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Abstract. Regular Path Queries (RPQs) are at the core of graph data-
base query languages like SPARQL. They consist, essentially, of regular
expressions that must match the sequence of edge labels of paths in the
database graph. A way to answer them is to traverse the graph and the
automaton of the RPQ in synchronization, reporting the graph nodes
where the automaton reaches final states. We implement this approach
on top of a compact graph representation that is particularly well suited
for this task. The result is an index using considerably less space and/or
query time than all existing approaches.

1 Introduction and Related Work

Graph databases offer a powerful way to model relationships within data, making
them particularly useful in fields like social networking, bio-informatics, linguis-
tics, and recommendation systems. This article focuses on directed labeled graph
databases, where relationships have both direction and labels, and regular path
queries (RPQs) over them, which search for paths of arbitrary length whose
sequence of labels matches a given regular expression.

Consider, for example, the toy RDF [21] database from Fig. 1, which depicts

a network of academics using relations of the form x
expr−→ y, indicating that x is

related to y by the relation expr. Then, a query like (Grace, coauthorOf+, x?)
asks for direct and transitive collaborators of Grace (x = Dan and x = Eve).

RPQs are especially useful in scenarios where either the path’s structure
or length is not known in advance, or for studying the graph’s topology, and
represent a classic challenge in the field. RPQs can be extended to traverse
edges in both directions, yielding what is known as two-way RPQs or 2RPQs.
A central feature of SPARQL, the standard query language for RDF databases,
are property path queries, which are a slight extension of 2RPQs. With the
widespread adoption of SPARQL, (2)RPQs have become a popular feature [2]:
out of 208 million SPARQL queries in the public logs from the Wikidata Query
Service [20], about 24% use at least one RPQ feature [11]. Subsequence efforts,
like like PGQL [26], Cypher [15], G-CORE [1], TigerGraph [13], and GQL [12],
also support RPQ-like features.

⋆ Supported by ANID – Millennium Science Initiative Program – Code ICN17 002,
and Fondecyt Grant 1-230755
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Subject Predicate Object

Alice mentored Bob
Alice cited Alice
Alice cited Dan
Bob refereedFor Dan
Dan cited Alice
Dan coauthorOf Grace
Dan coauthorOf Eve
Dan cited Bob
Eve cited Grace
Eve mentored Grace
Eve mentored Dan
Eve cited Bob
Eve coauthorOf Dan
Grace refereedFor Alice
Grace coauthorOf Dan

Fig. 1. The table on the left describes an RDF database of researchers and their rela-
tionships, while the graph on the right is its graphical representation.

An algorithmically sound approach to evaluate (2)RPQs [30] is to repre-
sent the regular expression of the RPQ as a finite automaton and use it to
traverse the database graph in synchronization with the automaton. Formally,
this is regarded as traversing a virtual “product graph” [22], whose nodes are
the Cartesian product of the automaton and the graph nodes. Many systems
that handle property path queries in SPARQL, instead, extend the relational
algebra to support computing transitive closures, and then translate RPQs into
(extended) relational algebra operations.

With big and growing available database graphs, indexing them within com-
pact space is of interest in order to preserve memory space, increasing the chances
of solving queries in main memory, which is much faster than the disk. While
classic systems that solve graph queries, like Virtuoso [14] and Blazegraph [28],
use 60 to 90 bytes per graph edge (bpe), recent research handles the most impor-
tant queries within much less space. The Ring [3, 4], for example, handles the core
SPARQL queries, including RPQs, within 16 bpe; a faster version called RingAB

uses 28 bpe. An even more recent development based on Boolean matrices [5, 6]
uses as little as 4.3 bpe, though it is markedly slower than the Ring.

In this paper we build on the same product-graph approach as the Ring, but
halve its space while sharply improving its speed on the most popular RPQs,
where one end is fixed. Instead of using the Ring graph representation [8], which
was developed with the aim of solving basic graph patterns (the other main
kind of graph database queries), we resort to a compact representation of la-
beled graphs that had not been implemented so far [24, Sec. 9.1.4]. Ours is
also, arguably, a more natural representation of the database graph, which may
simplify the implementation of other graph algorithms (e.g., traversals) on it.

