K2-Treaps: Range Top-k Queries
in Compact Space *

Nieves R. Brisaboa!, Guillermo de Bernardo!, Roberto Konow?3,

Gonzalo Navarro?

! Databases Lab., Univ. of A. Coruiia, Spain, {brisaboa,gdebernardo}@udc.es
2 Dept. of Computer Science, Univ. of Chile {rkonow, gnavarro}@dcc.uchile.cl
3 Escuela de Informética y Telecomunicaciones, Univ. Diego Portales, Chile

Abstract. Efficient processing of top-k queries on multidimensional grids
is a common requirement in information retrieval and data mining, for
example in OLAP cubes. We introduce a data structure, the K2-treap,
that represents grids in compact form and supports efficient prioritized
range queries. We compare the K>2-treap with state-of-the-art solutions
on synthetic and real-world datasets, showing that it uses 30% of the
space of competing solutions while solving queries up to 10 times faster.

1 Introduction

Top-k queries on multidimensional weighted point sets ask for the k£ heaviest
points in a range. This type of query arises most prominently in data mining
and OLAP processing (e.g., find the sellers with most sales in a time period)
and in GIS applications (e.g., find the cheapest hotels in a city area), but also
in less obvious document retrieval applications [16]. In the example of sales, one
coordinate is the seller id, which are arranged hierarchically to allow queries
for sellers, stores, areas, cities, states, etc., and the other is time (in periods
of hours, days, weeks, etc.). Weights are the amounts of sales made by a seller
during a time slice. Thus the query asks for the k heaviest points in some range
Q = [x1,22] X [y1,9y2] of the grid.

Data mining and information systems such as those mentioned above usually
handle huge amounts of data and may have to serve millions of queries per
second. Representing this steadily increasing amount of data space-efficiently
can make the difference between maintaining the data in main memory or having
to resort to external memory, which is orders of magnitude slower.

We introduce a new compact data structure that performs fast range top-k
queries on multidimensional grids and is smaller than state-of-the-art compact
data structures. Qur new representation, called K?2-treap, is inspired by two
previous data structures: the K2-tree [5] and the treap [18]. The K?2-tree is a

* Funded by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F, by a Conicyt scholarship, by MICINN (PGE and FEDER)
TIN2009-14560-C03-02 and TIN2010-21246-C02-01, by CDTI, MEC and AGI EXP
00064563/1TC-20133062, and by Xunta de Galicia (with FEDER) GRC2013/053.

compressed and self-indexed structure initially designed to represent Web graphs
and later used in other domains as an efficient and compact representation of
binary relations. The treap is a binary tree that satisfies the invariants of a
binary search tree and a heap at the same time, which is useful for prioritized
searches. Our results show that the K2-treap answers queries up to 10 times
faster, while using just 30% of the space, of state-of-the-art alternatives.

2 Basic Concepts

Rank and select on bitmaps. Let B[1,n] be a sequence of bits, or bitmap.
We define operations rank,(B,4) as the number of occurrences of b € {0,1} in
BJ[1,1], and selecty(B, j) as the position in S of the jth occurrence of b. B can
be represented using n + o(n) bits [15], so that both operations are solved in
constant time.

Wavelet trees and discrete grids. An n x m grid with n points, exactly
one per column (i.e., z values are unique), can be represented using a wavelet
tree [10,12]. This is a perfect balanced binary tree of height [lgm]| where each
node corresponds to a contiguous range of values y € [1,m] and represents
the points falling in that y-range, sorted by increasing x-coordinate. The root
represents [1,m] and the two children of each node split its y-range in half, until
the leaves represent a single y-coordinate. Each internal node stores a bitmap,
which tells whether each point corresponds to its left or right child. Using rank
and select queries on the bitmaps, the wavelet tree uses nlgm + o(nlogm) bits,
and can count the number of points in a range in O(logm) time, because the
query is decomposed into bitmap ranges on at most 2 nodes per wavelet tree
level. Any point can be tracked up (to find its z-coordinate) or down (to find its
y-coordinate) in O(logm) time as well.

