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Abstract. Sequence representations supporting not only direct access
to their symbols, but also rank/select operations, are a fundamental
building block in many compressed data structures. In several recent ap-
plications, the need to represent highly repetitive sequences arises, where
statistical compression is ineffective. We introduce grammar-based rep-
resentations for repetitive sequences, which use up to 10% of the space
needed by representations based on statistical compression, and support
direct access and rank/select operations within tens of microseconds.

1 Introduction

Given a sequence S[1,n] drawn over an alphabet ¥ = [1,0], an intensively
studied problem in the past few years has been how to represent S space-
efficiently while solving operations rank(S,4) (number of occurrences of b in
S[1,14]), selecty(S,¢) (i-th occurrence of b in S), and access(S,7) = S[i]. The
motivation comes from a wide number of applications involving these function-
alities: text indexes, document retrieval, data grids, and many others [25].

The most well-known data structure to solve rank/select/access (rsa)
queries is the wavelet tree (WT) [18] (with several recent improvements for large
alphabets [3,12]). These data structures are able to statistically compress the
input sequence while efficiently solving rsa queries. However, they are unable to
compress S beyond its statistical entropy.

Although statistical compression is appropriate in many contexts, it is un-
suitable in various other domains. This is the case of an increasing number
of applications that deal with highly repetitive sequences: compressed software
repositories, versioned document collections, DNA datasets of individuals of the
same species, and so on, which contain many near-copies of the same source
code, document, or genome [24]. In this scenario, statistical compressors, or a
compressed WT, do not take a proper advantage of the repetitiveness [20], which is
crucial to reduce the size of those usually huge datasets by orders of magnitude.
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Grammar- and Lempel-Ziv-based compressors are very efficient at handling
repetitive sequences. However, even supporting operation access is difficult on
them. Let S[1,n] be compressible into a grammar of size r, so that a grammar-
based compressor uses rlg(r + o) bits. Bille et al. [5] show how to represent S
using O(rlogn) bits so that access(S, ) is solved in O(logn) time. Let z be the
number of phrases into which a Lempel-Ziv parser factors S. Then a Lempel-Ziv
compressor achieves z(lgn + lg o) bits. Gagie et al. [14] show how to represent
S using O(zlognlog(n/z)) bits so that access(S,4) can be supported in time
O(logn). Verbin and Yi [32] show that both times are essentially optimal. Note,
however, that the spaces are at best proportional to the size of the compressed
string, and that operations rank and select are not supported. This is to be
contrasted with, for example, alphabet partitioning techniques [3,4] which ob-
tain asymptotically the same space of a kth-order statistical compression of S,
support access in O(1) time, select in almost-constant time (or vice versa),

and rank in the optimal O(log llggg)) time on a RAM machine of w bits.

Various scenarios require rsa support on repetitive sequences. Some exam-
ples are: document retrieval on repetitive sequence collections, to represent the
so-called “document array” [28]; XPath queries on versioned XML data, to repre-
sent the sequence of tags [2]; simulating positional inverted indexes on repetitive
natural language text collections, by representing the sequence of words [6, 15];
and bidirectional navigation of Web graphs, to represent adjacency lists [10].

The only current solution to provide rsa support on repetitive sequences is
of practical nature [28]. The key idea is that repetitions in the input sequence
S should also induce repetitions in the bitmaps of a WT built on it. This is
true at least for the first few levels of the WT, since the WT construction algo-
rithm splits such repetitions as we move downward in the tree. Therefore, if S
is grammar-compressible, so are the first bitmaps of the WT. These first levels
are compressed with an enhanced Re-Pair (a grammar compressor [21]) repre-
sentation for bitmaps (RPB [28]) that supports rsa queries in O(logn) time. The
remaining levels, which are not grammar-compressible, are compressed with sta-
tistical techniques for bitmaps (RRR [29]) or even not compressed at all (CM [9,
23]). Thus, the rsa operations are supported in O(lognlog o) worst-case time.