2 Basic Concepts

2.1 Labeled Graphs and Regular Path Queries

Let V and L be finite sets of nodes and labels, respectively. We assume these
sets have been already integer-encoded as V = {1, . . . , n} and L = {1, . . . , λ}. A
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Fig. 2. Glushkov automaton for the regular expression (cited+/. ̂mentored)|cited.

directed edge-labeled graph G is a finite set containing e triples (s, p, o) ∈ V ×L×V
representing the graph edges s

p−→ o from vertex s to vertex o with label p. In
the RDF model [21], s is called a subject, p a predicate, and o an object.

A path ρ from a node x0 to node xk in G is a string x0p1x1 · · ·xk−1pkxk

such that (xi−1, pi, xi) ∈ G for 1 ≤ i ≤ k. Given a path ρ, we denote word(ρ) =
p1 · · · pk the string labeling path ρ. Two-way RPQs (2RPQs) also allow traversing
reversed edges. Hence, we define the set of inverse labels as L̂ = {p̂ : p ∈ L}, and
let L↔ = L∪L̂ be the set of predicates and their inverses. We define the inverse
graph as Ĝ = {(y, p̂, x) : (x, p, y) ∈ G}, and its completion as G↔ = G ∪ Ĝ. A
two-way regular expression (2RE) is then formed from the following rules: ε is
a 2RE; if c ∈ L↔, then c is a 2RE; if E, E1 and E2 are 2REs, then so are E∗

(Kleene star), E1/E2 (concatenation), and E1 | E2 (disjunction). If E is a 2RE,
we abbreviate E∗/E as E+ and ε|E as E?.

The language L(E) of a 2RE E over the alphabet of terminals L is the
language of the regular expression E over L↔. We say that a path ρ matches a
2RE E if word(ρ) ∈ L(E). A two-way regular path query, or 2RPQ for short, is a
query of the form (x,E, y), which has as solution all the pairs of nodes (s, o) such
that there is a path ρ = sp1 . . . pko in G↔ where word(ρ) ∈ L(E); x and/or y
can be constants (thus fixing the value of s and/or o, respectively), or variables.

2.2 Glushkov Automata

Let R be a regular expression on m symbols. The Glushkov automaton [16, 10] of
R is a particular non-deterministic finite automaton (NFA)AR = (Q,LR, ∆, q0, F )
recognizing the language of R. It satisfies, in particular, that (i) it has no ε-
transitions; (ii) it has exactly m + 1 states, that is, |Q| = m + 1; (iii) all
the transitions arriving at a state have the same label. The automaton can
be constructed in O(m2) time and uses Θ(m2) space. As an example, consider
the set of terminals formed by the predicates in Fig. 1. The regular expression
(cited+/ ̂mentored)|cited is represented by the Glushkov automaton of Fig. 2.

The properties of the Glushkov automaton allow for an efficient, bit-parallel
processing [25, 4], which uses the following data structures:
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– D, a word containing m+1 bits, which represents a non-deterministic state
of AR, i.e., a subset of Q,

– B[1 . . σ], a table containing bitvectors of lengthm+1, in which B[c] indicates
with 1s the states targeted by transitions labeled c,

– T [0 . . 2m+1− 1], a table storing in T [X], where X is a (m+1)-bit argument
representing a subset of Q, the set of states reachable from X in one step
using any symbol.

We use the symbol & to denote the bit-wise and operator. Then, it can be
shown [25] that T [D] & B[c] is the bitvector of length m+1 indicating the states
of Q that are reachable from state D using transitions labeled c. The forward
traversal of AR, which recognizes strings in L(R) prefixing a sequence, starts
with D ← 2m+1 (which activates the initial state q0), and then repeatedly (i)
recognizes the word seen so far if D & F ̸= 0 (i.e., a final state was reached), (ii)
finishes if D = 0 (i.e., there are no active states in the NFA), and (iii) updates
D ← T [D] & B[c] with the next symbol c.