K?-trees. The K2-tree [5] is a data structure to compactly represent sparse
binary matrices (which can also be regarded as point grids). The K? tree sub-
divides the matrix into K2 submatrices of equal size. The submatrices are con-
sidered left-to-right and top-to-bottom, and each is represented with a bit, set
to 1 if the submatrix contains at least one non-zero cell. Each node whose bit
is 1 is recursively decomposed, subdividing its submatrix into K2 children, and
so on. The subdivision ends when a fully-zero submatrix is found or when we
reach the individual cells. The K?-tree can answer range queries with multi-
branch top-down traversal of the tree, following only the branches that overlap
the query range. While it has no good worst-case time guarantees, in practice
times are competitive. The worst-case space, if ¢ points are in an n X n ma-
trix, is K2 tlogy- "72(1 + 0(1)) bits. This can be reduced to tlg ”72(1 +o(1)) if
the bitmaps are compressed. This is similar to the wavelet tree space, but in
practice K 2-trees use much less space when the points are clustered.

The K?2-tree is stored in two bitmaps: T stores the bits of all the levels
except the last one, in a level-order traversal, and L stores the bits of the last
level (corresponding to individual cells). Given a node at position p in T, its

children are be located from position rank;(T,p) - K2 in T : L. This property
enables K2-tree traversals using just 7' and L.

Treaps and Priority Search Trees. A treap [18] is a binary search tree with
nodes having two attributes: key and priority. The treap maintains the binary
search tree invariants for the keys and the heap invariants for the priorities, that
is the key of a node is larger than those in its left subtree and smaller than
those in its right subtree, whereas its priority is not smaller than those in its
subtree. The treap does not guarantee logarithmic height, except on expectation
if priorities are independent of keys [13]. The priority search tree [14] is somewhat
similar, but it is balanced. In this case, a node is not the one with highest priority
in its subtree, but that element is stored in addition to the element at the node.
The element stored separately is also removed from the subtree. Priority search
trees can be used to solve 3-sided range queries on n-point grids, returning ¢
points in time O(t + logn).

3 Related Work

Navarro et al. [17] introduced compact data structures for various queries on
two-dimensional weighted points, including range top-k queries. They enhance
the bitmaps of each node as follows: Let x1, ..., x, be the points represented at a
node, and w(x) be the weight of point z. Then a range maximum query (RMQ)
data structure built on w(z1), ..., w(z,) is stored together with the bitmap. Such
a structure uses 2r + o(r) bits and finds the position of the maximum weight
in any range [w(x;),...,w(z;)] in constant time [8] and without accessing the
weights themselves. Therefore, the total space becomes 3nlgm+ o(nlogm) bits.

To solve top-k queries on a grid range @ = [x1, 2] X [y1, Y|, we first traverse
the wavelet tree to identify the O(logm) bitmap intervals where the points in
@ lie (a counting query would, at this point, just add up all the bitmap interval
lengths). The heaviest point in @ in each bitmap interval is obtained with an
RMQ), but we need to obtain the actual priorities in order to find the heaviest
among the O(logm) candidates. The priorities are stored sorted by z- or y-
coordinate, so we obtain each one in O(logm) time by tracking the point with
maximum weight in each interval. Thus a top-1 query is solved in O(log2 m)
time. For a top-k query we must maintain a priority queue of the candidate
intervals, and each time the next heaviest element is found, we remove it from
its interval and reinsert in the queue the two resulting subintervals. The total
query time is O((k + log m) log(km)).

It is possible to reduce the time to O((k-+logm) log® m) time and O(1nlogm)

bits, for any constant € > 0 [16], but the space usage is much higher, even if linear.

