
Implementing the Topological Model Succinctly?

José Fuentes-Sepúlveda1, Gonzalo Navarro1,3, and Diego Seco2,3

1 Department of Computer Science, University of Chile, Chile
2 Computer Science Department, Universidad de Concepción, Chile

3 IMFD — Millennium Institute for Foundational Research on Data, Chile
{jfuentes,gnavarro}@dcc.uchile.cl, dseco@udec.cl

Abstract. We show that the topological model, a semantically rich
standard to represent GIS data, can be encoded succinctly while effi-
ciently answering a number of topology-related queries. We build on
recent succinct planar graph representations so as to encode a model
with m edges within 4m+ o(m) bits and answer various queries relating
nodes, edges, and faces in o(log logm) time, or any time in ω(logm) for
a few complex ones.

1 Introduction

Low-cost sensors are generating huge volumes of geographically referenced data,
which are valuable in applications such as urban planning, smart-cities, self-
driving cars, disaster response, and many others. Geographic Information Sys-
tems (GIS) that enable capture, modeling, manipulation, retrieval, analysis and
presentation [13] of such data are thus gaining research attention. GIS models
can be classified at different levels. For example, on the conceptual level, entity-
and field-based approaches exist, whereas on the logical level, vector and raster
are the most popular models. In this work we focus on the representation of the
geometry of a collection of vector objects, such as points, lines, and polygons.

There are three common representations of collections of vector objects,
called spaghetti, network, and topological model, which mainly differ in the ex-
pression of topological relationships among the objects [11]. In the spaghetti
model, the geometry of each object is represented independently of the others
and no explicit topological relations are stored. Despite its drawbacks, this is
the most used model in practice because of its simplicity and the lack of efficient
implementations of the other models. Those other two models are similar, and
explicitly store topological relationships among objects. The network model is
tailored to graph-based applications, such as transportation networks, whereas
the topological model focuses on planar networks (e.g., all sorts of maps). This

? Funded by the Millennium Institute for Foundational Research on Data (IMFD),
Chile and by European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 690941 (project BIRDS).
The first author received funding from Conicyt Fondecyt grant 3170534. The last
author received funding from Conicyt Fondecyt regular grant 1170497.

2 J. Fuentes-Sepúlveda et al.

model is more efficient to answer topological queries, which are usually expensive,
and thus it is gaining popularity in spatial databases such as Oracle Spatial.

In this work we focus on those topological queries where this model stands
out, and show that they can be efficiently answered within very little space.
We build on recent results on connected planar graphs [6] in order to pro-
vide a succinct-space representation of the topological model (4m + o(m) bits,
where m is the number of edges) that efficiently support a rich set of topolog-
ical queries (most of them in o(log logm) time), which include those defined in
current standards and flagship implementations. Our main technical result is a
new O(log logm

log log logm) time algorithm to determine if two nodes are neighbors; then
many other results are derived via analogous structures and exploiting duality.
These results improve upon those of the planar graph representation on which
we build [6] (see also that article for a wider coverage of previous work).

2 The Topological Model and Our Contribution

The topological model represents a planar subdivision into adjacent polygons.
Hereinafter, we will refer to these polygons as faces. A face is represented as a
sequence of edges, each of them being shared with an adjacent face, which may be
the outer face. An edge connects two nodes, which are associated with a point in
space, usually the Euclidean space. Edges also have a geometry, which represents
the boundary shared between its two faces. This eliminates redundancy in the
stored geometries and also reduces inconsistencies. In Fig. 1, faces are named
with capital letters, A to H, A being the outer face. Face F is defined by the
sequence of nodes 〈1, 8, 7, 6〉, and edge (6, 7) is shared by faces D and F . Note,
however, that a pair of nodes is insufficient in general to name an edge, because
multiple edges may exist between two nodes.

Those topological concepts are related with geographic entities. The basic
geographic entity is the point, defined by two coordinates. Each node in the
topological model is associated with a point, and each edge is associated with
a sequence of points describing a sequence of segments that form the boundary
between the two faces that share such edge. Each face is related to the area
limited by its edges (the external face is infinite).

The international standard ISO/IEC 13249-3:2016 [1] defines a basic set
of primitive operations for the model, which are also implemented in flagship
database systems4. Some of the queries relate the geometry with the topology,
for example, find the face covering a point given its coordinates. Those queries
require data structures that store coordinates, and are therefore bound to use
considerable space. Instead, we focus on pure topological queries, which can be
solved within much less space and can encompass many problems once mapped
to topological space. We also restrict our work to a static version of the model,
in which case our representation supports a much richer set of access operations.