It is also possible to recognize R while reading the input in reverse. For this,
we first build a table T ′[0 . . 2m+1 − 1] such that T ′[X] marks with 1s the states
that reach some state in X in one step. Then, we activate the final states with
D ← F and, repeatedly, (i) recognize the word seen so far if D & 2m+1 ̸= 0, (ii)
finish if D = 0, and (iii) update D ← T ′[D & B[c]] with the next symbol c.

The data structures use O(2m + |LR|) bits. Precomputing B and T (or T ′)
takes O(2m) time. Fig 2 shows the tables for our example.

2.3 The Product-Graph Approach and its Ring Implementation

Data structures. The Ring [4, 7] represents the completion G↔ (not G) using
the sequences Lp, Co, Ls, and Cp defined next. Let us write G↔ = {(si, pi, oi) :
1 ≤ i ≤ 2e} in such a way that the edges are lexicographically sorted, that is,
first by o, in case of ties by s, and still in case of ties by p (we call this order
osp), and define the array Lp = p1, . . . , p2e. Observe that Lp can be written
as a concatenation of segments L1

p · L2
p · · ·Ln

p , where Lo
p contains those pi such

that oi = o. We define the bit-vector Co = 10|L
1
p|10|L

2
p| · · · 10|L

n
p |. Suppose now

that G↔ is sorted in order pos, and let Ls = s1, . . . , s2e. We can similarly write

Ls = L1
s · · ·Lλ

s and define Cp = 10|L
1
s | · · · 10|Lλ

s |.

Solving RPQs. The Ring reduces double-variable queries (x,R, y) to solving the
single-variable queries (x,R, o) for every node o. It also reduces queries of the
form (s,R, x) to the case (x, R̂, s), where R̂ is the reversed regular expression.

To solve an RPQ (y,R, o) with variable y, they first build the bit-parallel
Glushkov automaton AR for the regular expression R, as shown in Section 2.2.
They then conceptually traverse the product graph AR×G↔, starting from (F, o).
This is equivalent to simultaneously traversing AR and G↔, starting from the
final states of AR and from the node o ∈ G↔. Each step consists of three parts:

1. Identify the predicates associated with the current object o (i.e., labeling
arrows that arrive at or leave from o), which are the elements of Lo

p.
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2. For each identified predicate p, feed AR with p in reverse traversal mode,
and abandon this branch if AR becomes out of active states.

3. Determine the subjects s of edges of the form (s, p, o) ∈ G↔, which are the
elements of Lp

s . Report s if the initial state of AR is active.
4. Interpret s as an object o, and create a new branch that starts from step 1.

In addition, graph nodes are marked with the active states of AR they have been
already visited with, to avoid loops in the traversal of the product graph.

The Ring represents Lp and Ls using wavelet trees [19]. This allows obtaining
the predicates and subjects in steps 1 and 3 in batch using its so-called backward
search. Further, it can efficiently process ranges of symbols in steps 1 and 3.
Finally, they can integrate steps 1 and 2 so as to directly produce the predicates
p that are associated with o and lead to active states in AR, in a time they prove
to be optimal in terms of computing the intersection of both sets.

A variant called RingAB [4] uses more space but improves the time, by start-
ing the traversal from a “split” point of R, not necessarily from its end, and
traversing G↔ in both direction from the split point. If the split point is an
uncommon predicate, much fewer nodes need be visited.

3 Our Graph Representation

Data structures. Our approach represents G (not G↔) using sequences L, BL, N ,
and BN , which we define as follows. We sort G = {(si, pi, oi) : 1 ≤ i ≤ e} with
order sop, and define the array L = p1, . . . , pe. Array L is the concatenation of
segments L1 ·L2 · · ·Ln, where Ls contains those pi such that si = s. We encode
the lengths of the subarrays Ls in the bitvector BL = 10|L1| . . . 10|Ln|. The
sequences N and BN are defined similarly: we sort G with order pso and define
the array N = o1, . . . , oe, which can also be decomposed as N = N1 · · ·Nλ, with
Np containing those oi such that pi = p. Finally, we set BN = 10|N1| . . . 10|Nλ|.

