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Abstract. We introduce a new compressed representation of sparse
Boolean matrices that enjoys reference locality properties. We build on
an existing representation based on LOUDS-deployed cardinal trees, and
design one based instead on DFUDS. While this brings various compli-
cations, we show that the resulting matrix representation is considerably
faster to carry out sums and multiplications, with speedups of up to 60%.

1 Introduction

Sparse binary matrices arise in a number of applications, including the repre-
sentation of labeled graphs (e.g., in graph databases, social networks, etc.) and
Machine Learning [7]. Recent work [1, 2], aiming at solving regular path queries
on graph databases, showed that a representation based on k2-trees [4], which
exploits sparsity and clustering of the 1s in the matrix, efficiently supported a
general Boolean matrix algebra including transposition, sums and other point-
wise operations, multiplication, and transitive closure. In this paper we focus on
better representations to support such matrix algebra.

The k2-tree is a cardinal tree of arity k2 with a bounded height. Its original
representation [4] is analogous to the so-called LOUDS deployment [10], which
represents ordinal trees in levelwise node order, using 2 bits per node. The cardi-
nal LOUDS version, instead, uses k2 bits per internal node to store a signature
telling which children exist. The sparse matrices referenced above used k = 2, so
the representation uses 4 bits per internal node. While efficient for navigation,
because it relies on the most basic primitives for bitvectors, rank and select [5,
11],4 this levelwise representation suffers from poor reference locality.

A way to improve reference locality is to replace LOUDS by a variant of the
so-called DFUDS deployment of ordinal trees [3], which also uses 2 bits per node
but deploys the nodes in depth-first order. The existing cardinal DFUDS-based
representations [3] [12, Sec. 8.3.1], however, would use k2 + 2 bits per (internal
and leaf) node, 6 in our case.5 This is much more than the space used by LOUDS.

4 This adds o(1) bits per bit of the representation, which we are disregarding to stream-
line the discussion.

5 They [3] [12, Sec. 8.4] introduce representations using O(log k) bits per node, but
those are likely to be practical only for large enough k values.



The cardinal DFUDS representation consists of the ordinal DFUDS plus the
LOUDS signatures in depth-first order. The ordinal DFUDS is used to navigate
the tree, whereas the LOUDS signatures mark which children exist. A further
burden of cardinal DFUDS when used on k2-trees is that the ordinal DFUDS
sequence needs to explicitly represent all leaves, even those at the maximum
possible depth, and thus we must also include their LOUDS signatures (k2 zeros).
The LOUDS levelwise representation, instead, can ignore those empty signatures
because they would appear contiguously at the end of the sequence. This sums
to k2 + 2 bits per node, instead of LOUDS’ k2 bits per internal node.

In this paper we note and exploit the fact that the ordinal DFUDS represen-
tation of a node is a function of its LOUDS signature, so as to navigate the tree
using, essentially, the node signatures deployed in DFUDS’ depth-first order, and
getting rid of the ordinal DFUDS sequence. Further, we manage to remove the
empty signatures of the existing cardinal DFUDS representation, at the price
of extending the signatures of internal nodes by one bit. As a consequence, our
representation uses only k2 + 1 bits per internal node. Since, in this representa-
tion, subtrees are deployed compactly in the sequence, tree traversals are more
cache-friendly. We dub our representation kache-trees.

Our kache-trees use the signatures of (sequences of) nodes and transform
them on the fly to their ordinal DFUDS representations, then resorting to the
classic DFUDS navigation implemented over rmM-trees [13]. Note that this is in
the line of the theoretical proposal of Farzan and Munro [8], yet our representa-
tion is specialized to k2-trees, practical and simple to implement.

In order to evaluate the impact of the improved locality of reference, we
implemented our kache-trees and used them to solve sums and multiplications on
Boolean matrices. Our kache-trees turn out to be considerably faster — offering
speedups of up to 60% — on the denser matrices, which are the most time-
consuming to multiply. This indeed turns out to be a consequence of cache
misses, which are reduced by about a half. On sums, where both representations
traverse the trees sequentially with few cache misses, our representation performs
similarly on the denser matrices and speeeds up by up to 60% on the sparser
ones, because there are more cases of copying whole submatrices to the output,
and kache-trees deploy those submatrices contiguously.