4 The K2-treap

In one dimension, an RMQ structure using 2n+o(n) bits [8] is sufficient to answer
range top-k queries in O(klog k) or O(kloglogn) time, using the algorithm just

described on a single interval. However, a similar RMQ structure for two or more
dimensions needs 2(mn logm) bits [9] (on dense grids), and therefore it is better
to directly look for representations of the data points that can also answer range
top-k queries. The idea is to combine a K2-tree with a treap data structure. If
keys are [1,n], treaps can be stored in 2n + o(n) bits plus the priorities [11],
whereas priority search trees cannot. In two and more dimensions, however, this
advantage vanishes. Therefore, our data structure combines the K?-tree with a
priority search tree, which is more convenient for its balancing guarantees.

4.1 Data Structure

Consider a matrix M[n x n| where each cell can either be empty or contain a
weight in the range [0, d—1]. We consider a quadtree-like recursive partition of M
into K2 submatrices, the same performed in the K?-tree with binary matrices.
We build a conceptual K2-ary tree similar to the K2-tree, as follows: the root
of the tree will store the coordinates of the cell with the maximum weight of the
matrix, and the corresponding weight. Then the cell just added to the tree is
marked as empty, deleting it from the matrix. If many cells share the maximum
weight, we pick anyone of them. Then, the matrix is conceptually decomposed
into K? equal-sized submatrices, and we add K? child nodes to the root of the
tree, each representing one of the submatrices. We repeat the assignment process
recursively for each child, assigning to each of them the coordinates and value of
the heaviest cell in the corresponding submatrix and removing the chosen points.
The procedure continues recursively for each branch until we find a completely
empty submatrix (either because the matrix did not contain any weights in
the region or because the cells with weights have been “emptied” during the
construction process) or we reach the cells of the original matrix.

Fig. 1 shows an example of K?-treap construction, for K = 2. At the top of
the image we show the state of the matrix at each level of decomposition. M0
represents the original matrix, where the maximum value is highlighted. The
coordinates and value of this cell are stored in the root of the tree. In the next
level of decomposition (matrix M1) we find the maximum values in each quad-
rant (notice that the cell assigned to the root has already been removed from the
matrix) and assign them to the children of the root node. The process continues
recursively, subdividing each matrix into K2 submatrices. The cells chosen as
local maxima are highlighted in the matrices corresponding to each level of de-
composition, except in the last level where all the cells are local maxima. Empty
submatrices are marked in the tree with the symbol “~”.

The data structure is represented in three parts: The location of local max-
ima, the weights of the local maxima, and the tree topology.

Local maximum coordinates: The conceptual K2-treap is traversed level-
wise, reading the sequence of cell coordinates from left to right in each level.
The sequence of coordinates at each level £ is stored in a different sequence
coord[l]. The coordinates at each level ¢ of the tree are transformed into an
offset in the corresponding submatrix, transforming each ¢; into ¢; mod (n/K*)

MO M1 M2 M3

012 34567 012 34567 012 34567 012 34567
ofs 8|5 7 ofls 5 7/6] o]s 5 6 0
101 2 213(4]1 11 2 213(4|1] 1|1 2 21341 1|1 2(3(4]1
2 7142 2 7042 2 4|2 2 2
317|3 1 317|3 1 3l7|3 1 3 3 1
4 7 4 7 4 4
5 5 5 5
6 3|2 6 3|2| 6 3|2 6 2
7 1]0 7 1{0 7 10 7 1|0

0,3)-8 NO
(2,1)-7 (0,6)-7 - (4,4)-7 N1
(0,0)-5 (1,2)-2 (3,0)-7 (2,2)-4 0,4-5 (0,76 - R .. (6,63 N2

AN AN AN AN AN AN 24\

- 210 N3
~_

Fig. 1. Example of K2-treap construction from a matrix

using [lg(n) — £1g K] bits. For example, in Fig. 2 (top) the coordinates of node
N1 have been transformed from the global value (4,4) to a local offset (0,0). In
the bottom of Fig. 2 we highlight the coordinates of nodes NO, N1 and N2 in
the corresponding coord arrays. In the last level all nodes represent single cells,
so there is no coord array in this level. With this representation, the worst-case
space for storing ¢ points is Zleozgéfz W oK?g 2 =tlg "72(1 + O(1/K?)), that
is, the same as if we stored the points using the K 2-tree.

