions, one can
verify that the super-maximal right-extensions of wy are the following:

ba*~! and c

a’baf 1%, and a'ba* 71§, fori € [0..k — 1],
ca® and ca’~'b fori e [l..k—1],

abab~ "l foriec[1..k—1].

Ll

This sums to a total of 5k — 1 super-maximal extensions in wg. In the reversed
. k—1 i ki i ki .
string wf = [[;2, $k—i—1a’ba"~""1#,_; ja’ba""~Ic, we have instead:

Smallest Suffixient Sets as a Repetitiveness Measure 9

bak~! and $5_1,

abab~i"14; ; ; and a’ba*"i"lcfori € [0..k — 1],
ab=i=lc$; ;o fori € [1..k— 2], and a*2c$;_o,
abab~""!forie[1..k—1].

==

This sums to a total of 4k super-maximal extensions in wf. Thus, sre(wy) —
sre(wf) = (5k — 1) —4k =k — 1. O

We give an example of the words wy and w,lj of Lemma |7} and their super-
maximal right-extensions.

Ezample 1. Let w3 = cbaa#obaa$gcaba#aba$;caab#,aab$,. It can be verified
that the super-maximal right-extensions of ws are:

. baa and c;

. baa#y and baa$y; aba#; and aba$;; aab#,; and aab$s;
. ca and cb; caa and cab;

. aba and aab.

W DN

Similarly, let wé:"‘ = $sbaattobaac$;aba#abac$jaab#tgaabe. The super-

maximal right-extensions of wi are:

baa and $s;

baa#, and baac; aba#; and abac; aab#; and aabc;
ac$p; ac$y;

aba and aab.

Ll

One can see that sre(ws) = 14, sre(wf) = 12, and hence, sre(w3) —sre(wf) =

2, as stated in Lemma [7]

Formally, the additive sensitivity of a measure of repetitiveness u to a string
operation p can be defined as a function AS, , : Z" — R, where AS,, ,(n) =
MaXy e gn (MaXy ¢ p(w) ((w')) —p(w)), that is the maximum achievable difference
among all the strings. Overall, we obtain the following result on the additive
sensitivity of sre, which, by Corollary [l can be written in terms of .

Corollary 2. The following bounds on the additive sensitivity of the measure x
to string operations hold:

1. AS, ,(n) = 2(logn) for p € {ins,del, sub, R(-)};
2. AS, rev(n) = 2(v/n), where rev(w) = {w?}.

Proof. Claim 1 follows by Lemma @ where n = |w| = ©(2%) and AS, ,(n) =
2(k) = 2(logn), for all p € {ins,del, sub, R(-)}. Claim 2 follows by Lemma |7}
where n = |wy| = O(k?) and AS, rev(n) = 2(k) = 2(v/n). O

Finally, we show upper bounds on the sensitivity of x to string operations.

10 G. Navarro, G. Romana, and C. Urbina

Lemma 8. Letw € X* and w' € insx(w)Udelys(w)Usuby(w)UR(w)U{w?}.
It holds

x(w') — x(w) = O (6 max (1,1og(n/d log d))log d) and
x(w") / x(w) = O (max (1,log(n/dlog §)) log d) .

Proof. To prove our thesis, we rely on the relations 6 < x < 27 [] and
r = O(d max(1,log(n/dlog d))logd) [1T]. Moreover, since the multiplicative sen-
sitivity of the measure § to any of the string operations is O(1) [I], for any
w € X* it holds 7(w) = r(wf) = O(§max(1,log(n/dlogd))logd). The the-
sis follows by considering the worst case, that is x(w) = ©(J) and y(w') =
O(d max(1,log(n/dlogd))logd). O

5 Relating x to Other Repetitiveness Measures

Previous work [4] established that v = O(x) and x = O(F) on every string
family. In this section we obtain the more natural result that x is always O(r),
and that it can be asymptotically strictly smaller, x = o(r), on some string
families (we actually prove x = o(v)). We also show that x is incomparable with
all the copy-paste measures except b, in the sense that there are string families
where x is asymptotically strictly smaller than each other, and vice versa.

5.1 Proving x = O(r)

We first prove that y is asymptotically upper-bounded by the number 7 of runs
in the BWT of the sequence. As for the measure y, we assume that the BWT is
computed after appending the $ symbol.