Fig. 3 depicts the sequences N,L,BL, and BN for the database obtained by
integer-encoding the example from Fig. 1. While our structures already exist [24,
Sec. 9.1.4], our presentation here has the added value of exposing their relation
with the Ring representation [4]: we store predicates with order sop in L and
objects in order pso in N ; the Ring stores predicates in order osp in Lp and
subjects in order pos in Ls. The ring doubles our space because it stores the
reverse edges (with reverse labels) explicitly.

We utilize plain bitvectors [23] to store BL and BN , and GMR-arrays [18] to
store L and N . These choices allow storing bitvectors B using (1+o(1))|B| bits,
and general arrays A with values in the range [1 . . k] using (1 + o(1))|A| log |k|
bits. Therefore, our representation of G uses (1 + o(1))(e log(λn) + n+ λ) bits,
which, unlike the space of the Ring, is asymptotically optimal.

Note that we do not explicitly store the triples of G. To recover the original
triples and other useful information about the graph, we can use RSA operations
on the sequences L, BL, N , and BN . These are defined for any array A as follows:

– access(A, i) returns the letter A[i], for any 1 ≤ i ≤ n.
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Fig. 3. On the left, the integer-encoded version of the graph from Fig. 1, along with
its translation to the original terms. On the right we show how N is derived from the
triples in order pso. The arrows highlight the limits of the segments Np and point to
the 1s in BN . The equivalent diagram for L and BL uses the triples in order sop.

– ranka(A, i) returns the number of occurrences of a in A[1 . . i], for any 1 ≤
i ≤ n. We assume ranka(A, 0) = 0.

– selecta(A, j) returns the position of the j-th occurrence of a in A, for any j ≥
0. We assume selecta(A, 0) = 0 and selectc(A, j) = n+ 1 if j > ranka(A,n).

Our data structure choices yield constant time RSA operations for BL and BN

[23], constant time select for L and N , O(log log n) time rank and access for N ,
and O(log log λ) time rank and access for L [18].

Retrieving graph edges. We now detail how to recover the triple associated to a
position in L or in N . If (s, o, p) ∈ G is the triple corresponding to position i of
L, then p = access(L, i), whereas s and o can be recovered as follows:

s = select0(BL, i)− i; q = select1(BN , p)−p; j = q+ rankp(L, i); o = N [j]. (1)

Similarly, if (s, o, p) ∈ G is the triple corresponding to position j of N , then
o = N [j], whereas p and s can be recovered as follows:

p = select0(BN , j)− j; r = select1(BN , p)− p; i = selectp(L, j − r); (2)

s = select0(BL, i)− i.

We note that formulas (1) and (2) resemble the way the Ring recovers its
triples using forward and backward direction, respectively [3].

Operations on the structure. The representation supports several useful queries
on the graph. We describe next those we use to solve 2RPQs. We call Gp =
{(s, p, o) ∈ G} the triples of G labeled p.
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– neighp(G, s) returns all neighbors of s in Gp, i.e., {o : (s, p, o) ∈ G}.
– rneighp(G, o) returns all reverse neighbors of o in Gp, i.e., {s : (s, p, o) ∈ G}.
– sourcesp(G) returns the nodes s that are the origin of an edge with label p,

i.e., {s : ∃o, (s, p, o) ∈ G}.
– targetsp(G) returns the nodes o that are the target of an edge with label p,

i.e., {o : ∃s, (s, p, o) ∈ G}.

We now describe the algorithms for neighp, rneighp, sourcesp, and targetsp.
The neighbors of s in Gp are exactly the elements o in the segment Np,s of Np

that corresponds to the edges (s, p, o) ∈ G. To identify Np,s, we first note that
the beginning of the segment Np in N is r = select1(BN , p)−p. Then, we get the
offset at which the objects associated with s begin by counting the number of
edges whose predicate is p and whose subject is some s′ < s. This is done with

q1 = rankp(L, l1), where l1 = select1(BL, s)− s.

Similarly, the start of Np,s+1 in Np is at

q2 = rankp(L, l2), where l2 = select1(BL, s+ 1)− (s+ 1).

Since, in Np, the subsegment Np,s+1 immediately follows Np,s, it follows that

neighp(G, s) = Np[q1 + 1 . . q2] = N [r + q1 + 1 . . r + q2].