This solution, dubbed WIRP, has two main drawbacks: (a) Re-Pair compressed
bitmaps RPB [28] are in practice orders of magnitude slower than RRR or CM to
support rsa operations (O(logn) vs O(1) time, in theory), what makes the WTRP
significantly slower than a regular WT; (b) the WT construction quickly destroys
the repetitiveness of S, and thus the size of the WT can be many times larger
than the Re-Pair compressed sequence (there is no theoretical guarantee here).

In this paper we propose two new solutions for rsa queries over grammar
compressed sequences. The first one, tailored to sequences over small alphabets,
is obtained by enhancing and improving the RPB representation for bitmaps [28].
We dub this solution GCC (Grammar Compression with Counters). This may
directly apply, for example, to sequences of XML tags. Our second structure
combines GCC with alphabet partitioning (AP) [3] and is aimed to sequences
with large alphabets. AP splits the sequence S into subsequences over smaller



alphabets, what lets us apply GCC on them (or a simpler and faster representation
on the subsequences that are not grammar-compressible).

Our experiments on various real-life repetitive sequences show that our new
representations use significantly less space, and are an order of magnitude faster,
than WTRP, the only current solution [28]. They are still an order of magnitude
slower than statistically compressed representations, but they also use an order
of magnitude less space on repetitive sequences. We show, as a concrete appli-
cation, the improvement obtained by plugging our structure to represent the
sequence of tags within SXSI, a system that supports XPath queries on com-
pactly represented XML data, when the collections are repetitive.

2 Basic Concepts and Related Work

2.1 Grammar compression of sequences and Re-Pair

Grammar-compressing a sequence S means to find a context-free grammar that
generates (only) S. Finding the smallest grammar that generates a given se-
quence S is NP-complete [8], but heuristics like Re-Pair [21] perform very well
in practice, in linear time and space. This will be our compressor of choice.

Re-Pair finds the most frequent pair of symbols ab in S, adds a rule X — ab
to a dictionary R, and replaces each occurrence of ab in S by X. This process
is repeated (X can be involved in future pairs) until the most frequent pair
appears only once. The result is a tuple (R, C), where the dictionary R contains
r = |R| rules and C, of length ¢ = |C|, is the final reduction of S after all the
replacements carried out. Note that C' is drawn from an alphabet of size o + 7,
not only o. Thus, the total output size is (2r+c¢) lgr bits. By using the technique
of Tabei et al. [31], we represent the dictionary in 7 log 7+ O(r) bits, reducing the
total space to (r+c)logr+ O(r) bits. Finally, it is possible to force the grammar
to be balanced, that is, that the grammar tree is of height O(logn) [30].

2.2 Bitmap representations and RPB

Several classical solutions represent a binary sequence B[1, n] with rsa support.
Clark and Munro [9, 23] (CM) use o(n) bits on top of B and solve all the queries in
O(1) time. Raman et al. [29] (RRR) also support the operations in O(1) time, but
they statistically compress B to nHy(B)4o0(n) bits, where Hy(B) is the empirical
zero-order entropy of B: if B has m 1s, then Hy(B) = = 1g > + "2 g 1.

The only solution that exploits the repetitiveness of the bitmap was pro-
posed by Navarro et al. [28] (RPB). They Re-Pair compress B with a balanced
grammar and enhance the output (R,C) with extra information to solve rsa
queries: Let exp(X) be the string of terminals X expands to; then they store,
for each rule X — YZ, {(X) = |exp(X)|, the length of exp(X), and 2(X) =
ranko(exp(X), ¢(X)), the number of Os in exp(X).

Note that both values can be recursively computed as ¢(X) = (Y + ¢(2),
with £(0) = £(1) = 1; and 2(X) = 2(Y) + 2(Z), with 2(0) = 1,2(1) = 0. To save




space, they store £(-) and z(-) only for a subset of nonterminals, and compute the
others recursively by partially expanding the nonterminal. Given a parameter ¢,
they guarantee that, to compute any £(X) or z(X), we have to expand at most 26
rules. The sampled rules are marked in a bitmap By[1, r] and the sampled values
are stored in two vectors, Sy and S,, of length rank; (Bg,r). To obtain ¢(X) we
check whether By[X] = 1. If so, then £(X) = Sy[rank;(Bg, X)]. Otherwise £(X)
is obtained recursively as £(Y") + £(Z). The process for z(X) is analogous.

