
Contextual Pattern Matching?

Gonzalo Navarro[0000−0002−2286−741X]

CeBiB — Center for Biotechnology and Bioengineering,
Department of Computer Science, University of Chile.

Beauchef 851, Santiago, Chile. gnavarro@dcc.uchile.cl

Abstract. The research on indexing repetitive string collections has
focused on the same search problems used for regular string collections,
though they can make little sense in this scenario. For example, the basic
pattern matching query “list all the positions where pattern P appears”
can produce huge outputs when P appears in an area shared by many
documents. All those occurrences are essentially the same.
In this paper we propose a new query that can be more appropriate in
these collections, which we call contextual pattern matching. The basic
query of this type gives, in addition to P , a context length `, and asks to
report the occurrences of all distinct strings XPY , with |X| = |Y | = `.
While this query is easily solved in optimal time and linear space, we
focus on using space related to the repetitiveness of the text collection
and present the first solution of this kind. Letting r be the maximum of
the number of runs in the BWT of the text T [1..n] and of its reverse, our
structure uses O(r log(n/r)) space and finds the c contextual occurrences
XPY of (P, `) in time O(|P | log logn+c logn). We give other space/time
tradeoffs as well, for compressed and uncompressed indexes.

1 Introduction

About a decade ago, it was realized that many of the fastest-growing text col-
lections of the “data deluge” were highly repetitive [17]. Since then, a number of
research results have focused on developing indexes whose size is related to some
good measure of compressibility for highly repetitive string collections [21]. To-
day one can find indexes built on measures like the size of the Lempel-Ziv parse
[16, 11, 9, 4], of a grammar generating only the text [8, 25], of a string attractor
[23, 7], the number of runs in the Burrows-Wheeler Transform (BWT) [6] of the
text [17, 12], or the size of an automaton [5] recognizing text substrings [2, 1].

All these indexes are devoted to the basic pattern matching query: given a
short pattern string P [1..m], output all the occ positions where it occurs in the
text T [1..n]. Some indexes have managed to solve this problem in optimal time,
O(m + occ), using space bounded by some function of the above measures [1,
12], whereas others have low polylogarithmic factors multiplying m or occ.

While very reasonable in general, this query can be pretty useless in a highly
repetitive text collection. A pattern P that appears inside a highly repeated

? Supported in part by Fondecyt grant 1-200038 and Basal Funds FB0001, Chile.

2 G. Navarro

text area will be reported myriad times, wasting a lot of effort to produce and
to handle the result. We are not aware of many efforts to propose queries that
are better adapted to a scenario of high repetitiveness.

In this paper we make a first step in this direction. We propose a query called
contextual pattern matching which, in addition to P , gives a context length `.
We then want one element of output per distinct context where P appears, that
is, all the positions where P appears preceded by the same string X of length `
and followed by the same string Y of length ` shall be reported only once.

Definition 1. The contextual pattern matching problem on a text T [1..n] is,
given a pair (P [1..m], `), return a position in T for each of the c distinct strings
XPY occurring in T , for all X,Y such that |X| = |Y | = `. For the occurrences
near the extremes of T , assume T is preceded and followed by ` copies of the
special symbol $, which cannot appear in P .

It is not hard to solve this query in optimal time O(m + c) if we use linear
space, O(n), by using suffix trees [26] and other linear-space auxiliary structures.
We are interested, however, in using space related to a relevant repetitiveness
measure. We show that, if we call r the maximum of the number of equal-letter
runs in the BWT of T or its reverse, then a data structure using O(r log(n/r))
space can solve contextual pattern matching in time O(m log log n+ c log n). We
also show how any compressed text index can be extended with O(n) bits and
efficiently solve this query; this can be interesting for mildly repetitive texts.

2 Preliminaries

We index a text T [0..n] over alphabet [1..σ], where T [0] = T [n] = $ is a special
terminator smaller than all the other alphabet symbols. The suffix array [18]
SA[1..n] of T lists all the suffixes T [i..n] for i ≥ 1 in lexicographic order, and the
LCP array, LCP [1..n], gives the length of the longest common prefix between
consecutive suffix array entries, LCP [i] = lcp(T [SA[i]..n], T [SA[i− 1]..n]).

One relevant measure of repetitiveness is called r, the number of equal-letter
runs in the Burrows-Wheeler Transform (BWT) of T [1..n]. The BWT [6] is a
reordering of the symbols of T obtained by collecting the symbol preceding the
lexicographically sorted suffixes of T . That is, if SA[1..n] is the suffix array of T ,
then BWT [i] = T [SA[i]− 1]. For example, it is known that r = O(γ log2 n) [14],
where γ is the smallest attractor of T [15].

