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Abstract. It was recently proved that any SLP generating a given string
w can be transformed in linear time into an equivalent balanced SLP
of the same asymptotic size. We show that this result also holds for
RLSLPs, which are SLPs extended with run-length rules of the form
A → Bt for t > 2, deriving exp(A) = exp(B)t. An immediate conse-
quence is the simplification of the algorithm for extracting substrings of
an RLSLP-compressed string. We also show that several problems like
answering RMQs and computing Karp-Rabin fingerprints on substrings
can be solved in O(grl) space and O(logn) time, grl being the size of the
smallest RLSLP generating the string, of length n. We extend the result
to solving more general operations on string ranges, in O(grl) space and
O(logn) applications of the operation. In general, the smallest RLSLP
can be asymptotically smaller than the smallest SLP by up to anO(logn)
factor, so our results can make a difference in terms of the space needed
for computing these operations efficiently for some string families.

Keywords: Run-length straight-line programs · Substring range prob-
lems · Repetitive strings

1 Introduction

Enormous collections of data are being generated at every second nowadays.
Already storing this data is becoming a relevant and practical challenge. Com-
pression serves to represent the data within reduced space. Still, just storing
the data in compressed form is not sufficient in many cases; one also requires
to construct data structures that support various queries within the compressed
space. For example, index data structures support the search for short patterns
in compressed strings. In areas like Bioinformatics, these collections of strings
are often very repetitive [22], which makes traditional compressors and indexes
based on Shannon’s entropy unsuitable for this task [19].

Over the years, several compressors and data structures exploiting repeti-
tiveness have been devised. Examples of this are the Lempel-Ziv family [18,16]
and the run-length Burrows-Wheeler transform (BWT) [3,8]. While compressors
based on Lempel-Ziv achieve the best compression ratios, indexes based on them
are not very fast and provide limited functionality. On the other hand, indexes
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based on the BWT can efficiently solve a variety of queries over strings, but their
compression ratio is far from optimal for repetitive sequences [13].

Somewhere in between of Lempel-Ziv and BWT compression is grammar
compression. This approach consists in constructing a deterministic context-free
grammar generating only the string to be compressed; such grammars are called
straight-line programs (SLPs). Although finding the smallest SLP generating a
string is NP-complete [4], there exist several heuristics [17,20] and approxima-
tions [11,23] producing SLPs of small size. The popularity of SLPs probably
comes from their simplicity to expose repetitive patterns on strings, which is
useful to avoid redundant computation in compressed space [15,25]. This makes
SLPs ideal for indexing and answering queries in compressed space [2,10].

A problem that complicates such computations is that the parse tree of the
grammars can be arbitrarily tall. While tasks like accessing a symbol of the
string in time proportional to the parse tree height is almost trivial, achieving
O(log n) time on general grammars requires much more sophistication [2]. Re-
cently, Ganardi et al. [10] showed that any SLP can be balanced without paying
an (asymptotic) increase in its size. This simplified several problems that were
difficult for general SLPs, but easy if the depth of their parse tree is O(log n).
Accessing a symbol in time O(log n) is nearly optimal, actually [24].

An extended grammar compression mechanism are the run-length SLPs in-
troduced by Nishimoto et al. [21]. An RLSLPs is an SLP extended with run-
length rules of the form A → Bt for some t > 2, which derive exp(A) = exp(B)t.
While the size of the smallest SLP generating a string of length n is always
Ω(log n), the smallest RLSLP can be of size O(1) for some string families, which
exhibit a logarithmic gap between the compression power of SLPs and RLSLPs.
RLSLP have recently gained popularity for indexing. For example, all known
locally consistent grammars are RLSLPs, and they have been a key component
in the most recent indices for repetitive text collections. A locally consistent
grammar is built through consecutive applications of a locally consistent pars-
ing, which is a method to partition a string into non-overlapping blocks, such
that equal substrings are equally parsed with the possible exception of their
margins. Gagie et al. [9] built an index based on locally consistent grammars us-
ing O(r log log n) space, with which they were able to count the occ occurrences
of a length-m pattern in optimal time O(m) and locate them in optimal time
O(m+ occ), where r is the number of runs in the BWT [3] of the string. Koci-
umaka et al. [5] also built a locally consistent grammar to index a string. Their
grammar can count and locate the pattern in optimal time usingO(γ log n

γ logϵ n)

space, where γ is the size of the smallest string attractor of the string [14].

