
Adaptive Dynamic Bitvectors⋆

Gonzalo Navarro1,2,3

1 Dept. of Computer Science, University of Chile, Santiago, Chile
2 CeBiB — Center for Biotechnology and Bioengineering, Chile

3 IMFD — Millennium Institute for Foundational Research on Data, Chile

Abstract. While operations rank and select on static bitvectors can be
supported in constant time, lower bounds show that supporting updates
raises the cost per operation to Θ(logn/ log logn). This is a shame in
scenarios where updates are possible but uncommon. We develop a rep-
resentation of bitvectors that, if there are q queries per update, supports
all the operations in O(log(n/q)) amortized time. Our experimental re-
sults support the theoretical findings, displaying speedups of orders of
magnitude compared to standard dynamic implementations.

1 Introduction

Bitvectors are the basic bricks of most compact data structures [11]. Apart from
the basic query access(B, i), which retrieves the bit B[i] of the bitvector B[1 . . n],
they support two fundamental queries: rankb(B, i), which tells the number of
times the bit b ∈ {0, 1} occurs in B[1 . . i], and selectb(B, j), which gives the
position of the jth occurrence of b ∈ {0, 1} in B. It is well known since the
nineties that those operations can be supported in O(1) time with a bitvector
representation that uses n + o(n) bits of space [4, 10]. Things are considerably
different, however, if we aim to allow updates to the bitvector: just supporting
rank and bit flips requires Ω(log n/ log log n) time [7]. Indeed, one can incorpo-
rate in O(log n/ log log n) time, and still n + o(n) bits of space, the operations
write(B, i, v), which sets B[i] = v, insert(B, i, v), which inserts the bit value v at
position i in B, and delete(B, i), which removes the bit B[i] from B [12].

This almost logarithmic gap between static and dynamic bitvectors perme-
ates through most compact data structures that build on them, making dynamic
compact data structures considerably slower than their static counterparts, and
not as competitive with classic data structures. Although this price is in prin-
ciple unavoidable, one may wonder whether it must be so high in cases where
updates are sparse compared to queries, as is the case in many applications. As
an extreme example, since the static data structures can be built in linear time,
one could have O(1) amortized time if queries were Ω(n) times more frequent
than updates, by just rebuilding the static structure upon each update. The idea
degrades quickly, however: If queries are q times more frequent than updates,
this technique yields O(n/q) amortized times.

⋆ Funded by ANID, Chile, via Basal Funds FB0001, Millennium Science Initiative
Program – Code ICN17 002, and Fondecyt Grant 1-230755.



2 G. Navarro

In this paper we introduce a representation of dynamic bitvectors B[1 . . n]
that uses at most 4n+o(n) bits and offers O(log(n/q)) amortized time for all the
operations, if queries are q times more frequent than updates. We modify classic
dynamic bitvector representations [3, 9]. Our structure is a binary tree whose
leaves may either be “dynamic”, storing O(log2 n) bits and supporting updates,
or long “static” bitvectors handling only queries. A whole subtree is converted
into static—which we call “flattening”—when it has received sufficient queries
to amortize the cost of building the static structures (i.e., linear in the number
of bits it represents). When an update falls in a static leaf, the leaf is recursively
halved into static leaves of decreasing lengths until producing a (short) dynamic
leaf where the update is executed—a process we call “splitting”. For maintaining
balance in the tree we resort to weight-balancing [13, 1], which interacts well with
our new operations of flattening and splitting.

2 Our Work in Context

Our problem is an instance of the so-called “dynamic bitvector with indels”
problem, which as said requires Ω(log n/ log log n) time per operation even if we
support only rank and write [7]. Several solutions have matched this lower bound,
or been close to. Hon et al. [8] store a dynamic bitvector B[1 . . n] in n+o(n) bits
of space, handling queries in time O(logb n) and updates in time O(b), for any
b = Ω((log n/ log log n)2). Their main structure is a weight-balanced B-tree [5,
15]. Chan et al. [3] use balanced binary trees with leaves containing Θ(log n) bits,
obtaining O(n) bits of space and O(log n) time for all the operations. Mäkinen
and Navarro [9] still use balanced binary trees, but use leaves of Θ(log2 n) bits,
retaining their O(log n) times but reducing the space to n + o(n) bits. Finally,
Navarro and Sadakane [12] replace binary trees by structures closer to B-trees,
retaining the n + o(n) bits of space and supporting all the operations in the
optimal time O(log n/ log log n). In those terms the problem is considered closed.