Gagie et al. [12] introduce data structures of size O(r) that can find the
suffix array range of any pattern P [1..m] in time O(m log log(σ + n/r)) ⊆
O(m log log n), and of size O(r log(n/r)) that can compute any entry SA[i],
SA−1[i], and LCP [i], in time O(log(n/r)). The O(log(n/r))-space data struc-
tures are binary context-free grammars of height O(log(n/r)) built on the dif-
ferential versions of the arrays, for example, DSA[i] = SA[i] − SA[i − 1] in the
case of the suffix array. The grammars exploit the fact that these differential
sequences inherit the repetitiveness of the text.

Contextual Pattern Matching 3

3 Our Solution

We present a suffix-array-oriented solution that solves a stronger variant of the
problem: we give the c suffix array ranges of all the distinct contexts XPY where
P occurs in T . We can then report one text position for each, but also determine
how many times each context occurs, and report its occurrences one by one.

We store the r-bounded data structures of Gagie et al. [12] for both T [0..n]
and its reverse T rev[0..n]. We call r the maximum of the number of equal-letter
runs in the BWT of T and of T rev, therefore the structures we use take space
O(r log(n/r)). The general strategy to solve a query (P [1..m], `) is as follows:

1. We first find, in O(m log log n) time, the suffix array range [rs..re] of P rev

(i.e., P read backwards) in the suffix array SA′ of T rev.
2. We then partition [rs..re] into k ≤ c maximal consecutive intervals [rsi, rei]

where the suffixes in each interval share their first m + ` symbols, that is,
T rev[SA′[p]..SA′[p] +m+ `− 1] = P revXrev

i for all rsi ≤ p ≤ rei.
3. We map each interval SA′[rsi, rei] to the interval SA[dsi..dei] corresponding

to the suffixes that start with XiP .
4. We partition each interval SA[dsi..dei] into ki maximal consecutive subin-

tervals SA[dsji ..de
j
i] where the suffixes in each subinterval share their first

m+ 2` symbols, T [SA[p]..SA[p] +m+ 2`− 1] = XiPYj for all dsji ≤ p ≤ de
j
i .

5. We report the c =
∑k
i=1 ki resulting subintervals SA[dsji ..de

j
i] and, if desired,

a text position SA[p] with dsji ≤ p ≤ de
j
i for each.

We now solve the two nonobvious subproblems of our general strategy. The
first, in points 2 and 4, is to partition a suffix array interval into subintervals of
suffixes sharing their first t symbols. The second, in point 3, is how to map an
interval of the suffix array of T rev into the corresponding interval in the suffix
array of T . The solutions we find have a complexity of O(log n) per item output,
which leads to our promised result.

Theorem 1. Let T be a text of length n, and let r be the maximum of the
number of equal letter runs of its BWT and the BWT of its reverse. Then there
is a data structure of size O(r log(n/r)) that finds the c contextual occurrences
of (P [1..m], `) in time O(m log log n+ c log n).

The data structures [12] can be built in O(n) time and space, or in O(n log n)
time and O(r log(n/r)) space, the same as the final space of the structures. The
extra data we add next do not change the space nor construction complexities.

Example. Figure 1 shows an example on the text T [0..17] = $alabaralalabarda$,
where we search for P = a with context length ` = 1. Step 1 finds the inter-
val SA′[rs..re] = SA′[2..9] of all the occurrences of P rev = a on T rev. Step 2
finds the places where LCP ′[p] < m + ` = 2 (see Section 3.1), for p ∈ [2..9],
namely 2, 3, 5, 6, 9. These are the starting positions of the intervals [rsi, rei] =
[2, 2], [3, 4], [5, 5], [6, 8], [9, 9], and correspond to the contexts P revXrev

i = a$, ab, ad,

4 G. Navarro

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T $ a l a b a r a l a l a b a r d a $
SA 17 16 3 11 1 9 7 5 13 4 12 15 2 10 8 6 14

ds1de1︸︷︷︸ ds2 de2︸ ︷︷ ︸ds3de3︸︷︷︸ ds4 de4︸ ︷︷ ︸ds5de5︸︷︷︸
$al︸︷︷︸ bar︸ ︷︷ ︸ da$︸︷︷︸ lab︸ ︷︷ ︸ lal︸︷︷︸ ral︸︷︷︸