Finally, every sth position of B is sampled, for a parameter s. An array
Sn]0,n/s] stores a tuple (p, 0, rnk) at S,[i], where the expansion of C[p] contains
Bli - 5], that is, p = max{j, L(j) < i - s}, where L(j) = 1+ Yi_, 4(C[K]);
0=1-s— L(p) is the offset within that symbol; and rnk = ranky(B, L(p) — 1).
Let S[0] = (0,0,0).

To solve rankgy(B, i), let Sp[|i/s]|] = (p,0,rnk) and set I = s-|i/s| —o. Then
we move forward from C|p], updating | = I + ¢(C[p]), rnk = rnk + z(C[p]), and
p=p+1,aslong as |+ ¢(C[p]) <i. When [ < i <1+ £(C|p]), we have reached
the rule C[p] = X — Y Z whose expansion contains B[i]. Then, we recursively
traverse X as follows. If [ + £(Y") > i, we recursively traverse Y. Otherwise we
update | = [ 4+ £(Y) and rnk = rnk + z(Y'), and recursively traverse Z. This is
repeated until [ = 7 and we reach a terminal symbol in the grammar. Finally,
we return rnk. Obviously, we can also compute rank;(B,i) = i — ranko(B, ).
Solving access(B, i) is completely equivalent, but instead of returning rnk we
return the terminal symbol we reach when [ = 1.

To solve selecto(B,j), we binary search S, to find S,[i] = (p,o,rnk) and
Spli + 1] = (p',0',rnk’) such that rnk < j < rnk’. Then we proceed as for
rankyp, but iterating as long as z+ 2(C[p]) < j, and then traversing by going left
(to Y) when z 4+ 2(Y) > j, and going right (to Z) otherwise. The process for
select1 (B, j) is analogous (note X contains £(X) — z(X) 1s).

On a balanced grammar, a rule is traversed in O(logn) time. The time to
iterate over C' between samples is O(s). Therefore, the total time for rsa is
O(s+logn) and the total space is O(rlogn + (n/s)logn) + clg(o + ) bits. The
time is multiplied by ¢ if we use sampling.

2.3 Sequence representations

The wavelet tree [18] (WT) is a complete balanced binary tree that represents
a sequence S on X = [1,0]. It is able to statistically compress the sequence
and solves rsa queries in O(logo) time. For large alphabets, a variant called
wavelet matrix (WM) [12] performs better in practice. Assume we use a plain
encoding of symbols in [lgo]| bits, where a(j) the jth most significant bit of
a € X. The WM construction algorithm starts with S; = S at level [ = 1 and
proceeds as follows: (1) build a single bitmap B;[1,n] where B;[i] = S;[i](l); 2)
compute 2,41 = ranko(Bj,n); (3) build sequence S;41 such that, for k < Z41,
Siv1[k] = Si[selecto(By, k)], and for k > Zj1, Si41[k] = Si[selecty (B, k — Zi141)];
(4) repeat the process until I = [logo|. This is actually a reshuffling of the bits
of S[i]{j) for all ¢ and j (akin to radix sorting the symbols of \S), with n[lgo]



bits in total (plus lgnlg o for the 2;). The rsa operations are carried out with
one binary rsa operation per level of the WM.

By representing the bitmaps B; with CM [9, 23], the total space is nlgo(1 +
0(1)) bits and the rsa time is O(log o). By using RRR bitmap representation [29)],
the time complexity is retained but the space reduces to nHy(S) + O(clogn)
bits, although the times are higher in practice. Zero-order compression is also
obtained, with faster time in practice, by retaining the CM representation but
using a tree with Huffman [19] shape instead of a balanced one, which gives
n(Ho(S) + 1)(1 + o(1)) + O(o logn) bits. The results are called WTH (Huffman-
shaped WT) or WMH (Huffman-shaped WM [13]).