Local marimum values: The maximum value in each node is encoded dif-
ferentially with respect to the maximum of its parent node. The result of the
differential encoding is a new sequence of non-negative values, smaller than the
original. Now the K2-treap is traversed level-wise and the complete sequence of
values is stored in a single sequence named values. To exploit the small values
while allowing efficient direct access to the array, we represent values with Di-
rect Access Codes [4]. Following the example in Fig. 2, the value of node N1
has been transformed from 7 to 8 — 7 = 1. In the bottom of the figure the com-
plete sequence values is depicted. We also store a small array first[0, g n] that
stores the offset in values where each level starts.

Tree structure: We separate the structure of the tree from the values stored
in the nodes. The tree structure of the K?-treap is stored in a K?2-tree. Fig. 2
shows the K?2-tree representation of the example tree, where only cells with
value are labeled with a 1. We will consider a K2-tree stored in a single bitmap
T with rank support, that contains the sequence of bits from all the levels of the
tree. Our representation differs from a classic K>2-tree (that uses two bitmaps
T and L and only adds rank support to T') because we will need to perform
rank operations also in the last level of the tree. The other difference is that

(0,3)-8 NO

(2,1)-1 (0,2)-1 - (0,00-1 N1

0,02 @o-5 (o0 (©03 (002 (011 - - 7PN R0 N2

AN AN AN AN AN, AN

12 3
/l\ *
1 1 0 1 coord[0] ((0,3)
/N /]\ coord(1] [2,1) (0,2) (0,0)
I 1 101 1 1 006 0001
A 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ coord[2] [(0,0) (1,0) (1,0) (0,0) (0,0) (0,1) (0,0)]
0010 0000 0001 0101 0011 0011 0111 values [8-111-2503214-44233225123

T lllO 1-- 1111 1100 0001 -- 0010 0000 0001 0101 0011 0011 0111] first |0 1 4 11

Fig. 2. Storage of the conceptual tree in our data structures

points stored separately are removed from the grid. Thus, in a worst-case space
analysis, it turns out that the space used to represent those explicit coordinates is
subtracted from the space the K 2-tree would use, therefore storing those explicit
coordinates is free in the worst case.

4.2 Query algorithms

Basic navigation. To access a cell C = (z,y) in the K2-treap we start by
accessing the K2-tree root. The coordinates and weight of the element stored at
the root node are (xg,y0) = coord[0][0] and wy = values[0]. If (zq,yo) = C, we
return wy immediately. Otherwise, we find the quadrant where the cell would
be located and navigate to that node in the K2-tree. Let p be the position of
the node in T If T'[p] = 0 we know that the complete submatrix is empty and
return immediately. Otherwise, we need to find the coordinates and weight of
the new node. Since only nodes set to 1 in T have coordinates and weights, we
compute r = rank; (T, p). The value of the current node will be at values|r], and
its coordinates at coord[f][r — first[f]], where £ is the current level. We rebuild
the absolute value and coordinates, w; as wo — values[r] and (x1,y;) adding the
current submatrix offset to coord[l|[r — first[f]]. If (z1,y1) = C we return wy,
otherwise we find again the appropriate quadrant in the current submatrix where
C would be located, and so on. The formula to find the children is identical to
that of the K2-tree. The process is repeated recursively until we find a 0 bit in
the target submatrix, we find a 1 in the last level of the K2-tree, or we find the
coordinates of the cell in an explicit point.

Top-k queries. The process to answer top-k queries starts at the root of the
tree. Given a range Q) = [z1,x2] X [y1, Y|, the process initializes an empty max-
priority queue and inserts the root of the K2-tree. The priority queue stores,
in general, K2-tree nodes sorted by their associated maximum weight. Now, we
iteratively extract the first priority queue element (the first time this is the root).

If the coordinates of its maximum element fall inside), we output it as the next
answer. In either case, we insert all the children of the extracted node whose
submatrix intersects with @, and iterate. The process finishes when k results
have been found or when the priority queue becomes empty (in which case there
are less than k elements in Q).

