
Smallest Suffixient Sets
as a Repetitiveness Measure

Gonzalo Navarro1,2, Giuseppe Romana3, and Cristian Urbina1,2

1 Department of Computer Science, University of Chile, Chile
2 Center for Biotechnology and Bioengineering (CeBiB), Chile

3 Department of Mathematics and Computer Science, University of Palermo, Italy
gnavarro@uchile.cl,giuseppe.romana01@unipa.it,crurbina@dcc.uchile.cl

Abstract. Suffixient sets are a novel combinatorial object that capture
the essential information of repetitive strings in a way that, provided with
a random-access mechanism, supports various forms of pattern matching.
In this paper we study the size χ of the smallest suffixient set as a
repetitiveness measure: we place it between known measures and study
its sensitivity to various string operations.

Keywords: Repetitive sequences · Text compressibility · Burrows-Wheeler
Transform.

1 Introduction

The study of repetitive string collections has recently attracted considerable
interest from the stringology community, triggered by practical challenges such
as representing huge collections of similar strings in a way that they can be
searched and mined directly in highly compressed form [24,25]. An example is
the European ’1+ Million Genomes’ Initiative4, which aims at sequencing over a
million human genomes: while this data requires around 750TB of storage in raw
form (using 2 bits per base), the high similarity between human genomes would
allow storing it in querieable form using two orders of magnitude less space.

An important aspect of this research is to understand how to measure repet-
itiveness, especially when those measures reflect the size of compressed repre-
sentations that offer different access and search functionalities on the collection.
Various repetitiveness measures have been proposed, from abstract lower bounds
to those related to specific text compressors and indices; a relatively up-to-date
survey is maintained [26]. Understanding how those measures relate to each other
sheds light on what search functionality is obtained at what space cost.

A relevant measure proposed recently is the size χ of the smallest suffixient
set of the text collection [6], whose precise definition will be given later. Within
O(χ) size, plus a random-access mechanism on the string, it is possible to support
some text search functionalities, such as finding one occurrence of a pattern, or

4 https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes

2 G. Navarro, G. Romana, and C. Urbina

finding its maximal exact matches (MEMs), which is of central use on various
bioinformatic applications [4].

While there has been some work already on how to build minimal suffixient
sets and how to index and search a string within their size, less is known about
that size, χ, as a measure of repetitiveness. It is only known [6] that γ = O(χ)
and χ = O(r) on every string family, where γ is the size of the smallest string
attractor of the collection (a measure that lower bounds most repetitiveness
measures) [18] and r is the number of equal-letter runs of the Burrows-Wheeler
Transform (BWT) [3] of the reversed string.

In this paper we better characterize χ as a repetitiveness measure. First, we
study how it behaves when the string undergoes updates, showing in particular
that it grows by O(1) when appending or prepending symbols, but that it can
grow by Ω(log n) upon arbitrary edit operations or rotations, and by Ω(

√
n)

when reversing the string. Second, we show that χ = O(r) on every string family,
where r is the number of equal-letter runs of the BWT of the string. We also
show that there are string families where χ = o(v), where v is the size of the
smallest lexicographic parse [27] (an alternative to the size of the Lempel-Ziv
parse [20], which behaves similarly). In particular, this holds on the Fibonacci
strings, where we fully characterize the only 2 smallest suffixient sets of size 4,
and further prove that χ ≤ σ + 2 on all substrings of episturmian words over
an alphabet of size σ. Since v = O(r) on all string families, this settles χ as a
strictly smaller measure than r, which is a more natural characterization than
in terms of the reverse string. We also show that χ is incomparable with most
“copy-paste” based measures [24], as there are families where it is strictly smaller
and others where it is strictly larger than any of those measures.

This result relates to the important question of whether a measure µ is reach-
able (i.e., one can represent the string within O(µ) space), accessible (i.e., one
can access any string position from an O(µ)-size representation, in sublinear
time), or searchable (i.e., one can search for patterns in sublinear time within
space O(µ)). Measure r is, curiously, the only one to date being searchable but
unknown to be accessible. Now χ emerges as a measure smaller than r, which can
search if provided with a mechanism to efficiently access substrings (r does not
need access to support searches). Unlike r, χ is yet unknown to be reachable (as
its relation to the smallest known reachable measure, the size b of the smallest
bidirectional macro scheme [30], remains unknown). As said, it is known that
γ = O(χ), but γ is also unknown to be reachable.

2 Preliminaries

An ordered alphabet Σ = {a1, . . . , aσ} is a finite set of symbols equipped with a
total order < such that a1 < a2 < · · · < aσ. When σ = 2, we assume Σ = {a, b}
with a < b, and define the complement as a = b and b = a. The special symbol
$, if appears, is always assumed to be the smallest on the alphabet.