In this paper we aim at obtaining O(log(n/q)) times under a regime where
there are, on average, q queries per update. Our results are amortized, as we
rely on converting whole subtrees into static structures (which answer queries
in constant time) when they have received sufficient queries to pay for that
conversion. The conversion needs to temporarily double the space for the bits
stored in the converted tree, thus we cannot aim at using n+ o(n) bits of space.
For simplicity, we will aim at using 4n + o(n) bits—though we could reduce it
to (3 + ϵ)n for any ϵ > 0. To reach such a concrete constant, we use the bigger
leaves of Θ(log2 n) bits, but we allow them to be partly filled, which considerably
simplifies matters in comparison with the solutions using n+ o(n) bits [9, 12].

There has been work to store the bitvectors within entropy space, which
means Hn bits with H = m

n log2
n
m+ n−m

n log2
n

n−m ,m being the number of 1s in
the bitvector. Assuming m < n, Blandford and Blelloch [2] obtain O(nH+log n)
bits of space while supporting all operations in O(log n) time, using a balanced
binary tree where the distances between consecutive 1s are gap-encoded in the
leaves. Mäkinen and Navarro [9] improve the space to nH + o(n) bits, while



Adaptive dynamic bitvectors 3

retaining O(log n) time for the operations. Navarro and Sadakane [12] retain
this space and reduce the time to the optimal O(log n/ log log n). We discuss in
the Conclusions how our results can be extended to use entropy-bounded space.

3 Adaptive Dynamic Bitvectors

We use the transdichotomous RAM model of computation, with computer words
of w = Θ(logN) bits, N being the maximum size of a bitvector that fits in
memory. Pointers use w bits. We call n ≤ N is the current size of bitvector B.

3.1 Structure

As anticipated, our data structure is a binary tree. Its leaves are of two types:

– A “dynamic leaf”, which allocates space for b = Θ(w log n) bits and no
precomputed answers. A dynamic leaf answers access queries in O(1) time
and rank/select queries in O(log n) time, via word-wise scanning [9, 11].4

– A “static leaf”, which stores arbitrarily large bitvectors with their corre-
sponding precomputation to solve access/rank/select in O(1) time [4, 10].

The internal tree nodes v record, apart from their two children v.left and
v.right, the following fields:

v.size : total number of bits represented in the subtree rooted at v.
v.ones : total number of 1-bits represented in the subtree rooted at v.
v.leaves : number of leaves below v (static leaves count as many, see later).
v.queries : number of queries that traversed v since the last update that tra-

versed v, or since the creation of v.

Our binary tree is maintained with balanced weight [13, 1]: given a parameter
1/2 < α < 1, for every node v, v.left.size ≤ α · v.size and v.right.size ≤ α · v.size.
This implies that the tree has height at most log 1

1−α
n = O(log n). Balancing will

be maintained by reconstructing biased trees as perfectly balanced [1]. Similarly,
we will ensure that v.leaves = O(v.size/(w log n)), by converting nodes into static
when the leaves below them are too empty. Since each tree node uses O(w) bits
of space, this ensures that all the tree nodes use together O(n/ log n) bits.

3.2 Queries

The queries use in principle the standard mechanism for dynamic bitvectors
[9]: access(B, i) traverses the tree from the root, going to the left child if i ≤
v.size and to the right otherwise (subtracting v.size from i in that case). When
arriving at a leaf, the query completes in O(1) additional time. Since our trees
are balanced, access takes time O(log n) in the worst case.

4 Mäkinen and Navarro [9] show how to maintain b when ⌈logn⌉ changes without
affecting any complexity. Our implementation uses a fixed value of b for simplicity.



4 G. Navarro

The procedure for rank1(B, i) is analogous, adding up v.left.ones whenever we
descend to v.right, and adding at the end rank1(i) on the leaf. For rank0(B, i) we
compute i − rank1(B, i). For select1(B, j), we descend guided by v.ones instead
of by v.size, subtract v.left.ones from j when going to v.right, and accumulate
v.left.size instead of v.left.ones; at the end we add select1(j) on the leaf. Finally,
select0(B, j) is analogous to select1(B, j), using v.left.size−v.left.ones instead of
v.left.ones. Both rank and select take time O(log n) plus the time spent on the
leaf, which is O(log n) on dynamic leaves—by counting the 1s in w-bit words in
constant time [11, Sec. 4.2]—and O(1) on static ones.

Flattening. The novelty in our adaptive scheme is that, every time we traverse
an internal node v for any of the three queries, we increment v.queries, and if
v.queries ≥ θ · v.size, for an appropriate tuning constant θ, we convert the whole
subtree of v into a static leaf, which we call “flattening” v. Flattening is done in
time O(v.size), by traversing and deleting the subtree of v, while writing the bits
of all the leaves onto a new bitvector, which is finally preprocessed for constant-
time queries and converted into the static leaf corresponding to v. We show later,
however, that its amortized cost is absorbed by the preceding θ · v.size queries.

Note that flattening temporarily increases the space used by v.size, which
may be as much as n if v is the root. Note also that flattening does not change
v.size, and thus it does not affect the balancing.