LCP 0 0 1 4 1 6 3 1 2 0 3 0 0 5 2 0 1

↑$al ↑bar ↑da$ ↑lab ↑lal ↑ral
T rev $ a d r a b a l a l a r a b a l a $
SA′ 17 16 12 4 1 14 6 8 10 13 5 2 15 7 9 11 3

rs re︸ ︷︷ ︸
rs1re1︸︷︷︸ rs2 re2︸ ︷︷ ︸rs3re3︸︷︷︸ rs4 re4︸ ︷︷ ︸ rs5re5︸︷︷︸

LCP ′ 0 0 1 5 1 1 3 3 1 0 4 0 0 2 2 0 6

↑a$ ↑ab ↑ad ↑al ↑ar
C – 5 8 9 2 3 4 6 7 10 11 12 13 14 15 16 17

Fig. 1. Example trace.

al, ar. Step 3 maps those intervals to SA (see Section 3.2), [dsi, dei] = [5, 5], [10, 11],
[12, 12], [13, 15], [16, 16]; they retain the same order of SA′ only because ` = 1.
Step 4 splits each interval at subintervals starting wherever LCP [p] < m+2` = 3,
namely positions 5, 10, 12, 13, 15, 16. Therefore, the resulting subintervals (i.e.,
the output) are [5, 5], [10, 11], [12, 12], [13, 14], [15, 15], [16, 16], corresponding to
the contexts al, bar, da, lab, lal, ral.

We also show the array C used in Section 3.3; note that each dsi corresponds
to mapping the minimum position of C in [rsi, rei].

3.1 Partitioning a suffix array interval

Given a range [s..e] of the suffix array of a string S, and a length t, we must par-
tition it into maximal subranges [s1..e1], . . . , [sk..ek] where the suffixes starting
in each subrange share their first t symbols. Note that the positions s2, . . . , sk
are the values in [s..e] where LCP [i] < t, where LCP is the LCP array of S.

We store a binary grammar of height h = O(log n) on DLCP [i] = LCP [i]−
LCP [i− 1], with DLCP [1] = 0 [12]. For each grammar nonterminal A, expand-
ing to a sequence exp(A) of positive and negative integers of DLCP (and for
terminals A, assuming exp(A) = A), we store

– w(A) = |exp(A)|, the number of consecutive DLCP cells A expands to;

– s(A), the sum of the differential values in exp(A), s(A) =
∑w(A)
j=1 exp(A)[j].

– m(A), the minimum cumulative value reached inside exp(A), that is, m(A) =

min1≤i≤w(A)

∑i
j=1 exp(A)[j].

With w(A) and s(A), a standard procedure descends in time O(h) to the sth
and eth leaves in the parse tree of DLCP , finding both (1) the value of LCP [s]

Contextual Pattern Matching 5

and (2) the O(h) maximal nodes (regarding ancesorship) that cover DLCP [s..e]
in the parse tree. To reach the xth leaf, we descend from the root node and
move to the left child A if w(A) ≥ x, otherwise we move to the right child and
decrease x by w(A). To find (1) we add up the values s(A) of the left children A
every time we descend to the right child in the path to the sth leaf. To find (2)
we do the paths to the sth and eth leaves and, once they diverge at a node v,
we collect the right children when we go left in our path from v to the sth leaf,
and the left children when we go right in our path from v to the eth leaf.

Let Ai be the O(h) maximal parse tree nodes that cover DLCP [s..e]. They
start in [s..e] at positions p1 = s and pi+1 = pi +w(Ai). The LCP values at the
positions pi are l1 = LCP [s] and li+1 = li+s(Ai). Note then that each Ai where
li + m(Ai) < t contains at least one position sj where LCP [sj] < t; the others
can be discarded.

For each Ai where li +m(Ai) < t, we consider its rule Ai → BC. Note that
B and C start at p = pi and p′ = pi +w(B) and their first LCP values are l = li
and l′ = li + s(B), respectively. We recursively continue with B if l +m(B) < t
and with C if l′ + m(C) < t (we can continue by both). When we arrive at a
terminal grammar symbol, we can report its value p as a new position sj .

We then report the positions s2, . . . , sk in left-to-right order by considering
A1, A2, . . . in turn and considering B before C when Ai → BC. Since every time
we consider a node we know that it contains an answer, the total time is O(h)
plus O(h) for each of the k − 1 starting positions s2, . . . , sk. The total time is
then O(k h) ⊆ O(k log n), that is, O(log n) per range we output.

3.2 Mapping suffix array intervals

Given the suffix array interval SA′[s′..e′] of T rev, consisting of all the suffixes
that start with a string of length t, we want to find the corresponding suffix array
interval SA[s..e] of T . With the suffix array SA′ of T rev and the inverse suffix
array SA−1 of T , we can translate any such suffix, say p = SA−1[n − SA′[s′] −
(m+ `− 1)] (or p = SA−1[1] if n− SA′[s′]− (m+ `− 1) ≤ 0). Our index stores
the structures to compute those in time O(log n) [12].