Lemma 9. It always holds that x < 2r.

Proof. Let x; denotes the ith rotation of w$ in lexicographic order, for each
i€[l..|w|+ 1], and let u; be the longest common prefix between the rotations
X, Tit1, for each i € [1..|wl|]. We further define s : [1..n + 1] — [0..n] as
s(i) = jif o; = wlj+ 1..|w|]$w[l..], i.e., the number of cyclic shift to the
right required to transform z; into w$E| As the symbol $ occurs only once in w$,
the function s is bijective.

Note that each right-extension of w$ can be written as w;c, for some i €
[1..|w|] and ¢ € X. Consider now the set

S=|J {s()+ || +1,s(+1) + [u| + 1},
i€l .Jwl]]

that is the set of positions where the occurrences of the right-extensions u;c; and
u;co end in w$, where u;c; and u;co are the prefix of x; and ;41 respectively,

® The function s mimics the well-known Suffix Array [23], here omitted for simplicity
of exposition.

Smallest Suffixient Sets as a Repetitiveness Measure 11

for some c1,co € X such that ¢; < co. It follows by construction that the set S
is a suffixient set of w$.

We now show that |S| < 2r. Let us factorize each pair of consecutive rotations
in the BWT-matrix as z; = w;v;¢; and 2,41 = u;v}c;41. Observe that v;, v) # € [9
Corollary 8|, v;[1] # vj[1], and ¢; = BWT(w$)[¢] for all ¢ € [1..|w| + 1]. A well-
known property of the BWT-matrix is that if ¢; = ¢;41 = ¢ € X, then there
exists j € [1..|w|] such that z; = cu;v; and zj41 = cu,;v] [3]. As a consequence,
one has that s(j) + |uj| +1 = (s(¢) — 1) + (Jui| + 1) + 1 = s(¢) + |u;| + 1 and
s(G+1) +uj| +1=(s(i+1) = 1)+ (Jus| + 1) + 1 = s(¢ + 1) + |u;| + 1, and the
procedure can be reiterated as long as x; and x4, end with the same symbol.
It follows that the same set can be written as

S ={s(@) + |ui| +1,s(E+ 1)+ |u;| + 1| ¢ €[1l..|w|] ABWT[{] # BWT[i + 1]},

i.e., the size of S is at most twice the number of equal-letter runs in BWT(w$),
and the thesis follows. O

5.2 A Family with x = o(v) (and thus o(r))

We will now show that x = o(v) on the so-called Fibonacci words, which also
implies x = o(r) in that string family because v = O(r) [28]. Combined with
Lemma [9] this implies that x is a strictly smaller measure than 7. In contrast,
X is incomparable with v, as we show later. On our way, we obtain some rele-
vant byproducts about the structure of suffixient sets on Fibonacci, and more
generally, episturmian words.

Definition 7 ([8/16]). An infinite string w is episturmian if it has at most one
right-maximal substring of each length and its set of substrings is closed under
reversal, that is, Fo = FE. It is standard episturmian (or epistandard) if, in
addition, all the right-mazimal substrings of w are of the form w(l..i] with
i >0, i.e., they are the reverse of some prefix of w.

Lemma 10. Let w € X“ be an episturmian word with o > 2. Then,
sre(w(i..j]) <o fori,j>0.

Proof. Let w be an epistandard word. The right-extensions x1,zs,... ending
with a € X form a suffiz-chain where each z; is a suffix of z; 1. There is one of
those suffix-chains for each character a € X.

Let w be episturmian but not necessarily epistandard. There exists some epi-
standard word s with the same set of substrings, i.e., F = Fs [8]. Therefore, for
any episturmian word w, there exist exactly o suffix-chains of right-extensions.

When considering substrings of w, the super-maximal right-extension in
wli..j] ending with a € X is the longest right-extension of w ending with
a that remains a right-extension in w[i..j]. It follows that for any substring
wli..j] of any episturmian word w, sre < o. a

Combining this result with Corollary [I} we obtain the following bound.

12 G. Navarro, G. Romana, and C. Urbina

Corollary 3. For any episturmian word w € X% it holds x(w[i..j]) < o+ 2.

The next lemma precisely characterizes the suffixient sets of Fibonacci words,
a particular case of epistandard words that will be useful to relate y with v.