An alternative solution for rsa queries over large alphabets is alphabet par-
titioning (AP) [3], which obtains nHy(B) + o(n(Ho(B) + 1)) bits and solves rsa
in O(loglogo) time. The main idea is to partition X into several subalphabets
XY, and S into the corresponding subsequences S; over X;. A string K[1,n]
indicates the sequence each symbol of S belongs. Then rsa operations on S are
translated into rsa operations on K and on some subsequence S;. Furthermore,
the symbols in each X; are of roughly the same frequency, so that using a fast
compact (but not compressed) representation of S; (GMR) [16] yields O(loglog o)
time and does not ruin the statistical compression of S. The actual implementa-
tion defines X; as the set of the 27~!th to the (27 — 1)th most frequent symbols,
and uses WT when this alphabet is small, and GMR when it is large.

The mapping to subalphabets is represented in a sequence M|[1, o], where
Mla] = j iff @ € X;. In each subsequence S;, each a € X; is rewritten as
rankj(M,a), so the local alphabet is [1,27!]. Now, to find S[i] we compute
Jj = Kli], v = Sj[rank;(K,i)], and S[i] = select;j(M,v). To find rank,(S,1),
we compute j = Mla|, v = rank;(M,a), r = rank;(K,i), and rank,(S,i) =
rank,(S;,r). Finally, to find select, (S, ), we compute j = M[a], v = rank;(M, a),
s = select,(S;,1), and select,(S,1) = select;(K, s).

2.4 Re-Pair compressed WT

As far as we know, WTRP [28] (or WMRP if implemented on a WM) is the only solution
to support rsa on grammar-compressed sequences. The structure is a WT where
all the bitmaps at each level [ are concatenated, and then the bitmap B; of each
level [ is compressed with RPB [28]. The rationale is that the repetitiveness of S
is reflected in the bitmaps of the WT, at least for the first levels. That is because
the WT construction splits the alphabet at each level, which potentially blurs the
repeated substrings into many shorter repetitions.

Therefore, the bitmaps of the first few WT levels are likely to be compressible
with Re-Pair, while the remaining ones are not. The authors [28] use at each level
[ the technique to represent B; that yields the least space, RPB, RRR, or CM. In
case of a highly compressible sequence, the space can be drastically reduced, but
the search performance degrades by one or more orders of magnitude compared
to using CM or RRR: If all the levels use RPB, the rsa time complexities become
O(logo(s +logn)). On the other hand, as repetitiveness is destroyed at deeper
levels, the total space is far from that of a plain Re-Pair compression of S.



3 Efficient rsa for Sequences on Small Alphabets

Our first proposal, dubbed GCC (Grammar Compression with Counters) is aimed
at solving rsa queries on grammar-compressed sequences with small alphabets.
We generalize the existing solution for bitmaps (RPB, Section 2.2), to sequences
with o > 2. Besides, we introduce several enhancements that improve its space
usage.

Let (R, C) be the result of a balanced Re-Pair grammar compression of S.
We store Sy[X] = £(X) for each grammar rule X € R. In addition, we store a se-
quence of counters S,[X] for each symbol a € X: S,[X] = rank,(exp(X), (X))
is the number of occurrences of a in exp(X).

The input sequence S is also sampled according to the new scenario: each ele-
ment (p, o,nk) of S,,[1,n/s] is now replaced by (p, o, lrnk[1, o]), where lrnkla] =
ranky(S, L(p) — 1) for all a € X, s being the sampling period.

The rsa algorithms stay practically the same as for RPB; now we use the
symbol counter of a for rank, and select,. The resulting data structure solves
rsa in time O(s + logn) and takes O(rologn + o(n/s)logn) + clg(o + r) bits.

The extra space incurred by o can be reduced by using the same §-sampling
of RPB, which increases the time by a factor §. In this case we also use the
bitmap Bg[l,r]| that marks which rules store counters. We further reduce the
space by noting that many rules are short, and therefore the values in S, and
S, are usually small. We represent them using direct access codes (DACs [7]),
which store variable-length numbers while retaining direct access to them. The
o components of S, are also represented with DACs for the same reason.