A string w[1 . . n] (or simply w if it is clear from the context) of length |w| = n
over the alphabet Σ is a sequence w[1]w[2] . . . w[n] of symbols where w[i] ∈ Σ

Smallest Suffixient Sets as a Repetitiveness Measure 3

z

no
z

σn / nlog

v

γδ b gg
rlc

e
z

end
z

rχ

Fig. 1. Relations between relevant repetitiveness measures and how our results place
χ among them. An arrow µ1 → µ2 means that µ1 = O(µ2) for all strings and, save for
c → z, there is a string family where µ1 = o(µ2). The dotted arrows mark only this
last condition, so they are not transitive. Measures in light gray nodes are known to be
reachable; those in dark gray are accessible and searchable; and r is hatched because
it is searchable but unknown to be accessible.

for all i ∈ [1, n]. The empty string string of length 0 is denoted ϵ. We denote by
Σ∗ the set of all strings over Σ. Additionally, we let Σ+ = Σ∗ \ {ϵ} and Σk =
{w ∈ Σ∗ | |w| = k}. We denote by w[i . . j] the subsequence w[i]w[i+1] . . . w[j]. If
x[1 . . n] and y[1 . .m] are strings, we define the concatenation operation applied
on x and y, as the string obtained by juxtaposing these two strings, that is,
x ·y = x[1]x[2] · · ·x[n]y[1] · · · y[m] = xy. A string x is a substring of w if w = yxz
for some y, z ∈ Σ∗. A string x is a prefix of w if w = xy for some y ∈ Σ∗.
Analogously, x is a suffix of w if w = yx for some y ∈ Σ∗. We say that substrings,
prefixes, and suffixes are non-trivial if they are different from w and ϵ. The set
of substrings of w is denoted by Fw. We also let Fw(k) = Fw ∩Σk. The reverse
of a finite string w is the string wR = w[n] ·w[n−1] · · ·w[1]. We denote by R(w)
the multiset of rotations of w[1 . . n], that is, R(w) = {w[i + 1 . . n]w[1 . . i] | i ∈
[1 . . n]}. Moreover, we let Rx(w) be the multiset of rotations of w prefixed by
the string x. The Burrows-Wheeler transform (BWT) of a string w, denoted
BWT(w), is the transformation of w obtained by collecting the last symbol of
all rotations in R(w) in lexicographic order. The BWT matrix B(w) of w is the
(n×n)-matrix where the i-th row is the i-th rotation of w in lexicographic order.

A right-infinite string w —we use boldface to emphasize its infinite length—
over Σ is any infinite sequence Z+ → Σ. The set of all infinite strings over Σ is
denoted Σω. A substring of w is the finite string w[i . . j] for any 1 ≤ i ≤ j. A
prefix of w is a finite substring of the form w[1 . . n] for some n ≥ 0. The substring
complexity function Pw(k) : Z+ ∪ {0} → Z+ counts the number of distinct
substrings of length k in w, for any k ∈ Z+ ∪ {0}, that is, Pw(k) = |Fw(k)|. For
a finite string w[1 . . n], the domain of Pw is restricted to [0 . . n].

2.1 Measures of repetitiveness

In this work, we will relate χ, in asymptotic terms, with several well-established
measures of repetitiveness [24,26]: δ = maxk∈[0. .n](Fw(k)/k) (a measure of string
complexity), γ (the smallest string attractor), b (the size of the smallest bidirec-
tional macro scheme), z (the size of a Lempel-Ziv parse), zno (the same without

4 G. Navarro, G. Romana, and C. Urbina

allowing phrases to overlap their sources), ze (the size of the greedy LZ-End
parse), zend (the size of the minimal LZ-End parse), v (the size of the small-
est lexicographic parse), r (the number of equal-letter runs in the BWT of the
string), g (the size of the smallest context-free grammar generating only the
string), grl (the same allowing run-length rules), and c (the size of the smallest
collage system generating only the string). Except for δ, γ and r, these measures
are said to be copy-paste because they refer to a way of cutting the sequence
into chunks that can be copied from elsewhere in the same sequence. Indeed, δ
and γ are lower-bound measures, the former known to be unreachable and the
latter unknown to date to be reachable; all the others are. The smallest measures
known to be accessible (and searchable) are zend and grl, and r is searchable but
unknown to be reachable.

The known relations between those measures are summarized in Fig. 1, where
we have added the results we obtain in this paper with respect to χ.

2.2 Edit operations and sensitivity functions

The so-called edit operations are insertion, substitution and deletion of a single
character on a string. We denote insΣ(w), subΣ(w), delΣ(w) the sets of strings
that can be obtained by applying an edit operation to w. In addition, we let
prependΣ(w) and appendΣ(w) be insΣ(w) restricted to the insertion being
made at the beginning and the end of the string, respectively.

A repetitiveness measure µ is monotone or non-decreasing to the insertion
of a single character if µ(w′) − µ(w) ≥ 0 for any w and w′ ∈ insΣ(w). More
generally, the additive sensitivity and multiplicative sensitivity functions of a
repetitiveness measure µ to the insertion of a single character are the maxi-
mum possible values of µ(w′) − µ(w) and µ(w′)/µ(w), respectively. We define
the concept of monotonicity and sensitivity functions for the remaining string
operations analogously.

3 Suffixient Sets and the Measure χ

In this section we define the central combinatorial objects and measures we
analyse on this work. Note that some of our definitions are slightly different
from their original formulation [4,5], because we do not always assume that all
strings are $-terminated.