In this paper we extend the results of Ganardi et al. to RLSLPs, that is, we
show that one can always balance an RLSLP in linear time without increasing its
asymptotic size. This result yields a considerable simplification to the algorithm
for accessing any symbol of the string in logarithmic time [5, Appendix A]. It has
other implications, like computing range minimum queries (RMQs) [7] or Karp-
Rabin fingerprints [12], in O(log n) time and within O(grl) space. We generalize
those concepts and show how to compute a wide class of semiring-like functions
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over substrings of an RLSLP-compressed string within O(grl) space and O(log n)
applications of the function.

2 Terminology

2.1 Strings

Let Σ be any finite set of symbols (an alphabet). A string w is any finite tuple of
elements in Σ. The length of a string is the length of the tuple, and the empty
string of length 0 is denoted by ε. The set Σ∗ is formed by all the strings that
can be defined over Σ. For any string w = w1 . . . wn, its i-th symbol is denoted
by w[i] = wi. Similarly, w[i : j] = wi . . . wj with 1 ≤ i ≤ j ≤ n, or ε if j < i. We
also define w[: i] = w1 . . . wi and w[i :] = wi . . . wn. If x[1 : n] and y[1 : m] are
strings, the concatenation operation xy is defined as xy = x1 . . . xny1 . . . ym. If
w = xyz, then y (resp. x, z) is a substring (resp. prefix, suffix) of w.

2.2 Straight-Line Programs

A straight-line program (SLP) is a deterministic context-free grammar gener-
ating a unique string w. More formally, an SLP is a context free grammar
G = (V,Σ,R, S) where V is the set of variables (or non-terminals), Σ is the
set of terminal symbols (disjoint from V ), R ⊆ V × (V ∪Σ)∗ is the set of rules
and S is the initial variable; satisfying that each variable has only one rule asso-
ciated, and that the variables are ordered in such a way that the starting variable
is the greater of them, and any variable can only refer to other variables strictly
lesser than itself or terminals, in the right-hand side of its rule. Any variable
A derives a unique string exp(A), and the string generated by the SLP, is the
string generated by its starting variable. The size of an SLP is defined as the
sum of the lengths of the right-hand side of its rules. The size of the smallest
SLP generating a string is denoted by g, and is a relevant measure of repetitive-
ness. An SLP generating a non-empty string is often given in so-called Chomsky
Normal Form, that is, with all its rules being of the form A → BC or A → a for
A,B,C variables, and a a terminal symbol.

While computing the smallest grammar is an NP-hard problem [4], there exist
several heuristic providing log-approximations of the smallest SLP [11,23]. SLPs
are popular as compression devices because several problems over strings can
be solved efficiently using their SLP representation, without ever decompressing
them. Examples of this are accessing to arbitrary positions of w, extracting
substrings, and many other kind of queries [2]. For several queries, it is convenient
to have a balanced SLP, that is, an SLP whose parse tree has O(log n) depth.
Recently, Ganardi et al. showed that any SLP can be balanced [10].

2.3 Directed Acyclic Graph of an SLP

A directed acyclic graph (DAG) is a directed multigraph D without cycles (nor
loops). We denote by |D| the number of edges in this DAG. For our purposes,
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we assume that any DAG has a distinguished node r, satisfying that any other
node can be reached from r, and has no incoming edges. We also assume that
if a node has k outgoing edges, they are numbered from 1 to k. The sink nodes
of a DAG are the nodes without outgoing edges. The set of sink nodes of D
is denoted by W . We denote the number of paths from u to v as π(u, v), and
π(u, V ) =

∑
v∈V π(u, v) for a set V of nodes. The number of paths from the root

to the sink nodes is n(D) = π(r,W ).
One can interpret an SLP generating a string w as a DAG D: There is a node

for each variable in the SLP, the root node is the initial variable, terminal rules
of the form A → a are the sink nodes, and a variable with rule A → B1B2 . . . Bk

has outgoing edges (A, i,Bi) for i ∈ [1..k]. Note that if D is a DAG representing
G, then n(D) = |exp(G)| = |w|.

2.4 Run-Length Straight-Line Programs

A run-length straight-line program (RLSLP) is an SLP extended with run-length
rules [21]. An RLSLP can have rules of the form:

– A → a, for some terminal symbol a.
– A → A1A2 . . . Ak, for some variables A1, . . . , Ak and k > 1.
– A → Bt, for some t > 2.