On the other hand, the p and lrnk[l,o] values are not small but increas-
ing. We reduce their space using a two-layer strategy: we sample S, at reg-
ular intervals of length ss. We store SS,[j] = Sn[j - ss|, and then represent
the values of S,[i] = (p,o0,lrnk[l,0]) in differential form, in array S, [i] =
(p',0,lrnk'[1,0]), where p’ = p — p* and lrnk'[a] = lrnk[a] — lrnk*[a], with
SSu(li/ss]|] = (p*, 0", lrnk*[1,o]). The total space for the p and lrnk[l, o] com-
ponents is O(o(n/s)log(s - ss) + (n/(s - ss))logn) bits. For example, if we use
ss=lgnand s = logo(l) n (a larger value would imply an excessively high query
time), the space becomes O(rologn + o(n/s)loglogn) + clg(o + r) bits. This
can be reduced to O((ro + ¢)logn) bits by sampling regularly C instead of S
and using s = O(logn), but the described sampling works better in practice.

When o is small, this data srtucture is very space- and time-efficient. It com-
press better than WTRP [28] since it does not destroy the repetitiveness of S when
building the wavelet tree. Besides, it runs faster compared to the O(log o logn)
time obtained by WTRP: we need just one operation on GCC, not log o operations
on RPB. However, this solution becomes prohibitive when the alphabet becomes
large since it has a ¢ multiplicative term in the space.

4 Efficient rsa for Sequences on Large Alphabets

For large alphabets, our idea is to combine GCC with AP [3] (Section 2.3), which
splits S[1, n] into a sequence K[1,lg o] of classes and lg o subsequences S} 1og o]-



dataset n o Hy RP LZ dataset ‘ n o Hy RP LZ

para 429 5 1.12 0.37 0.19 software | 37 48 3.23 0.08 0.47
influenza 322 16 1.98 0.23 0.15 einstein | 17 8,046 9.91 0.08 0.04
escherichia| 113 15 2.00 1.04 0.52 fiwiki 84 99,797 11.04 0.24 0.16

fiwikitags 49 24 3.36 0.11 0.32 indochina| 50 685,100 13.94 0.88 0.32

Table 1. Statistics of the datasets. Length n is measured in millions (and rounded).

That is, AP partitions the original sequence into subsequences over smaller al-
phabets, which is the scenario GCC handles well.

Note that, if S is grammar-compressible, then K is grammar-compressible
as well, as K counsists of a (non-injective) mapping of the symbols of S. It is
also reasonable to expect that the subsequences S; grammar-compress well, at
least for the first levels (i.e., the most frequent symbols): If ab is a frequent
pair in S, then it is expected that they are frequent individually as well. As a
consequence, it is likely that a and b belong to the same first classes. Even for the
less frequent symbols, if they appear frequently together, then their individual
frequencies are likely to be similar, and thus they have a good chance to be
assigned to the same class. If the most frequent pairs of symbols ab are assigned
to the same subsequence S;, then all the space saved by the rule X — ab is also
saved if choosing the same rule when grammar-compressing .S;.

We apply GCC to K and to the first sequences S;, since they have a small al-
phabet. For the remaining subsequences we have two choices: (a) represent them
using GMR (APRep, recall that subsequences S; are not statistically compressible
[3]); or (b) attempt to grammar-compress them using WMRP (APRep-WMRP). Which
is better depends on whether the subsequences on large alphabets (which con-
tain less frequent symbols) are still repetitive or not. While the choice (b) yields
higher times than (a), we note that, if queries have the same statistical distribu-
tion of the symbols in .S, then most queries will refer to more frequent symbols,
which will be handled with the fast GCC representation.

5 Experimental Results and Discussion

We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM mem-
ory, running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86_64.
All our implementations use a single thread and are coded in C++. The compiler
is g++ version 4.6.3, with -09 optimization. We implemented our solutions in-
side LIBCDS (github.com/fclaude/libcds) and use Navarro’s implementation
of Re-Pair (www.dcc.uchile.cl/gnavarro/software/repair.tgz).

Table 1 shows statistics of interest about the datasets used and their com-
pressibility: length (n), alphabet size (¢), zero-order entropy (Hy), bits per sym-
bol (bps) obtained by Re-Pair (RP, assuming (2r + ¢)[lg(o + r)] bits), and bps
obtained by p7zip (LZ, www.7-zip.org), a Lempel-Ziv compressor.