Definition 1 (Right-maximal substrings and right-extensions [4,5]). Let
w ∈ Σ∗. A substring x of w is right-maximal if there exist at least two dis-
tinct symbols a, b ∈ Σ such that both xa and xb are substrings of w. For any
right-maximal substring x of w, the substrings xa with a ∈ Σ are called right-
extensions. We denote the set of right-extensions in w by Er(w) = {xa | ∃b : b ̸=
a, xa ∈ Fw, xb ∈ Fw}.

We distinguish a special class of right-extensions that are not suffixes of any
other right-extension.

Smallest Suffixient Sets as a Repetitiveness Measure 5

Definition 2 (Super-maximal extensions [4,5]). The set of super-maximal
extensions of w is Sr(w) = {x ∈ Er(w) | ∀y ∈ Er, y = zx ⇒ z = ε}. Moreover,
we let sre(w) = |Sr(w)|.

We now define suffixient sets for strings not necessarily $-terminated; we
introduce later the special terminator $.

Definition 3 (Suffixient set [4,5]). Let w[1 . . n] ∈ Σ∗. A set S ⊆ [1 . . n] is
a suffixient set for w if for every right-extension x ∈ Er(w) there exists j ∈ S
such that x is a suffix of w[1 . . j].

Intuitively, a suffixient set is a collection of positions of [1 . . |w|] capturing
all the right-extensions appearing in w. The smallest suffixient sets, which are
suffixient sets of minimum size, have also been characterized in terms of super-
maximal right-extensions. The next definition simplifies the original one [4,5].

Definition 4 (Smallest suffixient set). Let w[1 . . n] ∈ Σ∗. A suffixient set
S ⊆ [1 . . n] is a smallest suffixient set for w if there is a bijection pos : Sr → S
such that every x ∈ Sr is a suffix of w[1 . . pos(x)].

In its original formulation, the measure χ is defined over $-terminated strings.
Here, we define χ(w) with the $ being implicit, not forming part of w.

Definition 5 (Measure χ [4,5]). Let w ∈ Σ∗ and assume $ ̸∈ Fw. Then,
χ(w) = |S|, where S is a smallest suffixient set for w$.

One can see from the above definitions that χ is well-defined because χ(w) =
sre(w$). We will use this relation to prove results on χ via sre.

4 Sensitivity of χ to String Operations

The sensitivity to string operations has been studied for many repetitiveness
measures [1,9,10,14,15,23,28,29]. It is desirable for a repetitiveness measure to
not change much upon small changes in the sequence. Some repetitiveness mea-
sures are resistant to edit operations. For instance, b, z and g can only increase
by a multiplicative constant after an edit operation [1], though they increase
only by O(1) when prepending or appending a character. On the other hand,
r can increase by a Θ(log n) factor when appending a character [15, Prop. 37].
Other results have been obtained concerning more complex string operations,
like reversing a string [14], or applying a string morphism [9,10].

In this section we study how sre and χ behave in this respect. We start by
proving the following useful lemma.

Lemma 1. If Er(w1) ⊆ Er(w2), then sre(w1) ≤ sre(w2).

Proof. Let x, y ∈ Sr(w1) with x ̸= y. Because x ∈ Er(w2), there exists z ∈
Sr(w2) with x a suffix of z. Because y is not a suffix of x and vice versa, y
cannot be a suffix of z. Therefore, the map x 7→ z with x ∈ Sr(w1), z ∈ Sr(w2),
and z = z′x for some z′ ∈ Σ∗ is injective and then sre(w1) ≤ sre(w2). ⊓⊔

6 G. Navarro, G. Romana, and C. Urbina

We now prove that sre(w) grows only by O(1) when prepending or appending
characters.

Lemma 2. Let w ∈ Σ∗, and c ∈ Σ. It holds sre(w) ≤ sre(wc) ≤ sre(w) + 2.

Proof. The lower bound follows from Lemma 1. For the upper bound, we analyse
the new right-extensions that may arise due to appending c to w. For any fixed
suffix xc of wc:

1. if xa does not appear in w for any a ̸= c, then xc induces no new right-
extensions in wc.

2. If for some a ̸= b, xa and xb were both substrings of w, and c ̸= a and c ̸= b,
then xc is a new right-extension of wc induced by xc.

3. If x was always followed by a ̸= c in w (hence, not a right-extension), then
both xa and xc are new right-extensions of wc induced by xc.

Cases 1 and 2 induce at most one new super-maximal right-extension in
total for all possible xc, namely the longest right-extension in wc that is a
suffix of wc. For Case 3, consider a fixed a ∈ Σ. For all the increasing-
length suffixes x1c, x2c, . . . , xtc of wc that became right-extensions together with
x1a, x2a, . . . , xta, one can see that the latter form a chain of suffixes of xta.
Hence, we only have one possible new super-maximal right-extension ending
with a, namely xta. There cannot be two of these chains for different symbols:
if the suffix x is always followed by a, there cannot be a suffix y of x always
followed by a different symbol b, otherwise, y is followed by a within xa, a con-
tradiction. ⊓⊔

Lemma 3. Let w ∈ Σ∗ and c ∈ Σ. It holds sre(w) ≤ sre(cw) ≤ sre(w) + 2.