This also yields that outdegreep(s), the outdegree of s in Gp, is equal to q2 − q1.
Overall, we compute any element of neighp(G, s) in time O(log log n).

To obtain the reverse neighbors of o in Gp, we recall that Np = N [r1 + 1 . . r2],
where r1 = select1(BN , p)−p and r2 = select1(BN , p+1)−(p+1). The number of
reverse neighbors of o in Gp is then indegreep(G, o) = ranko(N, r2)−ranko(N, r1).
Moreover, the position j in N of the k-th reverse neighbor of o in Gp is

j = selecto(N, l), where l = ranko(N, r1) + k.

Formula (2) then yields the corresponding subject s, which is then the kth ele-
ment of rneighp(G, v), computed in total time O(log log n).

To implement sourcesp(G), we start by computing the position i of the first oc-
currence of p in L, with i = selectp(L, 1). We then report the subject s associated
to position i of L using formula (1). To avoid adding duplicates (which arise if the
same subject is connected to two different objects by the same label), we move
forward until the end of Ls, which is at position q = select1(BL, s+1)− (s+1).
Note that the last occurrence of p in Ls is the rankp(L, q)-th one in L. We iterate
by looking for the next occurrence of p (at position l = selectp(L, rankp(L, q)+1))
until we reach the end of L. The cost is O(log log λ) per element reported.

It rests to implement targetsp(G). Note that the objects of the edges with label
p are the elements of Np. So, it is enough to collect the elements in Np =
N [r1+1 . . r2] and then remove the duplicates with, for example, integer sorting.
The total time is O(|Gp| log log n).
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4 Solving RPQs on our Representation

4.1 Single-variable 2RPQs

We start by discussing a symmetry in the queries. A pair (s, o) is a solution for
the 2RPQ (s,R, x) iff (o, s) is a solution for (y, R̂, s), where R̂ is the reverse of
R. Hence, when solving single-variable queries, we can choose the position of
the variable. Queries of the form (s,R, x)/(x,R, o) involve traversing AR for-
wards/backwards. This gives us an important degree of freedom: we can choose
the direction to traverse AR, with yields slightly different algorithms.

We first present the algorithm for a query (s,R, x) and then show how it is
modified to solve the other class of queries. The basic strategy of the algorithm
is analogous to that of the Ring [4], but the implementation of the ideas differs.
The solutions to (s,R, x) are the ends of paths ρ in G starting at s such that
word(ρ) is accepted by AR. Thus, the problem boils down to traversing the
product graph AR ×G. Along our traversal we maintain a pair (D, v), meaning
that we are visiting, at the same time, all the nodes (q, v) ∈ AR×G such that q
is represented in D. Our initial pair is (2m+1, s). From the current pair (D, v),
we find all the labels p that leave some state in D. For each such label, we
compute the new set of states D′ using the formula seen in Section 2.2. In G, we
jump from v to every node v′ ∈ neighp(G, v) or v′ ∈ rneighp(G, v), depending on
whether p is an inverse label or not. For each resulting node v′, we recursively
continue our traversal by pair (D′, v′).

There are two critical checks that we make when considering a new pair
(D, v). First, we have to determine whether v belongs to the solution. This is
done by verifying that D contains an accepting state. Second, we need to avoid
loops in the traversal of the product graph. To that end, we maintain a structure
that keeps track of the states of AR with which we have already visited every
node of G. We now enter into details.

Avoiding redundancies and loops. If we are processing (D, v) and have
previously visited another pair (D′, v), we should remove from D the states that
are also in D′, as those have already been processed and may lead to loops. We
maintain a table seen[1 . . n] containing in seen[v] the bitvector of length m + 1
that represents all the states that have been active in previously seen pairs of
the form (D′, v). This array is initialized as seen[i] = 0 before the query starts.
When arriving at (D, v), we remove fromD the states in seen[v], and add those to
seen[v], as follows (where ∼ and | are the bitwise logical not and or, respectively):

D ← D &∼seen[v] and seen[v]← seen[v] |D.