Topological queries can be also solved using the geometries, but such ap-
proach is computationally very expensive. We propose instead an approach in

4 http://postgis.net/docs/Topology.html

Implementing the Topological Model Succinctly 3

1. Relations between entities of the same type

(1.a) Do edges e and e′ share a node? O(1) [6] + Lemma 2
(1.b) Do edges e and e′ border the same face? O(1) [6] + Lemma 2

(1.c) Do nodes u and v share an edge? O(log logm
log log logm

) Lemma 3

(1.d) Do faces x and y share an edge? O(log logm
log log logm

) Lemma 4

(1.e) Do nodes u and v border the same face? any in ω(
√
m logm) Lemma 7

(1.f) Do faces x and y share a node? any in ω(
√
m logm) Lemma 7

2. Relations between entities of different type

(2.a) Is edge e incident on node u? O(1) [6] + Lemma 2
(2.b) Is edge e on the border of face x? O(1) [6] + Lemma 2
(2.c) Is face x incident on node u? any in ω(logm) Lemma 6

3. Listing related entities (time per element output)

(3.a) Endpoints of edge e O(1) [6] + Lemma 2
(3.b) Faces divided by edge e O(1) [6] + Lemma 2
(3.c) Nodes/edges neighbors of node u O(1) [6]
(3.d) Faces bordering face x O(1) [6] and duality
(3.e) Faces incident on node u O(1) Lemma 5
(3.f) Nodes/edges bordering face x O(1) Lemma 5

4. Counting related entities (nodes/faces counted with duplicities)

(4.a) Nodes/edges/faces neighbors of node u any in ω(1) [6] extended
(4.b) Faces/edges/nodes bordering face x any in ω(1) [6] and duality

Table 1: The queries we consider on the topological model and the best results
within succinct space. Our (sometimes partial) contributions are in boldface.

which most of the work is done on an in-memory compact index on the topology,
resorting to the geometric data only when necessary. Such an approach enables
handling geometries that do not fit in main memory, but whose topologies do,
and still solving queries on them with reasonable efficiency because secondary-
memory accesses are limited. To illustrate this, consider the example of given
the coordinates of two query points, tell if they lie on adjacent faces, and if so,
which edge separates them. In our approach, this type of query can be solved
with just two mappings from the geographical space to the topological space,
and then using pure topological queries.

Table 1 lists a set of topological queries we consider on the topological model.
They comprehensively consider querying about relations between two given enti-
ties of the same or different type, and listing or counting entities related to a given
one. The set considerably extends the queries available in standards or flagship
implementations, which comprise just intersects (1.d and 1.f), GetNodeEdges
(3.c), and ST GetFaceEdges (3.e).

A preliminary result essentially hinted in previous work [6], Lemma 2, sorts
out a number of simple queries (all [123].[ab]) in constant time. Our main result
is Lemma 3, which shows how to determine if two given nodes are connected by
an edge (1.c) in time O(log logm

log log logm), adding only o(m) bits to the main structure.
The same procedure on the dual graph, Lemma 4, determines in the same time if

4 J. Fuentes-Sepúlveda et al.

two given faces share an edge (1.d, a variant of the standard query intersects).
Another consequence of Lemma 2 is Lemma 5, which extends previous work [6]
listing the neighbors of a node (3.c, GetNodeEdges) in optimal time to list the
faces incident on a node (3.e) and, by duality, list the faces or edges bordering a
face (3.d, ST GetFaceEdges) and the nodes bordering a face (3.f), all in optimal
time. We also extend previous results [6] that count the edges incident on a node
(4.a) in any time in ω(1) to count nodes, edges, or faces incident on a node or
bordering a face (4.b).

Finally, our solution to determine if a given node is in the frontier of a given
face (2.c) is costlier, in ω(logm), and that to determine if two given nodes border
the same face (1.e) or if two given faces share some node (1.f, a variant of query
intersects) cost even more, in ω(

√
m logm). The last two solutions build on

Lemmas 3 and 4, and we conjecture that their times cannot be easily improved.

3 Succinct Data Structures

3.1 Sequences and Parentheses

Given a sequence S[1..n] defined over an alphabet of size σ, the operation
ranka(S, i) returns the number of occurrences of the symbol a in the prefix
S[1..i], and the operation selecta(S, i) returns the position in S of the ith occur-
rence of the symbol a. For binary alphabets, σ = 2, S can be stored in n+ o(n)
bits supporting rank and select in O(1) time [3]. If S has m 1-bits, then it can
be represented in m lg n

m + O(m) + o(n) bits, maintaining O(1)-time rank and
select [10]. For σ = O(polylog n), S can be represented in n log σ + o(n) bits,
still supporting O(1)-time rank and select [5]. Binary sequences can be used
to represent balanced parentheses sequences. Given a balanced parenthesis se-
quence S, open(S, i)/close(S, i) returns the position in S of the closing/opening
parenthesis matching the parenthesis S[i], and enclose(S, i) returns the right-
most position j such that j ≤ i ≤ close(S, j). If S is used to represent an ordered
tree, we find the parent of the node represented by the opening parenthesis S[i]
as parent(S, i) = enclose(S, i). The sequence S can be represented in n + o(n)
bits, supporting open, close and enclose in O(1) time [7]. Such representation
can be extended to represent k superimposed balanced parenthesis sequences in
the same space and time complexities, for any constant k [8, Sec. 7.3].