3.3 Updates

Updates are handled, in principle, as in previous work [9]. To perform write(B, i),
we traverse the tree as for access, modify the corresponding bit in the (dynamic)
leaf we arrive at (we consider soon the case where we arrive at a static leaf), and
update v.ones as we return from the recursion. This takes time O(log n) because
our trees are balanced. Note that write has no effect on the tree balancing.

Insertions and deletions are analogous, yet at the end they insert or delete a
bit in a dynamic leaf and must update v.size and v.ones along the path. Apart
from costing O(log n) for shifting the needed bits wordwise, one must handle
overflows and underflows in leaves. An overflow occurs when we insert a bit in
a leaf v containing b bits already, and it is handled by splitting the leaf into
two holding b/2 bits and making v the parent of both new leaves. An underflow
occurs when we delete the only bit in a leaf v, in which case v is eliminated
together with its parent node. We also act when the leaf v that receives the
deletion is the sibling of another (dynamic) leaf, so that after the deletion both
leaves add up to at most γb bits, where 1/2 ≤ γ < 1 is the desired fill ratio
of newly created leaves. In this case both leaves are concatenated into one and
their parent is eliminated. As we return from the recursion, we keep trying to
merge the two children of the current node if both are dynamic leaves. As a
consequence, every internal node v has v.size ≥ γb (and can be flattened).

Splitting. The interesting part of updates occurs when we arrive at a static leaf v.
In this case we halve the bitvector stored at v, and make v an internal node with



Adaptive dynamic bitvectors 5

splitflatten

Fig. 1. Flattening and posterior splitting of a node, the former after receiving over
θ · v.size consecutive queries, and the latter when receiving an update at a static leaf;
the leaf is recursively halved until the update falls in a dynamic leaf. Circles are internal
nodes, round rectangles are dynamic leaves, and gray rectangles are static leaves.

one child holding each half (halving is slightly corrected to make the left half
contain a multiple of γb bits, so that dynamic leaves can be created of size γb).
The bitvector half that does not contain i is converted into a leaf again (static
if it is of size over γb and dynamic if not). The half containing i is recursively
halved, until it contains at most γb bits and so it becomes a dynamic leaf. Note
that splitting v does not change v.size, and thus has no effect on the tree balance.

Splitting takes total time O(v.size), as we create leaves in time proportional
to their bit length. Though the worst-case cost of updates can be Θ(n), we prove
logarithmic amortized bounds later. Figure 1 illustrates flattening and splitting.

Balancing. We maintain the weight balance of the tree by checking, at every
internal node v in the path from the root to the leaf where the insertion or
deletion will take place, that the weight-balancing conditions will be satisfied
once we insert or delete the bit on v.left or v.right, depending on the case. For
example, if the insertion must continue by the left, and it holds that v.left.size+
1 > α · (v.size + 1), then node v will become unbalanced after the insertion.

When we detect that v will become unbalanced in our top-down traversal
to insert or delete at position i, we (i) flatten v, and (ii) split v at position
i. This will correct the imbalance of v, ensuring that all the nodes in the path
towards position i are perfectly balanced until the final dynamic leaf. The cost is
O(v.size), of the same order of the tree balancing performed on weight balanced
trees, in the variant that rebuilds whole subtrees within low amortized time [1].

Because our splitting by half can be slightly shifted to ensure that lengths
are multiples of γb, we avoid balancing when this shifting would leave the tree
unbalanced anyway. This can be the case when the subtree is very small (e.g.,
if v.size = 3γb, splitting will produce a child of size 2γb and another of size γb,
which is considered unbalanced if γ > 1/3), or if γ is too close to 1/2. This
correction does not affect the asymptotically logarithmic height of the tree.

As anticipated, despite our attempts to maintain leaves as full as possible, a
constant fill ratio cannot be guaranteed. We then monitor, just like we do for bias
in the left versus right subtree sizes, the ratio between v.leaves and v.size. This



6 G. Navarro

cannot be predicted in the top-down traversal as the bias, so we check instead,
when returning from the recursion, that v.size ≥ (b/3) · v.leaves, and otherwise
flatten v (there is no point in eagerly splitting v after flattening, as the deletion
already took place). Note that leaves are created with fill ratio 1/2 when a leaf
overflows, and with fill ratio γ ≥ 1/2 when a static leaf is split; we rebuild when
the fill ratio falls below 1/3, so this flattening cost will be amortized by the
deletions. We assume v.leaves = v.size/(γb) for static leaves v, as γb is the fill
ratio of the leaves it will create if split (thus splitting v does not alter v.leaves).

4 Amortized Analysis

We first show that all the operations have an amortized cost of O(log n); later
we analyze the case where the frequency of updates is 1/q. Because our trees
are balanced, the actual cost of all the operations is always O(log n), except for
flattening and splitting, and their use for balancing.