We know that s ≤ p ≤ e, so the task is to extend p in both directions: s ≤ p
is the largest position where LCP [s] < t and e ≥ p is the smallest position where
LCP [e+ 1] < t. We show how to find e; the case of s is analogous.

Just as in Section 3.1, we compute LCP [p] and find the O(h) maximal nodes
A1, . . . that cover the area DLCP [p..n]. We then compute the values pi and li,
and scan A1, . . . for the first Ai such that li + m(Ai) < t. Then, if Ai → BC,
we continue by B if li + m(B) < t; otherwise we continue by C with values
p = pi + w(B) and l = li + s(B). In O(h) time we reach a terminal symbol,
whose position p is, precisely, e+ 1. The total time is then O(h) = O(log n).

3.3 Running on Other Indexes

If we are willing to store uncompressed data structures of O(n) space, we can find
the interval of point (1) in RAM-optimal time O(m/ logσ n) using an enhanced

6 G. Navarro

suffix tree [22] on T rev. The k intervals [rsi, rei] of point (2) can be found in O(k)
time using range minimum queries on the LCP array of T rev, LCP ′: rmq(i, j) =
mini≤p≤j LCP ′[p]. We use the standard procedure for 3-sided queries: compute
p = rmq(rs, re) and, if LCP ′[p] < t, recurse on [rs, p− 1], report p, and recurse
on [p+ 1, re]. Queries rmq take constant time even using 2n+ o(n) bits of space
[10]. Each such interval SA′[rsi, rei] can then be mapped (point 3) to SA[dsi, dei]
by storing an array C[1..n] with C[i] = SA−1[n − SA′[i]] and building an rmq
data structure on C, so that dsi = SA−1[n− SA′[rmqC(rsi, rei)]− (m+ `− 1)]
and dei = dsi+(rei−rsi). (Note that we build C on the values SA−1[n−SA′[i]],
not SA−1[n − SA′[i] − (m − ` + 1)], because the latter depend on ` and all the
suffixes in this range share their first m+` symbols anyway, so the lexicographic
comparison is the same.) Finally, point (4) on each SA[dsi, dsi] is solved as
for point (2), now on the LCP array of T . The total time is then the optimal
O(m/ logσ n+ c).

Theorem 2. Let T be a text of length n over an alphabet of size σ. Then there
is a data of size O(n) that finds the c contextual occurrences of (P [1..m], `) in
time O(m/ logσ n+ c).

More generally, if we have an index that finds the suffix array range [rs..re]
for P in T rev, and can extract any cell of SA, SA−1, and SA′, we can use it for
contextual reporting using our general solution. We need O(n) extra bits for the
various rmq data structures. Note we do not need to store C explicitly because
we can simulate it using SA′ and SA−1. Further, the arrays LCP ′ and LCP are
simulated with other 2n + o(n) bits if we have access to SA′ and SA [24]. We
then have the following result.

Theorem 3. Let T be a text of length n and an index on T rev using S bits of
space that finds the suffix array range of P [1..m] in time ts(m), and computes any
cell of SA, SA′, or SA−1 in time tSA, where SA and SA′ are the suffix arrays of T
and T rev, respectively. Then there is a data structure using S+O(n) bits of space
that finds the c contextual occurrences of (P [1..m], `) in time O(ts(m) + c tSA).

Building on an index [3] that uses nHk(T rev) + o(n log σ) + O(n) bits of
space for any k < α logσ n and constant 0 < α < 1, where Hk(S) < log σ is
the kth order empirical entropy of string S [19], we have ts(m) = O(m) and
tSA = O(log n). The index provides access to SA′ and (SA′)−1 by storing their
values at regular intervals of T rev, of length s = Θ(log n) in our case, and marking
the sampled positions of SA′ in a bitvector. It provides a way to move in constant
time from i such that SA′[i] = j to i′ = LF (i) such that SA′[i′] = j − 1. Thus,
if SA′[i] is not sampled, it can move s′ < s times until finding a sampled cell
SA′[LF s

′
(i)] = j′, and then SA′[i] = j′+s′. The same LF function is used j′−j <

s times, for j′ = dj/se · s, to find (SA′)−1[j], by starting from the sampled value
(SA′)−1[j′] and tracing it back to (SA′)−1[j] = LF j

′−j((SA′)−1[j′]). Enhancing
it to computing values of SA and SA−1 (which correspond to T) requires to
store their sampled values as well, because T rev[j] = T [n − j]. Finally, because
Hk(T) = Hk(T rev) [20, Sec. 11.3.2], we have the following result.