3.2 Planar Graphs

A planar graph is a graph that can be drawn in the plane without crossing
edges. The topology of a specific drawing of a planar graph in the plane is
called a planar embedding. We use planar embeddings to represent topological
models. In particular, we use Turán’s representation [12], which can represent
any planar embedding of m edges in 4m bits. Ferres et al. [6] extended Turán’s
representation with o(m) extra bits in order to support fast navigation, providing
the simple and efficient representation of planar embeddings we build on.

Implementing the Topological Model Succinctly 5

(a) A planar graph (b) Its primal and dual spanning trees

(c) The sequence of parentheses and brackets encoding the planar graph

Fig. 1: Example of the succinct planar graph representation of Ferres et al. [6].

Given a planar embedding of a connected planar graph G, the computation
of a spanning tree T of G induces a spanning tree T ∗ in the dual graph of G [2].
The edges of T ∗ correspond to the edges in the dual graph crossing edges in
G \T . Fig. 1b shows a primal (thick continuous edges) and a dual (thick dashed
edges) spanning trees for the planar graph of Fig. 1a. Lemma 1 states a key
observation: a depth-first traversal of T induces a depth-first traversal in T ∗.

Lemma 1 ([6]). Consider any planar embedding of a planar graph G, any span-
ning tree T of G and the complementary spanning tree T ∗ of the dual of G. Sup-
pose we perform a depth-first traversal of T starting from any node on the outer
face of G and always process the edges incident to the node v we are visiting in
counter-clockwise order. At the root, we arbitrarily choose an incidence of the
outer face in the root and start from the last edge of the incidence in counter-
clockwise order; at any other node, we start from the edge immediately after the
one to that node’s parent. Then each edge not in T corresponds to the next edge
we cross in a depth-first traversal of T ∗.

Here, an incidence of the outer face in the root means a place where the root
and the outer face are in contact. For instance, in Fig. 1b, the traversal can start
at edge (1, 1), (1, 2), or (1, 8), taking node 1 as the root of the spanning tree.

The compact representation [12, 6] is based on the traversal of Lemma 1.
Starting at the root of any suitable spanning tree T , each time we visit for
the first time an edge e, we write a “(” if e belongs to T , or a “[” otherwise.
Each time we visit an edge e for the second time, we write a “)” if e belongs
to T or a “]” otherwise. We call S the resulting sequence of 2m parentheses
and brackets, which are enclosed by an additional pair of parentheses and of
brackets that represent the root and the outer face, respectively. Ranks of open-
ing parentheses act as node identifiers, whereas ranks of opening brackets act

6 J. Fuentes-Sepúlveda et al.

as face identifiers. Further, positions in S act as edge identifiers: each edge is
identified by an opening parenthesis or bracket, and also by its corresponding
closing parenthesis or bracket. Fig. 1c shows the sequence S for the planar graph
of Fig. 1b, starting the traversal at the edge (1, 2). Observe that the parentheses
of S encode the balanced-parentheses representation of T and the brackets the
balanced-parentheses representation of the dual spanning tree T ∗. In the succinct
representation of Ferres et al. [6], the sequence S is stored in three bitvectors,
A[1..2(m+2)], B[1..2n], and B∗[1..2(m−n+2)]. It holds that A[i] = 1 if the ith
entry of S is a parenthesis, and A[i] = 0 if it is a bracket. Bitvector B stores the
balanced sequence of parentheses of S, storing a 0 for each opening parenthesis
and a 1 for each closing parenthesis. Bitvector B∗ stores the balanced sequence
of brackets of S in a similar way.