Reporting solutions. If D & F ̸= 0, the automaton AR accepts the path
towards node v, so v is a solution to the query. Note, however, that v may be
reachable from multiple accepting paths. To avoid reporting duplicated answers,
we must verify that there is no previously seen pair (D′, v), where D′ contains a
final state. This is done by verifying that seen[v] & F = 0 before updating seen.
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Computing the new pairs. We now explain in detail how we produce the
new pairs (D′, v′) from the current one, (D, v).

First, we find the set PD of all the elements p ∈ LR that label an edge in AR

leaving D. As seen in Section 2.2, a label p is in PD iff T [D] &B[p] ̸= 0. We can
then obtain PD by iterating through all the labels p ∈ LR and keeping those for
which the formula holds, which takes only O(m) time. Since we may encounter
D multiple times throughout the process, however, we define a lazy-initialized
table P [0 . . 2m+1 − 1] and store PD in P [D] as a bitvector of length m+ 1.

For each p ∈ PD, we generate the new set of active states D′ = T [D] &B[p].
The set of nodes v′ we reach by following p is, as explained, neighp(v) if p ∈ L,
and rneighp̂(v) if p ∈ L̂. Those sets are computed as described in Section 3.

Queries of the form (y,R, o). The solution to these queries is analogous,
but we traverse the edges of AR and of G backwards. Concretely, the initial
NFA state is F and the final NFA state is 2m+1, and their roles are exchanged
everywhere in the description above. We start from pair (F, o) and report v
when D contains the initial state. We compute the NFA edges backwards with
the formula D′ = T ′[D & B[p]], recall Section 2.2.

Finally, P [D] now corresponds to the ingoing predicates, which are deter-
mined as those p ∈ LR such that D & B[p] ̸= 0. In G we move to the reverse
neighbors of v with label p if p ∈ L and to its neighbors with label p̂ if p ∈ L̂.

4.2 Double-variable 2RPQs

It remains to treat the case of double-variable queries (x,R, y). The naive ap-
proach is to solve the single-variable queries (v,R, y) for all nodes v ∈ V (or,
symmetrically, the queries (x,R, v)). This is highly inefficient as many objects v
may not lead to any solution. We improve this basic method by first obtaining
a feasible set V ′, which is a (typically small) subset of V that contains all the
nodes v such that (v,R, y) leads to at least one solution to (x,R, y). Let L′ be
the set of labels of edges leaving the initial state in AR. We then define

V ′ =
⋃

p∈L′∩L
sourcesp(G) ∪

⋃
p∈L′∩L̂

targetsp̂(G).

It is easy to see that every subject that is a solution to the query (x,R, o), o ∈ V ,
is in V ′. Therefore, the solution set of (x,R, y) is equal to the collection of all
solutions of the queries (v,R, y), v ∈ V ′.

Let us now describe in detail how to get the elements of V ′. First, the labels
p connected to q0 are those that lead to at least one active state when jumping
from q0, that is, those such that T [2m+1] &B[p] ̸= 0. Then, for each such p, we
need all subjects of edges in G↔ with label p. These are given by sourcesp(G) if
p is not inverted and by targetsp̂(G) otherwise.
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5 Experimental Results

5.1 Benchmark

Benchmark database. We use the Wikidata Graph Pattern Benchmark (WGPB)
as our benchmark[29]. This graph has e = 958, 844, 164 edges, n = 348, 945, 080
nodes, and λ = 5, 419 labels (i.e., predicates). From the nodes, |S| = 106, 736, 662
act as subjects and |O| = 295, 611, 216 as objects. This amounts to a total of
10.7 GB in plain form (with 32-bit integers for each triple component, and thus
12 bytes per edge, or bpe) and 7.9 GB in packed form (i.e., using ⌈log |S|⌉ +
⌈log |P |⌉+ ⌈log |O|⌉ bits, or 8.63 bpe).