The string generated by a variable A with rule A → Bt is exp(B)t. A run-
length rule is considered to have size 2 (one word is needed to store the exponent).
We denote by grl to the size of the smallest RLSLP generating the string. The
depth of the RLSLP is the depth of its associated equivalent SLP, obtained by
unfolding its run-length rules A → Bt into rules of the form A → BB . . . B
of length t. Observe that a rule of the form A → A1A2 . . . Ak can always be
transformed into O(k) rules of size 2, with one of them derivating the same
string as A. Doing this for all rules can increase the depth of the RLSLP, but if
k is bounded by a constant, then this increase is only by a constant factor.

3 Balancing Run-Length Straight-Line Programs

The idea utilized by Ganardi et al. to transform an SLP G into an equivalent
balanced SLP of size O(|G|) [10, Theorem 1.2], can be adapted to work with
RLSLPs. First, we state some definitions and results proved in their work, which
we need to obtain our result.

Definition 1. (Ganardi et al. [10, page 5]) Let D be a DAG, and define the pairs
λ(v) = (⌊log2 π(r, v)⌋, ⌊log2 π(v,W ))⌋). The symmetric centroid decomposition
(SC-decomposition) of a DAG D produces a set of edges between nodes with the
same λ pairs defined as Escd(D) = {(u, i, v) ∈ E |λ(u) = λ(v)}, partitioning D
into disjoint paths called SC-paths (some of them possibly empty).

The set Escd can be computed in O(|D|) time. If D is the DAG of an SLP
G this becomes O(|G|). The following lemma justifies the name “SC-paths”.
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A0 → A1A12

A1 → A11A2

A2 → A5A3

A3 → A4A6

A4 → A5
5

A5 → A11A6

A6 → A7A12

A7 → A8A12

A8 → A10A9

A9 → A4
10

A10 → A11A12

A11 → 0

A12 → 1

A01 92

A11 91

A21 90

A31 77

A41 65

A56 13

A67 12

A77 11

A87 10

A97 8

A1035 2

A1142 1 A1250 1

Fig. 1. The DAG and SC-decomposition of an unfolded RLSLP generating the string
0(0(01)512)6(01)513. The value to the left of a node is the number of paths from the
root to that node, and the value to the right is the number of paths from the node to
sink nodes. Red edges belong to the SC-decomposition of the DAG. Blue (resp. green)
edges branch from an SC-path to the left (resp. to the right).

Lemma 1. (Ganardi et al. [10, Lemma 2.1]) Let D = (V,E) be a DAG. Then
every node has at most one outgoing and at most one incoming edge from
Escd(D). Furthermore, every path from the root r to a sink node contains at
most 2 log2 n(D) edges that do not belong to Escd(D).

Note that the sum of the lengths of all SC-paths is at most the number of
nodes of the DAG, or the number of variables of the SLP. An example of the
SC-decomposition of a DAG can be seen in Figure 1.

The following definition and technical lemma are needed to construct the
building blocks of our balanced RLSLPs.

Definition 2. (Ganardi et al. [10, page 7]) A weighted string is a string w ∈ Σ∗

equipped with a weight function || · || : Σ → N\{0}, which is extended homomor-
phically. If A is a variable in an SLP G, then we also write ||A|| for the weight
of the string exp(A) derived from A.

Lemma 2. (Ganardi et al. [10, Proposition 2.2]) For every non-empty weighted
string w of length n one can construct in linear time an SLP G with the following
properties:



6 Navarro et al.

– G contains at most 3n variables
– All right-hand sides of G have length at most 4
– G contains suffix variables S1, ..., Sn producing all non-trivial suffixes of w
– every path from Si to some terminal symbol a in the derivation tree of G has

length at most 3 + 2(log2 ||Si|| − log2 ||a||)

We prove that any RLSLP can be balanced without asymptotically increasing
its size. Our proof generalizes that of [10, Theorem 1.2] for SLPs.

Theorem 1. Given an RLSLP G generating a string w, it is possible to con-
struct an equivalent balanced RLSLP G′ of size O(|G|), in linear time, with only
rules of the form A → a,A → BC, and A → Bt, where a is a terminal, B and
C are variables, and t > 2.

Proof. Without loss of generality, assume that G has rules of length at most 2,
so it is almost in Chomsky Normal Form, except that it has run-length rules.
Transform the RLSLP G into an SLP H by unfolding its run-length rules, and
then obtain the SC-decomposition Escd(D) of the DAG D of H. Observe that
the SC-paths of H use the same variables of G, so it holds that the sum of
the lengths of all the SC-paths of H is less than the number of variables of
G. Also, note that any variable A of G having a rule of the form A → Bt for
some t > 2 is necessarily an endpoint of an SC-path in D, otherwise A would
have t outgoing edges in Escd(D), which cannot happen.1 This implies that the
balancing procedure of Ganardi et al. over H, which transforms the rules of
variables that are not the endpoint of an SC-path in the DAG D, will not touch
variables that originally were run-length in G.