Adding support for rank and select operations on A, B and B∗, and for open,
close and enclose (i.e., parent) operations on B and B∗, the succinct representa-
tion of Ferres et al. [6] supports constant-time operations to navigate the embed-
ding. Precisely, the succinct representation supports first(v)/last(v) (the posi-
tion in S of the first/last visited edge of the node v), mate(i) (the position in S of
the other occurrence of the ith visited edge), next(i)/prev(i) (the position of the
next/previous edge after visiting the ith edge of a node v in counter-clockwise or-
der), and node(i) (the index of the source node when visiting the ith edge). Notice
that the index v of the nodes corresponds to their order in the depth-first traver-
sal of the spanning tree T , whereas the index i of a visited edge is just a position
in S (i.e., each edge is visited twice). According to Lemma 1, the first visited edge
of a node v is the edge immediately after the edge to the parent of v in T (except
for the root of T), thus first(v) = select1(A, select0(B, v)) + 1. The implemen-
tation of last(v) is similar. The operation mate(i) is transformed to an open
operation if S[i] is a closing parenthesis or bracket (i.e., B̂[rankA[i](A, i)] = 1):

mate(i) = selectA[i](A, open(B̂, rankA[i](A, i))), or to a close operation other-

wise (i.e., B̂[rankA[i](A, i)] = 0):mate(i) = selectA[i](A, close(B̂, rankA[i](A, i))),

where B̂ = B if A[i] = 1 and B̂ = B∗ if A[i] = 0. The implementation of
next(i) depends on whether the ith visited edge belongs to T or not. Specif-
ically, next(i) = i + 1 unless i is an opening parenthesis (i.e., A[i] = 1 and
B[rank1(A, i)] = 0), in which case it is instead next(i) = mate(i) + 1; prev(i) is
analogous. Operation node(i) also depends on whether S[i] is a parenthesis or a
bracket. In the first case (A[i] = 1), node(i) = rank0(B, enclose(B, rank1(A, i)))
if B[rank1(A, i)] = 0 and node(i) = rank0(B, open(B, rank1(A, i))) otherwise.
On brackets (A[i] = 0), node(i) = rank0(B, rank1(A, i)) if B[rank1(A, i)] = 0,
otherwise node(i) = rank0(B, enclose(B, open(B, rank1(A, i)))).

With the operations described above, we can implement more complex opera-
tions in optimal time, such as listing all the incident edges (and the corresponding
neighbor nodes) of a node v in constant time per returned element, and listing
all the edges or nodes bordering a face given an edge of the face, spending con-
stant time per returned element. Other operations, such as the degree of a node
and checking if two nodes are neighbors, are not supported in constant time. For
the degree of a node v, degree(v), the representation supports any time in ω(1),

Implementing the Topological Model Succinctly 7

whereas for the adjacency test of two nodes u and v, neighbor(u, v), they achieve
any time in ω(logm). In Section 4 we give an O(log logm

log log logm)-time solution for

neighbor(u, v), and introduce several other operations in Section 5. Theorem 1
summarizes the results of Ferres et al.

Theorem 1 ([6]). An embedding of a connected planar graph with m edges can
be represented in 4m+ o(m) bits, supporting the listing in clockwise or counter-
clockwise order of the neighbors of a node and the nodes bordering a face in O(1)
time per returned node. Additionally, one can find the degree of a node in any
time in ω(1), and check the adjacency of two nodes in any time in ω(logm).

3.3 Obtaining the Nodes and Faces of an Edge

Before presenting our main results, we show how to obtain the nodes connected
by a given edge, and its dual, the faces separated by the edge. These results
are somewhat implicit in the preceding work [6], but we prefer to present them
clearly here. They trivially answer queries (1.a) and its dual (1.b), (2.a) and its
dual (2.b), (3.a) and its dual (3.b), all in constant time.

Note that our edge representation, as positions in S, is valid for both G and
G∗ (the spanning tree edges of G, marked with parentheses in S, are exactly
the non-spanning tree edges of G∗, and vice versa, the brackets in S are the
spanning-tree edges of G∗). The two nodes corresponding to an edge i in G are
obtaining analogously to operation node(i): if i is a parenthesis (A[i] = 1), then
p ← rank1(A, i) is its position in B. If it is closing (B[p] = 1), we set p ←
open(B, p). The two nodes are then rank0(B, p) and rank0(B, enclose(B, p)).
On brackets (A[i] = 0), we find two positions in B, p1 ← rank1(A, i) and p2 ←
rank1(A,mate(i)). If any is a closing parenthesis (B[p1] = 1 or B[p2] = 1), we
take its parent, p1 ← enclose(B, open(B, p1)) and/or p2 ← enclose(B, open(B, p2)).
Finally, the answers are the resulting nodes, rank0(B, p1) and rank0(B, p2). The
identifiers of the two faces divided by the edge are obtained almost with the same
formulas, replacing the meaning of 0 and 1 in A, and using B∗ instead of B.

Lemma 2. The representation of Theorem 1 can determine in time O(1) the
two nodes connected by an edge, and the two faces separated by an edge.