Proof. The lower bound follows from Lemma 1. For the upper bound, let cxa
be the smallest prefix of cw that was not a right-extension of w, but is a right-
extension of cw (if it exists). This means that cxa does not appear in w (other-
wise, it would be a right-extension of w), so no prefix of cw of length |cxa| or
more is right-maximal. Hence, all prefixes of cw shorter than cxa were already
right-extensions, and all prefixes longer than cxa cannot be right-extensions.
Therefore, cxa together with some cxb appearing in w are the only possible new
right-extensions in cw with respect to w. ⊓⊔

By letting c = $ in Lemma 2, we relate χ to sre. This makes evident the re-
lation between Combinatorics on words [21] with suffixient sets, via the common
notion of right-special factors (what we call here right-maximal substrings).

Corollary 1. Let w ∈ Σ∗ and $ ̸∈ Fw. It holds sre(w)+1 ≤ χ(w) ≤ sre(w)+2.

Note that, while the value sre(w) is non-decreasing after appending a char-
acter, this is not the case for the measure χ.

Lemma 4. The measure χ is not monotone to appending a character.

Smallest Suffixient Sets as a Repetitiveness Measure 7

Proof. Consider w = abaab. It holds χ(w) = 4 and χ(wa) = 3. ⊓⊔

Now we study how much sre(w) can vary upon edit operations in arbitrary
positions, rotations, and reversals. We will use the following famous string family.

Definition 6. A binary de Bruijn sequence of order k > 0 [2] contains every
binary string in {a, b}k as a substring exactly once. The length of these strings
is n = 2k + (k − 1). The set of binary de Bruijn sequences of order k is dB(k).

Lemma 5. It holds sre(w) = 2k = Ω(n) for any w[1 . . n] ∈ dB(k).

Proof. Let w[1 . . n] be a binary de Bruijn string of order k. By definition, w
contains every binary string of length k as a substring exactly once. As all the
possible pairs of strings xa and xb of length k appear in w, it follows that all
the strings in Fw(k) are right-extensions. Moreover, each xc with c ∈ {a, b} of
length k is a super-maximal right-extension: otherwise, there would exist some
d ∈ {a, b} such that dxc and dxc are both substrings of w, which raises a
contradiction since dx cannot appear twice in w. Moreover, there are no right-
maximal strings of length k or greater, hence, there are no right-extensions of
length greater than k. It follows that sre(w) = |Fw(k)| = 2k = Ω(n). ⊓⊔

The following lemma uses the de Bruijn family to show that sre can grow
by Ω(log n) upon arbitrary edit operations and rotations.

Lemma 6. Let w = akbak−2bxabkak−1 ∈ dB(k) be the lexicographically small-
est binary de Bruijn sequence of order k [11,12]. It holds:

1. (Ins) sre(w)− sre(w′) = 2k − 2 if w′ = a2k−2bxabkak−1,
2. (Sub) sre(w)− sre(w′) = 2k − 3 if w′ = akbak−2bxabk−1cak−1,
3. (Del) sre(w)− sre(w′) = 2k − 4 if w′ = akbak−2bxabkcak−1,
4. (Rot) sre(w)− sre(w′) = 2k − 2 if w′ = bak−2bxabka2k−1.

Proof. We prove each claim separately by comparing the supermaximal exten-
sions of w′ before and after performing the string operation on w′ that yields w,
for which sre(w) = 2k by Lemma 5.

For Claim 1, note that sre(w′) is the same as sre(akbxabkak−1), as prepend-
ing the character a multiple times to this string to obtain w′ never increases sre;
it only updates the supermaximal extension ak to ak+1 and ak−1b to akb, and
so on. For simplicity, we let w′ = akbxabkak−1. The string w′ does not contain
substrings of length k of the form aibak−i−1 for i ∈ [1 . . k−2], nor the substring
bak−2b. Note that for each of these substrings y ∈ Fw(k) with y ̸∈ Fw′(k), the
other corresponding right-extension y′ in w sharing a length k − 1 prefix with
y is not a right-extension in w′. Moreover, note that all the suffixes of length
k−1 of these y are not suffixes of one another, nor of the length k−1 suffixes of
any of the substrings y′ in w′. Hence, all k− 1 length binary strings still appear
in w′ as the suffix of some length k substring that remains a right-extension in
w′, and hence, supermaximal extensions of w′ have to be of length at least k.
As each string of length k appearing in w′ is unique, there are no supermaximal

8 G. Navarro, G. Romana, and C. Urbina

extensions of length greater than k. Thus, sre(w′) = 2k − 2(k − 1) because we
are losing k− 1 pairs of supermaximal extensions of length k with respect to w.
It follows that by inserting the b in w′ to yield w, sre increases by 2(k − 1).