Definition 8. Let F; = b, F» = a, and Fy, = Fy_1Fy_o for k > 3 be the Fi-
bonacci family of strings. Their lengths, fr = |Fg|, form the Fibonacci sequence.

Lemma 11. FEvery Fibonacci word F;$ has a suffizient set of size at most 4.
For k > 6, the only smallest suffizient sets for Fi.$ are { fx+1, fr—1, fx_1—1,p},
where p € {fr—2+1,2fx_2 + 1}.

Proof. The upper bound of 4 stems directly from Corollary 3] because the infinite
Fibonacci word is binary epistandard. For k£ > 3, there exist strings Hj such
that F, = Fp_1F,_o = Hped and Fy,_oFy,_1 = Hidc, for cd = ab or c¢d = ba
depending on the parity of &k [22]. Let us call F|, = Hydc = Fj,_oF_1, that is,
F}, with the last two letters exchanged; thus Fy, = Fy,_1Fy_o = Fy_oF]_,.

Note that Fy_1 = Hj_1dc prefixes Fj. On the other hand, we can write
Fk = Fk_le-_Q = Fk_QFk_3Fk_2 = Fk_QF]:;_l = Fk_QHk_lcd‘ Therefore,
string Hy_ 1 is right-maximal in Fj. Its extensions, H;_1d and Hy_1c, are super-
maximal because there are no other occurrences of Hy_1 in Fy: (i) Hx—1 cannot
occur starting at positions fiy_o + 2 or fy_o + 3 because it occurs at fiy_o + 1,
so Hy_1 should match itself with an offset of 1 or 2, which is impossible because
it prefixes Fj_q and all Fy_; for k — 1 > 5 start with abaab; (ii) Hx_1 cannot
occur starting at positions 2 to fi_o because its prefix Fj_s should occur inside
the prefix Fj,_oFj_o of Fj, = F_oF),_| = Fy_oF,_2F]_5, and so Fj_5 should
equal a rotation of itself, which is impossible [7, Cor. 3.2]. The two positions
following Hy_1, fx—1 — 1 and fx — 1, then appear in any suffixient set.

On the other hand, Fj_o is followed by $ in Fj$, and it also prefixes Fj =
Fy_oF}_,, therefore Fj,_o is right-maximal. The first occurrence is preceded by
Fj_1, and hence by ¢, and the second by no symbol. Fj_o also occurs in Fj at
position fi_o 4 1, as seen above, preceded by Fj_s and thus by d. There are no
other occurrences of Fj_o in F}, because (i) it cannot occur starting at positions
2 to fr—2 by the same reason as point (ii) of the previous paragraph; (ii) it cannot
appear starting at positions fp_o + 2 to fr_1 — 2 because F = Fk_ng_gF,LS
and F|_s[1, fo—s — 2] = Fr_3[l, fr—g — 2] = Fr_2[l..fr—s — 2], thus such an
occurrence would also match a rotation of Fj_s, which is impossible as noted
above; (iii) it cannot appear starting at positions fx_1 —1 or fx_1 because, since
it matches at position fr_1 + 1, Fy_o would match itself with an offset of 1 or 2,
which is impossible as noted in point (i) of the previous paragraph. The right-
extensions of Fj_o are then super-maximal. The one followed by $ occurs ending
at position fi + 1. The other two are followed by a because they are followed by
Fy_2 and by F_5 and all F}, for k > 2 start with a. We can then choose either
ending position for a suffixient set, fx_o + 1 or 2fx_o + 1. a

Corollary 4. There exist string families where x = o(v).

Proof. Tt follows from Lemma [11] and the fact that v = 2(logn) on the odd
Fibonacci words [28, Thm. 28]. O

Smallest Suffixient Sets as a Repetitiveness Measure 13

5.3 Uncomparability of x with Copy-Paste Measures

Finally, we show that x is incomparable with most copy-paste measures. This
follows from x being @(n) on de Bruijn sequences and O(1) on Fibonacci strings.
Because g = O(n/logn) on de Bruijn sequences [28] and by Lemma [5] we have:

Corollary 5. There exists a string family with x = 2(glogn).

This result is particularly relevant because all the copy-paste based measures
i, with the exception of z., are O(g). Corollary [5| then implies u = o(x) on de
Bruijn sequences for all these measures .