5.1 Results for small alphabets

To test our structure on small alphabets, we use some DNA datasets (para and
escherichia) from PizzaChili Repetitive Corpus (pizzachili.dcc.uchile.cl/
repcorpus), and influenza from the SuDS Project (www.cs.helsinki.fi/
group/suds/rlcsa/data/fiwiki.bz2). From SuDS we also extract fiwikitags,
the sequence of opening and closing tags from a subset of the Finnish Wikipedia.

We show results for GCC, using sampling steps s = 2{10:12.14} and supersteps
ss = 2468} for C, and 6 = {0,2,4,8} for R. We also compare WMRP [28],
which takes, for the bitmap of each level, the representation using least space
between RPB, RRR (with sampling value 32), and CM (a simple implementation [17]
with sampling value 32). We also include in the comparison the WTH (Huffman-
compressed WT), as a good statistically compressed solution for rsa. For the WTH
bitmaps we use RRR with sampling steps in {32, 64, 128}.

Figures 1 and 2 show the results for all the operations and collections. Our
GCC dominates WMRP both in space and in rsa time. The difference in space with
WMRP is larger as the sequence is more grammar-compressible (see Table 1). This
is because GCC preserves all the repetitiveness of S, while paying a price only
in terms of the alphabet size. Instead, WMRP destroys the repetitiveness after a
few wavelet tree levels. In terms of rsa performance, GCC is up to two orders of
magnitude faster than WMRP for the same space usage. Note that the collection
in which GCC and WMRP are closest is escherichia, the least repetitive one.

On the other hand, the representation that compresses statistically, WTH, is
about an order of magnitude faster than GCC, but it also takes many times more
space (up to 10 times in case of fiwikitags).

5.2 Results for large alphabets

For large alphabets, we use collection einstein (also from PizzaChili), which
contains Wikipedia versions of the article about Einstein in German, and fiwiki
(also from SuDS), a 400MB prefix of the Finnish Wikipedia. We regard both
texts as sequences of words. A third collection is indochina, a subset with the
first 50 million elements of the adajacency lists of the Web graph Indochina2004
(available from the WebGraph Project, http://law.dsi.unimi.it).

We study our two solutions, APRep and APRep-WMRP. These use GCC and
WMRP internally, for which we use the same configurations as for the case of small
alphabets. Besides, we introduce two new parameters: 8 € {2,...,10}, so that
the 8 most frequent symbols are directly stored in K [3], and f € {2,...,7},
so that we use GCC on the first f subsequences, Si,...,S5f. We compare these
solutions with WMRP, parameterized as before, and with WMH and AP, two good
statistically-compressing representations for large alphabets. We use RRR [29]
for the the WMH bitmaps with samplings {32,64,128}. The K sequence of AP is
represented with a WT and each S; with GMR.

Figures 3 and 4 show the results. APRep-WMRP obtains the best space, dom-
inating WMRP in both space and time by a significant margin. APRep takes over
when more space is used, being up to twice as fast as APRep-WMRP (yet using
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Fig. 1. Space-time tradeoffs for rsa queries over small alphabets: collections influenza
and para (note logscale in time).

twice the space). The statistical representations are, as before, up to an order
of magnitude faster than our fastest representations, but use much more space,
especially on the most repetitive collections. In those, they are two orders of mag-
nitude faster, but use up to 10 times more space, than our most space-efficient
representations.

5.3 Application: XPath queries on highly repetitive collections

We show the impact of our new representations in the indexing of repetitive
XML collections. SXSI [2] is a recent system that represents XML datasets in
compact form and solves XPath queries on them. Its query processing strategy
uses a tree automaton that traverses the XML data, using several queries on the
content and structure to speed up navigation towards the points of interest. SXSI
represents the XML data using three separate components: (1) a text index that
represents and carries out pattern searches over the text nodes (any compressed
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Fig. 2. Space-time tradeoffs for rsa queries over small alphabets: collections
escherichia and fiwikitags (note logscale in time).

full-text index [26] can be used); (2) a balanced parentheses representation of
the XML topology that supports navigation using 24 o0(1) bits per node (various
alternatives exist [1]); and (3) an rsa-capable representation of the sequence of
the XML opening and closing tags, using some sequence representation.