Queries. In order to get challenging, real-world RPQs, the authors of the Ring [4]
extracted all the RPQs posed to the Wikidata Query Service that threw timeout
error, that is, that needed more than 60 seconds to complete, from the Wikidata
Query Logs [20]. After filtering RPQs using Wikidata-specific features, mention-
ing constants not used in the dataset, having one label, normalizing variable
names, and removing duplicates, this process yielded 1,952 unique queries. Fur-
thermore, they only keep the 1,567 queries with less than 1 million unique results
for comparability reasons (as Virtuoso has a hard-coded limit of 220 ≈ 1 million
results). All queries are run with a timeout of 60 seconds under set semantics
(using DISTINCT in the case of SPARQL).

Systems compared. We compare with the Ring and with its larger and faster
version, RingAB. A completely different approach, which translates RPQs to
operations on sparse Boolean matrices, has recently appeared [5, 6]. We compare
with both their uncompressed baseline (BM) and their compressed version that
uses k2-trees (k2-BM). Additionally, we compare our algorithm to the following
well-known platforms for managing and querying RDF databases.

1. Blazegraph is the official SPARQL endpoint used by Wikidata and by other
large customers.

2. Apache Jena is a widely used graph database and the reference implemen-
tation of the SPARQL standard.

3. Virtuoso is a multi-model database that accommodates RDF data, which
hosts the public DBpedia endpoint, among others [14].

Machine and implementation. Our experiments were conducted on an isolated
Intel(R) Xeon(R) CPU E5-2630 running at 2.30GHz, with 15 MB of cache and
384 GB of RAM. The operating system is GNU/Linux Devuan 2.1, with kernel
4.9.0-18-amd64. We used the SDSL library [17], which implements our bitvec-
tors and GMR arrays, and the Glushkov automata implementation of the Ring
authors [9]. Our implementation is written in C++11, using the compiler g++

version 6.3.0 and the flags -std=c++11, -O3 and -msse4.2. All experiments are
single-threaded. Recall that our algorithm allows both traversal directions of the
NFA. Given that we observed slightly better performance with forward traversal,
we have used this direction in our experiments. The complete source code and
the instructions for compiling it can be found in the repository [27].
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Table 1. Index space (in bpe) and construction time (in hours) for the different sys-
tems. The integer-encoding times are included in the construction.

Ours Ring RingAB BM k2-BM Jena Virtuoso Blazegraph

Index space 7.17 16.41 27.93 16.45 4.33 95.83 60.07 90.79
Indexing time 5.5 7.5 8.3 10.7 5.5 37.4 3.0 39.4

5.2 Results

Index construction. Constructing the integer-encoded database takes 5.2 hours
using the code by Arroyuelo et al. [4]. Constructing our index then takes 0.3
additional hours. The resulting index uses 6.87 GB, or 7.17 bpe. The total space
used at query time is higher, 10.28 bpe. The excess is dominated by the seen
table (3.11 bpe); the O(2m) space related to NFA preprocessing is negligible.

Table 1 shows the construction time and resulting space usage of our index
compared to the other systems. Our index is the second most space-efficient,
only surpassed by the k2-BM. Note that the Ring uses slightly more than twice
the space of our index, which is consistent with the fact that we do not dupli-
cate the edges for dealing with the inverted predicates. BM has a similar space
requirement as the Ring, while the rest of the systems use much more.

Our index exhibits a competitive construction time of 5.5 hours, matching
k2-BM and ranking second only to Virtuoso’s leading time of 3 hours.

Querying. Table 2 details the average, median, and the number of timeouts for
the different types of queries across the competing algorithms. Fig. 4 shows the
performance distribution across all queries and specifically for double-variable
queries, with the algorithms ordered on the x-axis according to their space usage.

Our index shows average performance, 0.6 seconds per query, is outperformed
only by the 0.4 seconds of RingAB; we remind that this index uses 4 times more
space than ours. The only index using less space than ours (60% of our space),
k2-BM, is 5 times slower on average. The other systems use more space and
average time than ours. The median times of our index are also far better than
the others, except for BM, which in exchange uses twice as much space.

The advantage of our index is most evident in queries with a single variable,
where it achieves nearly the best performance in both median and average times,
while using less space. For double-variable queries, our index remains competitive
but does not stand among the fastest, and its particular its median time is close
to the highest. Despite its high median times, our index produces fewer timeouts,
which demonstrates higher reliability for complex queries.