For Claim 2, note that exactly k substrings of length k are lost when sub-
stituting the last b of w by c: those of the form biak−i with i > 0. This means
that substrings ending in biak−i−1 with 0 < i < k are not right-maximal
in w′, hence, 2(k − 1) supermaximal extensions are lost. Moreover, bk−2c is
a new supermaximal extension, but its pair bk−1 is a suffix of abk−1. Thus,
sre(w′) = 2k − 2(k − 1) + 1.

For Claim 3, the analysis is similar to Claim 2, but in w′, bk−1 remains as a
supermaximal extension, so sre(w′) = 2k−2(k−1)+2. For Claim 4, the analysis
is similar to Claim 1, but in w′, bak−2b appears, while ak−1b does not. ⊓⊔

We now show that sre can grow by Ω(
√
n) upon string reversals.

Lemma 7. Let k > 0. Let wk =
∏k−1

i=0 caibak−i−1#iaibak−i−1$i on the alphabet
Σ = {a, b, c}∪

⋃
i∈[0. .k−1]{#i, $i}. It holds sre(wk) = 5k−1 and sre(wR

k) = 4k.

Proof. Note that, by construction, any substring of wk containing #i or $i is not
right-maximal. We list the supermaximal extensions of wk:

1. bak−1 and c
2. aibak−i−1#i and aibak−i−1$i for i ∈ [0 . . k − 1],
3. cai and cai−1b for i ∈ [1 . . k − 1],
4. aibak−i−1 for i ∈ [1 . . k − 1].

This sums to a total of 5k − 1 supermaximal extensions in wk. In the reversed
string wR

k =
∏k−1

i=0 $k−i−1aibak−i−1#k−i−1aibak−i−1c, we have instead:

1. bak−1, $k−1 and ak−2c$k−2

2. aibak−i−1#k−i−1 and aibak−i−1c for i ∈ [0 . . k − 1],
3. ak−i−1c$k−i−2 for i ∈ [1 . . k − 2],
4. aibak−i−1 for i ∈ [1 . . k − 1].

This sums to a total of 4k supermaximal extensions in wR
k , of length |wk| =

|wR
k | = k(2k + 3). Thus, sre(wk)− sre(wR

k) = k − 1 = Θ(
√
n). ⊓⊔

Finally, we show upper bounds on the sensitivity of sre to string operations.5

Lemma 8. Let w ∈ Σ∗ and w′ ∈ insΣ(w)∪delΣ(w)∪subΣ(w)∪R(w)∪{wR}.
It holds

sre(w′)− sre(w) = O (δmax (1, log(n/δ log δ)) log δ) and
sre(w′) / sre(w) = O (max (1, log(n/δ log δ)) log δ) .

Proof. It follows because the multiplicative sensitivity of δ to the string opera-
tions considered and reversals is O(1) [1], the known relations δ ≤ γ ≤ χ ≤ 2r [4],
and the upper bound r = O(δmax(1, log(n/δ log δ)) log δ) [17]. ⊓⊔
5 For the multiplicative sensitivity, we assume w and w′ are not unary strings, as

otherwise sre(w) or sre(w′) would be 0. This does not happen with χ.

Smallest Suffixient Sets as a Repetitiveness Measure 9

5 Relating χ to Other Repetitiveness Measures

Previous work [4] established that γ = O(χ) and χ = O(r) on every string
family. In this section we obtain the more natural result that χ is always O(r),
and that it can be asymptotically strictly smaller, χ = o(r), on some string
families (we actually prove χ = o(v)). We also show that χ is incomparable with
all the copy-paste measures except b, in the sense that there are string families
where χ is asymptotically strictly smaller than each other, and vice versa.

5.1 Proving χ = O(r)

We first prove that χ is asymptotically upper-bounded by the number r of runs
in the BWT of the sequence.

Lemma 9. It always holds that χ ≤ 2r.

Proof. Let xa be a super-maximal right-extension in w$. We distinguish, in the
BWT-matrix of w$, the sets Rxc of rotations starting with xc where c ∈ Σ∪{$}.
Because x is right-maximal, at least 2 of these blocks are non-empty; i) the set
Rxa; ii) some set Rxb of rotations starting with xb, where b ̸= a.

We claim that the last characters of the rotations in Rxa must be disjoint from
the last characters of rotations in Rxb, for any b ̸= a. Suppose by contradiction
that there are two rotations of w$, of the form xa . . . c and xb . . . c. Then, cxa
and cxb are circular substrings of w$. Note that cx does not contain $, otherwise,
as $ is unique and both circular substrings have the same length, cxa and cxb
would have to be the same string, yet a and b are different. This implies cxa
and cxb have to be substrings of w$. Moreover, cx is a right-maximal substring
of w$, and cxa is a one-character right-extension that contains xa as a suffix,
contradicting that xa is super-maximal.

Let a1 < · · · < at be all the characters such that xai is a super-maximal
right-extension, for t ≥ 2. Those induce (not necessarily consecutive) BWT
areas Rxai . The argument of the previous paragraph applies to any pair a = ai
and b = ai+1, and implies that a new BWT run must start between the first row
following Rxai

and the first row of Rxai+1
, for all i = 2, . . . , t. The string x then

induces t super-maximal right-extensions and t− 1 BWT runs. The worst ratio
between contributions to sre and to r is 2 to 1, which occurs when t = 2.