2 LOUDS, DFUDS, and k2-trees

Rooted trees can be classified into two main categories: ordinal and cardinal.
Ordinal trees distinguish only the order among children, whereas cardinal trees
have a fixed set of possible children, each of which can be present or not. LOUDS
and DFUDS are two popular succinct representations of ordinal trees, which
use 2n + o(n) bits of space for an ordinal tree of n nodes and support various
navigation operations, like going to a node’s parent or child, in constant time.



2.1 LOUDS representation of ordinal trees

LOUDS (Level-Order Unary Degree Sequence) [10] represents an ordinal tree of
n nodes using a single bitvector B, where the nodes are deployed in level order.
This representation encodes each tree node having c children (c = 0 for leaves)
with its so-called description, 1c0. The identifier of a node is the position where
its description starts in B. Bitvector B is prepended with 10 to avoid certain
special cases. It is easy to show that the length of B is 2n+ 1.

LOUDS supports basic operations, such as navigating to the parent and
children of a node v, in a constant amount of basic rank and select primitives,
which run themselves in O(1) time if one spends o(n) further space [5, 11]. For
example, the t-th child of v is child(v, t)= select0(B, rank1(B, v − 1 + t)) + 1.

2.2 DFUDS representation of ordinal trees

DFUDS (Depth-First Unary Degree Sequence) [3] deploys the same node descrip-
tions of LOUDS, yet in depth-first order. It regards the bits as parentheses; the
description of a node with c children is ‘(c )’. The bit sequence is now prepended
with ‘( ( )’ to prevent special cases, and B is of length 2n+ 2.

An advantage of this representation is that all nodes within a subtree are
deployed contiguously in the bitvector. Together with the use of parentheses, this
enables many more operations not supported in LOUDS. The DFUDS operations
build mostly on two basic primitives apart from rank and select:

fwd search(B, i, d) = min{j > i, excess(B, j) = excess(B, i) + d} ∪ {n+ 1}
bwd search(B, i, d) = max{j < i, excess(B, j) = excess(B, i) + d} ∪ {0},

where excess(B, j) is the number of opening minus closing parentheses inB[1..j].
For example, child(v, t) is calculated as fwd search(B, succ0(B, v)−t,−1)+1,
where succ0(B, v) = select0(rank0(B, v − 1) + 1).

Those primitives are more complex to implement than rank and select. A
popular implementation uses o(n) further bits to store a so-called rmM-tree [13].
This is a perfect binary tree whose leaves cut B into blocks of b parentheses,
storing (at least) the minimum and the total excess of the block. Internal rmM-
tree nodes store the same summary information on the subsequence spanned by
its descendant leaves. It is easy to build the rmM-tree bottom-up in linear time.

To compute fwd search(B, i, d) using the rmM-tree, we begin by scanning
the block of B that contains the i-th parenthesis. Within this block, we search
for the smallest position j > i where the excess is excess(B, i)+ d. If we do not
find it, we use the rmM-tree to move upwards and locate the nearest ancestor
whose subtree contains the excess sought, based on its stored minimum and total
excess. Then, we move downward towards the child that contains the position
we are looking for, until reaching the rmM-tree leaf that contains the answer.
This process ends by scanning that leaf, where j is finally found.



1

Matrix

1

0 0

8 9

0 1

0 0

10

1 0

1 1

11

12 13

1

1

0

0

14

15

1Tree

3

7

1514

6

131211

2

5

10

4

98

LOUDS 1001 1010 1001 1100 0100 1011 1010

8

0000

9

0000

10

0000

11

0000

12

0000

13

0000

14

0000

15

0000

Fig. 1. An 8× 8 matrix (left, above), its corresponding k2-tree (right, above), and its
cardinal LOUDS representation (below); the higlighted leaves 0000 are not represented.

2.3 K2-trees and cardinal LOUDS

The k2-tree [4] is a compact representation of binary l × l matrices by recur-
sively dividing them into k2 quadrants of equal area. Non-empty quadrants are
further subdivided recursively, up to height h = ⌈logk l⌉, where the submatrices
represent individual cells (if l is not a power of k, the matrix is padded with 0s
up to side kh). The k2-tree excels in representing sparse and clustered matrices.

The k2-tree is a cardinal tree of arity k2, and is represented, as in LOUDS, by
deploying the nodes levelwise. This time, however, each node is represented with
a signature of k2 bits that indicates with 1s which children of the node exist (i.e.,
which of its submatrices are nonempty). The nodes are identified by the position
of their signature (counting number of signatures, not of bits), and the navigation
operations are even simpler than for ordinal LOUDS. For example, the formula
to descend to a(n existing) child is child(v, t) = rank1(B, k2(v − 1)) + t+ 1.