When the XML collection is repetitive (e.g., versioned collections like Wiki-
pedia, versioned software repositories, etc.), one can use the RLCSA [22], a full-
text index that performs well on a repetitive collection of text nodes, for (1).
Components (2) and (3), which are usually less relevant in terms of space, may
become dominant if they are represented without exploiting repetitiveness. For
(2), we compare GCT, a tree representation aimed at repetitive topologies [27],
with a classical representation (FF [1]). For (3), we will use our new repetition-
aware sequence representations, comparing them with the alternative proposed
in SXSTI (MATRIX, using one compressed bitmap per tag) and a WTH representation.
All variants will use the RLCSA with no text sampling as their text index.
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Fig. 3. Space-time tradeoffs for rsa queries over large alphabets: collections einstein
and fiwiki (note logscale in time).

We use a repetitive data-centric XML collection of 200MB from a real soft-
ware repository. Its sequence of XML tags, called software, is described in Ta-
ble 1. We run two XPath queries that make intensive use of the sequence of tags
and the tree topology: XQ1=//class[//methods], and XQ2=//class [methods].

Table 2 shows the space in bpe (bits per element) of components (2) and (3).
An element here is an opening or a closing tag, so there are two elements per
XML tree node. The space of the RLCSA is always 2.3 bits per character of the
XML document. The table also shows the impact of each component in the total
size of the index. Finally, the table shows the time to solve both queries.

The original SXSI (MATRIX+FF) is very fast but needs almost 14 bpe, which
amounts to over 75% of the index space in this repetitive scenario (in non-
repetitive text-centric XML, this space is negligible). By replacing the MATRIX
by a WTH, the space drops significantly, to slightly over 4 bpe, yet times degrade
by a factor of 3-6. By using our GCC for the tags, a new significant space reduction
is obtained, to 2.65 bpe, and the times increase by a factor of 4-5, becoming 13—
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dataset ‘ tags tree‘ Y%tags %tree %text ‘ XQ1 XQ2

MATRIX+FF|12.40 1.27| 69.00 7.19 23.90 16 35
WTH+FF 2.88 1.27| 34.07 15.09 50.84 92 113
GCC+FF 0.37 1.27 6.26 21.45 72.29| 442 462
GCC+GCT 0.37 0.19 7.66 3.93 88.42|1,032 3,302

Table 2. Results on XML. Columns tags and tree are in bpe. Columns XQ1 and
X Q2 show query time in microseconds.

28 times slower than the original SXSI. Finally, changing FF by GCT [27], we can
reach as low as 0.56 bpe, 24 times less than the original SXSI, and using less
than 12% of the total space. Once again, the price is the time, which becomes
65-95 times slower than the basic SXSI. The price of using the slower GCT is
more noticeable on XQ2, which requires more operations on the tree.

While the time penalty is 1-2 orders of magnitude, we note that the gain in
space can make the difference between running the index in memory or on disk;
in the latter case we can expect it to be up to 6 orders of magnitude slower.
On the other hand, the time differences will blur on queries that do not only
access the tags and the tree, but also involve the text, as these cost the same
in all the representations. Finally, we note that the RLCSA becomes the space
bottleneck in GCC+GCT. It is worthwhile to consider even more compressed text
representations, for example based on grammars [11] or on LZ77 [20].



6 Final Remarks

Our new ideas permit much more exploration. We have used the same partition-
ing into sequences given in the alphabet partitioning work [3], with alphabets of
doubling sizes. However, other partitionings may be more suitable to our needs,
for example building all the subsequences with the same alphabet size p, so
that alphabet [1, p] can be comfortably handled with our basic method for small
alphabets. This may induce a hierarchy of classes, instead of two levels as in
alphabet partitioning [3]. The result would be indeed a p-ary version of the cur-
rent (2-ary) wavelet-tree based solution [28], which may reduce space and time
by increasing the arity. Furthermore, we plan to study heuristics for grouping
symbols into classes, aiming to avoid separating symbols that form long repeated
substrings, so that fewer repetitions are destroyed when forming the classes.

A more far-fetched goal is to achieve Lempel-Ziv compressed representations
that support these operations. Lempel-Ziv is more powerful than grammar com-
pression, but thought to be harder to handle even for supporting direct access.
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