4 Determining if Two Nodes are Connected

Ferres et al. [6] show how we can determine if two given nodes u and v are
connected in any time f(m) ∈ ω(logm). First, they check in constant time if they
are connected by an edge of the spanning tree T : one must be the parent of the
other. Otherwise, the nodes can be connected by an edge not in T , represented by
a pair of brackets. Their idea is to mark in a bitvector D[1..n] the nodes having
f(m) neighbors or more. The subgraph G′ induced by the marked nodes, where
they also eliminate self-loops and multi-edges, has n′ ≤ 2m/f(m) nodes, because
at least f(m) edges are incident on each marked node and each of them edges can
be incident on at most 2 nodes. Since G′ is planar and simple, it can have only

8 J. Fuentes-Sepúlveda et al.

m′ < 3n′ ≤ 6m/f(m) edges.5 They represent G′ using adjacency lists, which
use o(m) bits as long as f(m) ∈ ω(logm). Given two nodes u and v, if either of
them is not marked in D, they simply enumerate its neighbors in time O(f(m))
to check for the other node. Otherwise, they map both to G′ using rank1(D),
and binary search the adjacency list of one of the nodes for the presence of the
other, in time O(logm) = o(f(m)). BitvectorD has n′ ≤ 2m/f(m) bits set out of
n ≤ m+1 (this second inequality holds because G is connected), and therefore it
can be represented using (2m/f(m)) log(f(m)/2)) +O(m/f(m)) + o(m) = o(m)
bits while answering rank queries in constant time [10].

In order to improve this time, we apply the idea for more than one level. This
requires a more complex mapping, however, because only in the last level we can
afford to represent the node identifiers in explicit form. The intermediate graphs,
where we cannot afford to store a renumbering of nodes, will be represented using
an extension of the idea of a sequence of parentheses and brackets, in order to
maintain the order of the node identifiers.

Concretely, let us call G0 = G the original graph of n0 = n nodes and m0 = m
edges, and S0[1..2(m0 +2)] = S[1..2(m+2)] its representation using parentheses
and brackets. A bitvector D0[1..n0] marks which nodes of G0 belong to G1 = G′.
When a certain node u is removed from G0 to form G1, we also remove all its
edges, which are of two kinds:

– Not belonging to the spanning tree T . These are represented by a pair of
brackets [· · ·], opening and closing, which are simply removed from S0 in
order to form S1.

– Belonging to the spanning tree T . These are implicit in the parent-child
relation induced by the parentheses. By removing the parentheses of u we
remove the node, but this implicitly makes the children of u to be interpreted
as new children of v, the parent of u in T . To avoid this misinterpretation,
we replace the two parentheses of u by angles: (· · ·) becomes 〈· · ·〉.

In order to obtain the desired space/time performance, the angles must be
reduced to the minimum necessary. In particular, we enforce the following rules:

1. Elements under consecutive angles are grouped inside a single one: 〈X〉 〈Y 〉
becomes 〈X Y 〉.

2. An angle containing only one angle is simplified: 〈 〈X〉 〉 becomes 〈X〉.
3. Angles containing nothing disappear: 〈 〉 is removed.

As seen, G1 contains n1 ≤ 2m0/f(m) nodes and, since it contains no multiple
edges, m1 < 8m0/f(m) edges. Its representation, S1, then contains 2n1 paren-
theses and 2(m1−n1 + 2) brackets. It also contains angles, but by rules 2 and 3,
each angle pair contains at least one distinct maximal pair of parentheses6, and

5 In fact, they do not specify how to handle queries of the form (u, u) given that they
remove self-loops. They could leave one self-loop around each node that has one or
more, and the bound would be m′ ≤ 4n′ ≤ 8m/f(m). We do this in our extension.

6 Not brackets: a top-level bracket inside angles would correspond to an edge inciding
on the removed node, and thus must have been removed when forming S1.

Implementing the Topological Model Succinctly 9

thus there are at most 2n1 angles. The length of S1 is then 2(n1 + m1 + 2) <
20m0/f(m) + 4.

We represent S1 using an array A1[1..2(n1 + m1 + 2)] over an alphabet of
size 3 (to distinguish brackets = 0, parentheses = 1, and angles = 2), and the
projected balanced sequences B[1..2n1] of parentheses, B∗[1..2(m1 − n1 + 2)] of
brackets, and B−[1..2n1] of angles. We can then support constant-time rank and
select on A1 using o(m1) extra bits [5], and open, close, and enclose on B, B∗,
and B− also using o(m1) extra bits. Thus we can support operations mate(·)
and node(·) on S1 in constant time, just as described in Section 3.2.