Other supported queries. The K?-treap can also answer basic range queries
(i.e., report all the points that fall in Q). This is similar to the procedure on
a K?-tree, where the submatrices that intersect @) are explored in a depth-first
manner. The only difference is that we must also check whether the explicit
points associated to the nodes fall within (), and in that case report those as
well. Finally, we can also answer interval queries, which ask for all the points
in Q whose weight is in a range [w1,ws]. To do this, we traverse the tree as
in a top-k range query, but we only output weights whose value is in [wy,ws].
Moreover, we discard submatrices whose maximum weight is below wy.

5 Experiments and Results

To test the efficiency of our proposal we use several synthetic datasets, as well
as some real datasets where top-k queries are of interest. Our synthetic datasets
are square matrices where only some of the cells have a value set. We build
different matrices varying the following parameters: the size s x s of the matrix
(s = 1024, 2048, 4096, 8192), the number of different weights d in the matrix
(16, 128, 1024) and the percentage p of cells that have a point (10, 30, 50, 70,
100%). The distribution of the weights in all the datasets is uniform, and the
spatial distribution of the cells with points is random. For example, the synthetic
dataset with (s = 2048,d = 128, p = 30) has size 2048 x 2048, 30% of its cells
have a value and their values are follow a uniform distribution in [0, 127].

We also test our representation using real datasets. We extracted two different
views from a real OLAP database storing information about sales achieved per
store/seller each hour over several months: salesDay stores the number of sales
per seller per day, and salesHour the number of sales per hour. Huge historical
logs are accumulated over time, and are subject to data mining processes for de-
cision making. In this case, finding the places (at various granularities) with most
sales in a time period is clearly relevant. Table 1 shows a summary with basic
information about the real datasets. For simplicity, in these datasets we ignore
the cost of mapping between real timestamps and seller ids to rows/columns in
the table, and assume that the queries are given in terms of rows and columns.

We compare the space requirements of the K?2-treap against the solution
based on wavelet trees enhanced with RMQ structures [17] introduced in Section
3 (wtrmgq). Since our matrices can contain none or multiple values per column,
we transform our datasets to store them using wavelet trees. The wavelet tree
will store a grid with as many columns as values we have in our matrix, in
column-major order. A bitmap is used to map the real columns with virtual
ones: we append a 0 per new point and a 1 when the column changes. Hence,

Dataset |#Sellers|Time instants[Number of] K2-treap| mk2tree] wtrmq
(rows) | (columns) |diff. values|(bits/cell)|(bits/cell)|(bits/cell)
SalesDay 1314 471 297 2.48 3.75 9.08
SalesHour 1314 6028 158 1.06 0.99 3.90
Table 1. Real datasets used, and space required to represent them

range queries in the wtrmg require a mapping from real columns to virtual ones
(2 selecty operations per query), and the virtual column of each result must be
mapped back to the actual value (a rank; operation per result).

We also compare our proposal with a representation based on constructing
multiple K2-trees, one per different value in the dataset. In this representation
(mk2tree), top-k queries are answered by querying consecutively the K?2-tree
representations for the higher values. Each K2-tree representation in this pro-
posal is enhanced with multiple optimizations over the simple bitmap approach
we use, like the compression of the lower levels of the tree using DACs (see [5]
for a detailed explanation of this and other enhancements of the K?-tree).

All bitmaps that are employed use a bitmap representation that supports
rank and select using 5% of extra space. The wtmrq was implemented using
a pointer-less version of the wavelet tree [7] with a RMQ implementation that
requires 2.38 bits per value. For all experiments we use K = 2 for the K?2-treap
and mk2tree.

We ran all our experiments on a dedicated server with 4 Intel(R) Xeon(R)
E5520 CPU cores at 2.27GHz 8MB cache and 72GB of RAM memory. The
machine runs Ubuntu GNU/Linux version 9.10 with kernel 2.6.31-19-server (64
bits) and gec 4.4.1. All data structures were implemented in C/C++, compiled
with full optimizations.