The contributions can be summed for other super-maximal right-extensions
ya′i if y does not prefix or is prefixed by x, because the corresponding BWT ranges
are disjoint. We now focus in the case where y is a prefix of x. Since y is right-
maximal, its range Ry strictly contains Rx. Further, Rx is completely contained
in the range of one of the extensions of y, precisely Rye where e = x[|y|+1]. The
characters a′1 < · · · < a′t′ such that ya′i is a super-maximal right-extension also
induce t′ − 1 BWT runs, starting between the row following the areas Rya′

i
and

the first row of the areas Rya′
i+1

. Importantly, those induced run start positions
are disjoint from those induced by x: the first run start position induced by x
is after Rxa1

, whereas the only run start induced by y inside Rye is at the first
row of Rxa1

or earlier. Therefore, the induced runs of x and y are disjoint too.
Adding over all super-maximal extensions, it follows that r ≥ χ/2. ⊓⊔

10 G. Navarro, G. Romana, and C. Urbina

5.2 A family with χ = o(v) (and thus o(r))

We will now show that χ = o(v) on the so-called Fibonacci words, which also
implies χ = o(r) in that string family because v = O(r) [27]. Combined with
Lemma 9, this implies that χ is a strictly smaller measure than r. Instead, χ
is incomparable with v, as we show later. In our way, we obtain some relevant
byproducts about the structure of suffixient sets on Fibonacci, and more gener-
ally, episturmian words.

Definition 7 ([8,16]). An infinite string w is episturmian if it has at most one
right-maximal substring of each length and its set of substrings is closed under
reversal, that is, Fw = FR

w . It is standard episturmian (or epistandard) if, in
addition, all the right-maximal substrings of w are of the form w[1 . . i]R with
i ≥ 0, i.e., they are the reverse of some prefix of w.

Lemma 10. Let w ∈ Σω be an episturmian word with σ ≥ 2. Then,
sre(w[i . . j]) ≤ σ for i, j ≥ 0.

Proof. Let w be an epistandard word. The right-extensions x1, x2, . . . ending
with a ∈ Σ form a suffix-chain where each xi is a suffix of xi+1. There is one of
those suffix-chains for each character a ∈ Σ.

Let w be episturmian but not epistandard. There exists some epistandard
word s with the same set of substrings, i.e., Fw = Fs [8]. Therefore, for any
episturmian word w, there exist exactly σ suffix-chains of right-extensions.

It follows that for any substring w[i . . j] of any episturmian word w, sre ≤ σ,
and the supermaximal extension for each a ∈ Σ appearing in w[i . . j] is the
longest reversed prefix of w followed by a appearing in w[i . . j], and having
another occurrence within w[i . . j] followed by another character. ⊓⊔

Combining this result with Lemma 2, we have the following bound.

Corollary 2. For any episturmian word w ∈ Σω it holds χ(w[i . . j]) ≤ σ + 2.

The next lemma precisely characterizes the suffixient sets of Fibonacci words,
a particular case of epistandard words that will be useful to relate χ with v.

Definition 8. Let F1 = b, F2 = a, and Fk = Fk−1Fk−2 for k ≥ 3 be the Fi-
bonacci family of strings. Their lengths, fk = |Fk|, form the Fibonacci sequence.

Lemma 11. Every Fibonacci word Fk$ has a suffixient set of size at most 4.
For k ≥ 6, the only smallest suffixient sets for Fk$ are {fk+1, fk−1, fk−1−1, p},
where p ∈ {fk−2 + 1, 2fk−2 + 1}.

Proof. The upper bound of 4 stems directly from Corollary 2, because the infinite
Fibonacci word is binary epistandard. For k ≥ 3, there exist strings Hk such
that Fk = Fk−1Fk−2 = Hkcd and Fk−2Fk−1 = Hkdc, for cd = ab or cd = ba
depending on the parity of k [22]. Let us call F ′

k = Hkdc = Fk−2Fk−1, that is,
Fk with the last two letters exchanged; thus Fk = Fk−1Fk−2 = Fk−2F

′
k−1.

Smallest Suffixient Sets as a Repetitiveness Measure 11

Note that Fk−1 = Hk−1dc prefixes Fk. On the other hand, we can write
Fk = Fk−1Fk−2 = Fk−2Fk−3Fk−2 = Fk−2F

′
k−1 = Fk−2Hk−1cd. Therefore,

string Hk−1 is right-maximal in Fk. Its extensions, Hk−1d and Hk−1c, are super-
maximal because there are no other occurrences of Hk−1 in Fk: (i) Hk−1 cannot
occur starting at positions fk−2+2 or fk−2+3 because it occurs at fk−2+1, so
Hk−1 should match itself with an offset of 1 or 2, which is impossible because it
prefixes Fk−1 and all Fk−1 for k−1 ≥ 5 start with abaab; (ii) Hk−1 cannot occur
starting at positions 2 to fk−2 because its prefix Fk−2 should occur inside the
prefix Fk−2Fk−2 of Fk = Fk−2F

′
k−1 = Fk−2Fk−2F

′
k−3, and so Fk−2 should equal

a rotation of it, which is impossible [7, Cor. 3.2]. The two positions following
Hk−1, fk−1 − 1 and fk − 1, then appear in any suffixient set.