Our amortized analysis will define three potential functions, ϕv, ψv, and βv,
for every node v of the tree, and the global potential will be Φ =

∑
v(ϕv+ψv+βv).

We then have that Φ = 0 when the tree is empty. The potentials ϕv, ψv, and βv
will accumulate work to later pay for the operations of flattening, splitting, and
balancing, respectively. They are defined operationally, as follows:

1. Dynamic leaves and internal nodes v are always created with ϕv = βv = 0,
but those potentials can increase later. Instead, they always have ψv = 0.

2. Static leaves v created via flattening start with ψv = 0 and with ϕv =∑
u⊑v ϕu, where u ⊑ v means that u is v or descends from v. Some of this

ϕv is later transferred to the potentials ψu of static leaves u created upon
splitting, as seen later. Note that transfers of potentials do not alter the sum
Φ. Static leaves may inherit βv from former descendants, as seen later.

3. Query operations increment ϕv on every visited internal node and dynamic
leaf v. If they arrive at a static leaf v, they increase ϕv by log1/α(v.size/b).

4. Update operations increase βv by a constant τ , to be defined later, on every
visited internal node and dynamic leaf v. They can also trigger splittings,
which are analyzed separately.

Consider query operations. Their actual cost is O(log n). In addition, they
increase Φ by O(log n), in part by increasing ϕv by O(1) on the internal nodes
and dynamic leaves v they traverse, and in part by increasing ϕv on the static
leaves they reach by O(log n). Update operations cost O(log n) and also increase
Φ by O(log n). Their amortized cost is then also O(log n). We analyze flattening,
splitting, and balancing as separate operations.

Flattening. Now consider the flattening operation. Recall that v is flattened
whenever v.queries ≥ θ · v.size, and that the actual cost of flattening is v.size.
Since the updates that traverse v reset v.queries to zero, it follows that the last
v.queries operations that traversed v have been queries. Each of those incre-
mented the potential ϕv, and also increased the potentials ϕu of descendants u
of v by at least log1/α(v.size/b) in total:



Adaptive dynamic bitvectors 7

– If the query ended in a dynamic leaf, log1/α(v.size/b) is the minimum possible
distance from v to a dynamic leaf (i.e., when the path to the leaf is as short
as possible in the α-balanced tree and that the leaves are all full).

– In case the query arrived at a static leaf u, it increased ϕu by log1/α(u.size/b).
Since the distance between v and u is at least log1/α(v.size/u.size), the
query also incremented ϕ at that many internal nodes between v and u, and
summed with the increase it produced in ϕu adds up to log1/α(v.size/b).

The potential ϕu of the descendants u of v is then ≥ θ ·v.size·log1/α(v.size/b).
When flattening v, its descendants u disappear and we add their ϕu to ϕv,
which then becomes ϕv ≥ θ · v.size · (1 + log1/α(v.size/b)). Assume θ ≥ 2, so
ϕv ≥ v.size · (2 + θ log1/α(v.size/b)). From ϕv we spend v.size to pay for the
flattening and transfer the rest to ψv (which does not alter Φ). Flattening has
then zero amortized cost and, after it, it holds ϕv = 0 and ψv ≥ v.size · (1 +
θ log1/α(v.size/b)). The potential ψv will be used to pay for future splittings, and
will be lost if, instead, some ancestor of v is flattened and makes v disappear.

Splitting. Now assume a static leaf v is split by an update operation. As-
suming for simplicity that v.size is of the form 2k · γb (otherwise only con-
stants change), splitting creates a sequence of static leaves u1, u2, . . . of lengths
u1.size = v.size/2, u2.size = v.size/4, . . ., until uk.size = uk+1.size = γb, where
u1 to uk−1 are static and the last two are dynamic. Let the actual cost of splitting
be v.size. This cost will be paid from ψv, so that splitting has zero amortized
cost. The remaining potential in ψv, v.size ·θ log1/α(v.size/b), will be transferred
to the potentials ψui

of the static leaves just created. Concretely, the static leaves
ui are created with ϕui

= 0 and ψui
= ui.size · (1 + θ log1/α(ui.size/b)), which is

what those static leaves need to face their own possible future splittings. There
remains enough potential in ψv to feed all the new potentials ψui because

k−1∑
i=1

ψui
=

k−1∑
i=1

ui.size · (1 + θ log1/α(ui.size/b))

=

k−1∑
i=1

v.size

2i
·
(
1 + θ log1/α

(
v.size/b

2i

))

= v.size ·
k−1∑
i=1

1

2i

(
1 + θ(log1/α(v.size/b)− i log1/α 2)

)
< v.size · θ log1/α(v.size/b) + v.size ·

(
1− 1

2k−1
−θ

(
2− k+1

2k−1

)
log1/α 2

)
.