In order to determine if u1 and v1 are neighbors in G1 we may visit the
neighbors of u1: We sequentially traverse the area between the parentheses of u1,
S1[p..p′] = (· · ·), starting from p← p+ 1, analogously as the neighbor traversal
described in Section 3.2. If we see an opening parenthesis, S[p] = “(”, we skip it
with p ← mate(p) + 1 because we are only checking for neighbors via brackets
(we already know that the nodes are not neighbors via edges in T). If we see
an opening angle, S[p] = “〈”, we also skip it with p ← mate(p) + 1 because
this encloses eliminated nodes and no top-level brackets of u1 can be enclosed
in those angles, as explained. If we see a bracket, S[p] = “[” or S[p] = “]”, we
find its mate, j = mate(i), then the node containing it, v = node(j), and check
if v = v1. Note that a bracket cannot lead us to an eliminated node, because
brackets of eliminated nodes were effectively removed from S1. This procedure
takes time proportional to the number of neighbors of u1 in G1: although we
may spend time in traversing angles, by rule 1 above, every angle we skip is
followed by a non-angle or by the final closing parenthesis S[p′] = “)”.

Our construction does not end in G1, however. We repeat the construction
process in G1, so that G2 is the subgraph of G1 induced by its nodes with f(m)
incident edges or more. We continue for k(m) iterations, obtaining the sequences
S0, . . . , Sk(m)−1 and the graph Gk(m). In Gk(m), we store the neighbors of each
node in a perfect hash table. Fig. 2 shows the resulting graphs G1 and G2 after
applying two recursive calls over the planar graph of Fig. 1.

The algorithm to determine if u0 = u and v0 = v are neighbors, once we
check that none is a child of the other in T , is then as follows. If D0[u0] = 0,
we traverse the neighbors of u0 as described (the top-level sequence, S0, does
not contain angles, though), to see if v0 is mentioned. This takes time O(f(m))
because u0 has less than f(m) neighbors. Otherwise, if D0[v0] = 0, we proceed
analogously with v0, in time O(f(m)). Otherwise, both nodes are mapped to G1,
to u1 = rank1(D0, u0) and v1 = rank1(D0, v0), and we continue similarly with
u1 and v1 in G1. If, after k(m) steps, we arrive at Gk(m) without determining if
they are neighbors, we look for vk(m) in the perfect hash table of the neighbors
of uk(m), in constant time. Overall, the query time is O(k(m) + f(m)).

As for the space,Gi has ni ≤ 2mi−1/f(m) nodes andmi < 4ni ≤ 8mi−1/f(m)
edges (because Gi has no multiple edges for all i > 0), and thus mi < m ·
(8/f(m))i and ni ≤ (1/4)m · (8/f(m))i. The length of Si is then less than
2(ni + mi + 2) < (5/2)m · (8/f(m))i + 4. The previous expression, summed
over all 1 ≤ i < k(m), yields a total length for all S1, . . . , Sk(m)−1 below

10 J. Fuentes-Sepúlveda et al.

(a) Graph G1 and its sequence S1 after one recursive iteration with f(m) = 3

(b) Graph G2 and its sequence S2 after two recursive iterations with f(m) = 3

Fig. 2: Intermediate planar graphs and their sequences to support the operation
neighbor(·, ·). Symbols in light-gray represent deleted elements.

20m/(f(m)− 8) + 4k(m) = O(m/f(m) + k(m)), for any f(m) ≥ 9. Since the Si
have constant-size alphabets, they can be represented within O(m/f(m)+k(m))
bits, with the constant-time support for rank, select, open, and close. On the
other hand, the explicit representation of Gk(m) requires O(mk(m) logm) =

O(m logm · (8/f(m))k(m)) bits. For all this space to be o(m) we need that
k(m) = o(m), f(m) = ω(1), and (f(m)/8)k(m) = ω(logm).

The choice f(m) = k(m) = max(9, (1+ε) log logm
log log logm), for any constant ε > 0,

yields a time complexity in O(log logm
log log logm) and an extra space in o(m) bits.

If we wish to retrieve the positions S[b..b′] of a pair of brackets that connect u
and v, when the edge does not trivially belong to T , we enrich our structure with
bitvectors C0, . . . , Ck(m)−1, where Ci[1..mi − ni + 2] tells which face identifiers
(i.e., ranks of opening brackets) survive in Gi+1. Once we find, in some Gi, that
ui and vi are neighbors connected by the edge Si[p..p

′] = [· · ·], we have that the
opening bracket number bi = rank“[”(Si, p) = rank0(B∗, rank0(Ai, p)) connects
them in Gi. We then identify the edge in Gi−1 with bi−1 = select1(Ci−1, bi),
and continue upwards until finding the answers, b = b0 and b′ = mate(b), all in
O(k(m)) additional time.

The lengths of all bitvectors, for i > 0, is |Di|+ |Ci| = mi+2, so they add up
to o(m). For D0 and C0, note that they have n1 and m1, both in O(m/f(m)),

Implementing the Topological Model Succinctly 11

1s out of n ≤ m + 1 or m − n + 2 ≤ m, respectively. Therefore, they can be
represented in O(m log(f(m))/f(m))+o(m) bits [10]. We thus solve query (1.c).