Let ρ = (A0, d0, A1), (A1, d1, A2), . . . , (Ap−1, dp−1, Ap) be an SC-path of D.
It holds that for each Ai with i ∈ [0..p − 1], in the SLP H, its rule goes to
two distinct variables, one to the left and one to the right. For each variable
Ai, with i ∈ [0..p − 1], there is a variable A′

i+1 that is not part of the path.
Let A′

1A
′
2 . . . A

′
p be the sequence of those variables. Let L = L1L2 . . . Ls be the

subsequence of left variables of the previous sequence. Then construct an SLP
of size O(s) ≤ O(p) for the sequence L (seen as a string) as in Lemma 2, using
|exp(Li)| in H as the weight function. In this SLP, any path from the suffix
nonterminal Si to a variable Lj has length at most 3+2(log2 ||Si|| − log2 ||Lj ||).
Similarly, construct an SLP of sizeO(t) ≤ O(p) for the sequence R = R1R2 . . . Rt

of right symbols in reverse order, as in Lemma 2, but with prefix variables Pi

instead of suffix variables. Each variable Ai, with i ∈ [0..p− 1], derives the same
string as wℓApwr, for some suffix wℓ of L and some prefix wr of R. We can find
rules deriving these prefixes and suffixes in the SLPs produced in the previous
step, so for any variable Ai, we construct an equivalent rule of length at most
3. Add these equivalent rules, and the left and right SLP rules to a new RLSLP
G′. Do this for all SC-paths. Finally, we add the original terminal variables and
run-length variables of the RLSLP G, so G′ is an RLSLP equivalent to G.

1 Seen another way, λ(A) ̸= λ(B) because log2 π(A,W ) = log2(t · π(B,W )) > 1 +
log2 π(B,W ).
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The SLP constructed for L has all its rules of length at most 4, and 3s ≤ 3p
variables. The same happens with R. The other constructed rules also have
length at most 3, and there are p of them. Summing over all SC-paths we have
O(|G|) size. The original terminal variables and run-length variables of G have
rules of size at most 4, and we keep them. Thus, the RLSLP G′ has size O(|G|).

Any path in the derivation tree of G′ is of length O(log n). To see why, let
A0, . . . , Ap be an SC-path. Consider a path from a variable Ai to an occurrence
of a variable that is in the right-hand side of Ap in G′. Clearly this path has
length at most 2. Now consider a path from Ai to a variable A′

j in L with
i < j ≤ p. By construction this path is of the form Ai → Sk →∗ A′

j for
some suffix variable Sk (if the occurrence of A′

j is a left symbol), and its length
is at most 1 + 3 + 2(log2 ||Sk|| − log2 ||A′

j ||) ≤ 4 + 2 log2 ||Ai|| − 2 log2 ||A′
j ||.

Analogously, if A′
j is a right variable, the length of the path is bounded by

1+3+2(log2 ||Pk||− log2 ||A′
j ||) ≤ 4+2 log2 ||Ai||−2 log2 ||A′

j ||. Finally, consider
a maximal path to a leaf in the parse tree of G′. Factorize it as

A0 →∗ A1 →∗ · · · →∗ Ak

where each Ai is a variable of H (and also of G). Paths Ai →∗ Ai+1 are like
those defined in the paragraph above, satisfying that their length is bounded by
4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||. Observe that between each Ai and Ai+1, in the
DAG D there is almost an SC-path, except that the last edge is not in Escd.
The length of this path is at most

k−1∑
i=0

(4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||) ≤ k + 2 log2 ||A0|| − 2 log2 ||Ak||

By Lemma 1, k ≤ 2 log2 n, which yields the O(log n) upper bound. The con-
struction time is linear, because the SLPs of Lemma 2 are constructed in linear
time in the lengths of the SC-paths (summing to O(|G|)), and Escd(D) can
be obtained in time O(|G|) (instead of O(H)) if we represent in the DAG D
the edges of a variable A with rule A → Bt as a single edge extended with
the power t. This way, when traversing the DAG from root to sinks and sinks
to root to compute λ values, it holds that π(A,W ) = t · π(B,W ), and that
π(r,B) = t · π(r,A) + c, where c are the paths from root incoming from other
variables. Thus, each run-length edge must be traversed only once, not t times.