The first term is what we have available in ψv to distribute across the potentials
ψui

. It suffices that θ ≥ log2(1/α) for the second term to be nonpositive for all
k ≥ 1. As we have assumed θ ≥ 2 and log2(1/α) ≥ 1, we define θ = 1+log2(1/α).

Balancing. Balancing on v invokes flattening plus splitting when either v.left.size
> α · v.size or v.right.size > α · v.size. Note that, when creating a dynamic node



8 G. Navarro

v by splitting an overflowing leaf, child sizes differ by 1, and when creating v by
splitting a static node, they differ by at most γb. We avoid balancing nodes with
v.size < 5γb, so as to ensure that max(v.left.size, v.right.size)/v.size ≤ 3/5 and
thus nodes created by splitting do not immediately need balancing (this adds
just O(1) to the maximum tree height). We can then use any 3/5 < α < 1.

It follows that, once a (balanceable) dynamic node v is created, it must
undergo i insertions on the larger child (whose initial size can be up to 3/5·v.size)
to become unbalanced, because 3/5 · v.size + i > α(v.size + i). Thus, more than
α−3/5
1−α · v.size insertions must occur in v before balancing takes place. Deletions

on the smaller child pose a more stringent condition, as it suffices that d deletions

occur, with 3/5 · v.size > α · (v.size− d), that is, d > α−3/5
α · v.size.

We then set τ = θ/α−3/5
α as the constant by which updates increase the

potential βv of the traversed nodes v. Because updates always reach leaves, an
update on v increases the potentials β on v and its descendants by at least

τ(1 + log1/α(v.size/b)). If a dynamic node v must be balanced, at least α−3/5
α ·

v.size updates have traversed it, and thus they have increased the potentials βu,

for all u ⊑ v, by at least α−3/5
α · v.size times τ(1 + log1/α(v.size/b)), which is

v.size · θ(1+ log1/α(v.size/b)). This is exactly the potential needed for flattening
(and later splitting) v at zero amortized cost.

The potentials βv of nodes are maintained upon creation and destruction:
merged leaves add up their potentials β, leaves that are split also split their
potential β (does not matter how), static leaves created by flattening inherit all
the potentials βu of their destroyed descendants u, and when splitting v we may
leave βv in one of the (one or two) dynamic leaves that are created. The goal
is that ancestors of v that may be later balanced preserve the needed potentials
β below them. Static leaves v do not need to store βv for themselves, because
when split they will be created as (at least) 2/5–3/5 balanced trees.

Flattening to maintain fill ratios. We also flatten v when v.size < (b/3) ·v.leaves.
Note that leaves are created by overflowing, upon an insertion, with fill ratio at
least 1/2; only deletions can drive the fill ratio below that fraction. Potential
flattening in a subtree of v only improves the average fill ratio, to γ ≥ 1/2 in
that subtree. Therefore, a node v must undergo at least v.size/6 deletions before
it must be flattened to maintain fill ratios. Just as for balancing, it suffices to
assign deletions (i.e., to τ) an additional amortized cost of θ/(1/6) = 6θ they
pay for the future flattenings (plus possible later splittings) they may trigger.

Since this ensures, in particular, that there are at most 3n/b leaves, each
using b bits of space, the total space allocated in the leaves is at most 3n bits.
We may need n additional bits of temporary space when flattening, which sets
the maximum usage to 4n bits, plus the o(n) bits needed by the tree nodes and
static rank/select data structures. Splitting also requires temporary space, but
this is less stringent because the v.size bits are already packed in a static array.

Theorem 1. An adaptive dynamic bitvector starting empty can be maintained
within 4n+o(n) bits of space, where n is the current number of bits it represents,
so that any operation on it has O(log n) amortized cost.



Adaptive dynamic bitvectors 9

We can reduce the space to (3+ϵ)n for any constant ϵ > 0, by flattening when
v.size < (b/(2+ϵ/2))·v.leaves and not allocating the b bits for the leaves. Instead,
we maintain space for only (1 + ϵ/2) · v.size bits, and reallocate as necessary.

4.1 Adaptive Analysis

We now show that, if only a fraction 1/q of the operations are updates, then the
amortized cost per operation is O(log(n/q)). This is clearly true for the updates:
though each one costs O(log n), they are only a fraction 1/q of the total, thus
their contribution to the global amortized cost is O(log(n)/q) ⊆ O(log(n/q)).