While it has been said that z, = O(n/logn) on binary sequences as well [19],
this referred to the version that adds to each phrase the next nonmatching
character. Because z. is not an optimal parse, it is not obvious that this also
holds for the version studied later in the literature, which does not add the next
character. We then prove next that z. = o(x) holds on de Bruijn words.

Lemma 12. There exists a string family with x = 2 (zew)

(log log n)?

Proof. Tt always holds that z, = O (z@ﬂ%) [13]. In de Bruijn sequences it

holds that z = O(n/logn), so n/z = O(logn). Therefore, z. = O ({loglogn)®

z logloglogn /)’

2
and replacing z = O(n/logn) we get z, = O (n%). By Lemma ,
this yields y = £2 (ze%> = w(z,) on de Bruijn sequences. O

Corollary 6. The measure x is uncomparable to i € {2, Zno, Zes Zends Uy G, Gris C}-

Proof. From Corollary [5] and Lemma [I2] and that z, 2y, Zend, v, g and c are
always O(g), it follows that there are string families where p = o(), for any u €
{2, Znos Zes Zend, Uy 9, 9rl, ¢}. On the other hand, from Lemma and Corollary
and that ¢ = 2(logn) on Fibonacci words [28, Thm. 32| and ¢ = O(u) for any
i€ {2, Zno, Ze, Zends Gris 9} [28, Thm. 30], it follows that there are string families
where x = o(u), for any p € {2, 2no, Ze, Zends Uy G, Gris C}- O

6 Conclusions and Open Questions

We have contributed to the understanding of x as a new measure of repetitive-
ness, better finding its place among more studied ones. Figure|l|shows the (now)
known relations around x (cf. [27]).

There are still many interesting open questions about x. One of the most
important is whether Y is reachable. Proving b = O(x) would settle this question
on the affirmative, and at the same time give the first copy-paste measure that
is comparable with y. We conjecture, instead, that x is not reachable, proving
which would imply that 7 is also unreachable, a long-time open question.

14 G. Navarro, G. Romana, and C. Urbina

One consequence of Corollary [5| is that x & O(glog®(n/g)) for any k > 0. It
could be the case, though, that y = O(dlogn), because the separation of x and
0 on de Bruijn sequences is a @(logn) factor.

Regarding edit operations, it seems that sre(w’)/sre(w) is O(1) for all the
string operations we considered. Showing a multiplicative constant for insertion
would imply the existence of a constant for rotation and vice versa. It is also open
whether 7 = O(xlog x). If this were true —and provided that x has O(1) mul-
tiplicative sensitivity to string operations— it would imply that r has O(logn)
multiplicative sensitivity to these operations, making the already known lower
bounds on multiplicative sensitivity [IJT4JTI5] tight. If the conjecture were false,
then x could be considerably smaller than r in some string families.

Acknowledgements

We thank Davide Cenzato, Nicola Prezza, and Francisco Olivares for their code
to compute smallest suffixient sets https://github.com/regindex/suffixient| [5],
which was helpful to propose and discard hypotheses on the behavior of y, and
for useful discussions on suffixient sets.

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the
content of this article.

Funding

G.N. and C.U. were partially funded by Basal Funds FB0001 and AFB240001,
ANID, Chile; and FONDECYT Project 1-230755, ANID, Chile.

G.R. was partially funded by the MUR PRIN Project “PINC, Pangenome
INformatiCs: from Theory to Applications” (Grant No. 2022YRB97K), funded
by Next Generation EU PNRR M4 C2, Inv. 1.1 and by the INdAM - GNCS
Project CUP_E53C24001950001.

C.U. was partially funded by ANID-Subdireccion de Capital Hu-
mano/Doctorado Nacional/2021-21210580, ANID, Chile; and NIC Chile Doc-
toral Scholarship, NIC, Chile.