On the other hand, Fk−2 is followed by $ in Fk$, and it also prefixes Fk =
Fk−2F

′
k−1, therefore Fk−2 is right-maximal. The first occurrence is preceded by

Fk−1, and hence by c, and the second by no symbol. Fk−2 also occurs in Fk at
position fk−2 + 1, as seen above, preceded by Fk−2 and thus by d. There are no
other occurrences of Fk−2 in Fk because (i) it cannot occur starting at positions
2 to fk−2 by the same reason as point (ii) of the previous paragraph; (ii) it cannot
appear starting at positions fk−2 + 2 to fk−1 − 2 because Fk = Fk−2Fk−2F

′
k−3

and F ′
k−3[1, fk−3 − 2] = Fk−3[1, fk−3 − 2] = Fk−2[1..fk−3 − 2], thus such an

occurrence would also match a rotation of Fk−2, which is impossible as noted
above; (iii) it cannot appear starting at positions fk−1−1 or fk−1 because, since
it matches at position fk−1+1, Fk−2 would match itself with an offset of 1 or 2,
which is impossible as noted in point (i) of the previous paragraph. The right-
extensions of Fk−2 are then super-maximal. The one followed by $ occurs ending
at position fk +1. The other two are followed by a because they are followed by
Fk−2 and by F ′

k−3 and all Fk for k ≥ 2 start with a. We can then choose either
ending position for a suffixient set, fk−2 + 1 or 2fk−2 + 1. ⊓⊔

Corollary 3. There exist string families where χ = o(v).

Proof. It follows from Lemma 11 and the fact that v = Ω(log n) on the odd
Fibonacci words [27, Thm. 28].

5.3 Uncomparability of χ with copy-paste measures

Finally, we show that χ is incomparable with most copy-paste measures. This
follow from χ being Θ(n) on de Bruijn sequences and O(1) on Fibonacci strings.
Because g = O(n/ log n) on de Bruijn sequences [27] and by Lemma 5, we have:

Corollary 4. There exists a string family with χ = Ω(g log n).

This result is particularly relevant because all the copy-paste based measures
µ, with the exception of ze, are O(g). Corollary 4 then implies µ = o(χ) on de
Bruijn sequences for all these measures µ.

While it has been said that ze = O(n/ log n) on binary sequences as well
[19], this referred to the version that adds to each phrase the next nonmatching
character. Because ze is not an optimal parse, it is not obvious that this also

12 G. Navarro, G. Romana, and C. Urbina

holds for the version studied later in the literature, which does not add the next
character. We then prove next that ze = o(χ) holds on de Bruijn words.

Lemma 12. There exists a string family with χ = Ω
(
ze

logn log log logn
(log logn)2

)
.

Proof. It always holds that ze = O
(
z log2(n/z)
log log(n/z)

)
[13]. In de Bruijn sequences it

holds that z = Θ(n/ log n), so n/z = Θ(log n). Therefore, ze = O
(
z (log logn)2

log log logn

)
,

and replacing z = Θ(n/ log n) we get ze = O
(
n (log logn)2

logn log log logn

)
. By Lemma 5,

this yields χ = Ω
(
ze

logn log log logn
(log logn)2

)
= ω(ze) on de Bruijn sequences. ⊓⊔

Corollary 5. The measure χ is uncomparable to µ ∈ {z, zno, ze, zend, v, g, grl, c}.

Proof. From Corollary 4 and Lemma 12, and that z, zno, zend, v, grl and c are
always O(g), it follows that there are string families where µ = o(χ), for any µ ∈
{z, zno, ze, zend, v, g, grl, c}. On the other hand, from Lemma 11 and Corollary 3,
and that c = Ω(log n) on Fibonacci words [27, Thm. 32] and c = O(µ) for any
µ ∈ {z, zno, ze, zend, grl, g} [27, Thm. 30], it follows that there are string families
where χ = o(µ), for any µ ∈ {z, zno, ze, zend, v, g, grl, c}. ⊓⊔

6 Conclusions and Open Questions

We have contributed to the understanding of χ as a new measure of repetitive-
ness, better finding its place among more studied ones. Figure 1 shows the (now)
known relations around χ (cf. [26]).

There are still many interesting open questions about χ. One of the most
important is whether χ is reachable. Proving b = O(χ) would settle this question
on the affirmative, and at the same time give the first copy-paste measure that
is comparable with χ. We conjecture, instead, that χ is not reachable, proving
which would imply that γ is also unreachable, a long-time open question.

One consequence of Corollary 4 is that χ ̸∈ O(g logk(n/g)) for any k > 0. It
could be the case, though, that χ = O(δ log n), because the separation of χ and
δ on de Bruijn sequences is a Θ(log n) factor.