For the queries, the intuition is that nodes v with v.size = Θ(q) are in
general static leaves, so the query traverses O(log n − log q) nodes to finish. To
show that this is the case, we start with a particular regime: consider a sequence
that starts on a static leaf of length n = 2k · γb, with one write(B, 1) and then
q − 1 access(B, 1) queries, for q to be determined soon. After the split, the first
θ · 2γb accesses will cost log2(n/(γb)), at which point the parent of the leaf (of
2γb bits) will be flattened; the accesses will cost log2(n/(γb))− 1 from now. The
grandparent needs other θ ·2γb accesses to reach θ ·4γb and be flattened in turn;
now the access costs will be log2(n/(γb))− 2 for other θ · 4γb accesses, at which
point the grandgrandparent reaches θ · 8γb accesses and is flattened, and so on.
After ℓ rounds, the total number of queries is (1 +

∑ℓ−1
i=0 2

i) · θγb = q − 1, so let
us set q = 1 + 2ℓθγb, or ℓ = log2((q − 1)/(θγb)). The total cost of accesses is

θγb · log2(n/(θγ)) +
ℓ−1∑
i=0

2i · θγb · (log2(n/(θb))− i)

= θγb ·
(
2ℓ log2(n/(γb))− 2ℓ(ℓ− 2)− 2

)
≤ (q − 1) (log2(n/(q − 1)) + 2) .

That is, the cost per query is O(log(n/q)). The cost of the ℓ− 1 flattenings adds
up to O(2ℓ) = O(q/(θγb)) = o(q) in total, thus adding o(1) amortized time. Note
that we have assumed that q ≥ θγb for this analysis to hold.

Interestingly, the general case cannot be worse than this particular case. In
general, for any q, each update can, via splitting, create a path of new nodes up
to depth log2(n/(γb)). Repeatedly accessing the deepest node in the path can
produce a cost over log2(n/q) only to the next q−1 queries, after which the path
is flattened at height ℓ = log2((q − 1)/(θγb)). Per our analysis of the particular
case, the amortized cost incurred by each of those queries is still O(log(n/q)).
After this flattening, the extra cost induced by the update is canceled, as fur-
ther queries will traverse O(log(n/q)) nodes. Deviations from this regime only
decrease costs: (i) the updates are most effective in increasing the cost if they
open other paths (starting on nodes of size Θ(n), if possible), disjoint from the
current one, so we can assume that no other updates fall in the path during the
next q − 1 queries; (ii) the worst case is that we access the deepest node in the
path, because accessing higher leaves does not postpone their flattening.

We still need to consider the costs of flattening, splitting, and balancing,
which required amortized analysis. Charging 1 on ϕv and τ on βv for the tra-
versed nodes v does not change the actual cost O(log(n/q)), and as we have seen,



10 G. Navarro

suffices to pay for flattening and balancing, but not for splittings. For those, we
had charged log1/α(v.size/b) = O(log n) cost to the queries (to transfer them to
ψv when needed), independently of the depth of the leaf they reach. This now
exceeds our budget, so we analyze splittings in another way, without using ψv.

Consider the following model. There is a bag of static leaves that evolves
over time, and the tree always has n nodes for simplicity. At any moment, with
θℓ queries we can create a new static leaf of length ℓ. Along m queries, we have
created in total r static leaves of lengths ℓ1, ℓ2, . . . , ℓr so that

∑r
i=1 ℓi = m/θ.

Over each static leaf i, we have applied ui updates, each producing splits in the
most costly way, so that we applied

∑r
i=1 ui = m/q updates in total.

To measure how much can u > 0 updates over a static leaf v may cost, let
v.size = ℓ = 2k · γb for k ≥ 1 and u = 2d for d ≥ 0; the general case has
the same order. The first update costs ℓ, and creates static leaves of lengths
ℓ/2, ℓ/4, etc. The second chooses the leaf of size ℓ/2, costing ℓ/2 and creating
leaves of size ℓ/4, ℓ/8, etc. Now there are two leaves of size ℓ/4, which are the
next ones chosen, and so on. Let L(d) be the number of leaves of length ℓ/2d

created in the process. Because leaves of size ℓ/2d are created by leaves of size

ℓ, ℓ/2, . . . , ℓ/2d−1, the recurrence is L(d) =
∑d−1

j=0 L(j), which solves to L(0) = 1

and L(d) = 2d−1 for d > 0. If we apply updates to all the leaves up to size ℓ/2d,

we will perform
∑d

j=0 L(j) = 2d updates. The cost incurred by those u = 2d

updates is
∑d

j=0(ℓ/2
j) · L(j) = ℓ(1 + d/2) = ℓ(1 + 1

2 log2 u).

The maximum possible cost we can produce is then
∑r

i=1 ℓi(1 + 1
2 log2 ui),

where
∑r

i=1 ℓi = m/θ and
∑r

i=1 ui = m/q (if ui = 0, we assume 1 + 1
2 log2 ui =

0). The maximum is obtained when we create r = m/(θn) leaves of maximum
size ℓi = n and distribute the updates uniformly on them, ui = (m/q)/r, to
split the longest possible leaves. This yields total cost (m/θ)(1+ 1

2 log2(θn/q)) =
O(m log(n/q)), or O(log(n/q)) extra amortized cost per operation. If m < θn,
we create only r = 1 leaf of length ℓ1 = m/θ and apply the u1 = m/q updates on
it, yielding maximum cost O(m log(m/q)) ⊆ O(m log(n/q)). The other border
case is m/q < r, where the best is to apply ui = 1 updates to m/q leaves of
maximum length n, which yields total cost O((m/q) log n) ⊆ O(m log(n/q)).