5.1 Space Comparison

We start by comparing the compression achieved by the representations. As
shown in Table 1, the K?-treap overcomes the wtrmg in the real datasets stud-
ied by a factor over 3.5. The mk2tree representation is competitive with the
K2-treap and even obtains slightly less space in the dataset salesHour, taking
advantage of the relatively small number of different values in the matrix.

The K2-treap also obtains the best space results in most of the synthetic
datasets studied. Only in the datasets with a very small number of different
values (d = 16) the mk2tree uses less space than the K2-treap. Notice that, since
the distribution of values and cells is uniform, the synthetic datasets are close
to a worst-case scenario for the K2-treap and mk2tree. To provide additional
insight on the compression capabilities, Fig. 3 provides a summary of the space
results for some of the synthetic datasets used. The left plot shows the evolution

of compression with the size of the matrix. The K2-treap is almost unaffected by
2
the matrix size, as its space is around t1g %~ = 821%0 lg I% bits, that is, constant

Space usage varying s Space usage varying d

8 8
" Ketreap (d=128, p=10) —&— ketreap (s=1024, p=10) —e—
7F k2treap (d=1024,p=10) —#— -+ 7r k2treap (s=2048,p=10) —=— -
mk2tree (d=128,p=10) ---6--- mk2tree (s=1024,p=10) ——-o-—
6 mk2tree (d=1024,p=10) ---e-—- - 6 mk2tree (s=2048,p=10) -—e-— -
wirmq (d=128,p=10) 2 wirmq (s=1024,p=10) &
51 wirmq (d=1024,p=10) & 2 5r wirmq (s=2048,p=10) 4 T
2. A & N b4
4+ a 1 4F a A B
A
3r e B 3r e
””””” C o
2F g . g 2+ E
1+ g 1E g
0 L L L L 0 L L L
1024 2048 4096 8192 16 128 1024
Size of the matrix (s) Number of different values (d)

Fig. 3. Evolution of the space usage with s and d in the synthetic datasets, in bits/cell
(in the right plot, the two results for the K 2_treap are on top of each other)

per cell as s grows. On the other hand, the wirmgq uses tlgs = 521%0 lg s bits, that
is, its space per cell grows logarithmically with s. Finally, the mk2tree obtains
poor results in the smaller datasets but is more competitive on larger ones (some
enhancements in the K2-tree representations behave worse in smaller matrices).
Nevertheless, notice that the improvements in the mk2tree compression stall
once the matrix reaches a certain size.

The right plot of Fig. 3 shows the space results when varying the number
of different weights d. The K2-treap and the wtrmq are affected only logarith-
mically by d. The mk2tree, instead, is sharply affected, since it must build a
different K2-tree for each different value: if d is very small the mk2tree repre-
sentation obtains the best space results also in the synthetic datasets, but for
large d its compression degrades significantly.

As the percentage of cells set p increases, the compression in terms of bits/cell
(i.e., total bits divided by s?) will be worse. However, if we measure the compres-
sion in bits per point (i.e., total bits divided by ¢), then the space of the wtrmg
is independent of p (Ig s bits), whereas the K2-treap and mk2tree use less space
as p increases (lg 1%). That is, the space usage of the wtrmgq increases linearly
with p, while that of the K2-treap and mk2tree increases sublinearly. Over all
the synthetic datasets, the K2-treap uses from 1.3 to 13 bits/cell, the mk2tree
from 1.2 to 19, and the wtrmg from 4 to 50 bits/cell.

5.2 Query Times

In this section we analyze the efficiency of top-k queries, comparing our structure
with the mk2tree and the wtrmq. For each dataset, we build multiple sets of
top-k queries for different values of k and different spatial ranges (we ensure that
the spatial range is at least of size k). All query sets are generated for fixed k
and w (side of the spatial window). Each query set contains 1000 queries where
the spatial window is placed at a random position within the matrix.