References

1. Akagi, T., Funakoshi, M., Inenaga, S.: Sensitivity of string compressors and repet-
itiveness measures. Information and Computation 291, 104999 (2023). https:
//doi.org/10.1016/j.ic.2022.104999

2. Bruijn, de, N.: A combinatorial problem. Proceedings of the Section of Sciences of
the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 49(7),
758764 (1946)

3. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

https://github.com/regindex/suffixient
https://doi.org/10.1016/j.ic.2022.104999
https://doi.org/10.1016/j.ic.2022.104999
https://doi.org/10.1016/j.ic.2022.104999
https://doi.org/10.1016/j.ic.2022.104999

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Smallest Suffixient Sets as a Repetitiveness Measure 15

Cenzato, D., Depuydt, L., Gagie, T., Kim, S.H., Manzini, G., Olivares, F., Prezza,
N.: Suffixient arrays: a new efficient suffix array compression technique. CoRR
2407.18753 (2025). https://doi.org/10.48550 /arXiv.2407.18753

Cenzato, D., Olivares, F., Prezza, N.: On computing the smallest suffixient set.
In: Proc. 31st International Symposium on String Processing and Information Re-
trieval (SPIRE 2024). Lecture Notes in Computer Science, vol. 14899, pp. 73-87.
Springer (2024). https://doi.org/10.1007,/978-3-031-72200-4 6

Depuydt, L., Gagie, T., Langmead, B., Manzini, G., Prezza, N.: Suffixient sets.
CoRR 2312.01359 (2023). https://doi.org/10.48550/arXiv.2312.01359

Droubay, X.: Palindromes in the Fibonacci word. Information Processing Letters
55(4), 217-221 (1995). https://doi.org/10.1016,/0020-0190(95)00080-V

Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions
of de Luca and Rauzy. Theoretical Computer Science 255(1), 539-553 (2001).
https://doi.org/10.1016 /S0304-3975(99)00320-5

Fici, G., Romana, G., Sciortino, M., Urbina, C.: On the impact of morphisms on
BWT-runs. In: Proc. 34th Annual Symposium on Combinatorial Pattern Matching
(CPM 2023). Leibniz International Proceedings in Informatics, vol. 259, pp. 10:1-
10:18. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik (2023). https://doi.org/
10.4230/LIPIcs.CPM.2023.10

Fici, G., Romana, G., Sciortino, M., Urbina, C.: Morphisms and BWT-run sen-
sitivity. In: Proc. 50th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2025). To appear (2025)

Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Review 24(2), 195-221 (1982). https://doi.org/10.1137/1024041

Gabric, D., Sawada, J., Williams, A., Wong, D.: A framework for constructing de
Bruijn sequences via simple successor rules. Discrete Mathematics 341(11), 2977—
2987 (2018). |https://doi.org/10.1016/j.disc.2018.07.010

Gawrychowski, P., Kosche, M., Manea, F.: On the number of factors in the LZ-
end factorization. In: Proc. 30th International Symposium on String Processing
and Information Retrieval (SPIRE 2023). Lecture Notes in Computer Science, vol.
14240, pp. 253-259. Springer (2023). https://doi.org/10.1007/978-3-031-43980-3
20)

Giuliani, S., Inenaga, S., Liptak, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel
results on the number of runs of the Burrows-Wheeler-Transform. In: Proc. 47th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2021). Lecture Notes in Computer Science, vol. 12607, pp. 249—
262. Springer (2021). https://doi.org/10.1007,/978-3-030-67731-2 18

Giuliani, S., Inenaga, S., Liptak, Z., Romana, G., Sciortino, M., Urbina, C.: Bit
catastrophes for the Burrows-Wheeler transform. Theory of Computing Systems
69(2), 19 (2025). https://doi.org/10.1007/s00224-024-10212-9

Glen, A., Justin, J.: Episturmian words: a survey. RAIRO - Theoretical Informatics
and Applications 43(3), 403-442 (2009). |https://doi.org/10.1051 /ita,/2009003
Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjec-
ture. Communications of the ACM 65(6), 91-98 (2022). https://doi.org/10.1145/
3531445

Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors.
In: Proc. 50th Annual ACM Symposium on the Theory of Computing (STOC
2018). pp. 827-840. ACM (2018). https://doi.org/10.1145/3188745.3188814
Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theo-
retical Computer Science 483, 115-133 (2013). https://doi.org/10.1016/j.tcs.2012.
02.006