To have rules of size at most two, delete rules in G′ of the form A → B
(replacing all A’s by B’s), and note that rules of the form A → BCDE or
A → BCD can be decomposed into rules of length 2, with only a constant
increase in size and depth. ⊓⊔

4 Substring Range Operations in O(grl) space

4.1 Karp-Rabin Fingerprints

To answer signature κ(w[p : q]) = (
∑q

i=p w[i] · ci−p) mod µ, for a suitable integer
c and prime number µ, we use the following identity for any p′ ∈ [p..q − 1]:
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κ(w[p : q]) =

(
κ(w[p : p′]) + κ(w[p′ + 1 : q]) · cp

′−p+1

)
mod µ (1)

and then it holds

κ(w[p : p′]) =

(
κ(w[p : q])− κ(w[p′ + 1 : q]) · cp

′−p+1

)
mod µ

κ(w[p′ + 1 : q])· =
(
κ(w[p : q])− κ(w[p : p′])

cp′−p+1

)
mod µ,

which implies that, to answer κ(w[p : q]), we can compute κ(w[1 : p − 1])
and κ(w[1 : q]) and then subtract one to another. For that reason, we only
consider computing fingerprints of text prefixes. Then, the recursive calls to our
algorithm just need to know the right boundary of a prefix, namely computing
signature on the substring exp(A)[1 : j] of the string expanded by a symbol A
of our grammar can be expressed as κ(A, j).

Suppose that we want to compute the signature of a prefix w[1 : j] and that
there is a rule A → BC such that exp(A) = w[1 : q], with j ≤ q. If j = |exp(B)|
or j = q, we can have stored κ(exp(A)) and κ(exp(B)) and answer directly the
query. On the other hand, if j < |exp(B)|, we can answer κ(exp(B)[1 : j]) by
descending in the derivation tree of B. Otherwise, |exp(B)| < j < |exp(A)|,
then we can use Eq. 1 and answer (κ(exp(B)) + κ(exp(C)[1 : j − |exp(B)|] ·
c|exp(B)|) mod µ, where κ(exp(C)[1 : j − |exp(B)|] is obtained by descending
in the derivation tree of C. Then, in addition to storing κ(exp(A)) for every
nonterminal A, we also need to store c|exp(A)| mod µ and |exp(A)|. Therefore,
the cost of computing fingerprints is just the depth of the derivation tree of A.

The same does not apply for run-length rules A → Bt, because we cannot
afford the space consumption of storing ct

′·|exp(B)| mod µ for every 1 ≤ t′ ≤ t, as
this could give us a structure bigger than O(grl). Instead, we can treat run-length
rules as regular rules A → B . . . B. Then, we can use the following identity

κ(exp(Bt′)) =

(
κ(exp(B)) · c

|exp(B)|·t′ − 1

c|exp(B)| − 1

)
mod µ.

Namely, to compute κ(exp(Bt′)) we can have previously stored c|exp(B)| mod
µ and (c|exp(B)| − 1)−1 mod µ and then compute the exponentiation in time
O(log t). With this, if j ∈ [t′ · |exp(B)| + 1..(t′ + 1) · |exp(B)|] we can handle
run-length rules signatures κ(exp(Bt)[1 : j]) as(

κ(exp(Bt′)) + κ(exp(B)[1 : j − t′ · |exp(B)|]) · ct
′·|exp(B)|

)
mod µ,

where κ(exp(B)[1 : j− t′ · |exp(B)|]) is obtained by descending in the derivation
tree of B. We are saving space by storing our structure at the cost of increasing
computation time. As we show later, this time is in fact logarithmic.
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A structure for Karp-Rabin signatures. We construct a structure over
a balanced RLSLP from Theorem 1, using some auxiliary arrays. We define
an array L[A] = |exp(A)| consisting of the length of the expansion of each
nonterminal A. For terminals a, we assume L[a] = 1. Also, we define arrays K1

and K2 such that, for each nonterminal A,

K1[A] = κ(exp(A)),

K2[A] = cL[A] mod µ,

with the Karp-Rabin fingerprint of the string expanded by A and the last power
of c used in the signature multiplied by c, namely the first power needed for
signing the second part of the string expanded by A. For terminals a we assume
K1[a] = a mod µ and K2[a] = c mod µ. In addition, for rules A → Bt we store

E[A] = (K2[B]− 1)−1 mod µ.