Fig. 4 shows the time required to perform top-k queries in some of our syn-
thetic datasets, for different values of k and w. The K2-treap obtains better

$=4096, d=128, p=100 $=4096, d=1024, p=100

50000 - ‘ t ‘ "+ T T T 1 K k2treaﬁ (k=10; —e—

2treap (k=1000) —=—

el mk2trees (k=10) ------

mk2trees (k=1000) ---e---
wt-rmq (k=10) &
wt-rmq (k=1000) 4

1000

Query time (microsecs/query)

4 10 50 100 500 4096 4 10 50 100 500 4096
Spatial window size Spatial window size

Fig. 4. Times of top-k queries in synthetic datasets

query times than the wtrmg in all the queries, and both evolve similarly with
the size of the query window. On the other hand, the mk2tree representation
obtains poor results when the spatial window is small or large, but it is compet-
itive with the K?2-treap for medium-sized ranges. This is due to the procedure
to query the multiple K?-tree representations: for small windows, we may need
to query many K2-trees until we find k results; for very large windows, the K?2-
treap starts returning results in the upper levels of the conceptual tree, while
the mk2tree approach must reach the leaves; for some intermediate values of
the spatial window, the K?2-treap still needs to perform several steps to start
returning results, and the mk2tree representation may find the required results
in a single K2-tree. Notice that the K2-treap is more efficient when no range
limitations are given (that is, when w = s), since it can return after exactly
K iterations. Fig. 4 only shows the results for two of the datasets, but similar
comparison results have been obtained in all the synthetic datasets studied, with
the K2-treap outperforming the alternative approaches in most of the cases, ex-
cept in some queries with medium-sized query windows, when the mk2tree can
obtain slightly better query times.

Next we perform a set of queries that would be interesting in our real datasets.
We start with the same w X w queries as before, which filter a range of rows (sell-
ers) and columns (days/hours). Fig. 5 shows the results of these range queries.
As we can see, the K2-treap outperforms both, the mk2tree and wtrmg, in all
cases. Similarly to the previous results, the mk2tree approach also obtains poor
query times for small ranges but is better in larger ranges.

We run two more specific sets of queries that may be interesting in many
datasets, and particularly in our examples: “column-oriented” and “row-oriented”
range queries, that only restrict one of the dimensions of the matrix. Row-
oriented queries ask for a single row (or a small range of rows) but do not restrict
the columns, and column-oriented ask for single columns. We build sets of 10,000
top-k queries for random rows/columns with different values of k. Fig. 6 (left)
shows that in column-oriented queries the wtrmg is faster than the K2-treap
for small values of k, but our proposal is still faster as k grows. The reason for
this difference is that in “square” range queries, the K2-treap only visits a small
set of submatrices that overlap the region; in row-oriented or column-oriented

dataset salesDay dataset salesHour

g T T T T T k2treap (k=1) —+—
) k2treap (k=5) —>—
5 100 T v k2treap (k=50) —«—
8 tflﬁ mk2tree (k1) —u—
2 Y R 4 mk2tree (k=5) —e—
S X & mk2tree (k=50) —e—
E ok = - 1 a i wtrmq (k=1) &
° A x wtrmq (k=5) 4
£ wirmq (k=50) v
>
5]
8 1 I I I I I I I I
4 10 50 100 4 10 50 100
Spatial window size Spatial window size
Fig. 5. Query times of top-k queries in real datasets
Column-oriented queries Row-oriented queries
T T T T
k2treap - salesDay —&— 10000 k2treap - salesDay —&— 4
k2treap - salesHour —=— k2treap - salesHour —=—
mk2tree - salesDay ---e-—- mk2tree - salesDay ---e-—-
1000 mk2tree - salesHour ---e--- o7 mk2tree - salesHour ---e---
wtrmq - salesDay & o wirmq - salesDay 2
wirmq - salesHour,___&---""" . 1000 E wtrmgq - salesHour & ____----- L
o T e

o
S
T
o
S
T
L

Query times (microseconds/query)