Regarding edit operations, it seems that that sre(w′)/sre(w) is O(1) for
all the string operations we considered. Showing a multiplicative constant for
insertion would imply the existence of a constant for rotation and vice versa.
It is also open whether r = O(χ logχ). If this were true —and provided that χ
has O(1) multiplicative sensitivity to string operations— it would imply that r
has O(log n) multiplicative sensitivity to these operations, making the already
known lower bounds on multiplicative sensitivity [1,14,15] tight. If the conjecture
were false, then χ could be considerably smaller than r in some string families.

Smallest Suffixient Sets as a Repetitiveness Measure 13

References

1. Akagi, T., Funakoshi, M., Inenaga, S.: Sensitivity of string compressors and repet-
itiveness measures. Information and Computation 291, 104999 (2023)

2. Bruijn, de, N.: A combinatorial problem. Proceedings of the Section of Sciences of
the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 49(7),
758–764 (1946)

3. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

4. Cenzato, D., Depuydt, L., Gagie, T., Kim, S.H., Manzini, G., Olivares, F., Prezza,
N.: Suffixient arrays: a new efficient suffix array compression technique. CoRR
2407.18753 (2025)

5. Cenzato, D., Olivares, F., Prezza, N.: On computing the smallest suffixient set.
In: Proc. 31st International Symposium on String Processing and Information Re-
trieval (SPIRE 2024). Lecture Notes in Computer Science, vol. 14899, pp. 73–87.
Springer (2024)

6. Depuydt, L., Gagie, T., Langmead, B., Manzini, G., Prezza, N.: Suffixient sets.
CoRR 2312.01359 (2023)

7. Droubay, X.: Palindromes in the Fibonacci word. Information Processing Letters
55(4), 217–221 (1995)

8. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoretical Computer Science 255(1), 539–553 (2001)

9. Fici, G., Romana, G., Sciortino, M., Urbina, C.: On the impact of morphisms on
BWT-runs. In: Proc. 34th Annual Symposium on Combinatorial Pattern Matching
(CPM 2023). LIPIcs, vol. 259, pp. 10:1–10:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2023)

10. Fici, G., Romana, G., Sciortino, M., Urbina, C.: Morphisms and BWT-run sensi-
tivity. CoRR 2504.17443 (2025)

11. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Review 24(2), 195–221 (1982)

12. Gabric, D., Sawada, J., Williams, A., Wong, D.: A framework for constructing de
Bruijn sequences via simple successor rules. Discrete Mathematics 341(11), 2977–
2987 (2018)

13. Gawrychowski, P., Kosche, M., Manea, F.: On the number of factors in the LZ-
end factorization. In: Proc. 30th International Symposium on String Processing
and Information Retrieval (SPIRE 2023). Lecture Notes in Computer Science, vol.
14240, pp. 253–259. Springer (2023)

14. Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel
results on the number of runs of the Burrows-Wheeler-Transform. In: Proc. 47th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2021). Lecture Notes in Computer Science, vol. 12607, pp. 249–
262. Springer (2021)

15. Giuliani, S., Inenaga, S., Lipták, Z., Romana, G., Sciortino, M., Urbina, C.: Bit
catastrophes for the Burrows-Wheeler transform. Theory of Computing Systems
69(2), 19 (2025)

16. Glen, A., Justin, J.: Episturmian words: a survey. RAIRO - Theoretical Informatics
and Applications 43(3), 403–442 (2009)

17. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjec-
ture. Communications of the ACM 65(6), 91–98 (2022)

14 G. Navarro, G. Romana, and C. Urbina

18. Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors.
In: Proc. 50th Annual ACM Symposium on the Theory of Computing (STOC
2018). pp. 827–840. ACM (2018)

19. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theo-
retical Computer Science 483, 115–133 (2013)

20. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(1), 75–81 (1976)

21. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, Cambridge University Press, New York, NY, USA (2002)

22. de Luca, A.: A combinatorial property of the Fibonacci words. Information Pro-
cessing Letters 12(4), 193–195 (1981)

23. Mantaci, S., Restivo, A., Romana, G., Rosone, G., Sciortino, M.: A combinatorial
view on string attractors. Theoretical Computer Science 850, 236–248 (2021)

24. Navarro, G.: Indexing highly repetitive string collections, part I: Repetitiveness
measures. ACM Computing Surveys 54(2), article 29 (2021)

25. Navarro, G.: Indexing highly repetitive string collections, part II: Compressed in-
dexes. ACM Computing Surveys 54(2), article 26 (2021)

26. Navarro, G.: Indexing highly repetitive string collections. CoRR 2004.02781
(2022)

27. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
IEEE Transactions on Information Theory 67(2), 1008–1026 (2021)

28. Navarro, G., Olivares, F., Urbina, C.: Generalized straight-line programs. Acta
Informatica 62(1), 14 (2025)

29. Navarro, G., Urbina, C.: Repetitiveness measures based on string morphisms. The-
oretical Computer Science 1043, 115259 (2025)

30. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. Journal
of the ACM 29(4), 928–951 (1982)

	Smallest Suffixient Sets as a Repetitiveness Measure