The arrays L, Kj , and E add only O(grl) extra space. With these auxiliary
structures, we can compute fingerprints in O(log n) time.

Theorem 2 (cf. [1,5]). It is possible to construct an index of size O(grl) sup-
porting Karp-Rabin fingerprints for prefixes of w[1 : n] in O(log n) time.

Proof. Let G be a balanced RLSLP of size O(grl) constructed as in Theorem 1.
We construct arrays L, Ki, and E as shown above. To compute κ(A, j), we do
as follows:

1. If j = L[A], return K1[A].
2. If A → BC, then:

(a) If j ≤ L[B], return κ(B, j).
(b) If L[B] < j, return

(
K1[B] + κ(C, j − L[B]) ·K2[B]

)
mod µ.

3. If A → Bt for t > 2, then:
(a) If j ≤ L[B], return κ(B, j).
(b) If j ∈ [t′L[B] + 1..(t′ + 1)L[B]] with 1 ≤ t′ < t, let e = K2[B]t

′
and

f = (e− 1) · E[A] mod µ, then return(
K1[B] · f + κ(B, j − t′L[B]) · e

)
mod µ.

Every step of the algorithm takes O(1) time, so the cost is the depth of the
derivation tree of G. The only exception is case 3(b), in which we have an expo-
nentiation. For a non-terminal A → Bt, this exponentiation takes O(log t) time,
which is O(log(|exp(A)|/|exp(B)|)) time for managing every run-length rule. We
show next that O(log(|exp(A)|/|exp(B)|)) telescopes to O(log |exp(A)|), thus we
obtain O(log n) time for the overall algorithm time.

The telescoping argument is as follows. We prove by induction that the cost
k(A) to compute κ(A, j) is at most h(A)+log |exp(A)|, where h(A) is the height
of the parse tree of A and j is arbitrary. Then in case 2 we have k(A) ≤ 1 +
max(k(B), k(C)), which by induction is ≤ 1 + max(h(B), h(C)) + log |exp(A)| =
h(A)+log |exp(A)|. In case 3 we have k(A) ≤ 1+log(|exp(A)|/|exp(B)|)+k(B),
and since by induction k(B) ≤ h(B) + log |exp(B)|, we obtain k(A) ≤ h(A) +
log |exp(A)|. Since G is balanced, this implies k(A) = O(log n) when A is the
root symbol. ⊓⊔
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A0 → A1A2

A1 → A3A4

A2 → A4A5

A3 → A3
7

A4 → A7A6

A5 → A3
6

A6 → 1
A7 → 0

κ(A0, 9) = (K1[A1] + κ(A2, 4) ·K2[A1]) mod 3 = 2

κ(A2, 4) = (K1[A4] + κ(A5, 2) ·K2[A4]) mod 3 = 2

κ(A5, 2) = (K1[A6] · f + κ(A6, 1) · e) mod 3 = 0

κ(A6, 1) = K1[A6] = 1

Fig. 2. Example of a balanced RLSLP for the string 041014 (left) and fingerprint
computation over a length-8 prefix of the string generated by this RLSLP (right), with
c = 2, µ = 3, K1[A1, A4, A6] = [1, 2, 1], K2[A1, A4, A6] = [2, 1, 2], f = 1, and e = 2.

Figure 2 shows an example of this procedure.

4.2 Range Minimum Queries

A range minimum query (RMQ) over a string returns the position of the leftmost
occurrence of the minimum within a range. For these type of queries, we can
provide an O(grl) space and O(log n) time solution. In the Appendix A we also
show how to efficiently compute the related PSV/NSV queries.

Theorem 3. It is possible to construct an index of size O(grl) supporting RMQs
in O(log n) time.

Proof. Let G be a balanced RLSLP of size O(grl) constructed as in Theorem 1.
We define rmq(A, i, j) as the pair (a, k) where a is the least symbol in exp(A)[i :
j], and k is the absolute position within exp(A) of the leftmost occurrence of a
in exp(A)[i : j]. Store the values L[A] = |exp(A)|, and M [A] = rmq(A, 1, L[A]),
for every variable A, as arrays. These arrays add only O(grl) extra space. To
compute rmq(A, i, j), do as follows:

1. If i = 1 and j = L[A], return M [A].
2. If A → BC, then:

(a) If i, j ≤ L[B], return rmq(B, i, j).
(b) If i, j > L[B], let (a, k) = rmq(C, i−L[B], j−L[B]). Return (a, L[B]+k).
(c) If i ≤ L[B] and L[B] < j with j−i+1 < L[A], let (a1, k1) = rmq(B, i, L[B])

and (a2, k2) = rmq(C, 1, j−L[B]). Return (a1, k1) if a1 ≤ a2, or (a2, L[B]+
k2) if a2 < a1.