Query times (microseconds/query)

o

1 5 10 50 100 1 5 10 50 100

Fig. 6. Query times of row-oriented and column-oriented top-k queries

queries, the K2-treap is forced to check many submatrices to find only a few re-
sults. The mk2tree suffers from the same problem of the K2-treap, being unable
to filter efficiently the matrix, and obtains the worst query times in all cases.
In row-oriented queries (Fig. 6, right) the wtrmgq is even more competitive,
obtaining the best results in many queries. The reason for the differences found
between row-oriented and column-oriented queries in the wtrmg is the mapping
between real and virtual columns: column ranges are expanded to much longer
intervals in the wavelet tree, while row ranges are left unchanged. Notice anyway
that our proposal is still competitive in the cases where k is relatively large.

6 Conclusions and Future Work

We have introduced a new compact data structure that performs top-k range
queries on grids up to 10 times faster than current state-of-the-art solutions and
requires as little as 30% of the space, both in synthetic and real OLAP databases,
and including uniform distributions, which is the worst scenario for K?2-treaps.

The K2-treap can be generalized to represent grids in higher dimensions, by
simply replacing our underlying K2-tree with its generalization to d dimensions,
the K?-tree [3] (not to be confused with kd-trees [2]). The algorithms stay iden-
tical, but an empirical evaluation is left for future work. In the worst case, a grid

of t points on [n]¢ will require O(tlg "Td) bits, which is of the same order of the
data, and much less space will be used on clustered data. Instead, an extension of
the wavelet tree will require O(n logd n) bits, which quickly becomes impractical.
Indeed, any structure able to report the points in a range in polylogarithmic time
requires £2(n(logn/loglogn)?~1) words of space [6], and with polylogarithmic
space one needs time at least £2(log n(logn/loglogn)l?/21=2) [1]. As with top-k
queries one can report all the points in a range, there is no hope to obtain good
worst-case time and space bounds in high dimensions, and thus heuristics like
Kd-treaps are the only practical approaches (kd-trees do offer linear space, but
their time guarantee is rather loose, O(n'~'/¢) for n points on [n]?).

References

1. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting
and rectangle stabbing in the pointer machine model. In: Proc. SCG. pp. 323-332
(2012)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Comm. ACM 18(9), 509-517 (1975)

3. de Bernardo, G., Alvarez-Garcfa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.:
Compact querieable representations of raster data. In: Proc. 20th SPIRE. pp. 96—
108 (2013)

4. Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-
length codes. Inf. Proc. Manag. 49(1), 392-404 (2013)

5. Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Sys. 39(1), 152-174 (2014)

6. Chazelle, B.: Lower bounds for orthogonal range searching I: The reporting case.
J. ACM 37(2), 200-212 (1990)

7. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:
Proc. 15th SPIRE (2008)

8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comp. 40(2), 465-492 (2011)

9. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range
maximum queries. In: Proc. 22nd ISAAC. pp. 180-189 (2011)

10. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA. pp. 841-850 (2003)

11. Konow, R., Navarro, G., Clarke, C., Lopez-Ortiz, A.: Faster and smaller inverted
indices with treaps. In: Proc. 36th SIGIR. pp. 193-202 (2013)

12. Mékinen, V., Navarro, G.: Position-restricted substring searching. In: Proc. 7th
LATIN. pp. 703-714 (2006)

13. Martinez, C., Roura, S.: Randomized binary search trees. J. ACM 45(2), 288-323
(1997)

14. McCreight, E.M.: Priority search trees. SIAM J. Comp. 14(2), 257-276 (1985)

15. Munro, I.: Tables. In: Proc. 16th FSTTCS. pp. 37-42 (1996)

16. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Proc. 23rd SODA. pp. 1066-1078 (2012)

17. Navarro, G., Nekrich, Y., Russo, L.: Space-efficient data-analysis queries on grids.
Theor. Comp. Sci. 482, 60-72 (2013)

18. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16(4/5), 464-497
(1996)