Lemma 3. The representation of Theorem 1 can be enriched with o(m) bits so
that we can determine whether two nodes are connected in time O(log logm

log log logm).

5 Other Results Exploiting Analogies and Duality

Determining adjacency of faces. By exchanging the interpretation of paren-
theses and brackets, the same sequence S represents the dual G∗ of G, where
the roles of nodes and faces are exchanged. We can then use the same solution
of Lemma 3 to determine whether two faces are adjacent (1.d). We do not ex-
plicitly store the sequence S∗ representing G∗, since we can operate it using S.
Instead, we build a structure on S∗ analogous to the one we built on S, creat-
ing sequences S∗1 , . . . , S

∗
k(m)−1, D∗0 , . . . , D

∗
k(m)−1, C∗0 , . . . , C

∗
k(m)−1, and the final

explicit dual graph G∗k(m), so as to determine, within the same space and time
complexities, whether two faces of G share an edge, and retrieve one of these
edges. This time, the input to the query are the ranks of the opening brackets
representing both faces (i.e., node identifiers in G∗).

Lemma 4. The representation of Theorem 1 can be enriched with o(m) bits so
that we can determine whether two faces are adjacent in time O(log logm

log log logm).

Listing related nodes or faces. Listing the faces bordering a given face (3.d)
can be done as the dual of listing the neighbors of a node (3.c), by exchanging
the roles of brackets and parentheses in Theorem 1. Listing the faces incident
on a node (3.e) can also be done as a subproduct of Theorem 1. For each edge e
incident on u, obtained in counter-clockwise order, we obtain the faces e divides
using Lemma 2. This lists all the faces incident on u, in counter-clockwise order,
with the only particularity that each face is listed twice, consecutively. Analo-
gously, given a face identifier x, we can list the nodes found in the frontier of the
face (3.f). This query is not exactly the same as in Theorem 1, because there we
must start from an edge bordering the desired face.

Lemma 5. The representation of Theorem 1 suffices to list, given a node u, the
faces incident on u in counter-clockwise order from its parent in T , each in O(1)
time, or given a face x, the nodes in the frontier of x in clockwise order from its
parent in T ∗, each in O(1) time.

Determining incidence of a face in a node. Given a node u and a face x,
the problem is to determine whether x is incident on u (2.c). Since with Lemma 5
we can list each face incident on u in constant time, or each node bordering x in
constant time, we can use a scheme combining those of Lemmas 3 and 4: If u has
less than f(m) neighbors, we traverse them looking for x. Otherwise, if x has
less than f(m) bordering nodes, we traverse them looking for u. Otherwise, we

12 J. Fuentes-Sepúlveda et al.

search for (u, x) in a perfect hash table where we store all the faces y (bounded
by f(m) or more nodes) incident on nodes v (having f(m) or more neighbors).

To see that this hash table contains O(m/f(m)) elements, consider the bi-
partite planar graph G+(V +, E+) where V + = V ∪ F (F being the faces of our
original graph G(V,E)) and E+ = {(u, x), x ∈ F is incident on u ∈ V in G}.
G+ is planar because it can easily be drawn from an embedding of G, by placing
the nodes x ∈ F ⊆ V + inside the face x of G and drawing its edges with-
out having them cut. Note that the nodes u ∈ V preserve their degree in G+,
whereas the degree of nodes x ∈ F is the number of edges bordering their cor-
responding face in G. Therefore G+ has n+ = |V |+ |F | = m + 2 nodes (as per
Euler’s formula |F | = m − n + 2) and m+ = 2m edges (one per edge limiting
each face, so each edge of G contributes twice). If we remove from G+ all the
nodes (of either type) connected with less than f(m) neighbors, and remove
multiple edges, each surviving edge corresponds precisely with an entry (v, y)
of our perfect hash table. By the same argument used in Section 4, at most
4m/f(m) nodes survive and, since the reduced graph has no multiple edges, at
most 4 · (4m/f(m)) = O(m/f(m)) edges survive. Hence, we obtain extra space
o(m) by choosing any f(m) ∈ ω(logm).

Lemma 6. The representation of Theorem 1 can be enriched with o(m) bits so
that, given a node u and a face x, it answers in O(f(m)) time whether u is in
the frontier of x, for any f(m) ∈ ω(logm).