3. If A → Bt for t > 2, then:
(a) If i, j ∈ [t′L[B]+1..(t′+1)L[B]], let (a, k) = rmq(B, i−t′L[B], j−t′L[B]).

Return (a, t′L[B] + k)
(b) If i ∈ [t′L[B]+1..(t′+1)L[B]] and j ∈ [t′′L[B]+1..(t′′+1)L[B]] for some

t′ < t′′. Let (al, kl) = rmq(B, i − t′L[B], L[B]), (ar, kr) = rmq(B, 1, j −
t′′L[B]) and (ac, kc) = M [B] (only if t′′−t′ > 1). Return (a, k), where a =
min(al, ar, ac), and k is either t′L[B]+kl, t

′′L[B]+kr, or (t
′+1)L[B]+kc

(only if t′′ − t′ > 1), depending on which of these positions correspond
to an absolute position of a in exp(A), and is the leftmost of them.
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We analyze the number of recursive calls of the algorithm above. For cases 2(a),
2(b) and 3(a) there is only one recursive call, over a variable which is deeper in
the derivation tree of G. In cases 2(c) and 3(b), it could be that two recursive
calls occur, but overall, this can happen only one time in the whole run of
the algorithm. The reason is that when two recursive calls occur at the same
depth, from that point onward, the algorithm will be computing rmq(·) over
suffixes or prefixes of expansions of variables. If we try to compute for example
rmq(A, i, L[A]), and A is of the form A → BC, if i < L[B], the call over B
is again a suffix call. If A → Bt for some t > 2, and we want to compute
rmq(A, i, L[A]), we end with a recursive call over a suffix of B too. Hence, there
are only O(log n) recursive calls to rmq(·). The non-recursive step takes constant
time, even for run-length rules, so we obtain O(log n) time. ⊓⊔

4.3 More general functions

More generally, we can compute a wide class of functions in O(grl) space and
O(log n) applications of the function.

Theorem 4. Let f be a function from strings to a set of size nO(1), such that
f(xy) = h(f(x), f(y), |x|, |y|) for any strings x and y, where h is a function
computable in time O(time(h)). Let w[1 : n] be a string. It is possible to construct
an index to compute f(w[i : j]) in O(grl) space and O(time(h) · log n) time.

Proof. Let G be a balanced RLSLP of size grl constructed as in Theorem 1.
Store the values L[A] = |exp(A)| and F [A] = f(exp(A)), for every variable A,
as arrays. These arrays add only O(grl) extra space because the values in F fit
in O(log n)-bit words. To compute f(A, i, j) = f(exp(A)[i : j]), we do as follows:

1. If i = 1 and j = L[A], return F [A].
2. If A → BC, then:

(a) If i, j ≤ L[B], return f(B, i, j).
(b) If i, j > L[B], return f(C, i− L[B], j − L[B]).
(c) If i ≤ L[B] < j, return

h(f(B, i, L[B]), f(C, 1, j − L[B]), L[B]− i+ 1, j − L[B]).

3. If A → Bt for t > 2, then:
(a) If i, j ∈ [t′L[B] + 1..(t′ + 1)L[B]], return f(B, i− t′L[B], j − t′L[B]).
(b) If i ∈ [t′L[B]+1..(t′+1)L[B]] and j ∈ [t′′L[B]+1..(t′′+1)L[B]] for some

t′ < t′′, let

fl = f(B, i− t′L[B], L[B])

fr = f(B, 1, j − t′′L[B])

fc(0) = f(ε)

fc(1) = F [B]

fc(i) = h(fc(i/2), fc(i/2), L[B]i/2, L[B]i/2) for even i

fc(i) = h(fc(1), fc(i− 1), L[B], L[B]i−1) for odd i

hl = h(fl, fc(t
′′ − t′ − 1), (t′ + 1)L[B]− i+ 1, (t′′ − t′ − 1)L[B])
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then return

h(hl, fr, (t
′ + 1)L[B]− i+ 1 + (t′′ − t′ − 1)L[B], j − t′′L[B] + 1)

Just like when computing RMQs in Theorem 3, there is at most one call in the
whole algorithm invoking two non-trivial recursive calls. To estimate the cost
of each recursive call, the same analysis as for Theorem 2 works, because the
expansion of whole nonterminals is handled in constant time as well, and the
O(log t) cost of the run-length rules telescopes in the same way.