The k2-tree is a particular case of the cardinal LOUDS representation in
that, since the height is fixed to h, there is no need to store the last level of
leaves, as they are always empty. Therefore, the representation of a k2-tree uses
k2 bits per internal node, without using any bits for the last-level leaves.

Fig. 1 illustrates a matrix with eight 1s along with its corresponding k2-tree
representation for k = 2. We also show the cardinal LOUDS representation of
the tree, highlighting the final leaves that are omitted from the representation.

2.4 DFUDS representation of cardinal trees

Cardinal trees can also be represented with a DFUDS-inspired representation [3]
[12, Sec. 8.3.1]. This stores the original DFUDS for ordinal trees (using the rmM-
tree we described above) along with an additional bitvector, S, that contains the
k2-bit signatures of the nodes in depth-first order. The DFUDS sequence provides
the navigation, while the signatures indicate which children of the current node
exist. The DFUDS node v corresponds to the rank0(B, v)-th signature.

Fig. 2 illustrates this representation on our running example. Note that leaf
signatures 0000 are now spread along the sequence and are not easily discarded.
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Fig. 2. Cardinal DFUDS representation of the same k2-tree of Fig. 1, using block size
b = 8 for the rmM-tree.

3 LOUDS-Based Matrix Algebra

A sparse Boolean matrix representation [1, 2] builds on the cardinal LOUDS
described in Section 2.3. The authors implement an algebra where matrices are
input to and returned from operators in this format. We focus on two of the
most popular operations: the Boolean sum and product.

To compute the sum A + B, they sequentially traverse the representation
of both k2-trees, in levelwise order. The algorithm uses a queue of tasks of
types: copy tasks, which just copy nodes from either A or B to the output and
enqueue the tasks of copying their children, and merge tasks, which output the
bitwise-or of both signatures and enqueue the tasks of copying or merging the
corresponding children of A and B (depending on whether only A, or only B, or
both, have each child). While this one-pass procedure is very efficient, we notice
that copying a whole subtree to the output when the other operand’s subtree is
empty, is done signature by signature, as the nonempty subtree is not deployed
in contiguous form in the LOUDS format.

For the multiplication A×B, they use the standard recursive algorithm:(
A0 A1

A2 A3

)
×
(
B0 B1

B2 B3

)
=

(
A0 ×B0 +A1 ×B2 A0 ×B1 +A1 ×B3

A2 ×B0 +A3 ×B2 A2 ×B1 +A3 ×B3

)
.

Zero-bit children in k2-trees indicate empty submatrices, in which case the mul-
tiplication is avoided. The sums are implemented as explained; sums with empty
submatrices are also converted into copies. Those copies are done level by level
because, again, subtrees are not deployed contiguously in LOUDS.



4 Our Cardinal DFUDS Representation for k2-trees

We introduce a new k2-tree representation, named kache-tree, based on cardinal
DFUDS, improving the one seen in Section 2.4. An advantage of a DFUDS-
based representation, compared to the standard LOUDS-based one, is that the
signatures are concatenated in depth-first order, and thus every subtree is de-
ployed in a contiguous sequence and its traversal becomes more cache-friendly.
A disadvantage of the structure of Section 2.4 is that, in addition to the n node
signatures, it adds the 2n-bits ordinal DFUDS sequence of the same tree in order
to support navigation.

4.1 The key idea

Our new representation gets rid of those 2n bits of the ordinal DFUDS represen-
tation, together with the empty signatures of last-level leaves. It only retains the
sequence of signatures of internal nodes in depth-first order. Unlike in cardinal
LOUDS, it is not immediate how to navigate those depth-first-ordered signatures
without the help of the ordinal DFUDS sequence.

A first insight to solving this challenge is given in the following lemma.

Lemma 1. In a k2-tree, the ordinal DFUDS description of a node is a function
of its signature and of the depth of the node.