Theorem 2. An adaptive dynamic bitvector starting empty can be maintained
in 4n + o(n) bits, where n is the current number of bits it represents, so that
if the fraction of updates over total operations so far is 1/q, then the bitvector
operations have O(log(n/q)) amortized cost.

5 Implementation and Experiments

We made a proof-of-concept implementation in C, to illustrate the gain in per-
formance that our data structure obtains as the frequency of updates decreases.

5.1 Implementation

Our machine word has w = 64 bits. We strive for a lightweight data structure
to answer rank/select, as the time to build it impacts in our overall times as



Adaptive dynamic bitvectors 11

well. We implement static rank with blocks and superblocks [4, 10] of 4w and
216 bits, respectively, storing block counters in 16 bits and superblock counters
in 64 bits. The space overhead over the bit data is 6.35%, solving rank with 2
accesses to counters plus at most 4 consecutive access to the bitvector array (plus
the popcount operations). Operation select performs interpolation search in the
superblocks, then on the blocks, and ends with a linear scan in the 4 words.

Dynamic leaves allocate 32 w-bit words for the bit data (i.e., 2048 bits) and
implement all the operations sequentially and word-wise, using bit-parallelism.
All the operations are then handled by scanning 32 words, each in constant time.

We use α = 0.65 as the balance factor, and γ = 3/4 as the initial fill ratio of
leaves after splitting. We try to avoid overflows by transferring bits to a sibling
leaf when possible, leaving both leaves with the same fill ratio, yet we avoid it
if the transfer would be less than 1/8 of the leaf space (this avoids a cascade of
small transfers as the leaf size approaches the maximum).

A difficult parameterization has been the value of θ, which rules the frequency
of flattening. A too large value retains the tree in dynamic form for too long,
thereby inducing higher query times. A too low value builds the static subtree
too eagerly, just to be soon split again by updates. No single constant worked well
for all update frequencies, especially for large n. We opted for finding reasonable
values by hand, with the aim of showing the best that can be achieved with
proper parameterization. All the rest is implemented as described in the paper.

As a sanity check, we compared with a recent highly optimized dynamic
bitvector implementation we call DPR after its authors [6], with O(log n) time
complexity for all the operations, independently of q. The well-known DYNAMIC
library [14] was considerably slower, so we omit it in the comparisons.

5.2 Experiments

Our machine is a 64-bit 12th Gen Intel Core i7-1260P at 4.7 GHz, with 16 CPUs
and 16GB RAM, running Ubuntu 22.04.4 LTS. We compiled with gcc -O3.

We generated random bitvectors of sizes n = 220 to n = 228, built from those
a flattened leaf, and carried out m = n operations on them. The operations
are insertions of random bits at random positions, m/(2q) times, deletions at
random positions, m/(2q) times, and queries in the other cases, running sepa-
rate experiments with queries access, rank, and select (we did not mix different
queries, as we do not expect insights from that). Each experiment was repeated
10 times (100 for n = 220 to gain more precision) and we show average user time.

In a static bitmap, access takes 1, rank 13, and select 42 nanoseconds for
n = 220. For n = 228, the times are 14, 27, and 108 nanoseconds for access, rank,
and select, respectively, which shows how caching affects even the constant-time
algorithms. When all the operations we perform are updates, the times go from
over 100 nanoseconds with n = 220 to over 700 nanoseconds for n = 228, one or
two orders of magnitude slower than the basic operations. We obtained similar
times when using previous results as input to the next operations to forbid
parallel execution of conecutive queries.



12 G. Navarro

 0

 100

 200

 300

 400

 500

 600

 700

 800

10-6 10-5 10-4 10-3 10-2 10-1 1

n
a
n
o
se

co
n
d

s 
p

e
r 

o
p

e
ra

ti
o
n

probability of updates

n = 220

n = 222

n = 224

n = 226

n = 228

DPR, n = 228

Operation Access

 0

 100

 200

 300

 400

 500

 600

 700

 800

10-6 10-5 10-4 10-3 10-2 10-1 1

n
a
n
o
se

co
n
d

s 
p

e
r 

o
p

e
ra

ti
o
n

probability of updates

n = 220

n = 222

n = 224

n = 226

n = 228

DPR, n = 228

Operation Rank

 0

 100

 200

 300

 400

 500

 600

 700

 800

10-6 10-5 10-4 10-3 10-2 10-1 1

n
a
n
o
se

co
n
d

s 
p

e
r 

o
p

e
ra

ti
o
n

probability of updates

n = 220

n = 222

n = 224

n = 226

n = 228

Operation Select

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

10-6 10-5 10-4 10-3 10-2 10-1 1
b

it
s 

p
e
r 

b
it

probability of updates

n = 220

n = 222

n = 224

n = 226

n = 228

DPR, n = 228

Memory Usage

Fig. 2. Average time per operation when mixing queries access, rank, or select, with
increasing proportions of updates (insert and delete), on various bitvector sizes. On the
bottom right, memory usage of our data structure in bits per bit of the bitvector. DPR
did not compile for select in our machine, but we expect times similar to those of rank.