Counting neighbors. Ferres et al. [6] count the number of edges incident
on a node u (4.a) in O(f(m)) time using O(m log f(m)/f(m)) bits. For nodes
with degree below f(m), they traverse the neighbors; for the others, they store
the degree explicitly. Neighboring nodes or faces can be counted similarly, ex-
cept that we can reach several times the same node or face. Thus, we need
time O(f(m) log f(m)) on nodes with degree below f(m) in order to remove
repetitions; for higher-degree nodes we store the correct number explicitly. We
then obtain O(f(m) log f(m)) time using O(m log f(m)/f(m)) bits, which still
achieves any time in ω(1) in o(m) bits. By building the structure on the dual of
G, we count the number of edges, nodes, or faces in the frontier of a face x (4.b).

6 More Expensive Solutions

We left for the end other solutions that are likely impractical compared to using
brute force, but that nevertheless have theoretical value. These more expen-
sive solutions also encompass some more sophisticated queries not included in
Table 1.

Determining if two nodes border the same face. Given two nodes u and
v, if either has less than f(m) neighbors we can traverse its incident faces one by
one and, for each face x, use Lemma 6 to determine if x is incident on the other
node in time ω(logm). For all the pairs of nodes (u, v) where both have f(m)

Implementing the Topological Model Succinctly 13

neighbors or more, we store a binary matrix telling whether or not they share a
face. This requires (2m/f(m))2 bits, which is o(m) for any f(m) = ω(

√
m). Thus

we can solve query (1.e) and, by duality, query (1.f), in any time in ω(
√
m logm).

Lemma 7. The representation of Theorem 1 can be enriched with o(m) bits so
that, given two nodes or two faces, it answers in O(f(m)) time whether they
share a face or a node, respectively, for any f(m) ∈ ω(

√
m logm).

If we want to know the identity of the shared face (or, respectively, node),
this can be stored in the matrix, which now requires O((m/f(m))2 logm) bits.

We can then reach any time in ω(
√
m log3/2m).

Determining if two nodes/faces are connected with the same node/face.
Given two nodes u and v, if either has less than f(m) neighbors we can traverse
its neighbors w and, using Lemma 3, determine if w is a neighbor of v. This takes
O(f(m) · log logm

log log logm) time. For all the pairs of nodes (u, v) where both have f(m)
neighbors or more, we store a binary matrix telling whether or not they share a
neighbor. By duality, we can tell if two faces share edges with the same face.

Lemma 8. The representation of Theorem 1 can be enriched with o(m) bits so
that, given two nodes or two faces, it answers in O(f(m)) time whether they are
connected with a node or a face, respectively, for any f(m) ∈ ω(

√
m · log logm

log log logm).

As before, to know the identity of the shared node or face, the time raises to

f(m) ∈ ω(
√
m ·
√

logm log logm

log log logm).

7 Conclusions

We built on a recent extension [6] of Turán’s representation [12] for planar graphs
to support queries on the topological model in succinct space. Starting with an
improved solution to determine if two nodes are neighbors, we exploit analogies
and duality to support a broad set of operations, most in time O(log logm

log log logm).
One remaining challenge is the the support for the standard query intersects

(whether two given faces touch each other). If this is interpreted as the faces shar-
ing an edge, then this is query (1.d), which we solve in time O(log logm

log log logm). If,

instead, it suffices with the faces sharing a node, this is query (1.f), which we
solve in any time in ω(

√
m logm). We conjecture that this second interpretation

is intersection-hard [4, 9], and thus no significant improvement can be expected
even if using non-compact space.

References

1. ISO/IEC 13249-3:2016. Information technology – Database languages – SQL mul-
timedia and application packages – Part 3: Spatial. Tech. rep. (2016)

2. Biggs, N.: Spanning trees of dual graphs. J. Comb. Theory B 11(2), 127–131 (1971)

14 J. Fuentes-Sepúlveda et al.

3. Clark, D.R.: Compact PAT Trees. Ph.D. thesis, Univ. of Waterloo, Canada (1996)
4. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor.

Comp. Sci. 411(40-42), 3795–3800 (2010)
5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Trans. Alg. 3(2), article 20 (2007)
6. Ferres, L., Fuentes-Sepúlveda, J., Gagie, T., He, M., Navarro, G.: Fast and compact

planar embeddings. Comput. Geom. Theor. App. (2018), to appear. Available at
https://arxiv.org/abs/1610.00130. Preliminary version in Proc. WADS’17

7. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

8. Navarro, G.: Compact Data Structures: A practical approach. CUP (2016)
9. Patrascu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. SIAM

J. Comput. 43(1), 300–311 (2014)
10. Raman, R., Raman, V., Satti, S.: Succinct indexable dictionaries with applications

to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 3(4) (2007)
11. Scholl, M.O.: Spatial Databases with Application to GIS. MK (2002)
12. Turán, G.: On the succinct representation of graphs. Discr. Appl. Math. 8(3),

289–294 (1984)
13. Worboys, M., Duckham, M.: GIS: A Computing Perspective. CRC, 2nd edn. (2004)