Contextual Pattern Matching 7

Theorem 4. Let T be a text of length n over an alphabet of size σ, with kth
order empirical entropy Hk(T), for any k < α logσ n and constant 0 < α < 1.
Then there is a data structure of nHk(T) + o(n log σ) +O(n) bits that finds the
c contextual occurrences of (P [1..m], `) in time O(m+ c log n).

We can speed up this index by using compact space, O(n log σ) bits (i.e.,
proportional to a plain representation of T). In this case, any cell of SA or SA−1

(and of SA′ by building the structures on T rev as well) can be computed in time
O(logεσ n) for any constant ε > 0 [13]. Further, this index finds the suffix array
interval of P in almost RAM-optimal time, O(m/ logσ n+ logεσ n).

Theorem 5. Let T be a text of length n over an alphabet of size σ. Then there
is a data structure using O(n log σ) bits that finds the c contextual occurrences
of (P [1..m], `) in time O(m/ logσ n+ (c+ 1) logεσ n), for any constant ε > 0.

4 Conclusions

We have proposed a query that should be more meaningful than standard pattern
locating in the case of highly repetitive text collections. Instead of simply locating
all the positions of T [1..n] where P [1..m] appears, we give a context length `
and ask for the occurrences of all the c distinct strings XPY in the text, for any
X,Y where |X| = |Y | = `. If P occurs inside a highly repeated substring, many
essentially identical occurrences will be reported one by one with the standard
locating, whereas we will report only a single suffix array range comprising all
the occurrences of the same context XPY .

While the query can be solved inO(n) space and RAM-optimalO(m/ logσ n+
c) time, we focus on using space proportional to the repetitiveness of T . We
use one such measure, the number r(S) of equal-letter runs of the Burrows-
Wheeler Transform of the string S. Within space O(r log(n/r)), where r =
max(r(T), r(T rev)), we solve the problem in time O(m log log n+ occ log n). We
also show how to adapt our general strategy to any compressed text index.

This is a first step towards studying queries that make more sense on highly
repetitive text collections, possibly deviating from the classical ones used for
regular collections. Some relevant remaining questions are: Can the obtained
space/time tradeoffs be improved? Are there other relevant and challenging
queries that are better suited to highly repetitive text collections?

References

1. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In:
Proc. 28th CPM. pp. 7:1–7:13 (2017)

2. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Proc. 26th CPM. pp. 26–39 (2015)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms 10(4), article 23 (2014)

8 G. Navarro

4. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for
Lempel-Ziv compressed indexing. Theoretical Computer Science 713, 66–77 (2018)

5. Blumer, A., Blumer, J., Haussler, D., McConnell, R.M., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM 34(3),
578–595 (1987)

6. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

7. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. CoRR 1811.12779 (2019)

8. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Proc.
19th SPIRE. pp. 180–192 (2012)

9. Ferrada, H., Kempa, D., Puglisi, S.J.: Hybrid indexing revisited. In: Proc. 20th
ALENEX. pp. 1–8 (2018)

10. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

11. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Proc. 11th LATIN. pp. 731–742
(2014)

12. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. Journal of the ACM 67(1), article 2 (2020)

13. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35(2), 378–407
(2006)

14. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler Transform conjec-
ture. CoRR 1910.10631 (2019)

15. Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors.
In: Proc. 50th STOC. pp. 827–840 (2018)

16. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theo-
retical Computer Science 483, 115–133 (2013)

17. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology 17(3), 281–308
(2010)

18. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

19. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the ACM
48(3), 407–430 (2001)

20. Navarro, G.: Compact Data Structures – A practical approach. Cambridge Uni-
versity Press (2016)

21. Navarro, G.: Indexing highly repetitive string collections. CoRR abs/2004.02781
(2020)

22. Navarro, G., Nekrich, Y.: Time-optimal top-k document retrieval. SIAM Journal
on Computing 46(1), 89–113 (2017)

23. Navarro, G., Prezza, N.: Universal compressed text indexing. Theoretical Computer
Science 762, 41–50 (2019)

24. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

25. Takabatake, Y., Tabei, Y., Sakamoto, H.: Improved ESP-index: A practical self-
index for highly repetitive texts. In: Proc. 13th SEA. pp. 338–350 (2014)

26. Weiner, P.: Linear Pattern Matching Algorithms. In: Proc. 14th FOCS. pp. 1–11
(1973)