Proof. Let the signature of node v have c 1s; therefore v has c children. If the
depth of v is not that of the last level of the internal nodes, its DFUDS description
is ‘(c )’ (i.e., c opening parentheses followed by a closing one). Otherwise, v is
the parent of c last-level leaves and its DFUDS description is ‘(c ) )c’, that is, the
same as an internal node with c children followed by the c closing parentheses
of the leaves. ⊓⊔

An example of those cases can be seen in Fig. 3. The signature of node 1 is
‘1010’ and, since the node is not at the last level of internal nodes, its DFUDS
representation is ‘( ( )’. The signature of node 3 is ‘1100’ and, since it is at the
last level of internal nodes, its DFUDs representation is ‘( ( ) ) )’.

4.2 The data structure

In order to distinguish both cases, we will prepend the node signatures with an
additional bit that is 1 when the node is at the last depth of internal nodes,
and 0 otherwise. With those enhanced signatures, we can obtain the DFUDS
representation of a node on the fly, without having to spend two bits per node.
Instead, we spend one bit per internal node. In addition, we do not represent
the empty signatures of last-level leaves.

In our example above, the enhanced signature of node 1 would be ‘01010’
and that of node 3 would be ‘11100’. The cardinal LOUDS representation of this
tree uses 28 bits (7 4-bit signatures, see Fig. 1), the original cardinal DFUDS
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Fig. 3. The kache-tree representation of our running example, using blocks of b = 2
signatures for the rmM-tree leaves. Note that those leaves cover an irregular number
of DFUDS parentheses (those parentheses are not represented in the kache-tree).

representation uses 92 bits (15 4-bit signatures plus 32 from ordinal DFUDS, see
Fig. 2), and our new representation uses 40 bits (8 5-bit signatures, see Fig. 3).

As we presented in Section 2.2, operations such as fwd search on DFUDS
need to scan a subsequence of parentheses to compute its excess and minimum
excess. To speed up that computation in our sequence of signatures and remain
cache-friendly, we precompute a small universal table T [0, 215 − 1] that is in-
dependent of the sequence itself. Each entry T [x] contains the field e (excess)
and m (minimum excess) for x, where x is the number that corresponds to a
sequence of 3 signatures of 5 bits. Hence, reading 15 bits, we can compute the
excess and minimum excess of three consecutive nodes simultaneously. The to-
tal space of T is 64 KB, which allows it fit in cache. A smaller table t[0, 25 − 1]
handles individual signatures, storing the same fields e and m, a field c with the
number of 1s in the signature, and a field p with the actual parentheses sequence
represented by the signature.

Table T allows us simulate the efficient scanning of parentheses performed
by fwd search. As seen in Section 2.2, that operation is sped up by an rmM-tree
built on the DFUDS sequence. In our approach, each rmM-tree leaf covers a
fixed number b of nodes, that is, a variable number of parentheses. Apart from
that, our rmM-tree works just as the original one.

The construction of rmM-tree, assuming that b is a multiple of 3, scans
consecutive subsequences of b

3 chunks of 15 bits. From the T [·] fields of the
chunks, the excess and minimum excess of each leaf is computed. The fields of the
internal nodes are then completed as for the original rmM-tree; see Section 2.2.



4.3 Forward search

In the DFUDS format, operation fwd search(i, d) requires finding relative excess
d forwards from parenthesis position i. In our representation, this may imply
starting the search from the middle of a signature. Consequently, we redefine the
operation as fwd search(i, d, δ), meaning that the scan should start from the δth
parenthesis inside the ith signature, and that we must return the signature that
contains the corresponding parenthesis position. We then proceed as follows:

1. We read the ith signature, x, obtain its DFUDS representation from t[x].p,
and scan it from the δth parenthesis. We return the answer i directly if the
difference d is found within t[x].p; otherwise we update d by subtracting the
excess of the traversed parentheses.

2. We scan the rest of the corresponding rmM-tree leaf, from the (i + 1)th
signature onwards, by chunks of 3 signatures, skipping chunks y where d <
T [y].m and in that case updating d to d− T [y].e.

3. If d ≥ T [y].m for some chunk y, we scan y signature-wise, using t[x].m and
t[x].e, until finding the one containing the answer, and return it.

4. If we scan the whole rmM-tree leaf without finding the answer, we continue
the navigation on the rmM-tree in the standard way.

5. The rmM-tree sends us to another leaf where we resume the scanning as in
points 2 and 3. This time the answer should be found.

To compute child(i, t), the tth child of node i (with 0 ≤ t < 4), we find with
t[·].c the number of children of i, and compute j = fwd search(i,−1, c−t−1), so
we know that the parenthesis preceding the tth child of i is at the jth signature.
This implies that the signature of the tth child of i is the (j + 1)th signature.