The precise telescoping argument is as follows. We prove by induction that
the cost c(A) to compute f(A, i, L[A]) or f(A, 1, j) (i.e., the cost of suffix or prefix
calls) is at most time(h) · (h(A) + log |exp(A)|), where h(A) is the height of the
parse tree of A and i, j are arbitrary. Then in case 2 we have c(A) ≤ time(h) +
max(c(B), c(C)), which by induction is at most time(h) · (1+ max(h(B), h(C))+
log |exp(A)|) = time(h) · (h(A) + log |exp(A)|). In case 3 we have that the cost
is c(A) ≤ time(h) · log(|exp(A)|/|exp(B)|) + c(B), which by induction yields

c(A) ≤ time(h) · (log(|exp(A)|/|exp(B)|) + h(B) + log |exp(B)|))
≤ time(h) · (h(A) + log |exp(A)|)

In the case that two non-trivial recursive calls are made at some point when
computing f(Ak, i, j), this is the unique point in the algorithm where it happens,
so we charge only time(h) · (h(Ak) + log |exp(Ak)|) to the cost of Ak. Then
the total cost of the algorithm starting from A0 is at most time(h) · (h(A0) +
log |exp(A0)|) plus the cost time(h) · (h(Ak) + log |exp(Ak)|) that we did not
charge to Ak. This at most doubles the cost, maintaining it within the same
order. Because the grammar is balanced, we obtain O(time(h) · log n) time. ⊓⊔

5 Conclusion

In this work, we have shown that any RLSLP can be balanced in linear time
without increasing it asymptotic size. This allows us to compute several sub-
string range queries like RMQ, PSV/NSV (in the Appendix A), and Karp-
Rabin fingerprints O(log n) time within O(grl) space. More generally, in O(grl)
space we can compute the wide class of substring functions that satisfy f(xy) =
h(f(x), f(y), |x|, |y|), in O(log n) times the cost of computing h. Our work also
simplifies some previously established results like retrieving substrings inO(log n)
space and within O(grl) space.

An open challenge is to efficiently count the number of occurrences of a
pattern in the string, within O(grl) space [5, Appendix A].
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A PSV and NSV queries

Other relevant queries are previous smaller value (PSV) and next smaller value
(NSV) [6,9], defined as follows:

– psv(i) = max({j | j < i, w[j] < w[i]} ∪ {0})
– nsv(i) = min({j | j > i, w[j] < w[i]} ∪ {n+ 1})
– psv′(i, d) = max({j | j < i, w[j] < d} ∪ {0})
– nsv′(i, d) = min({j | j > i, w[j] < d} ∪ {n+ 1})

Note that the first two queries can be computed by accessing w[i] in O(log n)
time, and then calling one of the latter two queries, respectively. We show that
the latter queries can be answered in O(grl) space and O(log n) time.

Theorem 5. It is possible to construct an index of size O(grl) supporting PSV
and NSV queries in O(log n) time.

Proof. Let G be a balanced RLSLP of size O(grl) constructed as in Theorem 1.
Store the values L[A] = |exp(A)| and M [A] = min({exp(A)[i] | i ∈ [1..L[A]]}),
for every variable A, as arrays. These arrays add only O(grl) extra space. To
compute psv′(A, i, d), do as follows:

1. If i = 1 or M [A] ≥ d, return 0.
2. If A → a, return 1.
3. If A → BC, then:

(a) If i ≤ L[B] + 1, return psv′(B, i, d).
(b) If L[B] + 1 < i, let k = psv′(C, i − L[B], d). If k > 0, return L[B] + k,

otherwise, return psv′(B, i, d).
4. If A → Bt for t > 2, then:
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(a) If i ≤ L[B] + 1, return psv′(B, i, d).
(b) If i ∈ [t′L[B] + 1..(t′ + 1)L[B]], let k = psv′(B, i − t′L[B], d). If k > 0,

return t′L[B] + k. Otherwise, return (t′ − 1)L[B] + psv′(B, i, d).
(c) If L[A] < i, return (t− 1)L[B] + psv′(B, i, d).

The guard in point 1 guarantees that, in the simple case where i is beyond
|exp(A)|, at most one recursive call needs more than O(1) time. In general, we
can make two calls in case 3(b), but then the second call (inside B) is of the
simple type from there on. The case of run-length rules is similar. Thus, we
obtain O(log n) time. The query nsv′ is handled similarly. ⊓⊔
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