Figure 2 shows the results for increasing values of 1/q (the update probability)
between 10−6 and 1. Times are roughly linear in log(1/q) (note the logscale in
1/q), as one would expect from our time complexity O(log(n/q)) = O(log n +
log(1/q)). DPR is about 15% faster than our implementation when q = 1 (all
updates) and slower for rank with smaller 1/q—by a large margin if 1/q ≤ 10−2.
For access, DPR is clearly faster if 1/q ≥ 10−2, and clearly slower if 1/q ≤ 10−4.

The figure also shows the use of memory of our data structure, in bits per bit
of the bitvector. Note that in practice we always use less than 2n bits of space
(plus, temporarily, at most n when flattening or splitting). It is clear that, until
1/q = 10−3, the space overhead is almost the same as for a single static bitvector,
meaning that our structure is formed by just a few very long and shallow leaves.
Since the leaves contain around 1,000–2,000 bits, this is the last value of 1/q for
which it is still likely to reach static leaves. Note that a static leaf, even if short
and deep, saves considerable time in the last part of the query, completing it in
constant time where a dynamic leaf must be scanned. This explains a transition
in the slope of times around 1/q = 10−3, and a saturation point at 1/q = 10−1,
as by then most leaves are likely dynamic and their depth is near log n.

A way to offer better times with higher values of 1/q would be to use smaller
leaves, at the price of a higher space usage.



Adaptive dynamic bitvectors 13

6 Conclusions

We have shown how to store a dynamic bitvector B[1 . . n] within 4n+ o(n) bits
of space so that updates and queries can be solved in O(log(n/q)) amortized
time if queries are q times more frequent than updates. Our experiments are
in line with our analysis and exhibit speedups of an order of magnitude—and
more—compared to classic dynamic data structures, for q ≥ 102 . . 104.

Immediate applications of this result are implementations of dynamic se-
quences by means of wavelet trees or matrices, and tree topologies using paren-
theses or bits [3, 9, 12], among many others [11, Ch. 12]. Our results can also
be extended to maintain dynamic arrays with cells of fixed width (supporting
access, write, insert and delete), and sequences of variable-length elements. With
the same mechanisms used in previous work [2, 9, 12], this yields a representation
of bitvector B[1 . . n], with entropy H, in 4nH+o(nH) bits while supporting the
same operations in time O(log(n/q)). In turn, such a representation implements
searchable dynamic partial sums with indels [8].

References

1. Andersson, A.: Maintaining α-balanced trees by partial rebuilding. International
Journal of Computer Mathematics 38(1-2), 37–48 (1991)

2. Blandford, D., Blelloch, G.: Compact representations of ordered sets. In: Proc.
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 11–19
(2004)

3. Chan, H.L., Hon, W.K., Lam, T.W.: Compressed index for a dynamic collection
of texts. In: Proc. 15th Annual Symposium on Combinatorial Pattern Matching
(CPM). pp. 445–456 (2004)

4. Clark, D.R.: Compact PAT Trees. Ph.D. thesis, University of Waterloo, Canada
(1996)

5. Dietz, P.: Optimal algorithms for list indexing and subset rank. In: Proc. Workshop
on Algorithms and Data Structures (WADS). pp. 39–46 (1989)

6. Dönges, S., Puglisi, S., Raman, R.: On dynamic bitvector implementations. In:
Proc. Data Compression Conference (DCC). pp. 252–261 (2022)

7. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures.
In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC). pp.
345–354 (1989)

8. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable
partial sums. In: Proc. 14th International Symposium on Algorithms and Compu-
tation (ISAAC). pp. 505–516 (2003)

9. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3), article 32 (2008)

10. Munro, J.I.: Tables. In: Proc. 16th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). pp. 37–42. LNCS 1180 (1996)

11. Navarro, G.: Compact Data Structures – A practical approach. Cambridge Uni-
versity Press (2016)

12. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
ACM Transactions on Algorithms 10(3), article 16 (2014)



14 G. Navarro

13. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM
Journal on Computing 2(1), 33–43 (1973)

14. Prezza, N.: A framework of dynamic data structures for string processing. In: Proc.
16th International Symposium on Experimental Algorithms (SEA). pp. 11:1–11:15
(2017)

15. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Proc.
3rd International Symposium on Algorithms and Data Structures (WADS). pp.
426–437 (2001)