5 Solving Matrix Sums and Multiplications

In this section, we address the algebraic operations of sum and multiplication.

5.1 Boolean sum

Given two kache-trees A and B representing matrices of the same size (so the
trees have the same maximum depth), we can compute the Boolean sum S =
A+B with a sequential scan of the signatures of both kache-trees. We start with
two read pointers a and b at the beginning of the signatures of A and B, and a
write pointer s at the beginning of the signatures of the resulting kache-tree S.
Then, we proceed as follows:

1. The bitwise-or of the next 5 bits starting at a and b is written into the result
at position s. The three pointers are then advanced to the next signature.
Note that the bit that marks last-level internal nodes must be the same in
both signatures because we are summing two matrices of the same size.

2. If the obtained signature is not in the last-level of internal nodes, we check
if each child exists in A and B.



– In case the child appears in both, we continue recursively generating the
signatures of S.

– If the child occurs only in A, the next m signatures of the subtree of a
are copied to S. The last signature of that subtree is computed as j =
fwd search(a,−1, 0), so m = j − i+ 1. Finally, a and s increase by m.

– Otherwise, the child occurs only in B, so we append to S the correspond-
ing subtree of B and increase the pointers b and s as above.

Note that every time a subtree is copied to the final result, we just need
to copy a consecutive subsequence of bits. This is the main difference from the
k2-tree, where the subtree representation is broken into different portions along
the levels. Therefore, the k2-tree requires a more resource consuming level-order
traversal to copy each subtree [2, Sec. 5].

5.2 Boolean multiplication

Regarding Boolean product, M = A × B, we use the recursive divide-conquer
algorithm of Section 3. In each step, we need to solve eight multiplications of the
form Mk = Ai×Bj , where Ai and Bj are submatrices of A and B, respectively.
In the kache-tree, since both A and B support child(i, t) operations, these mul-
tiplications can be computed recursively. Once we obtain those partial results,
we have to combine them according to Section 3, by applying the sum operation.

For efficiency, we do not build the rmM-trees of the partial results Mk. As a
consequence, during the sum of partial results, we cannot use rmM-trees to com-
pute fwd search(i,−1, 0) when copying a whole subtree. Instead, we compute
it with a sequential scan of the sequence, that is, the same procedure that was
used to scan the leaves of the rmM-tree (see Section 4.3). This does not increase
the times much because we will traverse the sequence anyway in order to copy
it. We only build the final rmM-tree of the result, as described in Section 4.2, so
that the output of the operation is a fully-functional kache-tree.

6 Experimental Results

We now compare our proposal (kc-tree, with b = 1024) with the previous so-
lution, k2-tree [2], evaluating their performance at performing sums and mul-
tiplications of Boolean matrices. The implementations are in C/C++, and the
g++ compiler was used with options -std=c++11 -O3. All our experiments ran
on an Intel(R) i7-8700k @4.70GHz, which has 6 cores (12 siblings), with 64GB of
RAM. Each core has 32KB+32KB of L1- plus 300KB of L2-cache. The last-level
cache has 12MB. We ran experiments under two different scenarios.

– The first one operates over synthetic matrices. We created 16 sets of v×v ma-
trices, for v ∈ {1000, 4000, 8000, 16000}, with 1s uniformly distributed with
densities d ∈ {10−4, 10−3, 10−2, 10−1}. For the sets with v ∈ {1000, 4000, 8000}
we created 19 matrices and for those with v = 16000 we generated 9 ma-
trices. Within each set, we performed both sum and multiplication of every
pair of consecutive matrices, Mi +Mi−1 and Mi ×Mi−1.



k2-tree kc-tree (b=1024)

v d=10−1 d=10−2 d=10−3 d=10−4 d=10−1 d=10−2 d=10−3 d=10−4

S
u
m

1,000 5.10 1.07 0.14 0.02 4.99 0.97 0.12 0.01
4,000 77.94 14.76 2.16 0.28 77.67 13.84 1.69 0.19
8,000 320.86 58.57 8.33 1.19 310.63 55.08 6.49 0.74