Fig. 4 compares space and time distributions, showing on the left that our
index is a key point in the Pareto-optimal curve, formed also by the k2-BM
(which uses 60% of the space but an order of magnitude more time) and the BM
(which uses half the time but twice the space); RingAB has a good average but
not such a good distribution. On the right, for 2 variables, the Pareto-optimal
curve is formed by the Boolean-Matrix-based indices. Our index does outperform
k2-BM on the average, but the latter distributes better.
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Table 2. Performance comparison of the different algorithms, detailing the number
of timeouts (execution time over 60 seconds) and the average and median times, not
considering timeouts. The notation 1v/2v denotes single-/double-variable queries.

Ours Ring RingAB BM k2-BM Jena Virtuoso Blazegraph

Average 0.61 0.95 0.41 1.39 3.25 4.51 2.08 3.23
Median 0.01 0.07 0.03 0.005 0.35 0.21 0.13 0.13
Timeout 2 4 1 14 39 84 1 41

Average 1v 0.28 0.48 0.25 1.19 2.84 3.62 1.79 3.24
Median 1v 0.009 0.06 0.03 0.005 0.35 0.19 0.11 0.13
Timeout 1v 0 0 0 12 30 58 1 39

Average 2v 7 .41 10.91 3.66 5.45 11.92 22.83 8.17 2.98
Median 2v 3.70 1.45 0.93 0.01 0.87 1.57 3.89 0.14
Timeout 2v 2 4 1 2 9 26 0 6

Fig. 4. Time taken by the different algorithms across all queries and for those with
two variables (2v). The figure does not include the timeouts.

6 Conclusions

We have demonstrated that a compact representation designed for labeled graphs
outperforms in space, and competes in time, with the Ring index [4] at solving
Regular Path Queries. The main advantages of our representation are (1) it
helps navigating edges bidirectionally without duplicating data, whereas the
Ring navigates only backwards; (2) it builds on sequence representations [18]
that are faster but with less functionality than the wavelet trees [19] used by the
Ring. Both decisions in the Ring, unidirectionality and use of wavelet trees, aim
at matching intersection-time lower bounds, while our index only ensures O(m)
time (which in practice is low anyway). On one-variable queries (which are most
popular) our index provides better time distribution, losing only on the average
to a Ring variant that uses 4 times more space (RingAB). Our representation
fills an important place in the Pareto-optimal curve for one-variable queries.

Our work also uncovers subtle relations of independent interest between the
Ring structure and the labeled graph representation we build on [24, Sec. 9.1.4].
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2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of Modern Query Languages for Graph Databases. ACM Computing Surveys
50(5), 68:1–68:40 (2017)
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4. Arroyuelo, D., Gómez-Brandón, A., Hogan, A., Navarro, G., Rojas-Ledesma, J.:
Optimizing RPQs over a compact graph representation. The Very Large Databases
Journal 33, 349–374 (2024)
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20. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of Wikidata: Semantic technology usage in Wikipedia’s knowledge graph.
In: Proc. International Semantic Web Conference (ISWC). pp. 376–394 (2018)

21. Manola, F., Miller, E.: RDF Primer. W3C Recommendation (2004),
http://www.w3.org/TR/rdf-primer/

22. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM Journal on Computing 24(6), 1235–1258 (1995)

23. Munro, J.I.: Tables. In: Proc. 16th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). pp. 37–42. LNCS 1180 (1996)

24. Navarro, G.: Compact Data Structures — A practical approach. Cambridge Uni-
versity Press (2016)

25. Navarro, G., Raffinot, M.: New techniques for regular expression searching. Algo-
rithmica 41(2), 89–116 (2005)

26. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph
query language. In: Proc. 4th International Workshop on Graph Data Management:
Experiences and Systems (GRADES). p. 7 (2016)

27. Robert, J.: A compact graph structure for efficiently solving RPQs.
https://github.com/j-rparra/compactGraph (2023)

28. Thompson, B.B., Personick, M., Cutcher, M.: The Bigdata®RDF Graph
Database. In: Linked Data Management, pp. 193–237. Chapman and Hall/CRC
(2014)
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