https://doi.org/10.48550/arXiv.2407.18753
https://doi.org/10.48550/arXiv.2407.18753
https://doi.org/10.1007/978-3-031-72200-4_6
https://doi.org/10.1007/978-3-031-72200-4_6
https://doi.org/10.48550/arXiv.2312.01359
https://doi.org/10.48550/arXiv.2312.01359
https://doi.org/10.1016/0020-0190(95)00080-V
https://doi.org/10.1016/0020-0190(95)00080-V
https://doi.org/10.1016/S0304-3975(99)00320-5
https://doi.org/10.1016/S0304-3975(99)00320-5
https://doi.org/10.4230/LIPIcs.CPM.2023.10
https://doi.org/10.4230/LIPIcs.CPM.2023.10
https://doi.org/10.4230/LIPIcs.CPM.2023.10
https://doi.org/10.4230/LIPIcs.CPM.2023.10
https://doi.org/10.1137/1024041
https://doi.org/10.1137/1024041
https://doi.org/10.1016/j.disc.2018.07.010
https://doi.org/10.1016/j.disc.2018.07.010
https://doi.org/10.1007/978-3-031-43980-3_20
https://doi.org/10.1007/978-3-031-43980-3_20
https://doi.org/10.1007/978-3-031-43980-3_20
https://doi.org/10.1007/978-3-031-43980-3_20
https://doi.org/10.1007/978-3-030-67731-2_18
https://doi.org/10.1007/978-3-030-67731-2_18
https://doi.org/10.1007/s00224-024-10212-9
https://doi.org/10.1007/s00224-024-10212-9
https://doi.org/10.1051/ita/2009003
https://doi.org/10.1051/ita/2009003
https://doi.org/10.1145/3531445
https://doi.org/10.1145/3531445
https://doi.org/10.1145/3531445
https://doi.org/10.1145/3531445
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/j.tcs.2012.02.006

16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

G. Navarro, G. Romana, and C. Urbina

Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions
on Information Theory 22(1), 75-81 (1976). https://doi.org/10.1109/TIT.1976.
1055501

Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, Cambridge University Press, New York, NY, USA (2002).
https://doi.org/10.1017/CBO9781107326019

de Luca, A.: A combinatorial property of the Fibonacci words. Information Process-
ing Letters 12(4), 193-195 (1981). https://doi.org/10.1016/0020-0190(81)90099-5
Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935-948 (1993). https://doi.org/10.1137/
0222058

Mantaci, S., Restivo, A., Romana, G., Rosone, G., Sciortino, M.: A combinato-
rial view on string attractors. Theoretical Computer Science 850, 236-248 (2021).
https://doi.org/10.1016/j.tcs.2020.11.006

Navarro, G.: Indexing highly repetitive string collections, part I: Repetitiveness
measures. ACM Computing Surveys 54(2), article 29 (2021). https://doi.org/10.
1145/3434399

Navarro, G.: Indexing highly repetitive string collections, part II: Compressed in-
dexes. ACM Computing Surveys 54(2), article 26 (2021). https://doi.org/10.1145/
3432999

Navarro, G.: Indexing highly repetitive string collections. CoRR 2004.02781
(2022). https://doi.org /10.48550 /arXiv.2004.02781

Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
IEEE Transactions on Information Theory 67(2), 1008-1026 (2021). |https://doi.
org/10.1109/TTT.2020.3042746

Navarro, G., Olivares, F., Urbina, C.: Generalized straight-line programs. Acta
Informatica 62(1), 14 (2025). |https://doi.org/10.1007/s00236-025-00481-3
Navarro, G., Urbina, C.: Repetitiveness measures based on string morphisms.
Theoretical Computer Science 1043, 115259 (2025). https://doi.org/10.1016/j.tcs.
2025.115259

Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal
of the ACM 29(4), 928-951 (1982). https://doi.org/10.1145/322344.322346

https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1016/0020-0190(81)90099-5
https://doi.org/10.1016/0020-0190(81)90099-5
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3432999
https://doi.org/10.1145/3432999
https://doi.org/10.1145/3432999
https://doi.org/10.1145/3432999
https://doi.org/10.48550/arXiv.2004.02781
https://doi.org/10.48550/arXiv.2004.02781
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1007/s00236-025-00481-3
https://doi.org/10.1007/s00236-025-00481-3
https://doi.org/10.1016/j.tcs.2025.115259
https://doi.org/10.1016/j.tcs.2025.115259
https://doi.org/10.1016/j.tcs.2025.115259
https://doi.org/10.1016/j.tcs.2025.115259
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346

	Smallest Suffixient Sets as a Repetitiveness Measure