16,000 1,284.38 237.13 33.75 4.57 1,244.32 219.63 25.72 2.85

M
u
lt

1,000 3,355.56 126.61 3.61 0.12 2,105.61 100.31 3.11 0.10
4,000 213,325.00 8,337.57 234.56 6.71 134,149.00 6,568.05 199.20 6.24
8,000 1,709,220.00 67,233.60 1,902.69 53.75 1,073,840.00 52,758.70 1,607.03 49.48

16,000 13,863,200.00 537,481.00 15,331.70 432.80 8,588,380.00 423,232.00 12,953.30 396.39

S
p
a
c
e 1,000 82.33 16.59 2.70 0.54 97.21 19.45 3.02 0.47

4,000 1,311.54 261.71 40.08 5.59 1,551.01 309.34 47.21 6.42
8,000 5,243.45 1,045.94 159.51 21.69 6,201.42 1,236.88 188.47 25.46

16,000 20,969.54 4,182.88 637.10 86.05 24,801.23 4,947.04 753.32 101.57

Table 1. Experiments on the synthetic scenario. Average times for sum and multipli-
cation are shown in msec; the average space of the source matrices is in KB.

– In the second scenario, we took four real matrices of varying size from the web
graphs at https://law.di.unimi.it/datasets.php, namely cnr-2000, eu-2005,
uk-2014-host, and enwiki-2023. To account for typical operations of in-
terest we computed, for each matrix M , M +MT (which connects the nodes
regardless of the direction), M ×M (which detects paths of length 2, i.e.,
node pairs (x, y) such that x → z → y occurs in the graph for some node
z), and M ×MT (which detects nodes pointing to the same node, i.e., node
pairs (x, y) such that x→ z ← y occurs in the graph for some node z).

Synthetic scenario. Table 1 shows the average elapsed times needed to perform
each sum or multiplication, in milliseconds. We also show the average space
required, in KB, to represent the source matrices from each set.

The k2-tree space usage is almost exactly as expected from dv2 points dis-
tributed uniformly on a v× v matrix, 2 log2(1/d) bits per 1 in the matrix.6 The
kc-tree uses 12%-18% more space than the k2-tree, which is below the 25%
we would expect from using 5-bit signatures instead of 4-bit ones. This is a con-
sequence of using a relatively large rmM-tree leaf size b = 1024,7 yielding an
extra space under 1% on the kc-tree, compared to the 6% extra space of the
rank/select data structures used by the k2-tree.

On the other hand, the kc-tree is considerably faster than the k2-tree in
almost all cases. In sums, the difference is larger as the matrices are sparser,
because as the density decreases there are more opportunities for copying whole
submatrices, which as explained the kc-tree can do more efficiently. For ex-

6 The matrix is essentially full up to level logk2(dv2) and, from there to the last level,
logk2 v2, each 1 basically induces a distinct path. Thus, each 1 induces logk2(1/d) =
1
2
logk(1/d) k

2-bit signatures, which is the dominant term in the space.
7 To tune b, we tried values b ∈ {256, 512, 1024, 2048, 4096} in the synthetic scenario:
b = 1024 offered the best space/time tradeoff in practice.



cnr-2000 enwiki-2023 eu-2005 uk-2014-host

nodes (v) 325,557 6,625,370 862,664 4,769,354
edges (#1s) 3,216,152 165,206,104 19,235,140 50,829,923

k
2
-t
r
e
e Space |M | 1.45 360.89 10.04 59.74

Time M + MT 56.94 17,082.80 402.18 2,849.48
Time M × M 6.13 48,406.20 115.20 5,811.81

Time M × MT 300.67 – 2,524.89 –
k
c
-t
r
e
e Space |M | 1.71 426.84 11.87 70.66

Time M + MT 49.89 13,416.60 356.57 2,132.31
Time M × M 4.14 48,219.10 89.58 5,077.20

Time M × MT 102.69 – 1,118.66 –

R
a
t
io

Space |M | 0.85 0.85 0.85 0.85

Time M + MT 1.14 1.27 1.13 1.34
Time M × M 1.48 1.00 1.29 1.14

Time M × MT 2.93 – 2.26 –

Table 2. Experiments on real scenario. Times for sum and multiplication are shown
in msec and sec respectively; the space of the source matrices is in MB. Ratio indicates
the value k2-tree/kc-tree. The product M ×MT did not finish for enwiki-2023 and
uk-2014-host for lack of main memory space.

ample, on the largest matrices, the kc-tree is from 3% to 60% faster than the
k2-tree (i.e., k2-tree/kc-tree = 1.03 to 1.60) as the density decreases.

Multiplications are orders of magnitude more expensive than sums, taking
hours on the largest matrices. On the denser matrices, which are the most ex-
pensive to multiply, the kc-tree is around 60% faster than the k2-tree. This
speedup decreases with the density, reaching a point where the kc-tree is just
around 8% faster. The decrease can be attributed to our need, when skipping
over a subtree that is multiplied with a zero submatrix, to scan subtrees in order
to find where they finish, which is not an issue in the k2-tree representation.

Real scenario. Table 2 shows results on the real-life matrices. Those are very
large and have very low density, from d ≈ 2 · 10−6 to 3 · 10−5. The space usage
of the k2-tree is much lower than 2 log2(1/d), which was an excellent predictor
on uniformly distributed matrices; this shows that the k2-tree representation is
very efficient in exploiting clustering of the matrix. The space of our kc-tree is
always around 18% over that of the k2-tree.

While the advantage of the kc-tree over the k2-tree seems to decrease on
non-uniform matrices, it is still significant: the kc-tree is 13%–34% faster than
the k2-tree for sums, and 0%–48% faster on multiplications of the form M×M .
Interestingly, the difference becomes much larger on multiplications of the form
M × MT , where the kc-tree is 2 to 3 times faster than the k2-tree. This
suggests that kc-tree outperforms the k2-tree more sharply when the output
is larger: M×MT tends to produce bigger outputs than M×M ; indeed, for lack
of main memory space our experiments ran only on the two smaller matrices.

The speedups are largely attributable to the reduced amount of cache misses:
perf shows that the k2-tree generated 31%–42% and 7%–225% more cache-
misses than the kc-tree on sums and multiplications, respectively. The only



exception is the sum in the smallest dataset (which fits in less than 2MB) where
the k2-tree produces 40% less cache misses than the kc-tree.

7 Conclusions and Future Work

We have introduced kache-trees, a new representation of k2-trees that, instead
of the original level-wise deployment of nodes, traverses the nodes in depth-
first order. This poses various new challenges, like efficiently distinguishing the
last-level k2-tree nodes, which we manage by slightly increasing the space —
by less than 20% in practice. Navigating the tree also requires more operations,
because we must build on parentheses sequences instead of just rank/select on
bitvectors. In reward, the depth-first order yields the important advantage of
making navigation operations more cache-friendly. We demonstrate this aspect
by experimentally comparing our new representation with standard k2-trees to
represent sparse Boolean matrices, and obtaining speedups of up to 60%, even
when our traversal operations require more operations.

Not only k2-trees have many more applications than representing Boolean
matrices, and our new kache-trees are likely to outperform them in all those, but
our technique can also be used to represent general cardinal trees (of low arity)
in cache-friendly form. In this case, leaves may need to be explicitly represented
with k zeros instead of extending the signatures of internal nodes by one bit.

There are several lines of future work. One is to complete the implementation
of the algebra. This includes, most prominently, to implement the transitive
closure operation, where we expect kache-trees to excel because the resulting
matrices tend to be considerably denser than the original one.

In the longer term, we aim to produce a fully cache-oblivious implementation
of Boolean matrices. This is currently not true because the rmM-tree is deployed
in heap format, which (even if it is much smaller than the sequence of signatures)
makes subtrees not represented compactly in memory. We plan to change its
representation to a depth-first order. This will imply that, whenever a submatrix
has O(B) points, it will be represented within a contiguous memory area of O(B)
rmM-tree nodes and another one of O(B) signatures. Therefore, summing two
matrices of n and m 1s stored in external memory with a(n unknown) block size
of B, will require O((n + m)/B) I/Os, whereas multiplying them will require
O((n + m + r)/B) I/Os, where r is the number of 1s in the product. This
matches current results on plain representations of sparse matrices [6, 9].

Finally, we aim to explore the possibility of stopping the recursive decompo-
sition into submatrices at sizes below r× r, for some moderate r, and represent
those using Huffman codes. This reported important space reductions on var-
ious k2-tree applications [4], but poses some challenges when implementing a
matrix algebra, where new matrices are generated on the fly. It may also be less
cache-friendly for not so small r, due to the Huffman tables. Encodings that
are inferior to Huffman, but are local and easily computed on the fly, like dif-
ferentially encoding the positions of the 1s, can be a better alternative. Special
procedures to operate pairs of encoded submatrices must also be developed.
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